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A-POSTERIORI-STEERED \bfitp -ROBUST MULTIGRID WITH
OPTIMAL STEP-SIZES AND ADAPTIVE NUMBER OF

SMOOTHING STEPS\ast 

ANI MIRA\c CI\dagger , JAN PAPE\v Z\ddagger , AND MARTIN VOHRAL\'IK\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We develop a multigrid solver steered by an a posteriori estimator of the algebraic er-
ror. We adopt the context of a second-order elliptic diffusion problem discretized by conforming finite
elements of arbitrary polynomial degree p \geq 1. Our solver employs zero pre- and one postsmoothing
by the overlapping Schwarz (block-Jacobi) method and features an optimal choice of the step-sizes
in the smoothing correction on each level by line search. This leads to a simple Pythagorean formula
of the algebraic error in the next step in terms of the current error and levelwise and patchwise
error reductions. We show the following two results and their equivalence: the solver contracts the
algebraic error independently of the polynomial degree p; and the estimator represents a two-sided
p-robust bound on the algebraic error. The p-robustness results are obtained by carefully applying
the results of [J. Sch\"oberl et al., IMA J. Numer. Anal., 28 (2008), pp. 1--24] for one mesh, combined
with a multilevel stable decomposition for piecewise affine polynomials of [J. Xu, L. Chen, and R. H.
Nochetto, Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and
unstructured grids, in Multiscale, Nonlinear and Adaptive Approximation, Springer, Berlin, 2009,
pp. 599--659]. We consider quasi-uniform or graded bisection simplicial meshes and prove at most lin-
ear dependence on the number of mesh levels for minimal H1-regularity and complete independence
for H2-regularity. We also present a simple and effective way for the solver to adaptively choose
the number of postsmoothing steps necessary at each individual level, yielding a yet improved error
reduction. Numerical tests confirm p-robustness and show the benefits of the adaptive number of
smoothing steps.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . multigrid method, a posteriori error estimate, stable decomposition, p-robustness,
optimal step-sizes, error representation formula
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1. Introduction. Multilevel (multigrid) methods have shown their versatility
as solvers and/or preconditioners of large sparse algebraic linear systems arising from
numerical discretizations of partial differential equations. We refer to pioneering works
such as Brandt, McCormick, and Ruge [9], Bramble, Pasciak, and Schatz [6], Bank,
Dupont, and Yserentant [4], Ruge and St\"uben [27], or Oswald [22], as well as to
survey works that thoroughly treat subspace correction methods in Xu [34], robust
multigrid methods with respect to nonsmooth coefficients in Chan and Wan [11],
multigrid solvers for high-order discretizations in Sundar, Stadler, and Biros [31], and
the references therein.

In this work, we develop a multilevel solver for algebraic linear systems arising
from the discretization using conforming finite elements of arbitrary polynomial degree
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p\geq 1. One iteration of our solver can be seen as a V-cycle employing zero pre- and
one postsmoothing step, where the levelwise smoother is overlapping additive Schwarz
(block-Jacobi) associated to the patches of elements sharing a common vertex. A
crucial difference to the classical V-cycle is that on each level we use an optimal step-
size at the error correction stage, yielding minimal algebraic error in the subsequent
level.

The idea of an optimal step-size in the error correction is not new; in fact, a
weighting of multigrid error corrections concept appears as early as in Brandt [8].
Then, this approach is used, e.g., in Canuto and Quarteroni [10], though not in
a multigrid setting. The interest of an optimally weighted error correction in the
context of multigrid has been also pointed out in Heinrichs [15], where this choice
resulted in a better numerical performance of the solver. Another version of multigrid
solvers with a changing step-size error correction can be found in the form of a scaled
residual in R\"ude [26]. A crucial immediate consequence of our present optimal step-
sizes choice is that the error contraction becomes explicitly known. This allows one to
obtain the following Pythagorean formula representing the error decrease from step i
to step i+ 1:

\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - ui+1

J )
\bigm\| \bigm\| 2 =

\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - uiJ)

\bigm\| \bigm\| 2  - J\sum 
j=0

\bigl( 
\lambda ij
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| \bigr) 2.(1.1)

Here, \bfscrK is the diffusion tensor, j \in \{ 0, . . . , J\} is the level counter, uJ is the (unknown)
exact algebraic solution, uiJ denotes the available iterate, ui+1

J is the next iterate, \rho ij
are the computed levelwise smoothing corrections, and \lambda ij are the levelwise optimal
step-sizes.

A salient feature of formula (1.1) is that the computable levelwise terms\bigl\{ \sum J
j=0

\bigl( 
\lambda ij
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| \bigr) 2\bigr\} 1

2 form an a posteriori estimator \eta ialg, representing a guar-

anteed lower bound for the algebraic error
\bigm\| \bigm\| \bfscrK 1

2\nabla (uJ  - uiJ)
\bigm\| \bigm\| . Thus our solver is

actually driven by the information provided by the estimator, making the solver an
a-posteriori-steered multigrid.

Our main results can be summarized as follows. First, we prove that our multilevel
solver contracts the error in each iteration. Second, we show that the associated
a posteriori estimator \eta ialg is efficient in that it also represents an upper bound of the
error (up to a constant). These two claims are actually equivalent. Third, there holds

\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - uiJ)

\bigm\| \bigm\| 2\approx J\sum 
j=0

\bigl( 
\lambda ij
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| \bigr) 2

\underbrace{}  \underbrace{}  \bigl( 
\eta i
alg

\bigr) 2
=
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho i0
\bigm\| \bigm\| 2+ J\sum 

j=1

\lambda ij
\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

,(1.2)

so that the developed a posteriori error estimator actually localizes the algebraic error
with respect to mesh levels and also with respect to patches of elements on each
level. These results hold for quasi-uniform meshes as well as possibly highly graded
ones. Importantly, all the results hold p-robustly, i.e., are robust with respect to the
polynomial degree p.

Notable previous works in treating p-robustness include Quarteroni and Sacchi
Landriani [25] for a specific domain configuration and Pavarino [24] for quadrilat-
eral/hexahedral meshes, where the author introduced a p-robust additive Schwarz
method. Later, Janssen and Kanschat [16] and Lucero Lorca and Kanschat [18]
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A-POSTERIORI-STEERED p-ROBUST MULTIGRID S119

used multilevel preconditioners for rectangular/hexahedral meshes, and Antonietti
and Pennesi [2] considered more general meshes. Therein, however, more smoothing
steps are generally necessary, whereas, we recall, we only rely on a single postsmooth-
ing step. A p-robust stable decompostion on triangular/tetrahedral meshes was pre-
sented in Sch\"oberl et al. [29]. It leads to a (one-mesh) p-robust preconditioner and
plays an important part in the analysis of our work.

Compared to our previous work [20], we can mention the following improvements:
(1) In the solver of [20], a global optimal step-size was used, whereas we use here
levelwise step-sizes. (2) We obtain here the powerful error decrease formula (1.1).
(3) The solver proposed in this work does not need any damping, where tuning of
the parameters can be cumbersome. (4) The current analysis gives at most linear
dependence on the number of mesh levels J under minimal H1-regularity. (5) The
current analysis gives complete independence of J in an H2-regularity setting.

Formula (1.1) is also the foundation of a simple and efficient adaptive strategy for
the choice of the number of postsmoothing steps per level. The essence and particu-
larity of our strategy relies on a-posteriori-steered decision-making of the number of
smoothing steps. Following (1.1), after one mandatory smoothing step at each level,

if the given decrease \lambda ij
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| is higher than a user-prescribed portion of the de-

crease made by the previous levels, we decide to do another smoothing step before
going to the next level. The idea of employing a variable number of smoothing steps
per level has also been explored, e.g., in Bramble and Pasciak [5], where a generalized
V-cycle uses more smoothing steps on coarser grids and fewer on finer ones. This
decision is, however, taken a priori. Closely related to the subject is also the work of
Thekale et al. [32], who suggest a variable number of multigrid cycles per level which
optimizes the costs of the full multigrid method by formulating a nonlinear integer
programming problem of small enough size to be solved exactly.

This manuscript is organized as follows. In section 2, we present the multilevel
setting and notation we will be working with, and section 3 develops the motivation
leading us to consider our particular multilevel solver. The solver is then presented in
section 4, and the a posteriori error estimator is introduced in section 5. In section 6,
we collect the main results of the manuscript. In section 7, we present the solver
with the adaptive choice of number of postsmoothing steps, section 8 presents a
simplified cost analysis, and section 9 collects the results of numerical experiments,
which additionally show numerical robustness of our solver with respect to the jumps
of the diffusion tensor for uniform mesh refinements. The proof of our main result is
given in section 10, and we present our concluding remarks in section 11.

2. Setting. This section presents the model problem and the multilevel setting
with which we will be working.

2.1. Model problem, finite element discretization, and algebraic sys-
tem. We consider a second-order elliptic diffusion problem defined over \Omega \subset Rd,
d\in \{ 1, 2, 3\} , an open bounded polytope with a Lipschitz-continuous boundary. Let
f \in L2(\Omega ) be a source term and \bfscrK \in [L\infty (\Omega )]d\times d a symmetric positive definite
diffusion coefficient. The weak solution u \in H1

0 (\Omega ) is given by

(2.1) (\bfscrK \nabla u,\nabla v) = (f, v) \forall v \in H1
0 (\Omega ),

where (\cdot , \cdot ) is the L2(\Omega ) or [L2(\Omega )]d scalar product.
We discretize the continuous problem (2.1) by fixing \scrT J , a matching simplicial

mesh of \Omega , and an integer p \geq 1, in order to introduce the finite element space of
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S120 ANI MIRA\c CI, JAN PAPE\v Z, AND MARTIN VOHRAL\'IK

continuous piecewise p-degree polynomials

V p
J := Pp(\scrT J) \cap H1

0 (\Omega ),(2.2)

where Pp(\scrT J) := \{ vJ \in L2(\Omega ), vJ | K \in Pp(K) \forall K \in \scrT J\} . The discrete problem now
consists of finding uJ \in V p

J such that

(2.3) (\bfscrK \nabla uJ ,\nabla vJ) = (f, vJ) \forall vJ \in V p
J .

If one introduces a basis of V p
J , then the discrete problem is equivalent to solving a

system of linear algebraic equations whose matrix is symmetric and positive definite.
However, such a linear system depends on the choice of the basis functions. To avoid
this dependence, we work instead with a functional description of the problem. In
particular, we define the algebraic residual functional on V p

J , for any u
i
J \in V

p
J , by

vJ \mapsto \rightarrow (f, vJ) - (\bfscrK \nabla uiJ ,\nabla vJ) \in R, vJ \in V p
J .(2.4)

2.2. A hierarchy of meshes and spaces. We work with a hierarchy of match-
ing simplicial meshes \{ \scrT j\} 0\leq j\leq J , J \geq 1, where \scrT J has been introduced above, and
where \scrT j is a refinement of \scrT j - 1, 1 \leq j \leq J . We also introduce a hierarchy
of finite element spaces associated to the mesh hierarchy. For this purpose, for
j \in \{ 0, . . . , J\} , fix pj , the polynomial degree associated to mesh level j such that
1 = p0 \leq p1 \leq \cdot \cdot \cdot \leq pJ - 1 \leq pJ = p. In particular, let

for j = 0 : V 1
0 := P1(\scrT 0) \cap H1

0 (\Omega ) (lowest-order space),(2.5a)

for 1 \leq j \leq J : V
pj

j := Ppj
(\scrT j) \cap H1

0 (\Omega ) (pjth-order spaces),(2.5b)

where Ppj
(\scrT j) := \{ vj \in L2(\Omega ), vj | K \in Ppj

(K) \forall K \in \scrT j\} . Note that V 1
0 \subset V p1

1 \subset 
\cdot \cdot \cdot \subset V

pJ - 1

J - 1 \subset V pJ

J = V p
J .

