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ADAPTIVE INEXACT NEWTON METHODS WITH A POSTERIORI
STOPPING CRITERIA FOR NONLINEAR DIFFUSION PDES∗
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Abstract. We consider nonlinear algebraic systems resulting from numerical discretizations
of nonlinear partial differential equations of diffusion type. To solve these systems, some iterative
nonlinear solver and, on each step of this solver, some iterative linear solver are used. We derive
adaptive stopping criteria for both iterative solvers. Our criteria are based on an a posteriori error
estimate which distinguishes the different error components, namely, the discretization error, the
linearization error, and the algebraic error. We stop the iterations whenever the corresponding error
no longer affects the overall error significantly. Our estimates also yield a guaranteed upper bound
on the overall error at each step of the nonlinear and linear solvers. We prove the (local) efficiency
and robustness of the estimates with respect to the size of the nonlinearity owing, in particular, to
the error measure involving the dual norm of the residual. Our developments hinge on equilibrated
flux reconstructions and yield a general framework. We show how to apply this framework to various
discretization schemes like finite elements, nonconforming finite elements, discontinuous Galerkin,
finite volumes, and mixed finite elements; to different linearizations like fixed point and Newton; and
to arbitrary iterative linear solvers. Numerical experiments for the p-Laplacian illustrate the tight
overall error control and important computational savings achieved in our approach.
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1. Introduction. Consider a system of nonlinear algebraic equations written in
the following form: find a vector U ∈ R

N , N ≥ 1, such that

(1.1) A(U) = F,

where A : RN → R
N is a discrete nonlinear operator and F ∈ R

N is a given vector. A
classical solution algorithm consists in forming a system of linear algebraic equations

(1.2) A
k−1Uk = F k−1

by a given linearization on each iteration step k ≥ 1. Then some iterative algebraic
solver is applied to (1.2), yielding on step i ≥ 0 an approximation Uk,i to Uk satisfying

(1.3) A
k−1Uk,i = F k−1 −Rk,i

with Rk,i ∈ R
N the algebraic residual vector.

If the algebraic solve of (1.2) is done “exactly,” i.e., Rk,i = 0 (typically up to
computer working precision), an exact iterative linearization is obtained. Probably
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the most well-known example is the Newton method, where

(1.4) A
k−1
ij :=

∂Ai

∂Uj
(Uk−1), F k−1 := F −A(Uk−1) + A

k−1Uk−1.

Convergence and a priori error estimates for the Newton method have been obtained
by Kantorovich [36] and Ortega [43]. A posteriori error estimates, that is, computable
quantities yielding an upper bound on the error ‖Uk − U‖ between Uk, the solution
of (1.2), and U , the solution of (1.1), have been proved by Gragg and Tapia [31] and
improved by Potra and Pták [45] and Yamamoto [58]; see also references therein.

The Newton method can be computationally demanding because of the solve
of the linear system (1.2). The inexact Newton method is a popular approach to
speed it up. It has been used in practice for decades and studied theoretically in
many papers. In particular, Eisenstat and Walker [23] have shown the convergence,
and posteriori error estimates were proved by Moret [42]. The connections of the
(inexact) Newton method with discretization methods, namely, the (inexact) Newton
multilevel finite element method, were treated in, e.g., Bank and Rose [2], Hackbusch
and Reusken [32], and Deuflhard and Weiser [19], theoretical bases of the Newton–
Krylov algorithms are investigated in Brown and Saad [9], and conjunctions with
preconditioning and parallel implementation are discussed in Cai and Li [12]; see also
the references therein. Adaptive algorithms together with a priori convergence results
can be found in Deuflhard [18] and in the references therein.

Inexact iterative linearization methods are often understood and studied as meth-
ods for the solution of systems of general nonlinear algebraic equations of the form (1.1)
without much (any) specification of their structure and origin. In this work, we use
the theory of a posteriori error estimation to investigate nonlinear algebraic systems
originating from a given discretization of a given partial differential equation (PDE).
We write the PDE in the following abstract form: given a nonlinear operator A and
right-hand side f , find a function u such that

(1.5) A(u) = f.

The nonlinear algebraic system (1.1) then stems from some discretization of (1.5).
Our first goal is to derive stopping criteria in inexact linearizations. Let u be the

solution of (1.5) and let uk,ih be the approximation to u obtained by the discretization
scheme on the kth nonlinear solver step and the ith linear solver step, whose algebraic
representation is the vector Uk,i of (1.3). Our second goal is to obtain guaranteed
(without undetermined constants) and efficient a posteriori estimates for the error

between u and uk,ih . We carry this task for a broad class of nonlinear PDEs of the
form (1.5); details are given in section 2. The iterative nonlinear and linear solvers
need not be specified in our setting. For simplicity, we refer to our approach as
adaptive inexact Newton method.

A posteriori error estimates for the error between the exact solution u and an
approximate solution uh in the absence of errors stemming from the iterative nonlin-
ear and linear solvers have been derived in various specific situations. Verfürth [52]
developed a general framework for reliable and efficient a posteriori estimates in the
finite element setting. For the p-Laplacian, quite tight guaranteed upper bounds have
been obtained by Carstensen and Klose [13], convergence of an adaptive finite element
method was first proved by Veeser [51] for the energy norm, and a quasi-optimal rate
was recently obtained by Belenki, Diening, and Kreuzer [6] for an error measure re-
lated to the quasi-norm of Barrett and Liu [3]. Other discretization schemes were also
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studied; let us mention, in particular, Creusé, Farhloul, and Paquet [16] for mixed
finite elements and the p-Laplacian, Houston, Süli, and Wihler [34] for the discontinu-
ous Galerkin method and quasi-linear diffusion, and Kim [37] for locally conservative
methods and strongly monotone problems. A general method-independent framework
has been derived by Repin [48, 49]. Estimates and stopping criteria independently for
linear and nonlinear solvers were proposed by Becker, Johnson, and Rannacher [5],
Chaillou and Suri [14], and, more closely to the present approach, in [35, 24]; see also
the references therein. Both linearization and algebraic errors are simultaneously ad-
dressed in the context of goal-oriented error estimation by Meidner, Rannacher, and
Vihharev [41] and Rannacher, Westenberger, and Wollner [47]; see also the survey by
Strakoš and Liesen [50] and Arioli et al. [1].

We are not aware of estimates of the error between u and uk,ih which provide, at
the same time, a guaranteed upper bound and a distinction among the different error
components, namely, discretization, linearization, and algebraic errors. We achieve
such a result in section 3 of this paper through three suitable flux reconstructions
following the spirit of Prager and Synge [46]; see [26, 33] and references therein for
recent contributions. We describe a possible handling of the algebraic error in sec-
tion 4, leading to quasi-equilibrated fluxes. The distinction of error components leads
to stopping criteria expressing that there is no need to continue with the algebraic
solver iterations once the linearization or discretization error components start to
dominate, and that there is no need to continue with the nonlinear solver iterations
once the discretization error component starts to dominate.

A further important result is the efficiency of the estimators, answering the ques-
tion whether the estimators are also a lower bound for the error, possibly up to a
generic constant. Whenever such a constant is independent of the nonlinear operator
at hand, the approximate and exact solutions, the mesh size, and the computational
domain, we speak of robustness. We use an error measure based on the dual norm
of the residual for conforming discretizations as in [14, 24] which we augment by a
jump seminorm in the nonconforming case. We show in section 5 that under the
above-discussed stopping criteria and for this error measure, our estimates are effi-
cient and robust. Moreover, when a local, elementwise version of the stopping criteria
is used, we obtain this efficiency also locally around each mesh element for an easily
computable upper bound of our error measure evaluating the [Lq(Ω)]d distance of the
fluxes. In our numerical experiments, the present estimates appear to deliver a tight
local control of the [Lq(Ω)]d error in the fluxes as well. For Leray–Lions problems, our
results thus complement those obtained in the quasi-norm setting. Convergence and
optimality of our adaptive inexact Newton approach shall be addressed elsewhere.

The developments of section 3, section 4, and section 5 constitute a general frame-
work which is built on a couple of clearly identified assumptions on the flux reconstruc-
tions. These assumptions are verified in section 6 for various discretization schemes,
the Newton and fixed point nonlinear solvers, and an arbitrary iterative linear solver.
In section 7, we study numerically the behavior of our a posteriori estimates and the
computational gains of our stopping criteria for the p-Laplacian, the Crouzeix–Raviart
nonconforming finite element method, the Newton linearization, and the conjugate
gradient (CG) algebraic solver. An example of application of the present framework
to two-phase flow simulation can be found in [55]. Finally, we draw some conclusions
in section 8.

2. Setting. This section describes the continuous problem, sets up the basic
notation, and introduces the error measure.
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2.1. Continuous problem. Let Ω ⊂ R
d, d ≥ 2, be a polygonal (polyhedral) do-

main (open, bounded, and connected set). We consider the following model nonlinear
diffusion problem: find u : Ω → R such that

−∇·σ(x, u(x),∇u(x)) = f in Ω,(2.1a)

u = 0 on ∂Ω,(2.1b)

where σ : Ω×R×R
d → R

d is the nonlinear flux function and f : Ω → R is the source
term. The scalar-valued unknown function u is termed the potential, and, given a
potential u, the vector-valued function −σ(·, u,∇u) : Ω → R

d is termed the flux.
The nonlinear flux function σ takes the general form σ(x, v, ξ) = A(x, v, ξ)ξ for

all (x, v, ξ) ∈ Ω× R× R
d, where A : Ω× R× R

d → R
d×d is a Carathéodory (tensor-

valued) function (measurable in x and continuous in v and ξ). Two key examples are
the quasi-linear diffusion problem in which A is independent of ξ (so that σ depends
linearly on ξ) yielding

(2.2) σ(x, v, ξ) = A(x, v)ξ ∀(x, v, ξ) ∈ Ω× R× R
d,

and the Leray–Lions problem in which A depends on ξ (so that σ depends nonlinearly
on ξ) but is independent of v, yielding

(2.3) σ(x, ξ) = A(x, ξ)ξ ∀(x, ξ) ∈ Ω× R
d.

For the quasi-linear diffusion problem, we assume that A is bounded and that it takes
symmetric values with minimal eigenvalue uniformly bounded away from zero. For
the Leray–Lions problem, see [38], we assume that for a real number p ∈ (1,∞), there
holds for all ξ, ζ ∈ R

d and a.e. x ∈ Ω, σ(x, ξ)·ξ ≥ α0|ξ|p, (σ(x, ξ)−σ(x, ζ))·(ξ−ζ) >
0 for ξ 
= ζ, and |σ(x, ξ)| ≤ g(x) + α1|ξ|p−1 for positive real numbers α0 and α1 and
a function g ∈ Lq(Ω), where q := p

p−1 , so that 1
p + 1

q = 1. A typical Leray–Lions

problem is the p-Laplacian, where A(x, ξ) = |ξ|p−2I and I is the identity tensor.
To alleviate the notation, we leave henceforth the dependence on the space vari-

able x implicit, so that we simply write σ(u,∇u). To allow for a unified presentation
of the quasi-linear diffusion and Leray–Lions settings, we set p := 2 for the quasi-
linear diffusion problem, while any real number p ∈ (1,∞) can be used in the above
assumptions for the Leray–Lions problem. Then, we seek in both cases the potential
u in the energy space V :=W 1,p

0 (Ω) (that is, the space of Lp(Ω) functions whose weak
derivatives are in Lp(Ω) and with zero trace on ∂Ω). Assuming f ∈ Lq(Ω), the model
problem (2.1) can be written in the form (1.5) as follows: find u ∈ V such that

(2.4) (σ(u,∇u),∇v) = (f, v) ∀v ∈ V.

For w ∈ Lq(Ω), v ∈ Lp(Ω), (w, v) stands for
∫
Ω
w(x)v(x) dx and similarly in the

vector-valued case. We assume that there exists a unique weak solution to (2.4).
Owing to the above assumptions and to (2.4), the flux −σ(u,∇u) is then in the space
Hq(div,Ω) spanned by the functions in [Lq(Ω)]d with weak divergence in Lq(Ω).

