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Abstract. In this work, we consider conforming finite element discretizations of arbitrary
polynomial degree p \geq 1 of the Poisson problem. We propose a multilevel a posteriori estimator of
the algebraic error. We prove that this estimator is reliable and efficient (represents a two-sided
bound of the error), with a constant independent of the degree p. We next design a multilevel
iterative algebraic solver from our estimator and show that this solver contracts the algebraic error
on each iteration by a factor bounded independently of p. Actually, we show that these two results
are equivalent. The p-robustness results rely on the work of Sch\"oberl et al. [IMA J. Numer. Anal.,
28 (2008), pp. 1--24] for one given mesh. We combine this with the design of an algebraic residual
lifting constructed over a hierarchy of nested unstructured, possibly highly graded, simplicial meshes.
The lifting includes a global coarse-level solve with the lowest polynomial degree one together with
local contributions from the subsequent mesh levels. These contributions, of the highest polynomial
degree p on the finest mesh, are given as solutions of mutually independent local Dirichlet problems
posed over overlapping patches of elements around vertices. The construction of this lifting can be
seen as one geometric V-cycle multigrid step with zero pre- and one postsmoothing by (damped)
additive Schwarz (block Jacobi). One particular feature of our approach is the optimal choice of the
step-size generated from the algebraic residual lifting. Numerical tests are presented to illustrate the
theoretical findings.

Key words. finite element method, stable decomposition, multilevel method, Schwarz method,
a posteriori estimate, p-robustness
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1. Introduction. The finite element method (FEM) is a widespread approach
for discretizing problems given in the form of partial differential equations and has
been used in engineering for more than fifty years. For a thorough overview on the
topic, we refer the reader to, e.g., Ciarlet [18], Ern and Guermond [20], and Brenner
and Scott [14]. Many iterative methods have been suggested to treat the linear sys-
tems arising from finite element discretizations; see, e.g., Bramble et al. [11, 12], Hack-
busch [24], Bank, Dupont, and Yserentant [6], Brandt, McCormick, and Ruge [13],
Oswald [37], Zhang [51], and the references therein. A systematic description of it-
erative solvers is given by Xu in [49]. For convergence results on unstructured and
graded meshes, we refer the reader to, e.g., Wu and Chen [48], Hiptmair, Wu, and
Zheng [26], Chen, Nochetto, and Xu [17], and Xu, Chen, and Nochetto [50]. The
convergence of these methods is typically robust with respect to the size of the mesh
(h-robustness). In fact, this is one of the key advantages of multigrid methods. For
the conjugate gradient method, on the other hand, h-robustness is not intrinsic; this
problem can be bypassed with the development of appropriate preconditioners.
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p-ROBUST ALGEBRAIC ERROR ESTIMATOR AND SOLVER 2857

If we are to consider methods of arbitrary approximation polynomial degree, an
additional question arises: how does the polynomial degree p affect the performance
of the method? In this regard, results for p-version FEM include Foresti et al. [21] for
two-dimensional domains, Mandel [33] for three-dimensional domains, and Babu\v ska
et al. [5] for two-dimensional domains. For the latter, the condition number of the
preconditioned system grows at most by 1 + log2(p), and a generalization of this
work for hp-FEM is given by Ainsworth [1], where the p-dependence is still pres-
ent. An early version of a polynomial-degree robust (p-robust) solver was introduced
by Quarteroni and Sacchi Landriani [42] for a specific domain configuration (decom-
posable into rectangles without internal cross points). A notable development on
p-robustness was later made by Pavarino [41] for quadrilateral/hexahedral meshes,
where the author introduced a p-robust additive Schwarz method. The generalization
of this result for triangular/tetrahedral meshes was achieved by Sch\"oberl et al. [44],
once more by introducing an additive Schwarz preconditioner. More recent works
were carried out based on these approaches. In Antonietti et al. [3] (see also the ref-
erences therein), the p-robust approach for rectangular/hexahedral meshes was used
for high-order discontinuous Galerkin (DG) methods; moreover the spectral bounds
of the preconditioner are also robust with respect to the method's penalization coeffi-
cient. We also mention the introduction of multilevel preconditioners yielded by block
Gauss--Seidel smoothers in Kanschat [29] for rectangular/hexahedral meshes and DG
discretizations. Further multilevel approaches for rectangular/hexahedral meshes us-
ing overlapping or nonoverlapping Schwarz smoothers can be found in, e.g., Janssen
and Kanschat [27] and Lucero Lorca and Kanschat [32]. For a study on more general
meshes, see, e.g., Antonietti and Pennesi [2], where a multigrid approach behaves
p-robustly under the condition that the number of smoothing steps (depending on p)
is chosen sufficiently large. Another notable contribution is the design of algebraic
multigrid methods (AMG) via aggregation techniques; see, e.g., Notay and Napov [36],
Bastian, Blatt, and Scheichl [7], and the references therein. The numerical results of
the latter give a satisfactory indication of p-robustness.