Fig. 1. Illustration of degrees of freedom (pj = 2) for the space V \bfa 
j associated to the patch \scrT \bfa 

j .

Let \scrV j , 0 \leq j \leq J , be the set of vertices of the mesh \scrT j . In what follows, we
need to define the notion of patches of elements illustrated in Figure 1. Given a
vertex a \in \scrV j , we denote by \scrT \bfa 

j all the mesh elements of \scrT j that share the vertex
a, \scrT \bfa 

j := \{ K \in \scrT j ,a \in \scrV K\} , where \scrV K is the set of vertices of an element K. The
corresponding open patch subdomain is denoted by \omega \bfa 

j . We also denote by \psi j,\bfa the
standard hat function associated to the vertex a\in \scrV j , i.e., the piecewise affine function
with respect to \scrT j taking value 1 at vertex a and vanishing in all other vertices of \scrV j .
Note that \omega \bfa 

j is the support of \psi j,\bfa . Finally, the local spaces V \bfa 
j are defined by

V \bfa 
j :=Ppj (\scrT j) \cap H1

0 (\omega 
\bfa 
j );(2.6)

cf. Figure 1 for the illustration of degrees of freedom when pj = 2.
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3. Motivation: Levelwise orthogonal decomposition of the error. It is
known that a multilevel construction is required to correctly capture the behavior of
the algebraic error; cf., e.g., R\"ude [26], or the counterexample of Pape\v z et al. [23,
section 2.1]. Consider, for a given uiJ \in V p

J , the following (costly for practice but
illustrative) hierarchical construction \~\rho iJ,alg \in V p

J :

\~\rho iJ,alg := \rho i0 +

J\sum 
j=1

\~\rho ij ;(3.1)

here, \rho i0 = \~\rho i0 \in V 1
0 is the solution to a global lowest-order residual problem on the

coarsest mesh

(3.2) (\bfscrK \nabla \rho i0,\nabla v0) = (f, v0) - (\bfscrK \nabla uiJ ,\nabla v0) \forall v0 \in V 1
0 ,

and, moreover, for j = 1 : J , \~\rho ij \in V
pj

j are the solutions of

(\bfscrK \nabla \~\rho ij ,\nabla vj) = (f, vj) - (\bfscrK \nabla uiJ ,\nabla vj) - 
j - 1\sum 
k=0

(\bfscrK \nabla \~\rho ik,\nabla vj) \forall vj \in V
pj

j .(3.3)

This construction returns the algebraic error, i.e., \~\rho iJ,alg = uJ  - uiJ , or, equivalently,

uJ = uiJ +

J\sum 
j=0

\~\rho ij .(3.4)

This, in turn, means that \~\rho iJ,alg satisfies

(\bfscrK \nabla \~\rho iJ,alg,\nabla vJ) = (f, vJ) - (\bfscrK \nabla uiJ ,\nabla vJ) \forall vJ \in V p
J .(3.5)

Moreover, there holds (\bfscrK \nabla \~\rho ij ,\nabla \~\rho ik) = 0, for 0 \leq k, j \leq J, j \not = k. These observations

altogether lead to the orthogonal decomposition of the error between uiJ and uJ as

\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - uiJ)

\bigm\| \bigm\| 2 =
\bigm\| \bigm\| \bfscrK 1

2\nabla \~\rho iJ,alg
\bigm\| \bigm\| 2 =

J\sum 
j=0

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho ij

\bigm\| \bigm\| 2.(3.6)

4. Multilevel solver. We now introduce our local constructions inspired by
(3.1)--(3.3), producing levelwise approximations of the algebraic error components \~\rho ij
of (3.3). The construction relies on the inexpensive coarse residual solve (3.2) and on
local contributions, defined on patches of elements on each level; see Figure 1. We
go through the levels adding gradually levelwise updates uiJ,j to the current approx-

imation uiJ as described below. Hereafter, (\cdot , \cdot )\omega \bfa 
j
stands for the L2(\omega \bfa 

j ) or [L
2(\omega \bfa 

j )]
d

scalar product.

Definition 4.1 (multilevel solver).
1. Initialize u0J \in V p

J as the zero function and set i := 0.
2. Perform the following steps (a)--(d):

(a) Define \rho i0 by (3.2), impose \lambda i0 := 1, and set

uiJ,0 := uiJ + \lambda i0\rho 
i
0.
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(b) For j = 1 : J , define the local contributions \rho ij,\bfa \in V \bfa 
j as solutions of

patch problems, for all vertices a \in \scrV j,

(4.1) (\bfscrK \nabla \rho ij,\bfa ,\nabla vj,\bfa )\omega \bfa 
j
= (f, vj,\bfa )\omega \bfa 

j
 - (\bfscrK \nabla uiJ,j - 1,\nabla vj,\bfa )\omega \bfa 

j
\forall vj,\bfa \in V \bfa 

j ,

and the descent direction \rho ij \in V
pj

j on the level j by

\rho ij :=
\sum 
\bfa \in \scrV j

\rho ij,\bfa .(4.2)

If \rho ij \not = 0, define the optimal step-size on level j by

(4.3) \lambda ij :=
(f, \rho ij) - (\bfscrK \nabla uiJ,j - 1,\nabla \rho ij)\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| 2 ;

otherwise, set \lambda ij := 1. Define the level update by

uiJ,j := uiJ,j - 1 + \lambda ij\rho 
i
j .(4.4)

(c) Set the final update as ui+1
J :=uiJ,J \in V

p
J.

(d) If ui+1
J =uiJ , then stop the solver. Otherwise, increase i := i+ 1 and go

to step 2(a).

Note that by definition \lambda i0 = 1, and we thus have for \rho i0 \not = 0,

(f, \rho i0) - (\bfscrK \nabla uiJ ,\nabla \rho i0)\bigm\| \bigm\| \bfscrK 1
2\nabla \rho i0

\bigm\| \bigm\| 2 (3.2)
= 1 = \lambda i0.

Remark 4.2 (compact writing of the iteration update). Let uiJ \in V p
J . It is easily

noted that the level update (4.4) equivalently writes as

uiJ,j = uiJ +

j\sum 
k=0

\lambda ik\rho 
i
k.(4.5)

Thus, using the conventions uiJ, - 1 := uiJ and 0
0 = 0, the new iterate after one step of

the solver described in Definition 4.1 is, compared to (3.4),

(4.6) ui+1
J = uiJ +

J\sum 
j=0

\lambda ij\rho 
i
j = uiJ +

J\sum 
j=0

(f, \rho ij) - (\bfscrK \nabla uiJ,j - 1,\nabla \rho ij)\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij

\bigm\| \bigm\| 2 \rho ij .

The lemma below rigorously justifies the choice and use of the step-sizes (4.3).

Lemma 4.3 (levelwise optimal step-sizes). Let uiJ,j - 1 \in V p
J be arbitrary, let

j \in \{ 1, . . . , J\} , and let \rho ij and \lambda ij be given by (4.2) and (4.3), respectively. Then

\lambda ij = argmin
\lambda \in R

\bigm\| \bigm\| \bfscrK 1
2\nabla 
\bigl( 
uJ  - (uiJ,j - 1 + \lambda \rho ij)

\bigr) \bigm\| \bigm\| .
Proof. We write the algebraic error associated to uiJ,j - 1 + \lambda \rho ij as a function of \lambda :\bigm\| \bigm\| \bfscrK 1

2\nabla 
\bigl( 
uJ  - (uiJ,j - 1 + \lambda \rho ij)

\bigr) \bigm\| \bigm\| 2 =
\bigm\| \bigm\| \bfscrK 1

2\nabla (uJ  - uiJ,j - 1)
\bigm\| \bigm\| 2(4.7)

 - 2\lambda 
\bigl( 
\bfscrK \nabla (uJ  - uiJ,j - 1),\nabla \rho ij

\bigr) 
+ \lambda 2

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij

\bigm\| \bigm\| 2.
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We realize that this function has a minimum, as given by (4.3), at

\lambda ij =
(\bfscrK \nabla (uJ  - uiJ,j - 1),\nabla \rho ij)\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| 2 (2.3)

=
(f, \rho ij) - (\bfscrK \nabla uiJ,j - 1,\nabla \rho ij)\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| 2 .

Remark 4.4 (construction of the new iterate). The construction of ui+1
J from uiJ

by the solver of Definition 4.1 can be seen as one iteration of a V-cycle multigrid, with
no pre- and one postsmoothing step, with an optimal step-size at the error correction
stage. The smoother on each level is additive Schwarz associated to patch subdomains
where the local problems (4.1) are defined. Note that when pj = 1, j \in \{ 1, . . . , J\} ,
the smoother is the diagonal Jacobi smoother, whereas when pj > 1, the smoother
is block-Jacobi. As detailed in [20, section 6.2], employing a weighted restricted
additive Schwarz (wRAS) smoothing can offer a further speed-up of the solver, briefly
addressed in section 9.4.

Remark 4.5 (connection of local contributions with levelwise updates). Note
that for \rho ij given by (4.1)--(4.2), j \in \{ 1, . . . , J\} , we have

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

(4.1)
(4.2)
= (f, \rho ij) - 

\bigl( 
\bfscrK \nabla uiJ,j - 1,\nabla \rho ij

\bigr) (4.3)
= \lambda ij

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij

\bigm\| \bigm\| 2.(4.8)

Remark 4.6 (extension of the solver to hp-refinement hierarchy). The multilevel
approach we take in this work can be easily extended to a setting where the mesh and
space hierarchies are obtained by hp-refinement, since all we require in our multilevel
construction of Definition 4.1 is nestedness of the meshes and finite element spaces.
To obtain the theoretical results, one would need to adapt the stable decomposition
results of Sch\"oberl et al. [29] from a global fixed polynomial order to a variable one.

The optimal step-sizes also lead to the following important result, which can be
compared to the orthogonal error decomposition (3.6).

Theorem 4.7 (error representation of one solver step). For uiJ \in V p
J, let u

i+1
J \in 

V p
J be given by Definition 4.1. Then

\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - ui+1

J )
\bigm\| \bigm\| 2 =

\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - uiJ)

\bigm\| \bigm\| 2  - J\sum 
j=0

\bigl( 
\lambda ij
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| \bigr) 2,(4.9a)

=
\bigm\| \bigm\| \bfscrK 1

2\nabla (uJ  - uiJ)
\bigm\| \bigm\| 2  - \bigm\| \bigm\| \bfscrK 1

2\nabla \rho i0
\bigm\| \bigm\| 2  - J\sum 

j=1

\lambda ij
\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

.(4.9b)

Proof. The second line (4.9b) follows immediately upon multiplying (4.8) by \lambda ij
on both sides and summing over the mesh levels. We obtain the first line (4.9a) by
going through the levels from finest to coarsest and using the relation of each level's
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update with its associated optimal step-size, similarly to (4.7):\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - ui+1

J )
\bigm\| \bigm\| 2 (4.4)

=
\bigm\| \bigm\| \bfscrK 1

2\nabla (uJ  - (uiJ,J - 1 + \lambda iJ\rho 
i
J))
\bigm\| \bigm\| 2

(2.3)
(4.3)
=
\bigm\| \bigm\| \bfscrK 1

2\nabla (uJ  - uiJ,J - 1)
\bigm\| \bigm\| 2  - \bigl( \lambda iJ\bigm\| \bigm\| \bfscrK 1

2\nabla \rho iJ
\bigm\| \bigm\| \bigr) 2

= \cdot \cdot \cdot =
\bigm\| \bigm\| \bfscrK 1

2\nabla 
\bigl( 
uJ  - (uiJ + \lambda i0\rho 

i
0

\bigr) \bigr) 
\| 2  - 

J\sum 
j=1

\bigl( 
\lambda ij
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| \bigr) 2

(3.2)
=
\bigm\| \bigm\| \bfscrK 1

2\nabla (uJ  - uiJ)
\bigm\| \bigm\| 2  - J\sum 

j=0

\bigl( 
\lambda ij
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| \bigr) 2.