2.2. Discrete setting. Let Th be a simplicial mesh of Ω. For simplicity, we
suppose that there are no hanging nodes in the sense that for two distinct elements of
Th, their intersection is either an empty set or a common l-dimensional face, 0 ≤ l ≤
d− 1. A generic element of Th is denoted by K and its diameter by hK . The (d− 1)-
dimensional faces of the mesh are collected in the set Eh such that Eh = E int

h ∪ Eext
h
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with E int
h collecting interfaces and Eext

h boundary faces. A generic face is denoted e
and its diameter by he. The faces of an element K are collected in the set EK . For
any K ∈ Th, TK collects the elements K ′ ∈ Th which share at least a vertex with
K. Similarly, EK collects the faces which share at least a vertex with K, and we
set Eint

K := EK ∩ E int
h . For any e ∈ Eh, ne stands for the unit normal vector to e

(the orientation is irrelevant, but fixed, for all e ∈ E int
h and points outward Ω for all

e ∈ Eext
h ), and for any K ∈ Th, nK stands for the outward unit normal vector to K.
Discretizing problem (2.4) leads to a nonlinear algebraic system of the form (1.1).

Let some nonlinear and linear solvers be applied to problem (1.1). Suppose that we
are on step k, k ≥ 1, of the nonlinear solver and on step i, i ≥ 0, of the linear
solver. This corresponds to problem (1.3). We denote uk,ih the discrete potential
associated with the vector Uk,i. Our framework covers both conforming schemes,
where uk,ih ∈ V , and nonconforming schemes, where uk,ih 
∈ V . To proceed generally, we

assume that uk,ih is in the broken Sobolev space V (Th) := {v ∈ Lp(Ω), v|K ∈ W 1,p(K)
for all K ∈ Th}. For v ∈ V (Th), ∇v denotes its so-called broken gradient, that
is, the distributional gradient evaluated elementwise. As functions in V (Th) are not
necessarily single-valued at interfaces, we introduce the jump operator [[·]] yielding
the difference (evaluated along ne) of (the traces of) the argument from the two
mesh elements that share e on interfaces and the actual trace if e is a boundary face.
Classically, v ∈ V (Th) is in V if and only if [[v]] = 0 for all e ∈ Eh; see, e.g., [21,
Lemma 1.23].

Separately from uk,ih , we also consider a discrete gradient gk,i
h ∈ [Lp(Ω)]d. This

allows us to handle a wide class of discretization schemes in a unified setting. For
conforming schemes, gk,i

h is obtained by applying the usual gradient to uk,ih ; for various
nonconforming schemes, the broken gradient can be used instead, but some schemes
employ a more elaborate construction of gk,i

h , taking into account, e.g., the jumps of

uk,ih . In all cases, we require that whenever uk,ih ∈ V , there holds gk,i
h = ∇uk,ih .

2.3. Error measure. The error between the exact solution u of (2.4) and the

approximate solution uk,ih is measured as

(2.5) Ju(u
k,i
h ,gk,i

h ) := Ju,F(u
k,i
h ,gk,i

h ) + Ju,NC(u
k,i
h ),

where

Ju,F(u
k,i
h ,gk,i

h ) := sup
ϕ∈V ; ‖∇ϕ‖p=1

(
σ(u,∇u)− σ(uk,ih ,gk,i

h ),∇ϕ
)
,(2.6a)

Ju,NC(u
k,i
h ) :=

{ ∑
K∈Th

∑
e∈EK

αs
eh

1−s
e ‖[[u− uk,ih ]]‖ss,e

} 1
q

.(2.6b)

The quantity Ju,F(u
k,i
h ,gk,i

h ) measures the error in the fluxes and is the dual norm
of the residual of (2.4) in the dual space of V . For conforming discretizations, this

error measure also controls the potential error u − uk,ih and has been considered by
Chaillou and Suri [14] and in [24]. Indeed, owing to the well-posedness of (2.4) and

the above requirement on gk,i
h , whenever uk,ih ∈ V , Ju,F(u

k,i
h ,gk,i

h ) = 0 if and only if

uk,ih = u. Furthermore, the quantity Ju,NC(u
k,i
h ) measures the nonconformity of the

discrete potential, i.e., the departure of uk,ih from the space V . A specific value for
the weights αe > 0 and the exponent s ≥ 1 is only needed in section 6.3.4 below;
otherwise we only use that Ju,NC(u

k,i
h ) = 0 if and only if uk,ih ∈ V . All in all, we see

that Ju(u
k,i
h ,gk,i

h ) = 0 if and only if uk,ih = u and gk,i
h = ∇u.
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Although the quantity Ju,F(u
k,i
h ,gk,i

h ) is not easily computable (assuming that u
is known), the Hölder inequality yields

(2.7) Ju(u
k,i
h ,gk,i

h ) ≤ J up
u (uk,ih ,gk,i

h ) := ‖σ(u,∇u)− σ(uk,ih ,gk,i
h )‖q + Ju,NC(u

k,i
h ),

which features the [Lq(Ω)]d-difference of the exact and approximate fluxes. Although

Ju(u
k,i
h ,gk,i

h ) and J up
u (uk,ih ,gk,i

h ) are in general not linked by the reverse inequality,
both error measures exhibit a very close behavior in our numerical experiments of
section 7. Thus, our a posteriori error estimates, which are derived for Ju(u

k,i
h ,gk,i

h ),

turn out to approximate J up
u (uk,ih ,gk,i

h ) quite well. This last property is partly linked

to the local efficiency of our estimates for the measure J up
u (uk,ih ,gk,i

h ); see Theorem 5.3
below.

3. A posteriori error estimates and the adaptive inexact Newton me-
thod. In this section, we present our a posteriori error estimates and the inexact New-
ton method with adaptive stopping criteria. We proceed generally, with a given dis-
crete potential uk,ih ∈ V (Th) and the corresponding discrete gradient gk,i

h ∈ [Lp(Ω)]d,
k ≥ 1, i ≥ 0, not linked to any particular discretization scheme or to any iterative
nonlinear or linear solvers. Examples of applications are given in section 6. The
starting point of our general framework is the following assumption.

Assumption 3.1 (quasi-equilibrated flux reconstruction). There exist a vector-

valued function tk,ih ∈ Hq(div,Ω) and a scalar-valued function ρk,ih ∈ Lq(Ω) such
that

(3.1) ∇·tk,ih = fh − ρk,ih ,

where fh is a piecewise polynomial approximation of the source term f verifying
(fh, 1)K = (f, 1)K for all K ∈ Th.

The function tk,ih plays the role of a flux reconstruction providing a discrete ap-
proximation of the exact flux −σ(u,∇u). Such a function is traditional in equili-
brated flux estimates; see Prager and Synge [46], Luce and Wohlmuth [39], Braess
and Schöberl [7], or the unified approaches in [26, 33] and the references therein. In

practice, see section 6, we construct tk,ih in Raviart–Thomas–Nédélec discrete sub-

spaces of Hq(div,Ω). Furthermore, the function ρk,ih plays the role of an algebraic

remainder. This function is introduced to facilitate the practical construction of tk,ih .
Indeed, while using iterative linear solvers, it is usually difficult to achieve exact equi-
libration in the sense that (3.1) is satisfied with ρk,ih = 0. An example for constructing

tk,ih such that ρk,ih = 0 is the algorithm of [35, section 7.3], which requires an ordering of
the mesh elements and then a run through all the elements with a local minimization
problem inside each element. Herein, we consider instead a general nonzero ρk,ih with
the only requirement that it can be made small enough. (The precise requirement is
stated in section 3.3.) A simple and practical way to devise the algebraic remainder

ρk,ih is presented in section 4, following Golub and Strakoš [30], Deuflhard [17], and [35,
section 7.2].

Remark 3.2 (function fh). For lowest-order discretizations, fh is generally the
piecewise constant function given by the elementwise mean values of f . For higher-
order discretizations, a more accurate approximation of f is considered.

Remark 3.3 (local mass conservation). Even if we work with not fully converged
linear and nonlinear solvers, Assumption 3.1 means that tk,ih represents a flux with a
continuous normal trace whose elementwise mass balance misfit is merely ρk,ih .
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3.1. Guaranteed a posteriori error estimate. For any K ∈ Th, the general-
ized Poincaré inequality states that

(3.2) ‖ϕ− ϕK‖p,K ≤ CP,phK‖∇ϕ‖p,K ∀ϕ ∈W 1,p(K),

where ϕK denotes the mean value of ϕ in K. Since simplices are convex, there holds

CP,2 = π−1, see Payne and Weinberger [44] and Bebendorf [4], CP,p = π− 2
p d

1
2−

1
p

for p ≥ 2, see Verfürth [53], and CP,p = p
1
p 2

(p−1)
p for all p ∈ (1,+∞), see Chua

and Wheeden [15]. The generalized Friedrichs inequality states that (owing to the
homogeneous Dirichlet boundary condition (2.1b))

(3.3) ‖ϕ‖p ≤ hΩ‖∇ϕ‖p ∀ϕ ∈ V.

In what follows, we denote our estimators in the form ηk,i·,K , where k ≥ 1 stands
for the nonlinear solver step, i ≥ 0 for the linear solver step, and K ∈ Th for the mesh
element. We define global versions of these estimators as ηk,i· := {

∑
K∈Th

(ηk,i·,K)q}1/q.
Our main result on the a posteriori error estimate follows.

Theorem 3.4 (guaranteed upper bound). Let u ∈ V solve (2.4), let uk,ih ∈ V (Th)
and gk,i

h ∈ [Lp(Ω)]d be arbitrary, and let Assumption 3.1 hold. For any K ∈ Th, define,
respectively, the flux and the nonconformity estimators as

ηk,iF,K := ‖σ(uk,ih ,gk,i
h ) + tk,ih ‖q,K ,(3.4a)

ηk,iNC,K :=

{∑
e∈EK

αs
eh

1−s
e ‖[[uk,ih ]]‖ss,e

} 1
q

,(3.4b)

and the algebraic remainder and data oscillation estimators as

ηk,irem,K := hΩ‖ρk,ih ‖q,K ,(3.5a)

ηk,iosc,K := CP,phK‖f − fh‖q,K .(3.5b)

Then,

(3.6) Ju(u
k,i
h ,gk,i

h ) ≤ ηk,i := ηk,iF + ηk,iNC + ηk,irem + ηk,iosc.

Proof. Taking into account that [[u]] = 0 for all e ∈ Eh, it is clear that Ju,NC(u
k,i
h ) =

ηk,iNC. We are thus left with bounding Ju,F(u
k,i
h ,gk,i

h ). Let ϕ ∈ V with ‖∇ϕ‖p = 1

be fixed. Since tk,ih ∈ Hq(div,Ω), the Green formula yields (tk,ih ,∇ϕ) = −(∇·tk,ih , ϕ).

Hence, using (2.4) and adding and subtracting (tk,ih ,∇ϕ), we infer

(σ(u,∇u)− σ(uk,ih ,gk,i
h ),∇ϕ) = (f −∇·tk,ih , ϕ)− (σ(uk,ih ,gk,i

h ) + tk,ih ,∇ϕ).

The Hölder inequality yields

|(σ(uk,ih ,gk,i
h ) + tk,ih ,∇ϕ)| ≤

∑
K∈Th

‖σ(uk,ih ,gk,i
h ) + tk,ih ‖q,K‖∇ϕ‖p,K ≤ ηk,iF .

Assumption 3.1, the Hölder inequality, the generalized Poincaré inequality (3.2), and
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the generalized Friedrichs inequality (3.3) lead to

|(f −∇·tk,ih , ϕ)| =
∑

K∈Th

(f −∇·tk,ih − ρk,ih , ϕ)K + (ρk,ih , ϕ)

=
∑

K∈Th

(f − fh, ϕ− ϕK)K + (ρk,ih , ϕ)

≤
∑

K∈Th

‖f − fh‖q,KCP,phK‖∇ϕ‖p,K + ‖ρk,ih ‖qhΩ‖∇ϕ‖p

≤ ηk,iosc + ηk,irem.

Combining the above bounds yields (3.6).

3.2. Distinguishing the different error components. We now identify and
estimate separately the various error components. To proceed generally, we introduce
the following assumption.

Assumption 3.5 (discretization, linearization error, and algebraic error flux re-

constructions). There exist vector-valued functions dk,i
h , lk,ih , ak,ih ∈ [Lq(Ω)]d such that

(i) dk,i
h + lk,ih + ak,ih = tk,ih ;

(ii) as the linear solver converges, ‖ak,ih ‖q → 0;

(iii) as the nonlinear solver converges, ‖lk,ih ‖q → 0.