An associated topic is the development of estimates of the algebraic error. In this
regard, a posteriori tools have primarily been used to estimate the algebraic error for
existing solvers. One particular goal is the development of reliable stopping criteria,
allowing one to avoid unnecessary iterations. This is achieved with a combination
of a posteriori error estimators for the discretization error. Some contributions on
this matter (see also references therein) include Becker, Johnson, and Rannacher [8],
where adaptive error control is achieved for a multigrid solver, and Bornemann and
Deuflhard [9], where a one-way multigrid method is presented by integrating an adap-
tive stopping criterion based on a posteriori tools. Further developments were made
in Meidner, Rannacher, and Vihharev [34], where goal-oriented error estimates are
used in the framework of the dual weighted residual (DWR) method. In Jir\'anek,
Strako\v s, and Vohral\'{\i}k [28] and later in Pape\v z, Strako\v s, and Vohral\'{\i}k [39], upper
and lower bounds for both the algebraic and total errors are computed, which al-
low one to derive guaranteed upper and lower bounds on the discretization error,
and consecutively construct safe stopping criteria for iterative algebraic solvers. Ar-
ioli, Georgoulis, and Loghin [4] propose practical stopping criteria which guarantee
that the considered inexact adaptive FEM algorithm converges for inexact solvers
of Krylov subspace type. To the best of the authors' knowledge, though, dedicated
proofs of efficiency of a posteriori estimators of the algebraic error have so far not
been presented.
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2858 ANI MIRA\c CI, JAN PAPE\v Z, AND MARTIN VOHRAL\'IK

In this work, we present an a posteriori algebraic error estimator and a multilevel
iterative solver associated to it. The cornerstone of their definitions lies in the multi-
level construction of a residual algebraic lifting, motivated partly by the approach of
Pape\v z et al. [38]. The lifting can be seen as an approximation of the algebraic error by
continuous piecewise polynomials of degree p, obtained by a V-cycle multigrid method
with no presmoothing step and a single postsmoothing step. The coarse correction
is given by a lowest polynomial degree (piecewise affine) function. Our smoothing is
chosen in the family of damped additive Schwarz (block Jacobi) methods applied to
overlapping subdomains composed of patches of elements (two options for defining the
patches will be given in due time) and corresponds to local Dirichlet problems with
the highest p-degree on the finest mesh. Note that additive Schwarz-type smoothing
allows for a parallelizable implementation at each level of the mesh hierarchy. Once
this lifting is built, the a posteriori estimator is easily derived as a natural guaranteed
lower bound on the algebraic error, following [38] and the references therein. As our
first main result, we show that up to a p-robust constant, the estimator is also an
upper bound on the error.

Our solver is then defined as a linear iterative method. Because we have at
hand the residual lifting, which approximates the algebraic error, we use it as a
descent direction (the asymmetric, since no presmoothing is used, approach in defining
the lifting will not be a problem for the analysis). The step-size is then chosen
by a line search in the direction of the lifting. Our choice presents a resemblance
to the conjugate gradient method, in that we choose the step-size that ensures the
best error contraction in the energy norm at the next iteration. Other precedents
of the use of optimal step-sizes include, e.g., Canuto and Quarteroni [16], and in
the multigrid setting Heinrichs [25]. As our second main result, we prove that this
solver contracts the error at each iteration by a p-robust constant. Actually, we
also show that the p-robust efficiency of the estimator is equivalent to the p-robust
convergence of the solver. All these results are defined for a general hierarchy of
nested, unstructured, possibly highly refined (graded) matching simplicial meshes,
and no assumption beyond u \in H1

0 (\Omega ) is imposed on the weak solution.
The work is structured as follows. In section 2, we introduce the setting in which

we will be working as well as the notation employed throughout the paper. Then
we introduce our multilevel residual lifting construction in section 3, following Pape\v z
et al. [38]. In section 4, we present the a posteriori estimator on the algebraic error
and the corresponding multilevel solver based on the residual lifting. Our main re-
sults are presented in the form of two theorems in section 5, together with a corollary
establishing their equivalence. Another important corollary is the equivalence of the
algebraic error with a computable estimator which is localized levelwise as well as
patchwise. We provide numerical experiments in section 6, focusing mainly on show-
casing p-robustness, in agreement with our theoretical results, and on a comparison
with several existing approaches. We also introduce a weighted restricted additive
Schwarz variant of our solver. The proofs of our main results are given in section 7.
In particular, for the stable decomposition estimate, the p-robust result on one level
introduced by Sch\"oberl et al. [44] is crucial. We also rely on the multilevel stable
splitting of Xu, Chen, and Nochetto [50] for p = 1 to obtain acceptable estimates
with respect to the number of levels. Finally, section 8 brings forth our conclusions
and outlook for future work.