5. A posteriori estimator on the algebraic error. We now present how the
solver introduced in section 4 induces an a posteriori estimator \eta ialg.

Definition 5.1 (algebraic error estimator). Let uiJ \in V p
J be arbitrary, and let

ui+1
J \in V p

J be the update at the end of one step of the solver introduced in Defini-
tion 4.1. We define the algebraic error estimator

(5.1) \eta ialg :=

\Biggl( 
J\sum 

j=0

\bigl( 
\lambda ij
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| \bigr) 2\Biggr) 1

2

.

Following Theorem 4.7, the estimator \eta ialg is immediately a guaranteed lower
bound on the algebraic error.

Lemma 5.2 (guaranteed lower bound on the algebraic error). There holds

(5.2)
\bigm\| \bigm\| \bfscrK 1

2\nabla (uJ  - uiJ)
\bigm\| \bigm\| \geq \eta ialg.

6. Main results. In this section, we present the main results concerning our
multilevel solver of Definition 4.1 and our a posteriori estimator \eta ialg of Definition 5.1.
As in [20], these two results are equivalent. We first collect our assumptions.

6.1. Setting, mesh, and regularity assumptions. For any mesh level
j \in \{ 1, . . . , J\} , we denote by hK := diam(K) the diameter of the element K \in \scrT j
and by hj = maxK\in \scrT j

hK the mesh size on level j. We shall always assume that our
meshes are shape-regular.

Assumption 6.1 (mesh shape regularity). There exists \kappa \scrT > 0 such that

max
K\in \scrT j

hK

\rho K
\leq \kappa \scrT \forall 0 \leq j \leq J,(6.1)

where \rho K denotes the diameter of the largest ball contained in K.

Below, we work in one of the three following settings. In the first setting, the
hierarchy consists of quasi-uniform meshes with a bounded refinement factor between
consecutive levels.

Assumption 6.2 (refinement strength and mesh quasi-uniformity). There exists
a fixed positive real number 0 < Cref \leq 1 such that for all j \in \{ 1, . . . , J\} , for all
K \in \scrT j - 1, and for any K\ast \in \scrT j such that K\ast \subset K, there holds

CrefhK \leq hK\ast \leq hK .(6.2)
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There further exists a fixed positive real number 0 < Cqu \leq 1 such that for all
j\in \{ 0, . . . , J\} and for all K \in \scrT j , there holds

Cquhj \leq hK \leq hj .(6.3)

Fig. 2. Illustration of the set \scrB j ; the refinement \scrT j (dotted lines) of the mesh \scrT j - 1 (full lines).

In the second setting, we work with a hierarchy generated from a quasi-uniform
coarse mesh by a series of bisections, e.g., newest vertex bisection; cf. Sewell [30] and
Mitchell [21]. In this case, one refinement edge of \scrT j - 1, for j \in \{ 1, . . . , J\} , gives us
a new finer mesh \scrT j . We denote by \scrB j \subset \scrV j the set consisting of the new vertex
obtained after the bisection together with its two neighbors on the refinement edge;
see Figure 2 for d = 2. We also denote by h\scrB j the maximal diameter of elements
having a vertex in the set \scrB j , for j\in \{ 1, . . . , J\} . Here we assume the following.

Assumption 6.3 (local refinement strength and the coarsest mesh quasi-
uniformity of bisection-generated meshes). The coarsest mesh \scrT 0 is a conforming
quasi-uniform mesh in the sense of (6.3), with parameter 0 < C0

qu \leq 1. The (pos-
sibly highly graded) conforming mesh \scrT J is generated from \scrT 0 by a series of bisec-
tions. There exists a fixed positive real number 0 < Cloc,qu \leq 1 such that for all
j\in \{ 1, . . . , J\} , there holds

Cloc,quh\scrB j
\leq hK\leq h\scrB j

\forall K\in \scrT j such that a vertex of K belongs to \scrB j .(6.4)

In the third setting, we assume the following.

Assumption 6.4 (refinement strength, mesh quasi-uniformity, and H2-regula-
rity). Let Assumption 6.2 hold. Moreover, let for each g \in L2(\Omega ), wg \in H1

0 (\Omega )
such that

(\nabla wg,\nabla v) = (g, v) \forall v \in H1
0 (\Omega )

belong to H2(\Omega ).

6.2. Main results. We now present our main results, the proofs of which are
given in section 10. For the solver, the following holds.

Theorem 6.5 (p-robust error contraction of the multilevel solver). Let uJ \in V p
J

be the (unknown) finite element solution of (2.3), and let uiJ \in V p
J be arbitrary,

i \geq 0. Take ui+1
J to be constructed from uiJ using one step of the multilevel solver of

Definition 4.1. Under Assumption 6.1 and either Assumption 6.2, 6.3, or 6.4, there
holds

(6.5)
\bigm\| \bigm\| \bfscrK 1

2\nabla (uJ  - ui+1
J )

\bigm\| \bigm\| \leq \alpha 
\bigm\| \bigm\| \bfscrK 1

2\nabla (uJ  - uiJ)
\bigm\| \bigm\| .

Here 0 < \alpha < 1 depends on the space dimension d, the mesh shape regularity parameter
\kappa \scrT , the ratio of the largest and the smallest eigenvalue of the diffusion coefficient \bfscrK ,
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and additionally on (i) the parameters Cref and Cqu and at most linearly on the
number of mesh levels J under Assumption 6.2; (ii) the parameters C0

qu and Cloc,qu

and at most linearly on the number of mesh levels J under Assumption 6.3; (iii) the
parameters Cref and Cqu under Assumption 6.4. In particular, \alpha is independent of
the polynomial degree p.

In (6.5), \alpha represents an upper bound on the algebraic error contraction factor at
each step i. In particular, this means that the solver of Definition 4.1 contracts the
algebraic error at each iteration step robustly with respect to the polynomial degree p.
Moreover, under Assumption 6.4, the contraction is also robust with respect to the
number of mesh levels J .

For the estimator, in turn, we have the following theorem.

Theorem 6.6 (p-robust reliable and efficient bound on the algebraic error). Let
uJ \in V p

J be the (unknown) finite element solution of (2.3), and let uiJ \in V p
J be

arbitrary, i \geq 0. Let \eta ialg be given by Definition 5.1. Let Assumption 6.1 and either

Assumption 6.2, 6.3, or 6.4 hold. Then, in addition to
\bigm\| \bigm\| \bfscrK 1

2\nabla (uJ  - uiJ)
\bigm\| \bigm\| \geq \eta ialg

of (5.2), there holds

(6.6) \eta ialg \geq \beta 
\bigm\| \bigm\| \bfscrK 1

2\nabla (uJ  - uiJ)
\bigm\| \bigm\| ,

where 0 < \beta < 1 is given by \beta =
\surd 
1 - \alpha 2 with \alpha from (6.5).

Theorem 6.6 allows one to write \eta ialg as a two-sided bound of the algebraic error
(up to the constant \beta for the upper bound), meaning that the estimator is reliable
and efficient, robustly with respect to the polynomial degree p.

6.3. Additional results. Theorems 6.5 and 6.6 are actually equivalent, simi-
larly to [20, Corollary 5.4] (we thus only prove Theorem 6.6 in section 10).

Corollary 6.7 (equivalence of the p-robust solver contraction and p-robust esti-
mator efficiency). Let the assumptions of Theorems 6.5 and 6.6 be satisfied. Then (6.5)

holds if and only if (6.6) holds, and \alpha =
\sqrt{} 
1 - \beta 2.

Proof. We give the proof for completeness. Starting from (6.5), with 0 < \alpha < 1,\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - ui+1

J )
\bigm\| \bigm\| 2 \leq \alpha 2

\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - uiJ)

\bigm\| \bigm\| 2
(4.9a)\leftrightarrow 

\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - uiJ)

\bigm\| \bigm\| 2  - J\sum 
j=0

(\lambda ij
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| )2 \leq \alpha 2

\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - uiJ)

\bigm\| \bigm\| 2
(5.1)\leftrightarrow 

\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - uiJ)

\bigm\| \bigm\| 2(1 - \alpha 2) \leq 
\bigl( 
\eta ialg
\bigr) 2
.

Finally, the following corollary formulates a three-part equivalence (recall that
the step-sizes are given by (4.3) and the local (patchwise) contributions by (4.1)).

Corollary 6.8 (equivalence error--estimator--localized contributions). Let As-
sumption 6.1 hold, as well as either Assumption 6.2, 6.3, or 6.4. Then

\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - uiJ)

\bigm\| \bigm\| 2 \approx 
\bigl( 
\eta ialg
\bigr) 2

=
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho i0
\bigm\| \bigm\| 2 + J\sum 

j=1

\lambda ij
\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

,(6.7)

where the constant hidden in the equivalence is \beta from (6.6).
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Proof. Under Assumptions 6.2, 6.3, or 6.4, Theorem 6.6 together with (5.2) gives\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ  - uiJ)

\bigm\| \bigm\| \approx \eta ialg. The equality in (6.7) is easily obtained as in Theorem 4.7

upon multiplying (4.8) by \lambda ij on both sides and summing over the mesh levels.

Remark 6.9 (localized a posteriori estimator of the algebraic error). The lo-
calization (6.7) is over vertex patches as in the a posteriori error estimators of the
discretization error in the finite element method; see, e.g., Babu\v ska and Rheinboldt [3]
or Verf\"urth [33]. Therein, the construction also relies on solving local Dirichlet prob-
lems.

7. Adaptive number of smoothing steps. We consider here a simple and
practical way to make the solver described in Definition 4.1 choose autonomously and
adaptively the number of smoothing steps on each mesh level. The idea of the adaptive
version is to make more postsmoothing steps if needed on levels that contribute most
to the algebraic error. This is decided relying on the a posteriori error estimate on the
algebraic error we have at our disposal, relying on a D\"orfler-type condition; cf. [12].

Definition 7.1 (adaptive multilevel solver). Let \nu max \geq 1 be a user-specified
maximal number of smoothing steps, and let 0 < \theta < 1 be a bulk-chasing parameter.

1. Initialize u0J \in V p
J as the zero function and set i := 0.

2. Perform the following steps (a)--(d):
(a) Let \rho i0 be constructed by (3.2). Set \rho i0,1 := \rho i0, \lambda 

i
0,1 := 1, \nu i0 := 1, and

uiJ,0 := uiJ + \lambda i0,1\rho 
i
0,1.

(b) For j = 1 : J :
i. Set \nu := 1.
ii. From uiJ,j - 1, construct \rho 

i
j and \lambda ij by (4.1)--(4.3).

Set \rho ij,\nu := \rho ij, \lambda 
i
j,\nu := \lambda ij, u

i
J,j,\nu := uiJ,j - 1 + \lambda ij,\nu \rho 

i
j,\nu , and

while
\Bigl[ 
\nu < \nu max and\bigl( 
\lambda ij,\nu 

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\nu 

\bigm\| \bigm\| \bigr) 2\geq \theta 2
\Bigl( j - 1\sum 

k=0

\nu i
k\sum 

\ell =1

\bigl( 
\lambda ik,\ell 

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ik,\ell 

\bigm\| \bigm\| \bigr) 2+\nu  - 1\sum 
\ell =1

\bigl( 
\lambda ij,\ell 
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij,\ell 
\bigm\| \bigm\| \bigr) 2\Bigr) \Bigr] 

do Set \nu := \nu + 1.
From uiJ,j,\nu  - 1, construct \=\rho 

i
j and \=\lambda ij by (4.1)--(4.3).

Set \rho ij,\nu := \=\rho ij, \lambda 
i
j,\nu := \=\lambda ij, u

i
J,j,\nu := uiJ,j,\nu  - 1 + \lambda ij,\nu \rho 

i
j,\nu .

endwhile

iii. Set \nu ij=\nu and uiJ,j := uiJ,j,\nu .