The function dk,i
h is meant to approximate the discretization flux −σ(uk,ih ,gk,i

h ),

lk,ih represents the linearization error, and ak,ih the algebraic error. A generic way to

construct ak,ih is presented in section 4; the construction of the functions dk,i
h and lk,ih

then depends on the discretization scheme and nonlinear solver at hand; see section 6.
The last error component we distinguish is quadrature. Because of nonlinearities,

σ(uk,ih ,gk,i
h ) is not necessarily a piecewise polynomial even if the discrete potential uk,ih

and gradient gk,i
h are so. We introduce a piecewise polynomial vector-valued function

σk,i
h meant to approximate σ(uk,ih ,gk,i

h ); the specific definition of σk,i
h depends on the

discretization scheme at hand; see section 6. The main result of this section follows.
Theorem 3.6 (a posteriori error estimate distinguishing the error components).

Let u ∈ V solve (2.4) and let uk,ih ∈ V (Th) and gk,i
h ∈ [Lp(Ω)]d be arbitrary. Let

Assumptions 3.1 and 3.5 hold. For any K ∈ Th, define, respectively, the discretization,
linearization, algebraic, and quadrature estimators as

ηk,idisc,K := 21/p
(
‖σk,i

h + dk,i
h ‖q,K + ηk,iNC,K

)
,(3.7a)

ηk,ilin,K := ‖lk,ih ‖q,K ,(3.7b)

ηk,ialg,K := ‖ak,ih ‖q,K ,(3.7c)

ηk,iquad,K := ‖σ(uk,ih ,gk,i
h )− σk,i

h ‖q,K(3.7d)

with ηk,iNC,K defined by (3.4b). Let ηk,irem,K and ηk,iosc,K be defined, respectively, by (3.5a)
and (3.5b). Then,

(3.8) Ju(u
k,i
h ,gk,i

h ) ≤ ηk,idisc + ηk,ilin + ηk,ialg + ηk,irem + ηk,iquad + ηk,iosc.

Proof. The decomposition of Assumption 3.5 and the triangle inequality yield

‖σ(uk,ih ,gk,i
h ) + tk,ih ‖q,K ≤ ‖σk,i

h + dk,i
h ‖q,K + ‖lk,ih ‖q,K + ‖ak,ih ‖q,K + ηk,iquad,K .
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The assertion then follows from Theorem 3.4 combined with the triangle inequality,
the Hölder inequality, and the inequality aq+bq ≤ (a+b)q for a, b ≥ 0 used to regroup

‖σk,i
h + dk,i

h ‖q,K with ηk,iNC,K .

3.3. Adaptive inexact Newton method. We are now ready to present our
adaptive inexact Newton method with a posteriori stopping criteria for the linear and
nonlinear solvers. The idea is to require the algebraic estimator to be sufficiently small
with respect to the linearization or discretization estimators and the linearization
estimator to be sufficiently small with respect to the discretization estimator. Owing
to the presence of the function ρk,ih , we introduce a third (balancing) requirement,
namely, that the algebraic remainder estimator is sufficiently small with respect to
the three other estimators. The adaptive inexact Newton method for (1.1) reads as
follows.

Algorithm 3.7 (adaptive inexact Newton method).
1. Choose an initial vector U0 ∈ R

N . Set k := 1.
2. From Uk−1, define a matrix Ak−1 ∈ R

N,N and a vector F k−1 ∈ R
N . Consider

the system (1.2) of linear algebraic equations.
3. (a) Define Uk,0 := Uk−1 and set i := 0.

(b) Perform ν > 0 steps of a chosen iterative linear solver for the solution
of the linear system (1.2), starting from the vector Uk,i. This yields an
approximation Uk,i+ν to Uk which satisfies

(3.9) A
k−1Uk,i+ν = F k−1 −Rk,i+ν ,

where Rk,i+ν ∈ R
N is the algebraic residual vector on step i + ν. By

increasing progressively ν, ensure the balancing criterion

(3.10) ηk,irem ≤ γremmax
{
ηk,idisc, η

k,i
lin , η

k,i
alg

}
.

(c) Check the stopping criterion for the linear solver in the form

(3.11) ηk,ialg ≤ γalg max
{
ηk,idisc, η

k,i
lin

}
.

If satisfied, set Uk := Uk,i. If not, set i := i+ν and go back to step 3(b).
4. Check the stopping criterion for the nonlinear solver in the form

(3.12) ηk,ilin ≤ γlinη
k,i
disc.

If satisfied, finish. If not, set k := k + 1 and go back to step 2.
Above, γrem, γalg, and γlin are positive user-given weights, typically of order 0.1,

representing the relative size (percentage) of the algebraic remainder, algebraic, and
linearization errors. The balancing and stopping criteria (3.10)–(3.12) are global in the
sense that they are evaluated over all mesh elements. They are sufficient to establish
the global efficiency of our error estimators; see Theorem 5.4 below. Alternatively,
local balancing and stopping criteria are elementwise equivalents in the form

ηk,irem,K ≤ γrem,K max
{
ηk,idisc,K , η

k,i
lin,K , η

k,i
alg,K

}
∀K ∈ Th,(3.13)

ηk,ialg,K ≤ γalg,K max
{
ηk,idisc,K , η

k,i
lin,K

}
∀K ∈ Th,(3.14)

ηk,ilin,K ≤ γlin,Kη
k,i
disc,K ∀K ∈ Th,(3.15)

where for any K ∈ Th, γrem,K , γalg,K , and γlin,K are positive user-given weights,
typically of order 0.1. These local criteria are used to establish the local efficiency of
our error estimators, see Theorem 5.3 below, and are important for mesh adaptivity.
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4. Algebraic remainder and algebraic error flux reconstruction. The
goal of this section is to present a simple and practical way to construct the algebraic
remainder ρk,ih and the algebraic error flux reconstruction ak,ih . To do so, we suppose

that the sum (dk,i
h +lk,ih ) of the flux reconstructions dk,i

h and lk,ih satisfies the following.

Assumption 4.1 (quasi-equilibration for (dk,i
h + lk,ih )). The function (dk,i

h + lk,ih )

is in Hq(div,Ω), and there exists a scalar-valued function rk,ih ∈ Lq(Ω) such that

(4.1) ∇·(dk,i
h + lk,ih ) = fh − rk,ih .

Referring to Algorithm 3.7, where the linear system (1.2) for k ≥ 1 is being solved
iteratively, the ith step of the linear solver yields the algebraic residual vector Rk,i

in (1.3). We will see in section 6 how the (piecewise polynomial) function rk,ih of (4.1)
can be constructed from the components of Rk,i for various discretizations. We then
define the following.

Definition 4.2 (construction of ρk,ih and ak,ih ). Let the kth step of the non-

linear solver and the ith step of the linear solver be given, yielding (dk,i
h + lk,ih ) and

rk,ih satisfying (4.1). Let ν > 0 and perform ν additional steps of the linear solver,

yielding (3.9) and (dk,i+ν
h + lk,i+ν

h ), rk,i+ν
h satisfying (4.1) with i+ ν in place of i. Set

ak,ih := (dk,i+ν
h + lk,i+ν

h )− (dk,i
h + lk,ih ),(4.2a)

ρk,ih := rk,i+ν
h .(4.2b)

In practice, the parameter ν can be determined adaptively by increasing its value
until satisfying (3.10) or (3.13). We emphasize that this construction is independent
of the actual linear solver. Importantly, the following result can be easily verified for
any convergent linear solver.

Lemma 4.3 (Assumptions 3.1 and 3.5(i–ii)). Under Assumption 4.1 and with the

construction of Definition 4.2, define tk,ih := dk,i
h + lk,ih + ak,ih . Then, Assumptions 3.1

and 3.5(i–ii) hold.

5. Local and global efficiency and robustness. We prove in this section the
efficiency and robustness of our a posteriori error estimates. The specific construction
of section 4 is not needed; we just use the criteria (3.10)–(3.12) or (3.13)–(3.15).

5.1. Local approximation property. To proceed generally, we make one last
assumption on the flux reconstruction dk,i

h related to discretization errors. Define

ηk,i�,K :=

{ ∑
K′∈TK

hqK′‖fh +∇·σk,i
h ‖qq,K′ +

∑
e∈Eint

K

he‖[[σk,i
h ·ne]]‖qq,e

} 1
q

.(5.1)

Let ηk,i·,TK
:= {

∑
K′∈TK

(ηk,i·,K′)q}
1
q for the estimators introduced in section 3. Hence-

forth, A � B stands for the inequality A ≤ CB with a generic constant C independent
of the mesh sizes hK and he, the domain Ω, the nonlinear function σ, and the Lebesgue
exponent p, but that can depend on the shape regularity of the mesh family {Th}h
and on the polynomial degrees of σk,i

h and fh.
Assumption 5.1 (local approximation property). For all K ∈ Th, there holds

‖σk,i
h + dk,i

h ‖q,K � ηk,i�,K + ηk,iNC,TK
+ ηk,iosc,TK

.(5.2)
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Remark 5.2 (tighter approximation property). In most cases, it is actually pos-

sible to prove ‖σk,i
h + dk,i

h ‖q,K � ηk,i�,K . The term ηk,iosc,TK
appears for conforming

finite elements in the lowest-order setting m = 1 and l = 0 in section 6.2.4, while
ηk,iNC,TK

appears for interior penalty discontinuous Galerkin and quasi-linear diffusion;
see section 6.3.4.

5.2. Local efficiency. Our local efficiency result is achieved with respect to the

error measure J up
u (uk,ih ,gk,i

h ) defined by (2.7), which we localize around any K ∈ Th
as J up

u,TK
(uk,ih ,gk,i

h ) := ‖σ(u,∇u)− σ(uk,ih ,gk,i
h )‖q,TK + ηk,iNC,TK

.

Theorem 5.3 (local efficiency). Let u ∈ V solve (2.4) and let uk,ih ∈ V (Th) and
gk,i
h ∈ [Lp(Ω)]d be arbitrary. Let the local balancing and stopping criteria (3.13)–(3.15)

hold. Then, under Assumption 5.1, there holds for all K ∈ Th,

(5.3) ηk,idisc,K + ηk,ilin,K + ηk,ialg,K + ηk,irem,K � J up
u,TK

(uk,ih ,gk,i
h ) + ηk,iquad,TK

+ ηk,iosc,TK
.

Proof. Let K ∈ Th be fixed. Owing to the local criteria (3.13)–(3.15), we infer

ηk,ilin,K + ηk,ialg,K + ηk,irem,K � ηk,idisc,K . Combining the definition (3.7a) of ηk,idisc,K with

Assumption 5.1 yields ηk,idisc,K � ηk,i�,K + ηk,iNC,TK
+ ηk,iosc,TK

, whence

ηk,idisc,K + ηk,ilin,K + ηk,ialg,K + ηk,irem,K � ηk,i�,K + ηk,iNC,TK
+ ηk,iosc,TK

.

Now, the inequalities (A.6) and (A.7) from [24, Proof of Lemma 4.3] together with
the triangle inequality yield

ηk,i�,K � ‖σ(u,∇u)− σk,i
h ‖q,TK + ηk,iosc,TK

� ‖σ(u,∇u)− σ(uk,ih ,gk,i
h )‖q,TK + ηk,iquad,TK

+ ηk,iosc,TK
,

whence the assertion of the theorem.

5.3. Global efficiency and robustness. Proceeding as above (while relying
on (A.10) and (A.11) from [24, Proof of Lemma 4.7]) yields our main result for global

efficiency and robustness with respect to the original error measure Ju(u
k,i
h ,gk,i

h ).
Theorem 5.4 (global efficiency and robustness). Let u ∈ V solve (2.4) and let

uk,ih ∈ V (Th) and gk,i
h ∈ [Lp(Ω)]d be arbitrary. Let the global balancing and stopping

criteria (3.10)–(3.12) hold. Then, under Assumption 5.1, there holds

(5.4) ηk,idisc + ηk,ilin + ηk,ialg + ηk,irem � Ju(u
k,i
h ,gk,i

h ) + ηk,iquad + ηk,iosc.