2. Setting. We will consider in this work the Poisson problem defined over
\Omega \subset \BbbR d, d \in \{ 1, 2, 3\} , an open bounded polytope with a Lipschitz-continuous boundary.
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p-ROBUST ALGEBRAIC ERROR ESTIMATOR AND SOLVER 2859

2.1. Model problem. Let f \in L2(\Omega ) be the source term. We consider the
following problem: find u : \Omega \rightarrow \BbbR such that

(2.1)
 - \Delta u = f in \Omega ,

u = 0 on \partial \Omega .

In the weak formulation, we search for u \in H1
0 (\Omega ) such that

(2.2) (\nabla u,\nabla v) = (f, v) \forall v \in H1
0 (\Omega ),

where (\cdot , \cdot ) is the L2(\Omega ) or [L2(\Omega )]d scalar product. The existence and uniqueness of
the solution of (2.2) follows from the Riesz representation theorem.

2.2. Finite element discretization. Let \scrT J be a given simplicial mesh of \Omega .
Fixing an integer p \geq 1, we introduce the finite element space of continuous piecewise
p-degree polynomials

V p
J := \BbbP p(\scrT J) \cap H1

0 (\Omega ),(2.3)

where \BbbP p(\scrT J) := \{ vJ \in L2(\Omega ), vJ | K \in \BbbP p(K) \forall K \in \scrT J\} . We set NJ := dim(V p
J ). The

discrete problem consists in finding uJ \in V p
J such that

(2.4) (\nabla uJ ,\nabla vJ) = (f, vJ) \forall vJ \in V p
J .

2.3. Algebraic system, approximate solution, and algebraic residual. If
one introduces \psi l

J , 1 \leq l \leq NJ , a basis of V p
J , then problem (2.4) is equivalent to

solving a system of linear algebraic equations. Denoting by (\BbbA J)lm := (\nabla \psi m
J ,\nabla \psi l

J)
the symmetric, positive definite (stiffness) matrix and by (FJ)l := (f, \psi l

J) the right-

hand side (load) vector, one obtains uJ =
\sum NJ

m=1(UJ)m\psi 
m
J , where UJ \in \BbbR NJ is the

solution of

\BbbA JUJ = FJ .

For any approximation Ui
J \in \BbbR NJ of UJ given by an arbitrary algebraic solver at

iteration step i \geq 0, the associated continuous piecewise polynomial of degree p is
uiJ =

\sum NJ

m=1 (Ui
J)m \psi m

J \in V p
J . The associated algebraic residual vector is given by

Ri
J := FJ  - \BbbA JU

i
J .

Note, however, that Ri
J depends on the choice of the basis functions \psi l

J , 1 \leq l \leq NJ .
To avoid this dependence, we work instead with a residual functional on V p

J given by

vJ \mapsto \rightarrow (f, vJ) - (\nabla uiJ ,\nabla vJ) \in \BbbR , vJ \in V p
J .(2.5)

We emphasize that the forthcoming results are independent of the choice of the basis.

2.4. A hierarchy of meshes. We consider a hierarchy of nested matching sim-
plicial meshes \{ \scrT j\} 0\leq j\leq J , J \geq 1, where \scrT J was introduced in section 2.2, and where
\scrT j is a refinement of \scrT j - 1, 1 \leq j \leq J . For any element K on a given mesh, we denote
hK := diam(K) and by \scrV K the set of its vertices. We also denote hj := maxK\in \scrT j

hK
for 0 \leq j \leq J . Hereafter, we shall always assume that our meshes are shape regular.
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2860 ANI MIRA\c CI, JAN PAPE\v Z, AND MARTIN VOHRAL\'IK

Assumption 2.1 (shape regularity). There exists \kappa \scrT > 0 such that

max
K\in \scrT j

hK

\rho K
\leq \kappa \scrT \forall 0 \leq j \leq J,(2.6)

where \rho K denotes the diameter of the largest ball inscribed in K.

Additionally to the above assumption, we will treat below two specific cases. In
the first one, we suppose quasi-uniformity of the meshes in the hierarchy and that the
strength of refinement is bounded. In the second case, we suppose that the meshes are
generated by a series of bisections, e.g., the newest vertex bisection; cf. Sewell [45].

2.4.1. A hierarchy of quasi-uniform meshes. We assume quasi-uniformity
and that the hierarchy of meshes is such that the size of each parent element is
comparable to the size of each of its children.