(c) Define the final update on step i as ui+1
J := uiJ,J \in V p

J .

(d) If ui+1
J = uiJ , then stop the solver. Otherwise, increase i := i+1 and go

to step 2(a).

Remark 7.2 (adaptive substep). Note that if we skip the adaptive substep in
2(b) in Definition 7.1 by setting \nu max = 1, we obtain the nonadaptive version of the
solver of Definition 4.1. Otherwise, we continue the smoothing iterations until the
decrease of the algebraic error on mesh level j and solver iteration i, estimated by the
left term in the while condition, is not important in comparison with the cumulated
estimated decrease achieved so far on iteration i.

Remark 7.3 (optimal step-sizes and adaptive number of smoothing steps as a
general approach). The main ideas of optimal step-size per level and adaptive number
of smoothing steps we use in Definition 7.1 can be used in other geometric multigrid
solvers. Implementationwise, these ideas are easy to add to existing codes and alleviate
the task of choosing the number of smoothing steps arbitrarily.
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Remark 7.4 (adaptivity criterion). The bulk-chasing (D\"orfler's) marking crite-
rion is not crucial above, so other criteria like the maximal one can be considered as
well. We note that we do not analyze here the influence of the additional adaptive
smoothing steps on the convergence speed.

8. Complexity of the solver. We wish to give some insights into the com-
plexity of the solver of Definition 7.1 here. In particular, estimating the number of
floating point operations after is iterations can be done by the formula

(8.1) nflops :=
| \scrV 0| 3

3
+

J\sum 
j=1

\sum 
\bfa \in \scrV j

ndof(V \bfa 
j )3

3
+

is\sum 
i=1

\biggl[ 
2| \scrV 0| 2 +

J\sum 
j=1

\nu ij
\sum 
\bfa \in \scrV j

2ndof(V \bfa 
j )2
\biggr] 

+

is\sum 
i=1

J\sum 
j=1

\biggl[ 
2 nnz(\scrI j

j - 1) + 2 nnz(\scrI j - 1
j ) + 2\nu ij nnz(Aj) + 3\nu ij(2 size(Aj))

\biggr] 
.

This formula is derived assuming (1) an initial Cholesky decomposition of the local
matrices associated to each patch on each level except for the coarsest one, where
the global stiffness matrix for piecewise affine functions is factorized (for a matrix
of size n, this cost is estimated as 1/3n3); (2) local solves by forward and backward
substitutions (cost 2n2); (3) intergrid operators \scrI j

j - 1 : V
pj - 1

j - 1 \rightarrow V
pj

j with the cost
estimated by twice the number of nonzeros of the associated interpolation matrix;
and (4) evaluation of the optimal step-sizes \lambda j as in formula (4.3) with a cost equal
to twice the number of nonzeros of the stiffness matrix Aj on the given level and
three inner products. Recall that \nu ij is the number of smoothing steps on level j at
iteration i.

We would like to point out that the above estimation (8.1) is a worst-case sce-
nario. In fact, in the case of a structured initial mesh \scrT 0 containing an arbitrary
number of simplices, or \scrT 0 only containing a few simplices and uniform or newest
vertex bisection graded refinemement, most patches have the same geometry. Then
the second (cubic, potentially dominant) term in (8.1) almost vanishes. Moreover,
the developed solver and estimator are fully parallelizable on each mesh level and
thus the discussion of complexity in floating point operations no longer has the same
meaning in a parallel implementation; in particular, all the terms in (8.1) containing
the sum over (all) vertices can be fully parallelized. On the other hand, formula (8.1)
ignores the operations needed to evaluate the right-hand sides of local problems (4.1).
Such evaluation may affect the overall flops count, but this is very dependent on the
particular implementation.

9. Numerical experiments. In this section, we consider three test cases with
the diffusion tensor constant in \Omega , \bfscrK = I, where the domains \Omega \subset R2 and the exact
solutions u are given by

Sine: u(x, y) := sin(2\pi x) sin(2\pi y), \Omega := ( - 1, 1)2,(9.1)

Peak: u(x, y) := x(x - 1)y(y  - 1)e - 100((x - 0.5)2 - (y - 0.117)2), \Omega := (0, 1)2,(9.2)

L-shape: u(r, \varphi ) := r2/3 sin(2\varphi /3), \Omega := ( - 1, 1)2 \setminus ([0, 1]\times [ - 1, 0]).(9.3)

We further consider two tests with piecewise constant diffusion tensor \bfscrK = c(x, y) \cdot I
on the square domain. For each of these tests, we will vary c(x, y) in order to study
its influence on the solver's performance. The tests are described by

Checkerboard: u(r, \varphi ) = r\gamma \mu (\varphi ), \Omega :=( - 1, 1)2,(9.4)
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where \mu (\varphi ) is constructed following Kellogg [17]. We consider the case \gamma = 1, \bfscrK = I,
and a singular solution with \gamma = 0.0009 and diffusion contrast 2001405.429972. For
the latter, c(x, y) varies across the domain as in Figure 3.

-1 1
-1

1

1

2e6

Fig. 3. Variations of the coefficient c(x, y) across the domain for the Checkerboard test case.

Skyscraper: unknown analytic solution, \Omega :=(0,1)2.(9.5)

The variations of c(x, y) are shown in Figure 4. We take the source term f = 1
and Dirichlet boundary condition uD(x, y) =

\surd 
x on \partial \Omega . We adjust c(x, y) to obtain

two tests: one with diffusion contrast proportional to 1, and another proportional to
107. An analogous test case is also described and used in Anciaux-Sedrakian et al.
[1, section 5.3].

0 1
0

1

1

1e7

3e7

5e7

7e7

9e7

Fig. 4. Variations of the coefficient c(x, y) across the domain for the Skyscraper test case.

In all tests, the exact solution of the algebraic systems is given by a direct solver.

9.1. Performance of the multilevel solver of Definition 4.1. We first con-
sider mesh hierarchies obtained by J uniform refinements of an initial Delaunay tri-
angulation of the domain \Omega . We study the solver of Definition 4.1 stopped when
the \ell 2-norm of the algebraic residual vector drops below 10 - 5 times the initial one;
then we expect for a p-robust solver that the number of iterations is needed to reach
it will be similar for different polynomial degrees. We also numerically investigate
J-robustness and robustness with respect to the jump in the diffusion coefficient, de-
noted henceforth by \scrJ (\bfscrK ). Results presented in Table 1 confirm perfect p-robustness,
as well as numerical \bfscrK - and J-robustness even in low-regularity cases.

We now present some experiments for graded mesh hierarchies. The meshes were
obtained by the newest vertex bisection algorithm; cf. Sewell [30] and Mitchell [21],
and a D\"orfler's bulk-chasing criterion [12] which uses the true discretizaton error and
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Table 1
Number of iterations is for different polynomial degrees p, number of mesh levels J, space

hierarchies with two different pj , j \in \{ 1, . . . , J  - 1\} , and jump in the diffusion coefficient \scrJ (\bfscrK ).

Sine Peak L-shape Checkerboard Skyscraper

\bfscrK =I \bfscrK =I \bfscrK =I \bfscrK =I \scrJ 
\bigl( 
\bfscrK 
\bigr) 
=O

\bigl( 
106

\bigr) 
\scrJ 
\bigl( 
\bfscrK 
\bigr) 
=O

\bigl( 
1
\bigr) 
\scrJ 
\bigl( 
\bfscrK 
\bigr) 
=O

\bigl( 
107

\bigr) 
pj 1 p 1 p 1 p 1 p 1 p 1 p 1 p

J p DoF is is is is is is is is is is is is is is

3 1 2e4 19 19 19 19 21 21 18 18 18 18 19 19 19 19

3 1e5 29 13 28 14 29 11 27 11 28 11 31 13 31 13

6 6e5 30 13 30 14 26 9 24 9 25 10 28 11 28 11

9 1e6 31 14 30 14 23 9 23 9 23 9 26 10 26 10

4 1 6e4 21 21 20 20 21 21 19 19 19 19 19 19 19 19

3 6e5 29 13 29 14 28 11 26 11 27 11 30 11 30 11

6 2e6 31 13 30 14 25 9 24 9 24 9 27 10 27 10

9 5e6 32 14 31 15 23 9 22 9 23 9 25 9 25 9

marking parameter 0.8. The true discretizaton error is used in the marking for re-
finement instead of an a posteriori discretization error estimator for the purpose of
simplicity and result reproducibility: our main goal is to test the solver of Defini-
tion 4.1 in graded meshes that satisfy Assumption 6.3. The resulting meshes are
depicted in Figure 5 for three different test cases, and the results are given in Table 2.
We observe perfect p-robustness behavior of the solver of Definition 4.1, which is in
agreement with our theoretical results also covering graded mesh hierarchies. More-
over, as expected from the theoretical results, the solver behaves perfectly J-robustly
for the Peak test case with H2-regular weak solution, and a linear increase of the
number of iterations with respect to J appears in the Checkerboard test case for
p = 1.

Fig. 5. Graded meshes obtained by the newest-vertex bisection algorithm. Left: Peak problem,
J = 10, and p = 3. Center: L-shape problem, J = 10, and p = 3. Right: Checkerboard O(106),
J = 10, and p = 3. The regions where the diffusion coefficient is constant are bordered by dashed
lines.

9.2. Adaptive number of smoothing steps using Definition 7.1. Now we
will study the behavior of the solver described in Definition 7.1, where we set the max-
imum number of smoothing steps \nu max = 5. In order to do a comparison study of the
solver's performance in different settings, we will use the estimated number of floating
point operations (8.1), and we also introduce the number of global synchronizations

sync := is +

is\sum 
i=1

J\sum 
j=1

\nu ij .(9.6)
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Table 2
Number of iterations is for different polynomial degrees p, number of mesh levels J, space

hierarchies given by pj = p, j \in \{ 1, . . . , J  - 1\} , and graded mesh hierarchies.

Peak, \bfscrK =I

J p is

5 1 14

3 11

6 8

9 9

J p is

10 1 16

3 9

6 8

9 7

J p is

15 1 17

3 9

6 8

9 7

L-shape, \bfscrK =I

J p is

5 1 16

3 7

6 6

9 5

J p is

10 1 15

3 6

6 5

9 5

J p is

15 1 17

3 11

6 5

9 4

Checkerboard, \scrJ 
\bigl( 
\bfscrK 
\bigr) 
= O

\bigl( 
106

\bigr) 
J p is

5 1 33

3 15

6 12

9 11

J p is

10 1 57

3 23

6 15

9 12

J p is

15 1 97

3 32

6 20

9 15

9.2.1. Dependence on the parameter \bfittheta . In Figure 6 we report the cumulated
number of smoothing steps employed at each level for different choices of \theta . The
nonadaptive variant of the solver of Definition 4.1 (\nu max = 1) is also plotted for
comparison. Recall that this employs just one postsmoothing step and may lead to
an increased number of iterations, whereas the solver of Definition 7.1 makes more
smoothing steps and typically cuts the number of iterations. If in Figure 6 we find
for a given \theta that all numbers are consistently low for all levels, then this results in
a cheaper procedure and gives us an idea of the best candidates for \theta . Table 3 then
gives the detailed numbers of smoothing steps per level and iteration for \theta = 0.2.