Remark 5.5 (comparison with [24]). In [24], the linearization stopping parameters
γlin,K (or γlin) had to be “small enough” in order that the equivalents of Theorems 5.3
and 5.4 hold. This is no longer necessary in the present setting owing to the decom-
position introduced in Assumption 3.5 and the fact that Assumption 5.1 concerns the
component dk,i

h of the flux reconstruction.
Remark 5.6 (quadrature errors). We could have introduced an additional crite-

rion on adaptive choice of the quadrature precision in Algorithm 3.7, requiring ηk,iquad

or ηk,iquad,K to be bounded by the other estimators, up to some weights γquad or γquad,K ,
similarly to (3.10)–(3.12) or (3.13)–(3.15). Then, as in [22], the local and global ef-

ficiency bounds (5.3) and (5.4) would not feature ηk,iquad,TK
or ηk,iquad, respectively, on

the right-hand side for γquad,K or γquad small enough.
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6. Applications. We show here how the above developments apply to various
discretizations and to Newton and fixed point linearizations. (Recall that any al-
gebraic solver is admissible.) This consists, with the construction of section 4, in

specifying the approximate gradient gk,i
h , flux reconstructions dk,i

h and lk,ih , data ap-

proximation fh, polynomial approximation σk,i
h , and residual function rk,ih and in

verifying Assumptions 3.5(iii), 4.1, and 5.1.
We first recall some discrete subspaces of Hq(div,Ω). For an integer l ≥ 0, let

Pl(Th) denote the broken polynomial space spanned by functions vh ∈ L1(Ω) such
that vh|K ∈ Pl(K) for all K ∈ Th. For K ∈ Th and l ≥ 0, let RTNl(K) :=
[Pl(K)]d + xPl(K) be the Raviart–Thomas–Nédélec finite element space of order l.
We then set RTN−1

l (Th) := {vh ∈ [Lq(Ω)]d;vh|K ∈ RTNl(K) for all K ∈ Th} and
RTNl(Th) := RTN−1

l (Th) ∩ Hq(div,Ω); we will use RTNl(Th) to reconstruct the

fluxes dk,i
h and lk,ih (and consequently ak,ih by (4.2a)). Functions vh ∈ RTNl(K) are

such that, cf. Brezzi and Fortin [8], ∇·vh ∈ Pl(K) and vh·ne ∈ Pl(e) for all e ∈ EK ,
and functions in RTNl(Th) have a continuous normal component across interfaces.
We use a similar notation for these spaces on various patches of elements.

Next, let IRTN
l denote the broken Raviart–Thomas–Nédélec interpolation opera-

tor; for a smooth enough function v, IRTN
l v ∈ RTN−1

l (Th) is such that for all K ∈ Th,
letting 〈w, v〉e stand for

∫
e
w(s)v(s) ds,

〈(IRTN
l v − v)|K ·ne, qh〉e = 0 ∀e ∈ EK , ∀qh ∈ Pl(e),(6.1a)

(IRTN
l v − v, rh)K = 0 ∀rh ∈ [Pl−1(K)]d.(6.1b)

Finally, for φ ∈ L1(Ω), Πlφ ∈ Pl(Th) is such that (φ − Πlφ, vh) = 0 for all
vh ∈ Pl(Th); Πl is the operator acting componentwise as Πl on vector-valued functions.

6.1. Nonconforming finite elements. We treat here the discretization of
problem (2.4) by lowest-order nonconforming finite elements.

6.1.1. Discretization. The Crouzeix–Raviart finite element space Vh is spanned
by piecewise affine polynomials on Th such that the interface jumps and boundary
values have zero mean value over the corresponding face. The discretization of prob-
lem (2.4) reads, with fh := Π0f , as follows: find uh ∈ Vh such that

(6.2) (σ(uh,∇uh),∇vh) = (fh, vh) ∀vh ∈ Vh.

The basis functions in Vh are associated with the interfaces and are denoted by
{ψe}e∈E int

h
. Testing (6.2) against these functions yields the nonlinear algebraic sys-

tem (1.1).

6.1.2. Linearization. Let u0h ∈ Vh, fixing the initial vector U
0 in Algorithm 3.7.

The linearization of (6.2), for k ≥ 1, reads: find ukh ∈ Vh such that

(6.3) (σk−1(ukh,∇ukh),∇ψe) = (fh, ψe) ∀e ∈ E int
h ,

which is the functional form of the algebraic system (1.2). Two common ways to
define the flux function σk−1 are the fixed point linearization where

(6.4) σk−1(v, ξ) := A(uk−1
h ,∇uk−1

h )ξ,

and the Newton linearization where

σk−1(v, ξ) := A(uk−1
h ,∇uk−1

h )ξ + (v − uk−1
h )∂vA(uk−1

h ,∇uk−1
h )∇uk−1

h

+ (∂ξA(uk−1
h ,∇uk−1

h )·∇uk−1
h )·(ξ −∇uk−1

h ).
(6.5)



ADAPTIVE INEXACT NEWTON METHODS FOR NONLINEAR PDEs A1773

6.1.3. Algebraic solution. On ith step, i ≥ 0, of an iterative linear solver for
the algebraic system (1.2), we obtain the algebraic residual vector Rk,i in (1.3) with
components associated with interfaces, Rk,i = {Rk,i

e }e∈E int
h
. For convenience, we set

Rk,i
e := 0 for all e ∈ Eext

h . The functional form of (1.3) is the following: find uk,ih ∈ Vh
such that

(6.6) (σk−1(uk,ih ,∇uk,ih ),∇ψe) = (fh, ψe)−Rk,i
e ∀e ∈ E int

h .

6.1.4. Flux reconstruction. Let K ∈ Th. We define fh(x)|K := fh|K
d (x− xK)

with xK the barycenter of K. For all e ∈ EK , let aK,e be the vertex of K opposite to
the face e. Let Te stand for the patch of elements sharing the face e.

Definition 6.1 (construction of (dk,i
h + lk,ih )). Set, for all K ∈ Th,

(6.7) (dk,i
h + lk,ih )|K :=

(
−Π0σ

k−1(uk,ih ,∇uk,ih ) + fh
)
|K −

∑
e∈EK

|Te|−1R
k,i
e

d
(x− aK,e).

The construction of dk,i
h mimics that of (dk,i

h + lk,ih ) with σ(uk,ih ,∇uk,ih ) in place

of σk−1(uk,ih ,∇uk,ih ). Specifically, let

(6.8) R̄k,i
e := (fh, ψe)− (σ(uk,ih ,∇uk,ih ),∇ψe) ∀e ∈ E int

h ,

and R̄k,i
e := 0 for all e ∈ Eext

h . We prescribe dk,i
h (and hence also lk,ih by subtraction).

Definition 6.2 (construction of dk,i
h ). Set, for all K ∈ Th, by

(6.9) dk,i
h |K :=

(
−Π0σ(u

k,i
h ,∇uk,ih ) + fh

)
|K −

∑
e∈EK

|Te|−1 R̄
k,i
e

d
(x− aK,e).

Definition 6.3 (approximate gradient, data oscillation, quadrature, and alge-

braic remainder). Set gk,i
h := ∇uk,ih , fh := Π0f , σk,i

h := Π0σ(u
k,i
h ,∇uk,ih ), and

rk,ih |K :=
∑

e∈EK
|Te|−1Rk,i

e for all K ∈ Th.
6.1.5. Assumptions verification.
Lemma 6.4 (linearization error convergence). Assumption 3.5(iii) holds.
Proof. The requirement is obvious from Definitions 6.1 and 6.2.
Lemma 6.5 (quasi-equilibration). Assumption 4.1 holds.
Proof. The proof exploits the link between nonconforming finite elements and

mixed finite elements; cf. Marini [40]. For all K ∈ Th and all e ∈ EK , we introduce
the geometric weight ωe,K := |K|/|Te|. Note that 0 < ωe,K ≤ 1 and ωe,K = 1 only
on boundary faces. For any interface e ∈ E int

h such that e = ∂K ∩ ∂K ′, K,K ′ ∈
Th, observing that ωe,K + ωe,K′ = 1, we define the weighted average of a piecewise
polynomial function vh at e as {{vh}}ω := ωe,K′(vh|K)|e+ωe,K(vh|K′)|e. On e ∈ Eext

h ,
we set {{vh}}ω := vh|e. We first show that for all K ∈ Th and all e ∈ EK ,

(6.10) (dk,i
h + lk,ih )|K ·ne = {{−Π0σ

k−1(uk,ih ,∇uk,ih ) + fh}}ω·ne.

This is obvious for e ∈ Eext
h . Now let e ∈ E int

h . Set wh := −Π0σ
k−1(uk,ih ,∇uk,ih ) + fh.

It is readily seen that (σk−1(uk,ih ,∇uk,ih ),∇ψe) = |e|[[Π0σ
k−1(uk,ih ,∇uk,ih )]]·ne and

(fh, ψe) = |e|[[fh]]·ne. (Recall that [[·]] denotes the jump across e in the direction of
ne.) Hence, owing to (6.6), [[wh]]·ne = |e|−1Rk,i

e . The result (6.10) then follows from

(6.11) wh|K ·ne = {{wh}}ω·ne + ωe,K [[wh]]·nK
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and (6.7). Now, (6.10) shows that (dk,i
h + lk,ih ) has continuous normal component

across interfaces, so that (dk,i
h + lk,ih ) ∈ RTN0(Th). Finally, the property (4.1) follows

by taking the divergence of (6.7) and considering the definition of rk,ih .
Lemma 6.6 (local approximation). Assumption 5.1 holds.

Proof. Let vh := σk,i
h + dk,i

h ∈ RTN−1
0 (Th) and use, for all K ∈ Th, the estimate

‖vh‖q,K � {
∑

e∈EK
he‖vh|K ·ne‖qq,e}

1
q shown in [24, section A.4]. Let e ∈ EK . If

e ∈ Eext
h , using R̄k,i

e := 0 in (6.9), |x − xK | ≤ hK , a q-robust inverse inequality

(see [24, section A.1 and A.4]), the fact that fh is constant on K, and ∇·σk,i
h = 0

yields

he‖vh|K ·ne‖qq,e = he‖fh|Kd−1(x− xK)·ne‖qq,e ≤ h1+q
K ‖fh|K‖qq,e

� hqK‖fh‖qq,K = hqK‖fh +∇·σk,i
h ‖qq,K .

If e ∈ E int
h , reasoning as in the proof of Lemma 6.5 yields dk,i

h ·ne = {{−σk,i
h +

fh}}ω·ne (so that dk,i
h ∈ RTN0(Th)). Using this relation, (6.11) to evaluate vh|K ·ne,

and the continuity of the normal component of dk,i
h yields vh|K ·ne = {{fh}}ω·ne +

ωe,K [[σk,i
h ]]·nK . We conclude by proceeding as in the first part of the proof.

Remark 6.7 (a tighter flux reconstruction using a dual mesh). A slightly tighter
flux reconstruction can be devised using a dual mesh; cf. [27]. For all K ∈ Th and
all e ∈ EK , let Ke be the subsimplex of K formed by the face e and the barycenter
xK . Let De regroup the subsimplices which share e. Then replace in the last terms
of (6.7) and (6.9) the vertex aK,e by the barycenter xK and |Te|−1 by |De|−1. Then,
using local criteria, elementwise efficiency (without neighbors) can be proved on each
element of the dual mesh Dh = {De}e∈Eh

.

6.2. Conforming finite elements. We treat here the discretization of prob-
lem (2.4) by conforming finite elements.

6.2.1. Discretization. Let Vh := Pm(Th)∩V , m ≥ 1, be the usual finite element
space of continuous, piecewise mth order polynomial functions. The corresponding
discretization of problem (2.4) reads as follows: find uh ∈ Vh such that

(6.12) (σ(uh,∇uh),∇vh) = (f, vh) ∀vh ∈ Vh.

Let ψj ∈ Vh, j ∈ C := {1, . . . , dim(Vh)}, denote the basis functions of Vh. Employing
these functions in (6.12) gives rise to the nonlinear algebraic system (1.1).

6.2.2. Linearization. Let u0h ∈ Vh, fixing the initial vector U
0 in Algorithm 3.7.

The linearization of (6.12) for k ≥ 1 reads as follows: find ukh ∈ Vh such that

(6.13) (σk−1(ukh,∇ukh),∇ψj) = (f, ψj) ∀j ∈ C,

which is the functional form of the algebraic system (1.2). Two common linearizations
are the fixed point (6.4) and the Newton one (6.5).