Assumption 2.2 (maximum refinement strength and mesh quasi-uniformity).
There exists 0 < C\mathrm{r}\mathrm{e}\mathrm{f} \leq 1, a fixed positive real number such that for any j \in \{ 1, . . . , J\} ,
\forall K \in \scrT j - 1, and for any K\ast \in \scrT j such that K\ast \subset K, there holds

C\mathrm{r}\mathrm{e}\mathrm{f}hK \leq hK\ast \leq hK .(2.7)

There further exists C\mathrm{q}\mathrm{u}, a fixed positive real number such that for any j \in \{ 0, . . . , J\} 
and \forall K \in \scrT j, there holds

C\mathrm{q}\mathrm{u}hj \leq hK \leq hj .(2.8)

2.4.2. A hierarchy of graded bisection meshes. In the case of graded mesh
hierarchies obtained by bisection, one refinement of an edge of \scrT j - 1, for j\in \{ 1, . . . , J\} ,
gives a new finer mesh \scrT j . We denote by \scrB j \subset \scrV j the set consisting of the new vertex
obtained after the bisection together with its two neighbors on the refinement edge;
cf. Figure 1 for an illustration when d = 2. We denote by h\scrB j

the maximal diameter
of elements having a vertex in \scrB j . This setting is described by the following.

Assumption 2.3 (local quasi-uniformity of bisection-generated meshes). \scrT 0 is a
conforming quasi-uniform mesh with parameter C0

\mathrm{q}\mathrm{u}. The graded conforming mesh \scrT J
is generated from \scrT 0 by a series of bisections. There exists a fixed positive real number
C \mathrm{l}\mathrm{o}\mathrm{c}

\mathrm{q}\mathrm{u} such that for any j\in \{ 1, . . . , J\} , there holds

C \mathrm{l}\mathrm{o}\mathrm{c}
\mathrm{q}\mathrm{u} h\scrB j

\leq hK\leq h\scrB j
\forall K\in \scrT j such that a vertex of K belongs to \scrB j .(2.9)

2.5. A hierarchy of spaces. In the following, we will need to introduce a
hierarchy of finite element spaces associated to the mesh hierarchy. For this purpose,
let p\prime \in \{ 1, . . . , p\} be a polynomial degree between 1 and p that we employ for the
intermediate levels. In particular, let the following hold:

for 1 \leq j \leq J  - 1, V p\prime 

j := \BbbP p\prime (\scrT j) \cap H1
0 (\Omega ) (p\prime th order spaces),(2.10a)

for j = 0, V 1
0 = \BbbP 1(\scrT 0) \cap H1

0 (\Omega ) (lowest-order space),(2.10b)

where \BbbP p\prime (\scrT j) := \{ vj \in L2(\Omega ), vj | K \in \BbbP p\prime (K) \forall K \in \scrT j\} for 1 \leq j \leq J  - 1. Note

that V 1
0 \subset V p\prime 

1 \subset \cdot \cdot \cdot \subset V p\prime 

J - 1 \subset V p
J . Let \scrV j be the set of vertices of the mesh \scrT j . We

denote by \psi j,\bfa the standard hat function associated to the vertex a \in \scrV j , 0 \leq j \leq J .
This is the piecewise affine function with respect to the mesh \scrT j that takes value 1 in
the vertex a and vanishes in all other jth level vertices of \scrV j .
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p-ROBUST ALGEBRAIC ERROR ESTIMATOR AND SOLVER 2861

Fig. 1. Illustration of the set \scrB j . The mesh \scrT j - 1 and its refinement \scrT j are given by full and
dotted lines, respectively.

2.6. Two types of patches. For the following, we define two types of patches
of elements. In order to facilitate the work with both, we introduce a switching
parameter s \in \{ 0, 1\} . First, given a vertex a\in \scrV j - s, j \in \{ 1, . . . , J\} , we denote by \scrT \bfa 

j,s

the patch formed by all elements of the mesh \scrT j - s sharing the vertex a, i.e.,

\scrT \bfa 
j,s :=\{ K \in \scrT j - s,a \in \scrV K\} .(2.11)

We also denote by \omega \bfa 
j,s the open patch subdomain corresponding to \scrT \bfa 

j,s. An illus-
tration is given in Figure 2 (left) for ``small"" patches s = 0 and (right) for ``large""
patches s = 1. Then the associated local space V \bfa 

j,s is given by

V \bfa 
j,s :=\BbbP p\prime (\scrT j) \cap H1

0 (\omega 
\bfa 
j,s), j \in \{ 1, . . . , J - 1\} , and V \bfa 

J,s := \BbbP p(\scrT J) \cap H1
0 (\omega 

\bfa 
J,s).(2.12)

Note that V \bfa 
j,s are continuous piecewise polynomial spaces with respect to the mesh \scrT j

for both s = 0 and s = 1, the support being bigger in the latter case. An illustration
is also given in Figure 2.

Fig. 2. Illustration of degrees of freedom (p\prime = p = 2) for the space V \bfb 
j,0 associated to the

``small"" patch \scrT \bfb 
j,0 (left) and for the space V \bfa 

j,1 associated to the ``large"" patch \scrT \bfa 
j,1 (right). The

mesh \scrT j - 1 and its refinement \scrT j are defined in bold and dotted lines, respectively.

3. Multilevel lifting of the algebraic residual. In the spirit of Pape\v z et al.
[38], we design a multilevel lifting of the algebraic residual given by (2.5). This lifting
will lead to the construction of an a posteriori error estimator; it will also serve as a
descent direction for the solver we introduce in the next section.