In Table 4 more results are presented together with the estimated costs in order
to compare the performance of the solver for different values of \theta . Most often, the
costs are very close for different choices of \theta and in practice the choice \theta = 0.2 is quite
satisfactory. It typically brings the number of iterations down to 5--8 from 9--28, upon
usually performing 2--4 postsmoothing steps on each level instead of just one. Note
also that choosing \theta in our setting somehow differs from typical bulk-chasing criteria,
where larger \theta means including more elements. Here instead, smaller \theta make the
condition of the while loop of Definition 7.1 more likely to be satisfied, thus leading
to more smoothing steps and overall smaller iteration numbers, as seen in Table 4.

 j=0  j=1  j=2  j=3

10

20

30

40

 N
u
m

b
e
r 

o
f 
s
m

o
o
th

in
g
 s

te
p
s

 Checkerboard O(106) problem, J=3, p=3, p_j=[111p]

non-adapt

 j=0  j=1  j=2  j=3
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non-adapt

Fig. 6. Number of smoothing steps per level for the Checkerboard case, polynomial degree p = 3,
number of mesh levels J = 3, diffusion coefficient jump \scrJ (\bfscrK ) = O(106), and mesh hierarchies with
pj = 1 and pj = p, j \in \{ 1, . . . , J  - 1\} .
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Table 3
Number of smoothing steps per level in each iteration it for the Checkerboard case, \theta = 0.2,

polynomial degree p = 3, number of mesh levels J = 3, diffusion coefficient jump \scrJ (\bfscrK ) = O(106),
and mesh hierarchies with pj = 1 and pj = p, j \in \{ 1, . . . , J  - 1\} . The numbers of iterations for the
nonadaptive versions (\nu max = 1) are, respectively, 28 and 11.

pj = 1 pj = p

it=1 it=2 it=3 it=4 it=5 it=6 it=7 it=8 it=1 it=2 it=3 it=4 it=5 it=6

Level 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Level 1 3 3 3 3 3 3 3 3 3 4 4 4 4 4

Level 2 3 3 3 3 3 3 3 3 2 1 1 1 1 1

Level 3 3 4 4 4 4 4 4 4 2 2 2 2 2 1

Table 4
Estimated number of floating point operations given by (8.1) and number of iterations is for two

singular test cases, different polynomial degrees p, number of mesh levels J, and space hierarchies
with pj , j \in \{ 0, . . . , J\} .

L-shape test case Checkerboard O(106)

non-adapt \theta = 0.2 \theta = 0.6 \theta = 0.9 non-adapt \theta = 0.2 \theta = 0.6 \theta = 0.9

J pj is nflops is nflops is nflops is nflops is nflops is nflops is nflops is nflops

3 1111 21 2.17e7 7 1.57e7 11 1.75e7 11 1.67e7 18 2.01e7 8 1.76e7 12 1.91e7 11 1.72e7

1113 29 6.05e8 7 5.28e8 12 5.75e8 15 5.84e8 28 6.05e8 8 6.01e8 13 5.80e8 14 5.66e8

1116 26 1.20e10 7 1.28e10 11 1.22e10 13 1.19e10 25 1.21e10 8 1.38e10 12 1.23e10 13 1.23e10

1119 23 9.08e10 6 9.22e10 10 9.23e10 12 9.23e10 23 9.39e10 7 1.00e11 12 9.54e10 12 9.54e10

1333 11 3.90e8 6 3.61e8 10 4.07e8 10 3.86e8 11 4.04e8 6 3.52e8 10 4.04e8 10 3.99e8

1666 9 9.49e9 6 1.00e10 8 9.53e9 8 9.45e9 10 1.03e10 6 9.71e9 9 1.04e10 8 9.77e9

1999 9 9.18e10 6 9.31e10 8 9.21e10 8 9.17e10 9 9.48e10 6 9.45e10 8 9.51e10 8 9.47e10

4 11111 21 7.24e7 8 5.61e7 11 5.66e7 12 6.00e7 19 6.83e7 9 6.29e7 11 5.71e7 12 5.92e7

11113 28 2.34e9 7 2.04e9 12 2.30e9 14 2.19e9 27 2.33e9 8 2.40e9 12 2.17e9 14 2.26e9

11116 25 4.69e10 7 5.00e10 11 4.77e10 13 4.78e10 24 4.72e10 7 5.04e10 12 4.93e10 13 4.93e10

11119 23 3.65e11 7 3.97e11 10 3.64e11 12 3.71e11 23 3.77e11 7 4.03e11 11 3.76e11 12 3.83e11

13333 11 1.59e9 6 1.43e9 9 1.50e9 10 1.61e9 11 1.64e9 6 1.48e9 9 1.55e9 10 1.59e9

16666 9 3.88e10 5 3.65e10 8 3.85e10 8 3.81e10 9 4.00e10 6 3.99e10 9 4.19e10 8 3.94e10

19999 9 3.74e11 5 3.64e11 8 3.73e11 8 3.71e11 9 3.87e11 6 3.78e11 8 3.86e11 8 3.83e11

9.2.2. Performance of the adaptive solver of Definition 7.1. In Figure 7,
we fix \theta = 0.2 and compare our adaptive number of smoothing steps approach with
the number of smoothing steps \nu \geq 1 being fixed to the same value on each mesh
level. Relative to the adaptive approach, the solver using a fixed number of smooth-
ing steps, whatever it is, is typically more costly, both in terms of nflops computed
by (8.1) and of sync computed by (9.6). Note also that when using a fixed number
of smoothing steps, the simplistic solver of Definition 4.1 (\nu max = 1) is often the
cheapest to employ, although its number of iterations may seem rather increased at
first sight. As for the adaptive solver, we also point out that the maximum number
of smoothing steps \nu max = 5 is hardly ever reached in our experiments, endorsing
our adaptive approach in two ways: a fixed number of smoothing steps is not the
best way to take advantage of a multigrid solver; the criterion used for the while loop
in Definition 7.1 successfully identifies the levels in which more smoothing steps are
necessary, without oversmoothing.

9.3. Examples in three space dimensions. We consider now three test cases
where \Omega \subset R3, \bfscrK = I except in areas of the domain explicitly specified below, and,
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L-shape problem, J=3, p=3, p_j=[1333] 
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Fig. 7. Comparison between a fixed number of (block-Jacobi) smoothing steps \nu on all levels
(Definition 4.1 and its obvious modification for \nu \geq 1) and the adaptive number of smoothing steps
of Definition 7.1. Number of iterations is, floating point operations given by (8.1) relative with
respect to Definition 7.1, and the number of global synchronizations by (9.6).

when available, exact solution u:

Cube: u(x, y, z) := x(x - 1)y(y  - 1)z(z  - 1), \Omega := (0, 1)3.(9.7)

Nested cubes: unknown analytic solution, \Omega := ( - 1, 1)3,(9.8)

\bfscrK = 105 \cdot I in ( - 0.5, 0.5)3.

Checkers cubes: unknown analytic solution, \Omega := (0, 1)3,(9.9)

\bfscrK = 106 \cdot I in (0, 0.5)3 \cup (0.5, 1)3.

In the case of nested cubes and checkers cubes, the source term is given by f = 1 in
\Omega and zero Dirichlet boundary conditions are prescribed on \partial \Omega .

We employ our solver of Definition 4.1 for polynomial degrees p = 1, 2, 3, 4, num-
ber of mesh levels J = 4, and hierarchies given by pj = 1, j \in \{ 1, . . . , J  - 1\} . The
coarse mesh in all these test cases is unstructured, and the hierarchy is obtained by
uniform refinement, where each tetrahedron is refined into eight new tetrahedra us-
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ing the midpoints of edges in the initial tetrahedron. In Figures 8--10, we present
the decay of the relative energy norm of the algebraic error and the relative \ell 2-norm
of the algebraic residual vector with respect to the iterations. Even in three space
dimensions, in accordance with our theory, we see that the results are p-robust and
in agreement with the more in-depth experiments of two space dimensions. More-
over, similarly to the previous tests in two space dimensions, we numerically observe
that the behavior of our solver is not influenced by the magnitude of the diffusion
coefficient jump. The implementation of the experiments in this section is done with
NGSolve [28].

Fig. 8. Cube case: decay of the relative algebraic error (left) and of the relative residual (right)
for the hierarchy with pj = 1, j \in \{ 1, . . . , J - 1\} , J = 4. The solver of Definition 4.1 is stopped at
iteration i = 40. nDoFs: 5 501 for p = 1, 41 337 for p = 2, 136 693 for p = 3, 320 753 for p = 4.

Fig. 9. Nested cubes case: decay of the relative algebraic error (left) and of the relative residual
(right) for the hierarchy with pj =1, j\in \{ 1, . . . , J - 1\} , J = 4. The solver of Definition 4.1 is stopped
at iteration i = 40. nDoFs: 7 281 for p = 1, 55 649 for p = 2, 185 041 for p = 3, 435 393 for p = 4.

9.4. Comparison with solvers from literature. In Table 5, we finally com-
pare our solver of Definition 4.1 (denoted as \sim MG(0,1)-bJ due to the similarity with
the multigrid using only one postsmoothing step by block-Jacobi, the only difference
being the use of the optimal step-size per level in the error correction stage), with
different multigrid solvers used in the literature as solvers or preconditioners; see [20]
for a more detailed discussion on these methods. The test case we choose has a poor
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Fig. 10. Checkers cubes: decay of the relative algebraic error (left) and of the relative residual
(right) for the hierarchy with pj =1, j\in \{ 1, . . . , J - 1\} , J = 4. The solver of Definition 4.1 is stopped
at iteration i = 40. nDoFs: 5 425 for p = 1, 40 033 for p = 2, 131 473 for p = 3, 307 393 for p = 4.

regularity, and as we see in terms of both CPU timing1 and iteration numbers, our
solver performs well compared with the other methods, despite the more simplistic
one postsmoothing step, while having the advantage of being naturally parallelizable
on each level as the smoother is block-Jacobi. Importantly, note that other block
smoothing methods, namely PCG(MG-bJ), which uses a symmetric multigrid with
block-Jacobi smoothing as preconditioner, and MG-bGS, the multigrid using block
Gauss--Seidel as smoother, also exhibit numerical p-robustness, whereas the classi-
cal MG-GS does not. In addition to the solver of Definition 7.1 with \theta = 0.2 and
\nu max = 5 (denoted as \sim MG(0,adapt)-bJ), we also introduce its weighted restrictive
additive Schwarz (wRAS) smoother variant, which outperforms the other methods
while preserving numerical p-robustness. Smoothing by wRAS (see details in [20,
section 6.2]) only differs from the additive Schwarz smoothing used in Definitions 4.1
and 7.1 by summing in (4.2) the local contributions \rho ij,\bfa weighted by the corresponding
hat functions \psi j,\bfa and then interpolated to the local spaces V \bfa 

j . Another important
observation, as proven in, e.g., Bramble et al. [7], is that multigrid methods can per-
form robustly with respect to the diffusion contrast in two space dimensions. This
is reflected by most methods of Table 5, having rather low iteration numbers for all
diffusion tensors.

10. Proof of Theorem 6.6. Our approach to proving Theorem 6.6 consists of
studying levelwise the contributions \~\rho ij of (3.3) of the uncomputable exact residual

lifting \~\rho iJ,alg given by (3.1). The polynomial-degree-robust stable decomposition result
of Sch\"oberl et al. [29] then allows us to exploit the similarities of the local computable
contributions \rho ij,\bfa (4.1) to the global inaccessible ones \~\rho ij (3.3).

We will first present the proof of p-robust efficiency of the estimator stated in
Theorem 6.6 under Assumption 6.2 or 6.3. Then we give the proof of p-robust and
J-robust efficiency under Assumption 6.4. Let us start with some generalities.

10.1. Properties of the estimator \bfiteta \bfiti 
\bfa \bfl \bfg . We first present some general prop-

erties of the estimator \eta ialg of Definition 5.1 needed for the proof.