6.2.3. Algebraic solution. On ith step, i ≥ 0, of an iterative linear solver for
the algebraic system (1.2), we obtain the algebraic residual vector Rk,i in (1.3) with

components associated with the set C, Rk,i = {Rk,i
j }j∈C . The functional form of (1.3)

is the following: find uk,ih ∈ Vh such that

(6.14) (σk−1(uk,ih ,∇uk,ih ),∇ψj) = (f, ψj)−Rk,i
j ∀j ∈ C.
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6.2.4. Flux reconstruction. We construct (dk,i
h + lk,ih ) ∈ RTNl(Th) with l :=

m − 1 or l := m, using local homogeneous Neumann mixed finite element problems
posed on patches around mesh vertices, in an equivalent reformulation of the approach
of Braess and Schöberl [7]. Let Vh denote the set of mesh vertices with subsets V int

h for
interior vertices and Vext

h for boundary ones. Let ψa ∈ P1(Th) ∩ C0(Ω) stand for the
hat basis function associated with vertex a ∈ Vh. To distribute the algebraic residual
onto vertices, we set, for all a ∈ V int

h , Rk,i
a :=

∑
j∈C βjR

k,i
j , where the coefficients βj

are such that ψa =
∑

j∈C βjψj , while for a ∈ Vext
h we set Rk,i

a := 0. Furthermore, for

all a ∈ Vh, let Ta be the patch of elements of Th that share a, and let RTNN,0
l (Ta)

be the subspace of RTNl(Ta) with zero normal flux through ∂Ta for a ∈ V int
h and

through that part of ∂Ta which lies inside Ω for a ∈ Vext
h . Let P∗

l (Ta) be spanned by
piecewise lth order polynomials on Ta, with zero mean on Ta when a ∈ V int

h .

Definition 6.8 (construction of (dk,i
h + lk,ih )). For all vertices a ∈ Vh, define

(dk,i
a + lk,ia ) ∈ RTNN,0

l (Ta) and qa ∈ P
∗
l (Ta) by

(dk,i
a + lk,ia ,vh)Ta−(qa,∇·vh)Ta =−(IRTN

l (ψaΠlσ
k−1(uk,ih ,∇uk,ih )),vh)Ta ,

(6.15a)

(∇·(dk,i
a + lk,ia ), φh)Ta =(fψa − σk−1(uk,ih ,∇uk,ih )·∇ψa, φh)Ta−(Rk,i

a , φh)Ta |Ta|−1

(6.15b)

for all (vh, φh) ∈ RTNN,0
l (Ta)× P

∗
l (Ta). Then, set dk,i

h + lk,ih :=
∑

a∈Vh
(dk,i

a + lk,ia ).
In (6.15b), we can take φh ∈ Pl(Ta) since multiplying (6.14) by the coefficients

βj , summing over all j ∈ C, and using the definition of Rk,i
a yields, for all a ∈ V int

h ,
the Neumann compatibility condition

(6.16) (σk−1(uk,ih ,∇uk,ih ),∇ψa)Ta = (f, ψa)Ta −Rk,i
a .

We proceed similarly for dk,i
h . Set R̄k,i

a := 0 for any a ∈ Vext
h and

(6.17) R̄k,i
a := (f, ψa)Ta − (σ(uk,ih ,∇uk,ih ),∇ψa)Ta ∀a ∈ V int

h .

Definition 6.9 (construction of dk,i
h ). Define dk,i

a ∈ RTNN,0
l (Ta) and q̄a ∈

P
∗
l (Ta) by solving the mixed finite element problems (6.15) with σ(uk,ih ,∇uk,ih ) in place

of σk−1(uk,ih ,∇uk,ih ) and R̄k,i
a in place of Rk,i

a . Then, set dk,i
h :=

∑
a∈Vh

dk,i
a .

Definition 6.10 (approximate gradient, data oscillation, quadrature, and al-

gebraic remainder). Set gk,i
h := ∇uk,ih , fh := Πlf , σk,i

h := Πlσ(u
k,i
h ,∇uk,ih ), and

rk,ih |K :=
∑

a∈VK
|Ta|−1Rk,i

a for all K ∈ Th, where VK collects the vertices of K.

6.2.5. Assumptions verification. Definitions 6.8 and 6.9 readily imply the
following.

Lemma 6.11 (linearization error convergence). Assumption 3.5(iii) holds.
Lemma 6.12 (quasi-equilibration). Assumption 4.1 holds.
Proof. Let K ∈ Th and let vh ∈ Pl(K) (and zero elsewhere) be fixed. For any

a ∈ VK , by (6.16) we can take vh as test function φh in (6.15b). Since
∑

a∈VK
ψa|K = 1

and
∑

a∈VK
∇ψa|K = 0 (ψa form a partition of unity on K), we infer

(∇·(dk,i
h + lk,ih ), vh)K =

∑
a∈VK

(∇·(dk,i
a + lk,ia ), vh)K = (f, vh)K−

∑
a∈VK

(Rk,i
a , vh)K |Ta|−1,

whence the assertion of the lemma follows from the definition of rk,ih .
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Lemma 6.13 (local approximation). Assumption 5.1 holds.

Proof. Let K ∈ Th. Since IRTN
l (σk,i

h ) = σk,i
h , by the partition of unity and

linearity of the projection operator IRTN
l , it follows that (dk,i

h + σk,i
h )|K = (dk,i

h +

IRTN
l (σk,i

h ))|K =
∑

a∈VK
(dk,i

a + IRTN
l (ψaσ

k,i
h ))|K . We thus only work with (dk,i

a +

IRTN
l (ψaσ

k,i
h ))|K for a vertex a ∈ VK , or, more precisely, with (dk,i

a +IRTN
l (ψaσ

k,i
h ))|Ta ,

in order to prove (5.2). Note that (σ(uk,ih ,∇uk,ih ),∇ψa)Ta = (σk,i
h ,∇ψa)Ta and for all

φh ∈ Pl(Ta), (σ(uk,ih ,∇uk,ih )·∇ψa, φh)Ta = (σk,i
h ·∇ψa, φh)Ta , so that we can replace

σ(uk,ih ,∇uk,ih ) by σk,i
h everywhere in Definition 6.9. We next proceed as in [24, sec-

tion A.4]; cf. also [33, Proofs of Lemmas 7.5 and 7.8]. First, let M(Ta) denote the
postprocessing space of piecewise (discontinuous) polynomials mh on Ta such that

(6.18) 〈[[mh]], vh〉e = 0 ∀e ∈ Ea, ∀vh ∈ Pl(e),

where Ea collects the faces to which a belongs. Moreover, the functions mh in M(Ta)
satisfy (mh, 1)Ta = 0 for interior vertices a; [54, Lemma 5.4] and [24, section A.4]
yield

‖dk,i
a + IRTN

l (ψaσ
k,i
h )‖q,Ta � sup

mh∈M(Ta), ‖∇mh‖p,Ta=1

(dk,i
a + IRTN

l (ψaσ
k,i
h ),∇mh)Ta .

Let mh ∈ M(Ta) with ‖∇mh‖p,Ta = 1 be fixed and consider the right-hand side of

the above inequality. The Green theorem, the fact that dk,i
a + IRTN

l (ψaσ
k,i
h ) has zero

normal flux through (a part of) ∂Ta together with (6.18) on ∂Ta ∩ ∂Ω when a ∈ Vext
h ,

the fact that dk,i
a ∈ RTNN,0

l (Ta), (6.18), and the properties (6.1) of IRTN
l yield

−
∑

K′∈Ta

(∇·(dk,i
a + IRTN

l (ψaσ
k,i
h )),mh)K′ +

∑
e∈E int

h , e∩a 	=∅

〈[[IRTN
l (ψaσ

k,i
h )·ne]],mh〉e

= −
∑

K′∈Ta

(∇·(dk,i
a + ψaσ

k,i
h ),Πl(mh))K′ +

∑
e∈E int

h , e∩a 	=∅

〈[[ψaσ
k,i
h ·ne]],Πl(mh)〉e,

which we denote as I + II. Employing the second lines of the problem from Defini-
tion 6.9 (recall that we can take φh ∈ Pl(Ta)), the first term I above can be developed
as

−
∑

K′∈Ta

(ψa(∇·σk,i
h + f)− R̄k,i

a |Ta|−1,Πl(mh))K′

≤
{ ∑

K′∈Ta

h−p
K′‖mh‖pp,K′

} 1
p
{ ∑

K′∈Ta

hqK′(‖f +∇·σk,i
h ‖q,K′ + ‖R̄k,i

a |Ta|−1‖q,K′)q

} 1
q

� h−1
Ta

‖mh‖p,Ta

({ ∑
K′∈Ta

hqK′‖f +∇·σk,i
h ‖qq,K′

} 1
q

+ |R̄k,i
a ||Ta|−1+ 1

q hTa

)
,

where we have also used the Hölder inequality, the stability of the Πl-projection, and
the fact that ‖ψa‖∞,Ta = 1. Finally, for any interior vertex a, we get from (6.17), the
Green theorem, the Hölder inequality, and the p-robust inverse inequality ‖ψa‖p,e �
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h
− 1

p
e ‖ψa‖p,K′ , e ∈ EK′ , see [24, section A.4], that the term R̄k,i

a can be developed as

∑
K′∈Ta

(f +∇·σk,i
h , ψa)K′ −

∑
e∈E int

h
, e∩a 	=∅

〈[[σk,i
h ·ne]], ψa〉e

�
({ ∑

K′∈Ta

hqK′‖f +∇·σk,i
h ‖qq,K′

} 1
q

+

{ ∑
e∈E int

h , e∩a 	=∅

he‖[[σk,i
h ·ne]]‖qq,e

} 1
q
)
h−1
Ta

|Ta|
1
p .

Using the p-robust discrete Poincaré–Friedrichs inequality ‖mh‖p,Ta � hTa‖∇mh‖p,Ta

from [24, section A.4] and the triangle inequality for separating the data oscillation

terms ηk,iosc,K , we conclude that I ≤ ηk,i�,K + ηk,iosc,TK
. Proceeding similarly for the jump

term II (with the above treatment of ψa and Πl) yields the desired result.

6.3. Interior penalty discontinuous Galerkin for quasi-linear diffusion.
We treat here the interior penalty discontinuous Galerkin (IPDG) method applied in
the quasi-linear setting (2.2).

6.3.1. Discretization. Let Vh := Pm(Th), m ≥ 1. The IPDG discretization of
problem (2.4) in case (2.2) reads as follows: find uh ∈ Vh such that for all vh ∈ Vh,

(σ(uh,∇uh),∇vh)−
∑
e∈Eh

{
〈{{σ(uh,∇uh)}}·ne, [[vh]]〉e

+ θ〈{{A(uh)∇vh}}·ne, [[uh]]〉e
}
+
∑
e∈Eh

〈ᾱeh
−1
e [[uh]], [[vh]]〉e = (f, vh)

(6.19)

with θ ∈ {−1, 0, 1} and ᾱe := ‖A‖L∞(R)χe, where χe is a large enough positive param-
eter. The average operator {{·}} yields the mean value of the traces from adjacent mesh
elements on interfaces and the actual trace on boundary faces. Testing (6.19) against
the basis functions in Vh gives rise to the nonlinear algebraic system (1.1); these basis
functions are denoted by ψK,j for all K ∈ Th and all j ∈ CK := {1, . . . , dim(Pm(K))}.