3.1. Exact algebraic residual lifting. For illustration and theoretical analysis
later, we introduce the following definition.

Definition 3.1 (exact residual lifting). Let uiJ \in V p
J be arbitrary. We introduce

\~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} \in V p
J as the solution of the residual problem

(\nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g},\nabla vJ) = (f, vJ) - (\nabla uiJ ,\nabla vJ) \forall vJ \in V p
J ,(3.1)
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so that

\~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} = uJ  - uiJ .(3.2)

3.2. Coarse solve. The first step of our construction is to solve a global lowest-
order problem on the coarsest mesh. Let uiJ \in V p

J be given. Recalling that V 1
0 =

\BbbP 1(\scrT 0) \cap H1
0 (\Omega ), we define \rho i0 \in V 1

0 by

(3.3) (\nabla \rho i0,\nabla v0) = (f, v0) - (\nabla uiJ ,\nabla v0) \forall v0 \in V 1
0 .

Note that due to (3.3) and (3.1), we have

(\nabla \rho i0,\nabla v0) = (\nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g},\nabla v0) \forall v0 \in V 1
0 ,(3.4)

so that \rho i0 is the orthogonal projection of \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} onto the coarsest space V 1
0 .

3.3. Multilevel algebraic residual lifting. Let us now introduce our hierar-
chical construction of the algebraic residual lifting \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} \in V p

J that is hopefully close

to \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}. The construction relies on the use of a coarse solution of (3.3) and on lo-
cal contributions arising from all the finer mesh levels. These local contributions are
defined on patch subdomains \omega \bfa 

j,s. We denote by (\cdot , \cdot )\omega \bfa 
j,s

the L2(\omega \bfa 
j,s) or [L2(\omega \bfa 

j,s)]
d

scalar product. Since we consider two definitions of patches with switching parameter
s \in \{ 0, 1\} (see section 2.6), two constructions of \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} are implied.

Definition 3.2 (construction of the algebraic residual lifting). Let w1, w2 \in \BbbR \cup 
\{ \infty \} be damping weights satisfying the conditions

1 \leq w1 < 6J(d+ 1) and w2 \geq max

\Biggl( 
1,

5J2(d+ 1)2

w1(6J(d+ 1) - w1)

\Biggr) 
.(3.5)

Let uiJ \in V p
J be arbitrary. We introduce \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} \in V p

J by

(3.6) \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} := \rho i0 +

J\sum 
j=1

\rho ij ,

where \rho i0 \in V 1
0 solves (3.3) and \rho ij \in V p\prime 

j , for j \in \{ 1, . . . , J  - 1\} , and \rho iJ \in V p
J are

given by

(3.7) \rho ij :=
1

w1

\sum 
\bfa \in \scrV j - s

\rho ij,\bfa , 1 \leq j \leq J,

with the local contributions \rho ij,\bfa \in V \bfa 
j,s given by patch problems, \forall vj,\bfa \in V \bfa 

j,s

(3.8) (\nabla \rho ij,\bfa ,\nabla vj,\bfa )\omega \bfa 
j,s

= (f, vj,\bfa )\omega \bfa 
j,s

 - (\nabla uiJ ,\nabla vj,\bfa )\omega \bfa 
j,s

 - 
1

w2

j - 1\sum 
k=0

(\nabla \rho ik,\nabla vj,\bfa )\omega \bfa 
j,s
.

Remark 3.3 (construction of \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}). The construction (3.6)--(3.8) of \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} can be

seen as an approximation of \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} from (3.1) by one iteration of a V-cycle multigrid,
with no presmoothing and a single postsmoothing step, corresponding to a ``damped""
additive Schwarz iteration, with the damping factor determined by the weights w1

and w2. The subdomains for the Schwarz method correspond to the patch domains
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where the local problems in (3.8) are defined. Two patch options as in Figure 2 are
considered. In particular, for p = 1 and ``small"" patches, s = 0 (Figure 2, left), this
corresponds to one step of the Jacobi (diagonal) smoother, whereas when p\prime = p > 1,
the smoother is block Jacobi. A weighted variant of Definition 3.2 is tested in section 6.

Remark 3.4 (value of the damping parameter). Condition (3.5) is based on the
proofs in section 7 below, where the use of appropriate damping seems crucial. This
is what is also indicated numerically to be needed in our approach. Possible combi-
nations of the damping weights satisfying (3.5) include, for example,

w1 = J(d+ 1) and w2 = 1,(3.9a)

w1 = d+ 1 and w2 = J,(3.9b)

w1 = w2 =
\sqrt{} 
J(d+ 1),(3.9c)

w1 = 1 and w2 = \infty ,(3.9d)

w1 = 4
\surd 
J and w2 = \infty .(3.9e)

Examples (3.9a)--(3.9c) above result in a procedure that is additive patchwise and
multiplicative levelwise. Examples (3.9d)--(3.9e), in turn, result in a completely addi-
tive patchwise and levelwise procedure, which is fully parallelizable. We also note that
when the intermediate polynomial degree is p\prime = 1 and for any choice with w2 = 1,
the smoothing resulting from Definition 3.2 is local with respect to mesh \scrT 0 for graded
meshes; it is actually only performed there where the meshes \scrT j , j \geq 1, are different
from \scrT 0.