1The codes were prepared to benefit as much as possible from MATLAB's fast operations on
matrices and vectors. The timings cover the solution time only, without the preparation phase of
matrices assembly. The experiments were run on one Dell C6220 dual-Xeon E5-2650 node of Inria
Sophia Antipolis -- M\'editerran\'ee ``NEF"" computation cluster, in a sequential MATLAB script.
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Table 5
Checkerboard O(106) problem: Comparison of iteration numbers is and CPU times for different

solvers. The horizontal/rising arrow denotes whether the polynomial degree per level remains the
same/gradually increases. The number of pre- and postsmoothing steps are given in parantheses,
and the smoothers are given by block-Jacobi (bJ), block Gauss--Seidel (bGS), pointwise Gauss--Seidel
(GS), or PCG with incomplete Cholesky preconditioner (PCG(iChol)). The number of iterations is
limited to 80.

\sim MG(0,1) \sim MG(0,1) \sim MG(0, \sim MG(0,adapt) PCG(MG MG(1,1)- MG(0,1)- MG(3,3)-

-bJ -bJ adapt)-bJ -bJ (wRAS) (3,3)-bJ) PCG(iChol) bGS GS

1 \rightarrow 1, p 1, p \rightarrow p 1, p \rightarrow p 1 \nearrow p p \rightarrow p 1 \nearrow p 1 \rightarrow 1, p 1 \nearrow p

J p is time is time is time is time is time is time is time is time

3 1 18 0.05 s 18 0.07 s 8 0.04 s 8 0.04 s 10 0.07 s 6 0.39 s 10 0.04 s 4 0.02 s

3 28 0.96 s 11 0.50 s 6 0.43 s 6 0.41 s 3 0.57 s 22 3.43 s 11 2.62 s 6 0.34 s

6 25 9.88 s 10 5.43 s 6 5.24 s 5 2.90 s 2 5.24 s 44 51.38 s 9 7.35 s 11 5.91 s

9 23 45.87 s 9 27.01 s 6 25.25 s 4 13.86 s 2 36.95 s >80 >5.22m 8 32.53 s 11 19.72 s

4 1 19 0.12 s 19 0.12 s 9 0.11 s 9 0.11 s 11 0.20 s 16 0.74 s 11 0.06 s 4 0.05 s

3 27 3.85 s 11 2.07 s 6 1.89 s 7 1.62 s 3 2.34 s 44 27.48 s 10 9.64 s 5 1.37 s

6 24 41.79 s 9 20.19 s 6 20.69 s 4 12.54 s 3 38.40 s >80 >6.87m 9 34.78 s 6 14.44 s

9 23 3.63m 9 2.13m 6 2.09m 3 49.84 s 2 2.24m >80 >23.08m 8 1.72m 9 1.21m

Lemma 10.1 (estimation of
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| by local contributions). Let \rho ij,\bfa and \rho ij

for j \in \{ 1, . . . , J\} , a \in \scrV j, be given by (4.1) and (4.2). Then there holds\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij

\bigm\| \bigm\| 2 \leq (d+ 1)
\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

.(10.1)

Proof. Since \rho ij =
\sum 

\bfa \in \scrV j
\rho ij,\bfa , the inequality

\bigm| \bigm| \bigm| \sum d+1
k=1 ak

\bigm| \bigm| \bigm| 2 \leq (d + 1)
\sum d+1

k=1 | ak| 2

leads to

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij

\bigm\| \bigm\| 2= \sum 
K\in \scrT j

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij

\bigm\| \bigm\| 2
K
=
\sum 
K\in \scrT j

\bigm\| \bigm\| \bigm\| \bigm\| \sum 
\bfa \in \scrV K

\bfscrK 
1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| \bigm\| \bigm\| 2
K

\leq (d+ 1)
\sum 
K\in \scrT j

\sum 
\bfa \in \scrV K

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| 2
K

= (d+ 1)
\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

.

Remark 10.2 (lower bound on the optimal step-sizes). Note that (4.8) together
with (10.1) and the definition \lambda ij = 1 when \rho ij = 0 or j = 0 lead to

\lambda ij \geq 
1

d+ 1
0 \leq j \leq J.(10.2)

10.2. Properties of the exact residual lifting \~\bfitrho \bfiti 
\bfitJ ,\bfa \bfl \bfg . Hereafter, we use two

crucial properties of the levelwise error contributions of (3.3) \~\rho ij , j \in \{ 1, . . . , J\} : the

orthogonality of \~\rho ij with respect to previous levels and local properties of \~\rho ij on level j.

Lemma 10.3 (interlevel properties of \~\rho ij). Consider the hierarchical construction

of the error \~\rho iJ,alg given in (3.1). For j\in \{ 1, . . . ,J\} , there holds

(10.3) (\bfscrK \nabla \~\rho ij ,\nabla vk) = 0 \forall vk \in V pk

k , 0 \leq k < j.

Proof. Take vk \in V pk

k . Note that since k \leq j - 1, and by nestedness of the spaces,
we have vk \in V

pj - 1

j - 1 \subset V
pj

j . The definition given in (3.3) applied to \~\rho ij and \~\rho ij - 1 allows

D
ow

nl
oa

de
d 

11
/2

2/
21

 to
 1

28
.9

3.
16

2.
24

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A-POSTERIORI-STEERED p-ROBUST MULTIGRID S137

us to write

(\bfscrK \nabla \~\rho ij ,\nabla vk) = (f, vk) - (\bfscrK \nabla uiJ ,\nabla vk) - 
j - 2\sum 
l=0

(\bfscrK \nabla \~\rho il,\nabla vk) - (\bfscrK \nabla \~\rho ij - 1,\nabla vk)

= (\bfscrK \nabla \~\rho ij - 1,\nabla vk) - (\bfscrK \nabla \~\rho ij - 1,\nabla vk) = 0.

Now, we present the relation between \~\rho ij and \rho 
i
j locally on patches, more precisely

when tested against functions of the local spaces V \bfa 
j given by (2.6).

Lemma 10.4 (local relation between \~\rho ij and \rho ij,\bfa ). Let j \in \{ 1, . . . , J\} . Let \~\rho ij,

\rho ij,\bfa , and \rho 
i
j be respectively given by (3.3), (4.1), and (4.2). For all vertices a\in \scrV j and

all functions vj,\bfa \in V \bfa 
j , we have

(10.4) (\bfscrK \nabla \~\rho ij ,\nabla vj,\bfa )\omega \bfa 
j
= (\bfscrK \nabla \rho ij,\bfa ,\nabla vj,\bfa )\omega \bfa 

j
 - 

j - 1\sum 
k=1

(\bfscrK \nabla (\~\rho ik  - \lambda ik\rho 
i
k),\nabla vj,\bfa )\omega \bfa 

j
.

We use the convention that the sum in the relation above is zero when j = 1.

Proof. We take vj,\bfa \in V \bfa 
j . This implies that vj,\bfa is zero on the boundary of the

patch domain \omega \bfa 
j . Since vj,\bfa \in V p

J , we can use it as a test function in the definition

of \~\rho ij in (3.3) as well as in the definition of \rho ij,\bfa in (4.1). We conclude by using (4.5)
and subtracting the following two identities:

(\bfscrK \nabla \~\rho ij ,\nabla vj,\bfa )\omega \bfa 
j
= (f, vj,\bfa )\omega \bfa 

j
 - (\bfscrK \nabla uiJ ,\nabla vj,\bfa )\omega \bfa 

j
 - 

j - 1\sum 
k=0

(\bfscrK \nabla \~\rho ik,\nabla vj,\bfa )\omega \bfa 
j
,

(\bfscrK \nabla \rho ij,\bfa ,\nabla vj,\bfa )\omega \bfa 
j
= (f, vj,\bfa )\omega \bfa 

j
 - (\bfscrK \nabla uiJ ,\nabla vj,\bfa )\omega \bfa 

j
 - 

j - 1\sum 
k=0

\lambda ik(\bfscrK \nabla \rho ik,\nabla vj,\bfa )\omega \bfa 
j
.

10.3. Proof of Theorem 6.6 under the minimal \bfitH \bfone 
\bfzero (\Omega )-regularity as-

sumption. We begin by presenting here a result given in [20, Proposition 7.6],
obtained by a combination of a one-level p-robust stable decomposition proven in
Sch\"oberl et al. [29] and a multilevel stable decomposition for piecewise linear func-
tions given in Xu, Chen, and Nochetto [35].

Lemma 10.5 (p-robust multilevel stable decomposition). Let vJ \in V p
J . Under

Assumption 6.1 and either Assumption 6.2 or 6.3, there exists a decomposition

vJ = v0 +

J\sum 
j=1

\sum 
\bfa \in \scrV j

vj,\bfa , v0 \in V 1
0 , vj,\bfa \in V \bfa 

j ,(10.5)

stable as

\| \nabla v0\| 2 +
J\sum 

j=1

\sum 
\bfa \in \scrV j

\| \nabla vj,\bfa \| 2\omega \bfa 
j
\leq C2

S\| \nabla vJ\| 2,(10.6)

where CS \geq 1 only depends on the space dimension d, the mesh shape regularity
parameter \kappa \scrT , and on the maximum strength of refinement parameter Cref and quasi-
uniformity parameter Cqu when Assumption 6.2 is satisfied, or on the coarse and local
quasi-uniformity parameters C0

qu, Cloc,qu when Assumption 6.3 is satisfied.
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The previous results and properties allow us now to give concise proofs.

Proof of Theorem 6.6 (p-robust estimator efficiency under Assumption 6.2 or 6.3).

Note that by (3.6), we have
\bigm\| \bigm\| \bfscrK 1

2\nabla (uJ  - uiJ)
\bigm\| \bigm\| =

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho iJ,alg

\bigm\| \bigm\| . Thus, we work with

the exact algebraic residual lifting \~\rho iJ,alg. We begin by applying Lemma 10.5 to \~\rho iJ,alg,
which allows to decompose it as

\~\rho iJ,alg = \~ci0 +

J\sum 
j=1

\sum 
\bfa \in \scrV j

\~\rho ij,\bfa , \~ci0 \in V 1
0 , \~\rho ij,\bfa \in V \bfa 

j ,(10.7)

\| \nabla \~ci0\| 2 +
J\sum 

j=1

\sum 
\bfa \in \scrV j

\| \nabla \~\rho ij,\bfa \| 2\omega \bfa 
j
\leq C2

S\| \nabla \~\rho iJ,alg\| 2.(10.8)

Taking into account the variations of the diffusion coefficient \bfscrK , we have

\| \bfscrK 
1
2\nabla \~ci0\| 2 +

J\sum 
j=1

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

\leq C2
S,\bfscrK 
\bigm\| \bigm\| \bfscrK 1

2\nabla \~\rho iJ,alg
\bigm\| \bigm\| 2,(10.9)

where the constant C2
S,\bfscrK additionally depends on the ratio of the largest and the small-

est eigenvalue of the diffusion coefficient \bfscrK . Since max
\bigl( 
1, C2

S,\bfscrK 
\bigr) 
also satisfies (10.9),

we can assume CS,\bfscrK \geq 1. We use this decomposition to develop

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho iJ,alg

\bigm\| \bigm\| 2 (10.7)
=

\Bigl( 
\bfscrK \nabla \~\rho iJ,alg,\nabla \~ci0 +

J\sum 
j=1

\sum 
\bfa \in \scrV j

\nabla \~\rho ij,\bfa 

\Bigr) 
(3.2)
=
\Bigl( 
\bfscrK \nabla \rho i0,\nabla \~ci0

\Bigr) 
+

J\sum 
j=1

\sum 
\bfa \in \scrV j

\Bigl( 
\bfscrK \nabla \~\rho iJ,alg,\nabla \~\rho ij,\bfa 

\Bigr) 
\omega \bfa 

j

(3.5)
=
\Bigl( 
\bfscrK \nabla \rho i0,\nabla \~ci0

\Bigr) 
+

J\sum 
j=1

\sum 
\bfa \in \scrV j

\biggl( \Bigl( 
f, \~\rho ij,\bfa 

\Bigr) 
\omega \bfa 

j

 - 
\Bigl( 
\bfscrK \nabla uiJ ,\nabla \~\rho ij,\bfa 

\Bigr) 
\omega \bfa 

j

\biggr) 
(4.1)
(4.5)
=
\Bigl( 
\bfscrK \nabla \rho i0,\nabla \~ci0

\Bigr) 
+

J\sum 
j=1

\sum 
\bfa \in \scrV j

\Biggl( \Bigl( 
\bfscrK \nabla \rho ij,\bfa ,\nabla \~\rho ij,\bfa 

\Bigr) 
\omega \bfa 

j

+

j - 1\sum 
k=0

\Bigl( 
\lambda ik\bfscrK \nabla \rho ik,\nabla \~\rho ij,\bfa 

\Bigr) 
\omega \bfa 

j

\Biggr) 

=
\Bigl( 
\bfscrK \nabla \rho i0,\nabla \~ci0

\Bigr) 
+

J\sum 
j=1

\sum 
\bfa \in \scrV j

\Bigl( 
\bfscrK \nabla \rho ij,\bfa ,\nabla \~\rho ij,\bfa 

\Bigr) 
\omega \bfa 

j

+

J\sum 
j=1

j - 1\sum 
k=0

\Bigl( 
\lambda ik\bfscrK \nabla \rho ik,

\sum 
\bfa \in \scrV j

\nabla \~\rho ij,\bfa 

\Bigr) 
.