6.3.2. Linearization. Let u0h ∈ Vh, fixing U
0 in Algorithm 3.7. The lineariza-

tion of (6.19) for k ≥ 1 is the following: find ukh ∈ Vh such that for all K ∈ Th and all
j ∈ CK ,

(σk−1(ukh,∇ukh),∇ψK,j)−
∑
e∈Eh

{
〈{{σk−1(ukh,∇ukh)}}·ne, [[ψK,j ]]〉e

+ θ〈{{Ak−1(ukh)∇ψK,j}}·ne, [[u
k
h]]〉e

}
+
∑
e∈Eh

〈ᾱeh
−1
e [[ukh]], [[ψK,j ]]〉e = (f, ψK,j),

(6.20)

which is the functional form of (1.2). The fixed point linearization corresponds to
σk−1(v, ξ) := A(uk−1

h )ξ and Ak−1(v) := A(uk−1
h ), and the Newton linearization to

σk−1(v, ξ) := A(uk−1
h )ξ + (v − uk−1

h )∂vA(uk−1
h )∇uk−1

h ,(6.21a)

Ak−1(v) := A(uk−1
h ) + ∂vA(uk−1

h )(v − uk−1
h ).(6.21b)

6.3.3. Algebraic solution. On ith step, i ≥ 0, of an iterative linear solver ap-
plied to (1.2), we obtain (1.3) with algebraic residual vector Rk,i = {Rk,i

K,j}K∈Th, j∈CK .
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The functional form of (1.3) is the following: find uk,ih ∈ Vh such that for all K ∈ Th
and all j ∈ CK ,

(σk−1(uk,ih ,∇uk,ih ),∇ψK,j)−
∑
e∈Eh

{
〈{{σk−1(uk,ih ,∇uk,ih )}}·ne, [[ψK,j ]]〉e

+ θ〈{{Ak−1(uk,ih )∇ψK,j}}·ne, [[u
k,i
h ]]〉e

}
+
∑
e∈Eh

〈ᾱeh
−1
e [[uk,ih ]], [[ψK,j ]]〉e

= (f, ψK,j)−Rk,i
K,j .

6.3.4. Flux reconstruction. We construct dk,i
h and lk,ih in the space RTNl(Th)

with l := m− 1 or l := m, following Kim [37] and [25]. For all e ∈ Eh, we set we :=
1
2

if e ∈ E int
h and we := 1 if e ∈ Eext

h .

Definition 6.14 (construction of (dk,i
h + lk,ih )). The function (dk,i

h + lk,ih ) is
defined in RTNl(Th) such that for all K ∈ Th and all e ∈ EK ,

〈(dk,i
h + lk,ih )·ne, qh〉e := 〈−{{σk−1(uk,ih ,∇uk,ih )}}·ne + ᾱeh

−1
e [[uk,ih ]], qh〉e,

(dk,i
h + lk,ih , rh)K := −(σk−1(uk,ih ,∇uk,ih ), rh)K

+ θ
∑
e∈EK

we〈Ak−1(uk,ih )rh·ne, [[u
k,i
h ]]〉e

for all qh ∈ Pl(e) and all rh ∈ [Pl−1(K)]d.

Definition 6.15 (construction of dk,i
h ). The function dk,i

h is in RTNl(Th) and

is defined using the prescription of Definition 6.14 with σ(uk,ih ,∇uk,ih ) in place of

σk−1(uk,ih ,∇uk,ih ) and A(uk,ih ) in place of Ak−1(uk,ih ).
Definition 6.16 (approximate gradient, data oscillation, quadrature, and alge-

braic remainder). Set gk,i
h := ∇uk,ih , fh := Πlf , σ

k,i
h := IRTN

l (σ(uk,ih ,∇uk,ih )), and

rk,ih ∈ Pm(Th) with (rk,ih , ψK,j)K = Rk,i
K,j for all K ∈ Th and all j ∈ CK .

6.3.5. Assumptions verification. As above, Definitions 6.14 and 6.15 yield
the following.

Lemma 6.17 (linearization error convergence). Assumption 3.5(iii) holds.
Lemma 6.18 (quasi-equilibration). Assumption 4.1 holds.
Proof. The proof follows by direct verification by proceeding as in [25, 37]; see

also [21, section 5.5].
Lemma 6.19 (local approximation). Assumption 5.1 holds using weights αe := ᾱ2

e

and exponent s := p in the nonconformity error measure and estimator.
Proof. We observe that for all K ∈ Th and all e ∈ EK , there holds

〈(dk,i
h + σk,i

h )·ne, qh〉e = (1 − we)〈[[σk,i
h ]]·ne + ᾱeh

−1
e [[uk,ih ]], qh〉e,(6.22a)

(dk,i
h + σk,i

h , rh)K = θ
∑
e∈EK

we〈A(uk,ih )rh·ne, [[u
k,i
h ]]〉e(6.22b)

for all qh ∈ Pl(e) and all rh ∈ [Pl−1(K)]d. The assertion then follows from stan-
dard approximation properties in Raviart–Thomas–Nédélec spaces; see, e.g., [21, sec-
tion 5.5].

6.4. Discontinuous Galerkin with gradient reconstruction. We treat here
the discretization of the full problem (2.4) by the discontinuous Galerkin method with
a discrete gradient suitable especially for the Leray–Lions setting (2.3).
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6.4.1. Discretization. Let l ≥ 0 be an integer. For all e ∈ Eh, we define the
map �e : L1(e) → [Pl(Th)]d such that for all φ ∈ L1(e), �e(φ) is the unique function
in [Pl(Th)]d such that for all vh ∈ [Pl(Th)]d, (�e(φ),vh) = 〈{{vh}}·ne, φ〉e. The vector-
valued, piecewise polynomial function �e(φ) is supported in Te (the patch of elements
sharing the face e) and is colinear to ne. Then, for a function v ∈ V (Th), we define
its discrete gradient ∇hv ∈ [Lp(Ω)]d (see [21, section 4.2] and references therein) as

(6.23) ∇hv := ∇v − Lh([[v]]), Lh([[v]]) :=
∑
e∈Eh

�e([[v]]).

Observe that Lh([[v]]) is a (piecewise polynomial) correction to the broken gradient ∇v
based on the jump liftings. The discrete gradient is an important tool in the design
of discontinuous Galerkin methods for nonlinear problems; see Buffa and Ortner [10]
and [11] for the p-Laplacian and [20] for the incompressible Navier–Stokes equations.

Let Vh := Pm(Th), m ≥ 1. We consider here the following gradient reconstruction
discontinuous Galerkin method: find uh ∈ Vh such that

(σ(uh,∇huh),∇hvh) +
∑
e∈Eh

〈se(h−1
e [[uh]]), [[vh]]〉e = (f, vh) ∀vh ∈ Vh(6.24)

with the stabilization operator se : Lp(e) → Lq(e) for all e ∈ Eh such that for all
v ∈ Lp(e), se(v) = ᾱe|v|p−2v with a positive parameter ᾱe. Testing (6.24) against the
basis functions in Vh gives rise to the nonlinear algebraic system (1.1).

Remark 6.20 (stencil reduction and link with IPDG). The discretization stencil
resulting from (6.24) includes neighbors and neighbors of neighbors in the sense of
faces. Reducing this stencil requires adding to the left-hand side of (6.24) the term
−(σ(uh,∇huh) − σ(uh,∇uh),∇hvh − ∇vh). For quasi-linear diffusion and strong
enough penalty, this leads to an IPDG formulation of type (6.19) (with θ = 1).

6.4.2. Linearization. Let u0h ∈ Vh, fixing the initial vector U
0 in Algorithm 3.7.

The linearization of (6.24) for k ≥ 1 reads as follows: find ukh ∈ Vh such that for all
K ∈ Th and all j ∈ CK := {1, . . . , dim(Pm(K))},

(σk−1(ukh,∇hu
k
h),∇hψK,j) +

∑
e∈Eh

〈sk−1
e (h−1

e [[ukh]]), [[ψK,j ]]〉e = (f, ψK,j),(6.25)

which is the functional form of (1.2). In the fixed-point linearization, σk−1(v, ξ) is
defined by (6.4) with ∇hu

k−1
h in place of ∇uk−1

h , while sk−1
e (v) := ᾱe|[[uk−1

h ]]|p−2v.

In the Newton linearization, σk−1(v, ξ) is defined by (6.5) with ∇hu
k−1
h in place of

∇uk−1
h , while sk−1

e (v) := ᾱe|[[uk−1
h ]]|p−2 ((p− 1)v − (p− 2)[[uk−1

h ]]).

6.4.3. Algebraic solution. On ith step, i ≥ 0, of a linear solver for (1.2), we

obtain the system (1.3) with Rk,i = {Rk,i
K,j}K∈Th, j∈CK . The functional form of (1.3)

is the following: find uk,ih ∈ Vh such that for all K ∈ Th and all j ∈ CK ,

(σk−1(uk,ih ,∇hu
k,i
h ),∇hψK,j) +

∑
e∈Eh

〈sk−1
e (h−1

e [[uk,ih ]]), [[ψK,j ]]〉e = (f, ψK,j)−Rk,i
K,j .

(6.26)

6.4.4. Flux reconstruction. We proceed as in section 6.2.4 hinging on the
hat basis functions ψa ∈ P1(Th) ∩ C0(Ω). This in particular allows us to eliminate
the nonlinear jump terms in the local flux expressions; compare with (6.22). Since
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m ≥ 1, there holds ψa ∈ Vh, so that there are coefficients βK,j such that ψa =∑
K∈Ta

∑
j∈CK

βK,jψK,j . We then distribute the components of Rk,i onto vertices by

setting Rk,i
a :=

∑
K∈Ta

∑
j∈CK

βK,jR
k,i
K,j for all a ∈ V int

h , and Rk,i
a := 0 for all a ∈ Vext

h .

We construct dk,i
h and lk,ih in the space RTNl(Th) with l := m− 1 or l := m. We

use the notation from section 6.2.4.
Definition 6.21 (construction of (dk,i

h +lk,ih )). We define (dk,i
h +lk,ih ) ∈ RTNl(Th)

using Definition 6.8 with σk−1(uk,ih ,∇hu
k,i
h ) in place of σk−1(uk,ih ,∇uk,ih ).

In the local mixed problems considered in Definition 6.8, we can take φh ∈ Pl(Ta)
since multiplying (6.26) by the coefficients βK,j, summing over all K ∈ Ta and all
j ∈ CK , using the definition of Rk,i

a , and the fact that [[ψa]] = 0, yields, for all a ∈ V int
h ,

the Neumann compatibility condition (σk−1(uk,ih ,∇hu
k,i
h ),∇ψa)Ta = (f, ψa)Ta −Rk,i

a .

We proceed similarly for the construction of dk,i
h , setting, for all a ∈ V int

h , R̄k,i
a :=

(f, ψa)Ta − (σ(uk,ih ,∇hu
k,i
h ),∇ψa)Ta and, for all a ∈ Vext

h , R̄k,i
a := 0. This yields the

following.
Definition 6.22 (construction of dk,i

h ). We define dk,i
h ∈ RTNl(Th) using

Definition 6.9 with σ(uk,ih ,∇hu
k,i
h ) in place of σ(uk,ih ,∇uk,ih ).

Definition 6.23 (approximate gradient, data oscillation, quadrature, and alge-

braic remainder). Set gk,i
h := ∇hu

k,i
h , fh := Πlf , σ

k,i
h := Πl(σ(u

k,i
h ,∇hu

k,i
h )), and

rk,ih |K :=
∑

a∈VK
|Ta|−1Rk,i

a for all K ∈ Th.
6.4.5. Assumptions verification. The results of section 6.2.5 apply here iden-

tically.
Lemma 6.24 (linearization error convergence). Assumption 3.5(iii) holds.
Lemma 6.25 (quasi-equilibration). Assumption 4.1 holds.
Lemma 6.26 (local approximation). Assumption 5.1 holds.

6.5. Cell-centered finite volumes and lowest-order mixed finite ele-
ments. We apply here cell-centered finite volumes and closely related lowest-order
mixed finite elements to the discretization of (2.4).

6.5.1. Discretization. Let Vh := P0(Th). Fix an element K ∈ Th and a face
e ∈ EK . We denote σK,e : Vh → R the finite volume flux function, which maps a
piecewise constant function v̄h ∈ Vh to the normal flux through e, σK,e(v̄h). We do
not need the specific form of the flux functions σK,e, except that conservativity be
satisfied in the form σK,e(v̄h) = −σK′,e(v̄h) for any function v̄h ∈ Vh and any interface
e ∈ E int

h such that e = ∂K∩∂K ′. A general cell-centered finite volume method for the
problem (2.4), cf. Eymard, Gallouët, and Herbin [28], reads as follows: find ūh ∈ Vh
such that ∑

e∈EK

σK,e(ūh) = (f, 1)K ∀K ∈ Th.(6.27)

This gives rise to the nonlinear algebraic system (1.1).

6.5.2. Linearization. Let ū0h ∈ Vh, fixing the initial vector U
0 in Algorithm 3.7.

The linearization of (6.27) for k ≥ 1 reads as follows: find ūkh ∈ Vh such that∑
e∈EK

σk−1
K,e (ū

k
h) = (f, 1)K ∀K ∈ Th,(6.28)

which is the functional form of the algebraic system (1.2). Here, σk−1
K,e : Vh → R

is the finite volume flux function on the kth linearization step. We again suppose
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conservativity, i.e., σk−1
K,e (v̄h) = −σk−1

K′,e(v̄h) for any v̄h ∈ Vh and e = ∂K ∩ ∂K ′ ∈ E int
h .