4. An a posteriori estimator on the algebraic error and a multilevel
solver. We now present how the residual lifting \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} of Definition 3.2 can be used
to define an a posteriori estimator as well as a multilevel solver.

4.1. A posteriori estimate on the algebraic error. We begin by introducing
\eta i\mathrm{a}\mathrm{l}\mathrm{g}, an a posteriori estimator defined using the residual lifting \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}.

Definition 4.1 (lower bound algebraic error estimator). Let uiJ \in V p
J be ar-

bitrary, and let \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} be the algebraic residual lifting given by Definition 3.2. If

\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} = 0, we define the lower bound algebraic error estimator \eta i\mathrm{a}\mathrm{l}\mathrm{g} := 0. Other-
wise, set

(4.1) \eta i\mathrm{a}\mathrm{l}\mathrm{g} :=
(f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g})

\| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 
.

The estimator \eta i\mathrm{a}\mathrm{l}\mathrm{g} is immediately a guaranteed lower bound on the algebraic
error; cf., e.g., [38, Theorem 5.3].

Lemma 4.2 (guaranteed lower bound on the algebraic error). There holds

(4.2) \| \nabla (uJ  - uiJ)\| \geq \eta i\mathrm{a}\mathrm{l}\mathrm{g}.

Proof. Note that if \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} = 0, then \| \nabla (uJ  - uiJ)\| \geq 0 = \eta i\mathrm{a}\mathrm{l}\mathrm{g}. Otherwise

\| \nabla (uJ  - uiJ)\| = max
vJ\in V p

J ,
\| \nabla vJ\| \not =0

(\nabla (uJ  - uiJ),\nabla vJ)
\| \nabla vJ\| 

\geq 
(\nabla (uJ  - uiJ),\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g})

\| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 

(2.4)
(4.1)
= \eta i\mathrm{a}\mathrm{l}\mathrm{g}.D
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4.2. Multilevel solver. We will now reuse the construction of \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} given in
Definition 3.2 to obtain an approximation of uJ on a next step in view of constructing
a multilevel solver. Note that for any uiJ \in V p

J , the lifting \rho 
i
J,\mathrm{a}\mathrm{l}\mathrm{g} is built to approximate

the algebraic error \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} given in (3.1), where we recall that uJ = uiJ + \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}. Thus,
it seems reasonable to consider a linear iterative solver of the form

(4.3) ui+1
J := uiJ + \lambda \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g},

where \lambda \in \BbbR is a real parameter. The optimal choice of \lambda is given below.

Lemma 4.3 (optimal step-size). Consider a solver of the form (4.3) and suppose
\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} \not = 0. Then the choice \lambda := [(f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g})]/\| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 2 leads to min-
imal algebraic error with respect to the energy norm.

Proof. We write the algebraic error of the next iteration as a function of \lambda ,

\| \nabla (uJ  - ui+1
J )\| 2= \| \nabla (uJ  - uiJ)\| 2 - 2\lambda (\nabla (uJ  - uiJ),\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) + \lambda 2\| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 2,(4.4)

and realize that this function has a minimum at

\lambda \mathrm{m}\mathrm{i}\mathrm{n}=
(\nabla (uJ - uiJ),\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g})

\| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 2
(2.4)
=

(f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g})
\| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 2

(4.1)
=

\eta i\mathrm{a}\mathrm{l}\mathrm{g}
\| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 

.(4.5)

We are now ready to define our multilevel solver.

Definition 4.4 (multilevel solver).
1. Initialize u0J \in V 1

0 as the solution of (\nabla u0J ,\nabla v0) = (f, v0) \forall v0 \in V 1
0 .

2. Let i \geq 0 be the iteration counter, and let \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} be constructed from uiJ
following Definition 3.2. When \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} = 0, set ui+1

J := uiJ and stop; then

actually ui+1
J = uiJ = uJ . Otherwise, let

(4.6) ui+1
J := uiJ +

(f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g})
\| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 2

\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}.

Remark 4.5 (multilevel solver). Note that the solver of Definition 4.4 is not initial-
ized randomly but via a coarse solve. The descent direction is the residual lifting \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g},
constructed via a single V-cycle iteration with no presmoothing and one postsmooth-
ing step, and the step-size is optimized via the line search (4.5). This minimalist and
asymmetrical procedure will not be an issue in the forthcoming analysis.