We will now estimate each of the above three terms using Young's inequality and
patch overlap arguments as done in the proof of Lemma 10.1. First, we have, using
the fact that \lambda i0 = 1,

\Bigl( 
\bfscrK \nabla \rho i0,\nabla \~ci0

\Bigr) 
\leq 
C2

S,\bfscrK 

2

\bigl( 
\lambda i0
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho i0
\bigm\| \bigm\| \bigr) 2+ 1

2C2
S,\bfscrK 

\bigm\| \bigm\| \bfscrK 1
2\nabla \~ci0

\bigm\| \bigm\| 2.
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For the second term, we similarly obtain

J\sum 
j=1

\sum 
\bfa \in \scrV j

\Bigl( 
\bfscrK \nabla \rho ij,\bfa ,\nabla \~\rho ij,\bfa 

\Bigr) 
\omega \bfa 

j

\leq C2
S,\bfscrK 

J\sum 
j=1

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

+
1

4C2
S,\bfscrK 

J\sum 
j=1

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

(4.8)
(10.2)

\leq C2
S,\bfscrK (d+ 1)

J\sum 
j=1

\bigl( 
\lambda ij
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| \bigr) 2 + 1

4C2
S,\bfscrK 

J\sum 
j=1

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

.

Finally, for the third term, we have

J\sum 
j=1

j - 1\sum 
k=0

\Bigl( 
\lambda ik\bfscrK \nabla \rho ik,

\sum 
\bfa \in \scrV j

\nabla \~\rho ij,\bfa 

\Bigr) 

\leq 
2(d+ 1)C2

S,\bfscrK J

2

J\sum 
j=1

j - 1\sum 
k=0

\bigl( 
\lambda ik
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ik
\bigm\| \bigm\| \bigr) 2 +

J\sum 
j=1

j - 1\sum 
k=0

\bigm\| \bigm\| \bigm\| \bfscrK 1
2
\sum 

\bfa \in \scrV j

\nabla \~\rho ij,\bfa 

\bigm\| \bigm\| \bigm\| 2
2(2(d+ 1)C2

S,\bfscrK J)

\leq (d+ 1)C2
S,\bfscrK J

2
J\sum 

k=0

\bigl( 
\lambda ik
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ik
\bigm\| \bigm\| \bigr) 2 + 1

4C2
S,\bfscrK 

J\sum 
j=1

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

.

Summing these components together, we can now pursue our main estimate

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho iJ,alg

\bigm\| \bigm\| 2\leq 2(d+1)C2
S,\bfscrK J

2
J\sum 

j=0

\bigl( 
\lambda ij
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| \bigr) 2+

\bigm\| \bigm\| \bfscrK 1
2\nabla \~ci0

\bigm\| \bigm\| 2+ J\sum 
j=1

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

2C2
S,\bfscrK 

(5.1)
(10.9)

\leq 2(d+ 1)C2
S,\bfscrK J

2
\bigl( 
\eta ialg
\bigr) 2

+
1

2

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho iJ,alg

\bigm\| \bigm\| 2.
After subtracting 1

2

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho iJ,alg

\bigm\| \bigm\| 2 on both sides, we finally obtain the desired result\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho iJ,alg

\bigm\| \bigm\| 2 \leq 4(d+ 1)C2
S,\bfscrK J

2
\bigl( 
\eta ialg
\bigr) 2
.(10.10)

10.4. Proof of Theorem 6.6 under the \bfitH \bftwo (\Omega )-regularity assumption.
Under Assumption 6.4, we now prove that the result of Theorem 6.6 holds not only
p-robustly but also J-robustly. For this, we exhibit a different levelwise stable decom-
position from that of section 10.3. Here, we will define the piecewise linear component
of the stable decomposition via an H1-orthogonal projection and then use a duality-
type argument.

Definition 10.6 (H1-orthogonal lowest-order projection of error components).
For any j \in \{ 1, . . . , J\} , let \~\rho ij be given by (3.3). Then let cij \in V 1

j be the solution of

(\nabla cij ,\nabla vj) = (\nabla \~\rho ij ,\nabla vj) \forall vj \in V 1
j .(10.11)

Remark 10.7 (orthogonality properties of cij). For any j \in \{ 1, . . . , J\} , cij satisfies
the following orthogonality with piecewise affine functions of previous levels:

(\nabla cij ,\nabla vk)
(10.11)
= (\nabla \~\rho ij ,\nabla vk)

(10.3)
= 0 \forall vk \in V 1

k , \forall 0 \leq k < j.(10.12)
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Lemma 10.8 (H2-regularity result). Under Assumption 6.4, for any cij given by
Definition 10.6, j\in \{ 1, . . . , J\} , there holds

\| \~\rho ij\| \leq 
Capp

CquCref
hj\| \nabla \~\rho ij\| ,(10.13)

\| cij\| \leq 
Capp

CquCref
hj\| \nabla cij\| ,(10.14)

where the constant Capp depends on the space dimension d and the mesh shape regular-
ity parameter \kappa \scrT , and Cqu and Cref are the quasi-uniformity and refinement strength
parameters from Assumption 6.2.

Proof. To prove the first result, we proceed by a standard duality argument.

We consider the following problem: find \xi j \in H1
0 (\Omega ) such that

(10.15) (\nabla \xi j ,\nabla v) = (\~\rho ij , v) \forall v \in H1
0 (\Omega ).

Following Grisvard [14, Theorem 4.3.1.4], under Assumption 6.4, \xi j \in H2(\Omega ), and we
have

(10.16) | \xi j | H2(\Omega ) = \| \Delta \xi j\| = \| \~\rho ij\| .

Consider I1j - 1(\xi j) the P1-Lagrange interpolation of \xi j on mesh level j  - 1. Since

\xi j \in H2(\Omega ), following, e.g., Ern and Guermond [13, Corollary 1.110], we obtain

(10.17) \| \nabla (\xi j  - I1j - 1(\xi j))\| \leq Capphj - 1| \xi j | H2(\Omega ).

In particular, I1j - 1(\xi j) \in V
pj - 1

j - 1 , so by the orthogonality relation (10.3)

(10.18) (\nabla I1j - 1(\xi j),\nabla \~\rho ij) = 0.

We have now all the elements to conclude

\| \~\rho ij\| 2
(10.15)
= (\nabla \xi j ,\nabla \~\rho ij)

(10.18)
= (\nabla (\xi j  - I1j - 1(\xi j)),\nabla \~\rho ij) \leq \| \nabla (\xi j  - I1j - 1(\xi j))\| \| \nabla \~\rho ij\| 

(10.17)

\leq Capphj - 1| \xi j | H2(\Omega )\| \nabla \~\rho ij\| 
(10.16)
= Capphj - 1\| \~\rho ij\| \| \nabla \~\rho ij\| 

(6.2)
(6.3)

\leq 
Capp

CquCref
hj\| \~\rho ij\| \| \nabla \~\rho ij\| ,

which gives us (10.13). To obtain (10.14), the same argument is used once the right-
hand side of the dual problem (10.15) is modified to (cij , v), and we replace the or-
thogonality relation (10.18) by (10.12). Note that at this point, it is important that
I1j - 1(\xi j) \in V 1

j - 1.

We can now present the stable decomposition used in the proof of Theorem 6.6.

Lemma 10.9 (stable decomposition of the error levelwise components). For \~\rho ij
given by (3.3), cij given by Definition 10.6, j\in \{ 1, . . . , J\} , there exist \~\rho ij,\bfa \in V \bfa 

j , so that

\~\rho ij = cij +
\sum 
\bfa \in \scrV j

\~\rho ij,\bfa ,(10.19)

\bigm\| \bigm\| \bfscrK 1
2\nabla cij

\bigm\| \bigm\| 2 + \sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

\leq C2
SD,\bfscrK \| \bfscrK 

1
2\nabla \~\rho ij\| 2,(10.20)
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where C2
SD,\bfscrK \geq 1 only depends on the space dimension d, the mesh shape regularity

parameter \kappa \scrT , the quasi-uniformity parameter Cqu, the strength refinement param-
eter Cref , and the ratio of the largest and the smallest eigenvalue of the diffusion
coefficient \bfscrK .

Proof. We now rely on the stable decomposition result of Sch\"oberl et al. [29]
for a one-level setting. We will first show, as in [29, Lemma 3.1], that the coarse
contribution cij satisfies

\| \nabla cij\| 2+ \| \nabla (\~\rho ij  - cij)\| 2 +
\sum 
K\in \scrT j

h - 2
K \| (\~\rho ij  - cij)\| 2K \leq 

\biggl( 
5 +

\Bigl( 2Capp

CrefC2
qu

\Bigr) 2\biggr) 
\| \nabla \~\rho ij\| 2.

(10.21)

Then, one can construct local contributions \~\rho ij,\bfa \in V \bfa 
j as in [29, section 3], which

by [29, Proof of Theorem 2.1] gives us

\| \nabla cij\| 2 +
\sum 
\bfa \in \scrV j

\| \nabla \~\rho ij,\bfa \| 2\omega \bfa 
j
\leq C2

SD\| \nabla \~\rho ij\| 2,

and the claim (10.20) follows by taking into consideration the variations of \bfscrK .
To show (10.21), we first use Definition 10.6 of cij

\| \nabla cij\| 2 = (\nabla cij ,\nabla cij)
(10.11)
= (\nabla cij ,\nabla \~\rho ij) \leq \| \nabla cij\| \| \nabla \~\rho ij\| .(10.22)

This allows one to estimate the first and second terms (after using the triangle in-
equality) of (10.21). The third term is then estimated by

\sum 
K\in \scrT j

h - 2
K \| (\~\rho ij  - cij)\| 2K

(6.3)

\leq C - 2
qu h

 - 2
j

\sum 
K\in \scrT j

\| (\~\rho ij  - cij)\| 2K\leq 2C - 2
qu h

 - 2
j

\bigl( 
\| \~\rho ij\| 2+\| cij\| 2

\bigr) 
(10.13)
(10.14)

\leq 2
\Bigl( Capp

CrefC2
qu

\Bigr) 2
(\| \nabla \~\rho ij\| 2 + \| \nabla cij)\| 2)

(10.22)

\leq 4
\Bigl( Capp

CrefC2
qu

\Bigr) 2
\| \nabla \~\rho ij\| 2.

Remark 10.10 (localized writing of levelwise components). Note that we can
decompose the piecewise linear cij \in V 1

j using the nodal basis functions. We can then
write

\~\rho ij = cij +
\sum 
\bfa \in \scrV j

\~\rho ij,\bfa =
\sum 
\bfa \in \scrV j

(cij,\bfa \psi j,\bfa + \~\rho ij,\bfa ),(10.23)

where cij,\bfa is the nodal value on vertex a \in \scrV j of cij , and c
i
j,\bfa \psi j,\bfa + \~\rho ij,\bfa \in V \bfa 

j .