It is not possible to specify the fixed point linearization directly from (6.27), as it
depends on the actual form of σK,e. For the Newton linearization, σk−1

K,e is such that

(6.29) σk−1
K,e (v̄h) := σK,e(ū

k−1
h ) +

∑
K′∈Th

∂σK,e

∂ūh|K′
(ūk−1

h )(v̄h|K′ − ūk−1
h |K′).

As an example, we detail the linearized flux function σk−1
K,e for a two-point finite

volume scheme. Let d = 2 and assume that Th is strictly Delaunay, so that the
circumcircle of each triangle does not contain any other triangle vertex, and each
circumcenter of a boundary triangle is inside Ω. Consider the quasi-linear diffusion
setting (2.2) with a scalar-valued function a(x, v) (in place of the tensor-valued func-
tion A(x, v)). Let x◦

K stand for the circumcenter of the triangle K ∈ Th and xe for
the center of the edge e ∈ Eext

h . We use the shorthand notation aK(·) in place of
a(x◦

K , ·) and v̄K in place of v̄h|K for any function v̄h ∈ Vh. Then, a two-point finite
volume scheme for the quasi-linear diffusion problem takes the form (6.27) with

σK,e(ūh) :=
ke
2

{
aK(ūK) + aK′(ūK′)

}
(ūK − ūK′) ∀e = ∂K ∩ ∂K ′ ∈ E int

h ,(6.30a)

σK,e(ūh) := keaK(ūK)ūK ∀e = ∂K ∩ ∂Ω ∈ Eext
h ,(6.30b)

where ke := sgn((x◦
K′ − x◦

K)·nK) |e|
|x◦

K−x◦
K′ |

in (6.30a) and ke := |e|
|x◦

K−xe| in (6.30b).

The Newton linearization leads to, for all K ∈ Th and all e = ∂K ∩ ∂K ′ ∈ E int
h ,

σk−1
K,e (v̄h) :=

ke
2

{
aK(ūk−1

K ) + aK′(ūk−1
K′ )

}
(v̄K − v̄K′)

(6.31)

+
ke
2

{
a′K(ūk−1

K )(v̄K − ūk−1
K ) + a′K′(ūk−1

K′ )(v̄K′ − ūk−1
K′ )

}
(ūk−1

K − ūk−1
K′ ),

and for all e = ∂K ∩ ∂Ω ∈ Eext
h ,

(6.32) σk−1
K,e (v̄h) := keaK(ūk−1

K )v̄K + kea
′
K(ūk−1

K )(v̄K − ūk−1
K )ūk−1

K .

The fixed point linearization is derived from (6.31)–(6.32) by omitting the terms with
the derivative of a.

6.5.3. Algebraic solution. On ith step, i ≥ 0, of an iterative linear solver for
the algebraic system (1.2), we obtain the algebraic residual vector Rk,i in (1.3) with

Rk,i = {Rk,i
K }K∈Th

. The functional form of (1.3) is the following: find ūk,ih ∈ Vh such
that ∑

e∈EK

σk−1
K,e (ū

k,i
h ) = (f, 1)K −Rk,i

K ∀K ∈ Th.(6.33)

6.5.4. Flux reconstruction. We follow Eymard, Gallouët, and Herbin [29] to
define the following.

Definition 6.27 (construction of (dk,i
h + lk,ih )). The function (dk,i

h + lk,ih ) is
defined in RTN0(Th) such that for all K ∈ Th and all e ∈ EK ,

〈(dk,i
h + lk,ih )·nK , 1〉e = σk−1

K,e (ū
k,i
h ).(6.34)
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Definition 6.28 (construction of dk,i
h ). The flux dk,i

h is defined in RTN0(Th)
using Definition 6.27 with σK,e(ū

k,i
h ) in place of σk−1

K,e (ū
k,i
h ).

The piecewise constant discrete potential ūk,ih ∈ Vh has not enough regularity
to be meaningful as an argument in the error measure (2.5), in particular regarding
the size of its jumps. For this reason, following [54] and the references therein, we

introduce an elementwise postprocessing of ūk,ih , leading to a new discrete potential

uk,ih sitting in the richer polynomial space P2(Th). The first step is to determine ∇uk,ih

from dk,i
h . For simplicity, we assume that the ξ-dependency of σ can be inverted, i.e.,

there is a function B : Ω×R×R
d → R

d,d such that for all (x, v, ξ, τ ) ∈ Ω×R×R
d×R

d,

(6.35) τ = A(x, v, ξ)ξ ⇐⇒ ξ = B(x, v, τ )τ .

For the quasi-linear diffusion problem, there holds B(x, v) = A(x, v)−1, while for the
Leray–Lions problem in the p-Laplace setting, B(τ ) = |τ |q−2I. Then, we set

(6.36) ∇uk,ih |K := −B(xK , ū
k,i
h |K ,dk,i

h (xK))dk,i
h |K ∀K ∈ Th,

where xK denotes the barycenter or the circumcenter of K. Once ∇uk,ih is known, the
second step is to determine a suitable integration constant in each element K ∈ Th.
Possible choices are (depending on the finite volume scheme at hand) (uk,ih , 1)K/|K| :=
ūk,ih |K or uk,ih (xK) := ūk,ih |K . This now fully defines uk,ih ∈ P2(Th).

Definition 6.29 (approximate gradient, data oscillation, quadrature, and al-

gebraic remainder). Set gk,i
h := ∇uk,ih , fh := Π0f , σk,i

h := −dk,i
h , and rk,ih |K :=

|K|−1Rk,i
K for all K ∈ Th.

6.5.5. Assumptions verification. The above developments readily yield the
following.

Lemma 6.30 (linearization error convergence). Assumption 3.5(iii) holds.
Lemma 6.31 (quasi-equilibration). Assumption 4.1 holds.
Lemma 6.32 (local approximation). Assumption 5.1 holds.

6.5.6. Lowest-order mixed finite elements. We finally treat lowest-order
mixed finite elements. We assume that the ξ-dependency of σ can be inverted,
see (6.35), and, omitting the x-dependency, we set γ(v, τ ) := B(v, τ )τ for all (v, τ ) ∈
R× R

d. Let Vh := P0(Th) and Vh := RTN0(Th). The lowest-order Raviart–Thomas
mixed method for (2.4) reads as follows: find (σh, ūh) ∈ Vh × Vh such that for all
(vh, vh) ∈ Vh × Vh,

(γ(ūh,σh),vh)− (ūh,∇·vh) = 0,(6.37a)

(∇·σh, vh) = (f, vh).(6.37b)

This gives rise to the nonlinear algebraic system (1.1).
Let (σ0

h, ū
0
h) ∈ Vh × Vh, fixing the initial vector U0 in Algorithm 3.7. The

linearization of (6.37) for k ≥ 1 reads as follows: find (σk
h, ū

k
h) ∈ Vh × Vh such that

for all (vh, vh) ∈ Vh × Vh,

(γk−1(ūkh,σ
k
h),vh)− (ūkh,∇·vh) = 0,(6.38a)

(∇·σk
h, vh) = (f, vh),(6.38b)

which is the functional form of the algebraic system (1.2). Two common ways to
define the function γk−1(v, τ ) are the fixed point linearization where γk−1(v, τ ) :=
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B(ūk−1
h ,σk−1

h )τ and the Newton linearization where

γk−1(v, τ ) := B(ūk−1
h ,σk−1

h )τ + (v − ūk−1
h )∂vB(ūk−1

h ,σk−1
h )σk−1

h

+ (∂τB(ūk−1
h ,σk−1

h )·σk−1
h )·(τ − σk−1

h ).
(6.39)

Problem (6.38) gives rise to a linear system which is of a saddle-point form for a
pair of vectors associated with ūkh and σk

h. As such, it is not suitable to the present
framework. However, following [56] and the references therein, the resulting algebraic
systems can be equivalently rewritten as (6.28) with the discrete potentials ūkh as the
only unknowns. Then, the approach of sections 6.5.3–6.5.5 can be readily used.

7. Numerical experiments. This section illustrates numerically our theoret-
ical developments. We consider the p-Laplacian for d = 2 and two test cases with
known analytical solution. We employ the Crouzeix–Raviart nonconforming finite
element method (6.2), the Newton linearization (6.5), the CG method with diago-
nal preconditioning, and use the flux reconstructions of Remark 6.7. In (2.6b), the
coefficients αe are set to one and s := q.

7.1. Test case 1. We set Ω := (0, 1) × (0, 1), f := 2, and prescribe the Dirichlet
boundary condition by the exact solution u(x) = q−1((0.5)q − |x− (0.5, 0.5)|q). This
is a two-dimensional extension of a test case from Chaillou and Suri [14]. The error
stemming from inhomogeneous boundary conditions is neglected. We consider six
levels of uniform mesh refinement, together with the values p ∈ {1.5, 10}.

We test three approaches resulting from three different balancing and stopping
criteria in Algorithm 3.7. In the exact Newton method, both the nonlinear and linear
solvers are iterated to “almost” convergence: we impose ηk,ialg ≤ 10−8 and ηk,ilin ≤ 10−8.
The balancing criterion (3.10) is employed with γrem = 0.1; this influences the preci-
sion of the calculation of the algebraic error component but not Algorithm 3.7. The
inexact Newton method is as exact Newton except that a fixed number of precondi-
tioned CG iterations is performed on each Newton step. These values were chosen,
respectively, as 2, 3, 5, 8, 10, and 15 on each level of mesh refinement. The adap-
tive inexact Newton method devised herein relies on the global criteria (3.10)–(3.12)
with γlin = γalg = 0.3 and γrem = 0.3. This choice of γrem leads to values of ν
increasing on average by 20% the number of algebraic solver iterations on each lin-
earization step. The initial linearization guess u0h ∈ Vh is defined, on every considered
mesh, by perturbed punctual values of the exact solution u in the form u0h(x, y) :=
u(x, y)(1 + λ(x − μ)(y − μ)) with perturbation parameters λ := 1 and μ := 0.5.

We begin with our results for p = 10. Figure 7.1 displays the curves of the error
measure J up

u (uk,ih ,gk,i
h ), cf. (2.7), and of the estimators ηk,iF and ηk,iNC of Theorem 3.4
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Fig. 7.1. Error and estimators on uniformly refined meshes, case 1, p = 10. Exact Newton
(left), inexact Newton (middle), and adaptive inexact Newton (right).



A1784 A. ERN AND M. VOHRALÍK

Table 7.1

Flux and potential regularities and experimental orders of convergence.

Setting Flux Potential

Case p Mesh D. osc. [W sq,q(Ω)]d J up
u J low

u ηk,i W sp,p(Ω) ‖∇(u− uk,i
h )‖p

1 1.5 unif. — sq = 1.67 1.00 0.99 1.00 sp = 4.33 1.00
1 10 unif. — sq = 2.80 0.99 1.01 0.99 sp = 1.31 0.31
2 4 unif. 1.13 sq = 1.13 0.94 0.95 0.99 sp = 1.38 0.38
2 4 adap. 1.64 sq = 1.13 0.97 1.00 0.99 sp = 1.38 0.89
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Fig. 7.2. Error and estimators as a function of Newton iterations, case 1, p = 10, sixth level
mesh. Exact Newton (left), inexact Newton (middle), and adaptive inexact Newton (right).

as a function of the number of mesh faces. In the present setting, the estimator ηk,iosc

is zero, and ηk,irem takes very small values. We observe that the three methods (exact
Newton, inexact Newton, and adaptive inexact Newton) yield almost indistinguishable

values for J up
u (uk,ih ,gk,i

h ), ηk,iF , and ηk,iNC, and these quantities exhibit optimal decrease
with the number of mesh faces; see Table 7.1. Figure 7.1 also displays the curves of the
linearization estimator ηk,ilin and of the algebraic estimator ηk,ialg of Theorem 3.6. The
conceptual difference between the three methods lies in the size and behavior of these
two estimators: both take values below 10−8 for exact Newton; ηk,ialg takes larger values

for inexact Newton; both ηk,ialg and η
k,i
lin take larger values that are just sufficiently small

so as not to influence the error and estimators for adaptive inexact Newton.
Figure 7.2 focuses more closely on the last, sixth level uniformly refined mesh, and

tracks the dependence of the error measure J up
u (uk,ih ,gk,i

h ), the overall error estimator

ηk,i of Theorem 3.4, and the discretization and linearization estimators ηk,idisc and ηk,ilin

of Theorem 3.6 on the Newton iterations. Typically, the error and all the estimators
except ηk,ilin start to stagnate after the linearization error ceases to dominate. This
is precisely the point where the nonlinear iteration is stopped in adaptive inexact
Newton, whereas both exact Newton and inexact Newton perform many unnecessary
additional iterations. We can also observe the appearance of quadratic convergence
for exact Newton and a convergence slowdown for inexact Newton.