Remark 4.6 (cost of one iteration). On each iteration of the developed solver,
there are costs which correspond to those of standard multigrid methods: coarse
solve (here with the lowest polynomial degree) and interlevel transfer operations.
The crucial difference is in the smoothing cost. While we prove below that our solver
is p-robust and only mildly depends on h (since J \sim | logh| ), meaning the number
of iterations will not degrade when p increases, the sizes of the local matrices used
to solve the local problems (3.8) increase (in 2D approximately as p2). This induces
a significant computational, but perfectly parallelizable, cost for higher p. Other
cheaper options may be developed to bypass the local problems, for example, in the
spirit of Pape\v z and Vohral\'{\i}k [40]. Recall, however, that there is only one smoothing
per iteration in our approach.
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5. Main results. In this section, we present the main results concerning our
a posteriori estimator \eta i\mathrm{a}\mathrm{l}\mathrm{g} of Definition 4.1 and our multilevel solver of Definition 4.4.
We shall also see how these two main results are related.

For the estimator the following holds.

Theorem 5.1 (p-robust reliable and efficient bound on the algebraic error). Let
Assumption 2.1 hold, together with either Assumption 2.2 or 2.3. Let uJ \in V p

J be the
(unknown) solution of (2.4), and let uiJ \in V p

J be arbitrary, i \geq 0. Let \eta i\mathrm{a}\mathrm{l}\mathrm{g} be given by

Definition 4.1. Then, in addition to \| \nabla (uJ  - uiJ)\| \geq \eta i\mathrm{a}\mathrm{l}\mathrm{g} of (4.2), there holds

(5.1) \eta i\mathrm{a}\mathrm{l}\mathrm{g} \geq \beta \| \nabla (uJ  - uiJ)\| ,

where 0 < \beta < 1 only depends on the space dimension d, the mesh shape regularity
parameter \kappa \scrT , and the number of mesh levels J , as well as on the mesh refinement
parameter C\mathrm{r}\mathrm{e}\mathrm{f} and the quasi-uniformity parameter C\mathrm{q}\mathrm{u} if Assumption 2.2 holds, or
on the coarse mesh and the local quasi-uniformity parameters C0

\mathrm{q}\mathrm{u} and C \mathrm{l}\mathrm{o}\mathrm{c}
\mathrm{q}\mathrm{u} if As-

sumption 2.3 holds. For all weights satisfying (3.5), there holds \beta \geq J - 5/2\beta \ast with
\beta \ast independent of the number of levels J . Better bounds hold for the weights of Re-
mark 3.4; see Example 7.8 below for details.

The theorem allows us to write \eta i\mathrm{a}\mathrm{l}\mathrm{g} as a two-sided bound of the algebraic error
(up to the generic constant \beta for the upper bound), meaning that the estimator is
robustly efficient with respect to the polynomial degree p. We can also reinterpret
this result as follows.

Remark 5.2 (angle between the error and the descent direction). Note that if we
rewrite (5.1) by plugging in the Definition 4.1 of \eta i\mathrm{a}\mathrm{l}\mathrm{g}, when uJ - uiJ \not = 0 and \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} \not = 0,
we have

\eta i\mathrm{a}\mathrm{l}\mathrm{g}
\| \nabla (uJ  - uiJ)\| 

(4.1)
=

(f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g})
\| \nabla (uJ  - uiJ)\| \| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 

(2.4)
=

(\nabla (uJ  - uiJ),\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g})
\| \nabla (uJ  - uiJ)\| \| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 

(5.1)

\geq \beta > 0.

This can be compared to classical results in line search methods (see, e.g., Nocedal
and Wright [35, Chapter 3.2]) of boundedness away from zero of the cosine of the
angle between the vector to be minimized (here uJ  - uiJ) and the descent direction
(here the lifting \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}).

For the solver, in turn, we have the following.

Theorem 5.3 (p-robust error contraction of the multilevel solver). Let Assump-
tion 2.1 hold, together with either Assumption 2.2 or 2.3. Let uJ \in V p

J be the (un-
known) solution of (2.4), and let uiJ \in V p

J be arbitrary, i \geq 0. Take ui+1
J to be

constructed from uiJ using one step of the multilevel solver of Definition 4.4 by (4.6).
Then there holds

(5.2) \| \nabla (uJ  - ui+1
J )\| \leq \alpha \| \nabla (uJ  - uiJ)\| ,

where 0 < \alpha < 1 is given by \alpha =
\sqrt{} 

1 - \beta 2 with \beta the constant from (5.1).

In the above theorem, \alpha is a bound on the algebraic error contraction factor at
each step i. Looking at the dependencies of \alpha , we see that the solver of Definition 4.4
contracts the algebraic error at each iteration step in a robust way with respect to
the polynomial degree p.

Theorems 5.1 and 5.3 are connected as follows.
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Corollary 5.4 (equivalence of the p-robust estimator efficiency and p-robust
solver contraction). Let the assumptions of Theorems 5.1 and 5.3 be satisfied. Then
(5.1) holds if and only if (5.2) holds, and \beta =

\surd 
1 - \alpha 2.