Lemma 10.11 (L2-stability of nodal decomposition). For all j \in \{ 1, . . . , J\} and
all vj \in V 1

j decomposed into the hat functions vj =
\sum 

\bfa \in \scrV j
vj,\bfa \psi j,\bfa , we have

\| vj\| 2 \leq (d+ 1)
\sum 
\bfa \in \scrV j

\| vj,\bfa \psi j,\bfa \| 2\omega \bfa 
j
, and

\sum 
\bfa \in \scrV j

\| vj,\bfa \psi j,\bfa \| 2\omega \bfa 
j
\leq C2

nd\| vj\| 2,(10.24)

where Cnd \geq 1 only depends on the space dimension d and the mesh shape regularity
parameter \kappa \scrT .
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Proof. For the first estimate, we apply the usual overlapping argument as done
for (10.1). As for the second estimate, consider a patch \omega \bfa 

j and element K contained

in the patch. Since vj \in V 1
j and by mesh shape regularity and equivalence of norms

in finite dimension, we have

\| vj,\bfa \psi j,\bfa \| \omega \bfa 
j
\leq C\kappa \scrT ,d\| vj,\bfa \psi j,\bfa \| K \leq C\kappa \scrT ,d\| vj,\bfa \psi j,\bfa \| \infty ,K | K| 12

\leq C\kappa \scrT ,d

\bigm\| \bigm\| \bigm\| \sum 
\bfa \in \scrV K

vj,\bfa \psi j,\bfa 

\bigm\| \bigm\| \bigm\| 
\infty ,K

| K| 12 = C\kappa \scrT ,d\| vj\| \infty ,K | K| 12

\leq C\kappa \scrT ,d
\widetilde C\kappa \scrT ,d\| vj\| K ,

where C\kappa \scrT ,d \geq 1 and \widetilde C\kappa \scrT ,d \geq 1 only depend on the mesh shape regularity parameter
\kappa \scrT and space dimension d. The result is obtained by summing both sides over all
vertices.

Lemma 10.12 (levelwise estimation of cij). Let j \in \{ 1, . . . , J\} and let cij =\sum 
\bfa \in \scrV j

cij,\bfa \psi j,\bfa be given by Definition 10.6. Then there holds

(10.25)

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2 cij,\bfa \nabla \psi j,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

\leq C2
stab,\bfscrK 

\bigm\| \bigm\| \bfscrK 1
2\nabla cij

\bigm\| \bigm\| 2,
where Cstab,\bfscrK \geq 1 only depends on the space dimension d, the mesh shape regularity
parameter \kappa \scrT , the quasi-uniformity parameter Cqu, the strength refinement param-
eter Cref , and the ratio of the largest and the smallest eigenvalue of the diffusion
coefficient \bfscrK .

Proof. We start by using an inverse inequality, denoting by h\omega \bfa 
j
the diameter of

patch \omega \bfa 
j , and then use the quasi-uniformity assumption (6.3)

\sum 
\bfa \in \scrV j

\| \bfscrK 
1
2 cij,\bfa \nabla \psi j,\bfa \| 2\omega \bfa 

j
\leq C2

\bfscrK 
\sum 
\bfa \in \scrV j

\| cij,\bfa \nabla \psi j,\bfa \| 2\omega \bfa 
j
\leq C2

\bfscrK C
2
inv

\sum 
\bfa \in \scrV j

h - 2
\omega \bfa 

j
\| cij,\bfa \psi j,\bfa \| 2\omega \bfa 

j

\leq C2
\bfscrK C

 - 2
qu C

2
invh

 - 2
j

\sum 
\bfa \in \scrV j

\| cij,\bfa \psi j,\bfa \| 2\omega \bfa 
j

(10.24)

\leq C2
\bfscrK C

 - 2
qu C

2
invC

2
ndh

 - 2
j \| cij\| 2

(10.14)

\leq 
C2

\bfscrK C
2
invC

2
ndC

2
app

C4
quC

2
ref

\| \nabla cij\| 2 \leq 
C2

\bfscrK C
2
invC

2
ndC

2
app

C4
quC

2
refc

2
\bfscrK 

\| \bfscrK 
1
2\nabla cij\| 2 = C2

stab,\bfscrK \| \bfscrK 
1
2\nabla cij\| 2,

where c2\bfscrK , C2
\bfscrK are respectively constants that depend on the smallest and the largest

eigenvalue of the diffusion coefficient \bfscrK . Note that the resulting constant Cstab,\bfscrK can
be safely assumed to be greater than 1; otherwise replace it by max(1, Cstab,\bfscrK ).

Lemma 10.13 (p-robust levelwise error estimation). Let j \in \{ 1, . . . , J\} and let
\~\rho ij and \rho ij be defined by (3.3) and (4.2), respectively. Then there holds

(10.26)

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho ij

\bigm\| \bigm\| 2 \leq 2C2
SD,\bfscrK C

2
stab,\bfscrK 

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j
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Proof. We begin by using the splitting (10.19) in the form (10.23), which gives\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho ij

\bigm\| \bigm\| 2 (10.23)
=

\sum 
\bfa \in \scrV j

\bigl( 
\bfscrK \nabla \~\rho ij ,\nabla (cij,\bfa \psi j,\bfa + \~\rho ij,\bfa )

\bigr) 
\omega \bfa 

j

(10.4)
=
\sum 
\bfa \in \scrV j

\Bigl( \bigl( 
\bfscrK \nabla \rho ij,\bfa ,\nabla (cij,\bfa \psi j,\bfa + \~\rho ij,\bfa )

\bigr) 
\omega \bfa 

j

 - 
j - 1\sum 
k=1

\bigl( 
\bfscrK \nabla (\~\rho ik  - \lambda ik\rho 

i
k),\nabla (cij,\bfa \psi j,\bfa + \~\rho ij,\bfa )

\bigr) 
\omega \bfa 

j

\Bigr) 
(10.23)
=

\sum 
\bfa \in \scrV j

\bigl( 
\bfscrK \nabla \rho ij,\bfa ,\nabla (cij,\bfa \psi j,\bfa + \~\rho ij,\bfa )

\bigr) 
\omega \bfa 

j

 - 
j - 1\sum 
k=1

\bigl( 
\bfscrK \nabla (\~\rho ik  - \lambda ik\rho 

i
k),\nabla \~\rho ij

\bigr) 
(10.3)
=

\sum 
\bfa \in \scrV j

\bigl( 
\bfscrK \nabla \rho ij,\bfa ,\nabla 

\bigl( 
cij,\bfa \psi j,\bfa + \~\rho ij,\bfa 

\bigr) \bigr) 
\omega \bfa 

j

 - 0

\leq C2
SD,\bfscrK C

2
stab,\bfscrK 

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

+

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla (cij,\bfa \psi j,\bfa + \~\rho ij,\bfa )

\bigm\| \bigm\| 2
\omega \bfa 

j

4C2
SD,\bfscrK C

2
stab,\bfscrK 

\leq C2
SD,\bfscrK C

2
stab,\bfscrK 

\sum 
\bfa \in \scrV j

\| \bfscrK 
1
2\nabla \rho ij,\bfa \| 2\omega \bfa 

j
+

\sum 
\bfa \in \scrV j

\bigl( \bigm\| \bigm\| \bfscrK 1
2 cij,\bfa \nabla \psi j,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

+
\bigm\| \bigm\| \bfscrK 1

2\nabla \~\rho ij,\bfa 
\bigm\| \bigm\| 2
\omega \bfa 

j

\bigr) 
2C2

SD,\bfscrK C
2
stab,\bfscrK 

(10.25)

\leq C2
SD,\bfscrK C

2
stab,\bfscrK 

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

+
C2

stab,\bfscrK 
\bigm\| \bigm\| \bfscrK 1

2\nabla cij
\bigm\| \bigm\| 2+\sum \bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

2C2
SD,\bfscrK C

2
stab,\bfscrK 

(10.20)

\leq C2
SD,\bfscrK C

2
stab,\bfscrK 

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

+
1

2

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho ij

\bigm\| \bigm\| 2,
which leads to the assertion (10.26).

We can now give a concise proof of Theorem 6.6.

Proof of Theorem 6.6 (p- and J-robust estimator efficiency under Assumption 6.4).
To estimate the algebraic error, we use the levelwise decomposition (3.6). Each level's
contribution was estimated in Lemma 10.13. Summing over different levels,

\bigm\| \bigm\| \bfscrK 1
2\nabla (uJ - uiJ)

\bigm\| \bigm\| 2(3.6)=

J\sum 
j=0

\bigm\| \bigm\| \bfscrK 1
2\nabla \~\rho ij

\bigm\| \bigm\| 2(10.26)\leq 
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho i0
\bigm\| \bigm\| 2+2C2

SD,\bfscrK C
2
stab,\bfscrK 

J\sum 
j=1

\sum 
\bfa \in \scrV j

\bigm\| \bigm\| \bfscrK 1
2\nabla \rho ij,\bfa 

\bigm\| \bigm\| 2
\omega \bfa 

j

(4.8)
(10.2)

\leq 2C2
SD,\bfscrK C

2
stab,\bfscrK (d+ 1)

\Bigl( \bigl( 
\lambda i0
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho i0
\bigm\| \bigm\| \bigr) 2 + J\sum 

j=1

\bigl( 
\lambda ij
\bigm\| \bigm\| \bfscrK 1

2\nabla \rho ij
\bigm\| \bigm\| \bigr) 2\Bigr) 

(5.1)
= 2C2

SD,\bfscrK C
2
stab,\bfscrK (d+ 1)

\bigl( 
\eta ialg
\bigr) 2
.

Thus we have showed \eta ialg \geq \beta 
\bigm\| \bigm\| \bfscrK 1

2\nabla (uJ  - uiJ)
\bigm\| \bigm\| for \beta := 1\surd 

2(d+1)CSD,\bfscrK Cstab,\bfscrK 
> 0.

11. Conclusions and future work. In this work we presented a multilevel
algebraic solver whose construction is inherently interconnected with an a posteriori
estimator of the algebraic error. The solver can be seen as a geometric multigrid
relying on V-cycles with zero pre- and one postsmoothing, where the smoother is
additive Schwarz associated to patches of elements (block-Jacobi). A crucial difference
compared to classic multigrid solvers is the use of an optimal step-size in the error
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correction stage on each level of the mesh hierarchy. This significantly improves the
behavior of the solver and conveniently enough, makes the analysis easier leading
in particular to the Pythagorean error decrease formula (4.9a). We also presented
a simple and efficient way for the solver to automatically increase the number of
postsmoothing steps on each level to the amount needed, based on the a posteriori
estimator of the algebraic error. We showed that the nonadaptive version of the solver
(with only one postsmoothing step) contracts the error in each iteration robustly with
respect to the polynomial degree p of the underlying finite element discretization; this
result is equivalent to showing p-robust efficiency of the a posteriori algebraic error
estimate. If we, additionally, assume H2-regularity in the sense of Assumption 6.4,
we can show that these results are also robust with respect to the number of mesh
levels J . An interesting side property is that the error estimator is equivalent to a sum
of level- and patchwise-localized computable contributions by formula (6.7). Future
work [19] will explore how to incorporate this information in the solver so that it
adaptively tackles only problematic regions contributing most to the algebraic error
(local adaptive smoothing). Finally, numerical results indicate that even for singular
test cases, for quasi-uniform meshes, the solver behaves robustly with respect to the
polynomial degree p, the number of levels J , as well as the diffusion coefficient \bfscrK .

Acknowledgment. The authors are grateful to Inria Sophia Antipolis -- M\'edi-
terran\'ee ``NEF"" computation cluster for providing resources and support.
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