Figure 7.3 further analyzes the situation on one chosen Newton iteration from
Figure 7.2. To be in a region with similar error measure J up

u (uk,ih ,gk,i
h ), we have chosen

the sixth iteration for exact Newton and inexact Newton and the eighth iteration
for adaptive inexact Newton. We see that almost no decrease of the error measure
J up
u (uk,ih ,gk,i

h ) can be observed during the almost 650 iterations of the preconditioned
CG method in the exact Newton case. The fixed 15 CG iterations in the inexact
Newton case are, on the contrary, not completely sufficient to decrease significantly
the error measure J up

u (uk,ih ,gk,i
h ). In our approach, just the sufficient, “online-decided”

number of CG iterations is performed.
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Fig. 7.3. Error and estimators as a function of preconditioned CG iterations, case 1, p = 10,
sixth level mesh. Exact Newton, sixth step (left), inexact Newton, sixth step (middle), and adaptive
inexact Newton, eighth step (right).
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Fig. 7.4. Number of Newton iterations per refinement level (left), number of linear solver
iterations per Newton step on sixth level mesh (middle), and total number of linear solver iterations
per refinement level (right). Case 1, p = 10.

Figure 7.4 illustrates the overall performance of the three approaches. We can see
that the number of Newton iterations (corresponding to the number of matrix assem-
blies) per refinement level is stable around 20 for exact Newton. This observation is in
agreement with the so-called asymptotic mesh independence of the number of Newton
iterations; cf., e.g., Weiser, Schiela, and Deuflhard [57] and references therein for theo-
retical results. It increases significantly for inexact Newton, whereas it is still reduced
for adaptive inexact Newton. On one Newton iteration (an example for the sixth
level refined mesh), the number of CG iterations also varies significantly between the
three approaches. Many iterations are necessary in the exact Newton case and fixed
15 iterations in the inexact Newton case, whereas adaptive inexact Newton picks up
the number that is “just necessary.” Remark that this number is equal to two on the
first Newton step; from here, the error is “lagged” as a function of Newton iterations
in the adaptive inexact Newton case; cf. Figure 7.2. The total number of necessary
CG iterations per refinement level is displayed in the right part of Figure 7.4. On the
last mesh, adaptive inexact Newton only needs 306 total iterations, whereas inexact
Newton needs 1470 iterations and exact Newton 8690 iterations. Thus, our approach
yields an economy by a factor of roughly 5 with respect to inexact Newton and roughly
30 with respect to exact Newton in terms of total algebraic solver iterations.

Figure 7.5 displays the distribution of the overall error estimator ηk,i and of the
error measure J up

u (uk,ih ,gk,i
h ) on the second level uniformly refined mesh for adaptive

inexact Newton. We see that even in presence of algebraic and linearization errors,
the overall error distribution is very well predicted.

Figures 7.6–7.8 display similar results for the choice p = 1.5. The nature of the
nonlinearity seems different here from the case p = 10, as the Newton-iteration depen-
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Fig. 7.5. Estimated (left) and actual (right) error distribution, case 1, p = 10, second level
uniformly refined mesh, adaptive inexact Newton.
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Fig. 7.6. Error and estimators as a function of Newton iterations, case 1, p = 1.5, sixth level
mesh. Exact Newton (left), inexact Newton (middle), and adaptive inexact Newton (right).
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Fig. 7.7. Error and estimators as a function of preconditioned CG iterations, case 1, p = 1.5,
sixth level mesh, first Newton step. Exact Newton (left), inexact Newton (middle), and adaptive
inexact Newton (right).
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Fig. 7.8. Number of Newton iterations per refinement level (left), number of linear solver
iterations per Newton step on sixth level mesh (middle), and total number of linear solver iterations
per refinement level (right). Case 1, p = 1.5.
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Fig. 7.9. Upper and lower effectivity indices, case 1, p ∈ {1.5, 10}. Exact Newton (left), inexact
Newton (middle), and adaptive inexact Newton rht).

dence curves of Figure 7.6 illustrate. In particular, using our stopping criteria avoids
the useless waiting before the plateau has been overcome in the classical approaches
(exact Newton and inexact Newton). As before, these criteria also allow one to invest
the right amount of CG iterations in each Newton step, as Figure 7.7 shows. The com-
putational gains of our approach are important here, with one Newton iteration per
refinement up to the fifth level; we only require 122 total CG iterations on the sixth
level mesh, in comparison to 3510 for exact Newton and 7755 for inexact Newton;
see Figure 7.8. The error and estimator distributions are similar to those observed in
Figure 7.5 (not shown).

Finally, we define the upper and lower effectivity indices, respectively, as Iup :=

ηk,i/J up
u (uk,ih ,gk,i

h ) and I low := ηk,i/J low
u (uk,ih ,gk,i

h ). Here, J low
u (uk,ih ,gk,i

h ) is a lower

error bound obtained by estimating the supremum in (2.6a) just with ϕ = Iav(uk,ih ),

where Iav(uk,ih ) is the continuous, piecewise affine function obtained by averaging

of uk,ih on interior vertices and by the Dirichlet condition on boundary vertices.

Since J low
u (uk,ih ,gk,i

h ) ≤ Ju(u
k,i
h ,gk,i

h ) ≤ J up
u (uk,ih ,gk,i

h ), the effectivity index I :=

η/Ju(u
k,i
h ,gk,i

h ) lies between Iup and I low. Figure 7.9 shows that all effectivity in-
dices (especially Iup) are very close to the optimal value of one. This holds for both
p = 10 and p = 1.5, from which we can experimentally confirm the robustness of our
estimates with respect to the size of the nonlinearity, given here by the exponent p.

7.2. Test case 2. This test case is taken from Carstensen and Klose [13, Ex-
ample 3]. We consider the L-shaped domain Ω := (−1, 1)2 \ [0, 1] × [−1, 0] and
prescribe the Dirichlet boundary condition and the source term f by the exact so-
lution u(r, θ) = rδ sin(δθ). Here, (r, θ) are the polar coordinates and δ := 7/8. We
consider the value p = 4 and, as in test case 1, we neglect the error stemming from
inhomogeneous boundary conditions. The solution features a corner singularity with
the regularity reported in Table 7.1. We only focus on our adaptive inexact Newton
method. We use the local stopping criteria (3.14) and (3.15) (on the dual mesh Dh)
with γalg,De = γlin,De = 1 for all e ∈ E int

h and the local balancing criterion (3.13) with
γrem,De = 1 for all e ∈ E int

h . We perform both uniform and adaptive mesh refinement.
The starting value u0h is selected as above only on the coarsest mesh; on every sub-

sequent refinement, this function is obtained from the approximate solution uk,ih on
the previous mesh. Mesh adaptation is driven by our a posteriori error estimate ηk,i

of Theorem 3.4. All the elements where the estimate exceeds 50% of the maximal
error are marked for refinement. Every marked element is refined regularly into four
sub-elements, and the so-called longest edge refinement is used so as to recover a
matching mesh (without hanging nodes).
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Fig. 7.10. Error and estimators on uniformly (left) and adaptively (middle) refined meshes
and upper and lower effectivity indices (right). Case 2, p = 4.
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Fig. 7.11. Energy error on uniformly and adaptively refined meshes (left), number of linear
solver iterations per Newton step (sixth level uniformly and 13th level adaptively refined mesh)
(middle), and total number of linear solver iterations in function of refinement level (right). Case 2,
p = 4.

Figure 7.10 plots the error measure J up
u (uk,ih ,gk,i

h ) and several estimators as be-
fore. In contrast to test case 1, the data oscillation estimators (3.5b) are not zero and
actually represent the most significant contribution to the overall error on the coars-
est meshes. The linearization and algebraic estimators ηk,ilin and ηk,ialg are, as expected,

only slightly below the other curves for uniform mesh refinement (a little more than in
section 7.1, as we employ here local and not global stopping criteria). An interesting
phenomenon occurs for adaptive mesh refinement. Because of the corner singularity,
the meshes are highly graded. Probably as a consequence, even if γlin,De = 1, the

linearization estimator ηk,ilin drops to values as low as 10−7, whereas this estimator
would not be so small if the global linearization stopping criterion (3.12) was used.

Figure 7.11, left, traces the potential energy error ‖∇(u − uk,ih )‖p on both uni-
formly and adaptively refined meshes. Here, we have observed that the usage of local
stopping criteria (with the ensuing small values taken by the linearization estimator)
is needed to achieve the quasi-optimal error decrease with adaptive mesh refinement;
cf. Table 7.1. In particular, such a fast decrease does not appear if the global stopping
criterion (3.12) is employed, as the meshes are not sufficiently graded. Figure 7.11,
middle, illustrates that as few as two Newton iterations per refinement level are suffi-
cient in our approach (except for initial meshes). The overall efficiency of the adaptive
inexact Newton combined with adaptive mesh refinement is best appreciated when
evaluating the total number of linear solver iterations in function of refinement level
in Figure 7.11, right: only a very mild increase is observed in the case of adaptive
mesh refinement.

Finally, in Figure 7.12, we plot the distribution of the estimate ηk,i and of the
error measure J up

u (uk,ih ,gk,i
h ) on the fifth level adaptively refined mesh. As before, even
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Fig. 7.12. Estimated (left) and actual (right) error distribution, case 2, p = 4, fifth level
adaptively refined mesh.

in the presence of linearization and algebraic errors, the overall error distribution is
predicted very well, while the mesh has been refined around the corner singularity.

8. Conclusions. In this work, we have designed an inexact Newton method with
adaptive stopping criteria for iterative nonlinear and linear solvers. These criteria are
based on guaranteed and robust a posteriori error estimates. A complete adaptive
strategy combined with adaptive mesh refinement has also been proposed. We have
presented numerical experiments illustrating the computational gains achieved by our
approach. Our error estimates are derived in an abstract unified framework using
equilibrated flux reconstructions. These reconstructions must comply with a couple
of assumptions which we have verified for a wide class of discretization schemes and
linearizations. For several schemes, the flux reconstructions are simply prescribed,
while, for some schemes, local mixed finite element problems are to be solved to
evaluate them. In practice, the corresponding local matrices can be assembled only
once in a preprocessing stage since they are independent of both iterative linearization
and algebraic solvers. Additional computational savings are possible by evaluating
the error estimators only periodically and not at each iteration of both solvers or by
simplifying the estimators by employing quadrature formulas to evaluate the norms.
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[22] V. Dolejš́ı, A. Ern, and M. Vohraĺık, A framework for robust a posteriori error control
in unsteady nonlinear advection-diffusion problems, SIAM J. Numer. Anal., 51 (2013),
pp. 773–793.

[23] S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton methods, SIAM J.
Optim., 4 (1994), pp. 393–422.
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[33] A. Hannukainen, R. Stenberg, and M. Vohraĺık, A unified framework for a posteriori error
estimation for the Stokes problem, Numer. Math., 122 (2012), pp. 725–769.
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[35] P. Jiránek, Z. Strakoš, and M. Vohraĺık, A posteriori error estimates including algebraic
error and stopping criteria for iterative solvers, SIAM J. Sci. Comput., 32 (2010), pp. 1567–
1590.

[36] L. V. Kantorovich, Functional analysis and applied mathematics, Uspekhi Mat. Nauk, 3
(1948), pp. 89–185.

[37] K. Y. Kim, A posteriori error estimators for locally conservative methods of nonlinear elliptic
problems, Appl. Numer. Math., 57 (2007), pp. 1065–1080.

[38] J. Leray and J.-L. Lions, Quelques résulatats de Vǐsik sur les problèmes elliptiques non-
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