Proof. Let uJ \in V p
J be the solution of (2.4), let uiJ \in V p

J be arbitrary, and let
ui+1
J \in V p

J be constructed from uiJ by our multilevel solver of Definition 4.4. First,
we write the relation between the algebraic errors associated to ui+1

J and uiJ .
Case \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} \not = 0. Using (4.4) and (4.5), we see

\| \nabla (uJ  - ui+1
J )\| 2 = \| \nabla (uJ  - uiJ)\| 2  - (\eta i\mathrm{a}\mathrm{l}\mathrm{g})

2
.(5.3)

Case \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} = 0. By Definitions 4.4 and 4.1, we have ui+1
J = uiJ and \eta i\mathrm{a}\mathrm{l}\mathrm{g} = 0. In

particular, this means that \| \nabla (uJ  - ui+1
J )\| = \| \nabla (uJ  - uiJ)\| , so that (5.3) still holds.

The above observations allow us to write, in any case, starting from (5.2) with
0 < \alpha < 1,

\| \nabla (uJ - ui+1
J )\| 2 \leq \alpha 2\| \nabla (uJ  - uiJ)\| 2

(5.3)\leftrightarrow \| \nabla (uJ  - uiJ)\| 2 - (\eta i\mathrm{a}\mathrm{l}\mathrm{g})
2 \leq \alpha 2\| \nabla (uJ  - uiJ)\| 2

\leftrightarrow \| \nabla (uJ  - uiJ)\| 2(1 - \alpha 2) \leq (\eta i\mathrm{a}\mathrm{l}\mathrm{g})
2
,

which is (5.1) with \beta 2 = 1 - \alpha 2.

In view of Corollary 5.4, we will prove in section 7 below only Theorem 5.1.
Importantly, the following also holds.

Corollary 5.5 (equivalence of vanishing algebraic lifting with the solver reach-
ing the solution). Let the assumptions of Theorems 5.1 and 5.3 be satisfied. Then
\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} = 0 if and only if ui+1

J = uiJ = uJ .

Finally, by the proofs in section 7, the algebraic error is also equivalent to a
localized a posteriori error estimate.

Corollary 5.6 (p-robust localized reliable and efficient a posteriori estimate on
the algebraic error). Let the assumptions of Theorem 5.1 be satisfied. Let \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} be the
algebraic residual lifting constructed in Definition 3.2. Then

\| \nabla (uJ  - uiJ)\| 2 \leq C2
1

\biggl( 
\| \nabla \rho i0\| 2 +

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

\biggr) 
\leq C2

2\| \nabla (uJ  - uiJ)\| 2,(5.4)

where C2 = 1
\beta and C1 is identified in section 7.6.

Equivalence (5.4) gives us an idea where the algebraic error is situated level-
wise and patchwise. This information can be exploited to tackle problematic areas
adaptively, which is the subject of forthcoming works.

6. Numerical experiments. In this section we report some numerical illustra-
tions of the theoretical results of section 5. In particular, we focus on the p-robustness.
In the following tests, we consider the model problem (2.1) with three different choices
of the domain \Omega \subset \BbbR 2 and of the exact solution u:

Sine: u(x, y) := sin(2\pi x) sin(2\pi y), \Omega := ( - 1, 1)2.(6.1)

Peak: u(x, y) := x(x - 1)y(y  - 1)e - 100((x - 0.5)2 - (y - 0.117)2), \Omega := (0, 1)2.(6.2)

L-shape: u(r, \theta ) := r2/3 sin(2\theta /3), \Omega := ( - 1, 1)2 \setminus ([0, 1]\times [ - 1, 0]).(6.3)
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For the L-shape problem (6.3), we impose an inhomogeneous Dirichlet boundary con-
dition corresponding to the exact solution, which is expressed here in polar coordi-
nates. For each of the test cases, we start with an initial Delaunay triangulation of \Omega .
Then we consider J uniform refinements where all triangles are decomposed into four
congruent subtriangles. Implementation-wise, we opt for Lagrange basis functions
with nonuniformly distributed nodes because of their better behavior with respect to
high-order methods; see Warburton [47]. Recall that this choice has no influence on
the theoretical results of section 5 as well as presented numerical results (in exact
arithmetic). Though it is not the focus of this work, we also remark that our solver
can be implemented in a matrix-free way and can also be parallelized.

The contraction factor of the solver of Definition 4.4 on each step i is given by
\| \nabla (uJ  - ui+1

J )\| /\| \nabla (uJ  - uiJ)\| , and, as stated in Corollary 5.4, it reveals the efficiency
of the a posteriori estimator \eta i\mathrm{a}\mathrm{l}\mathrm{g} of Definition 4.1. Keeping this in mind, we only
focus on the solver and the contraction factor. We will follow a common choice for
the stopping criterion, with the notation of section 2.3:

(6.4)
\| FJ  - \BbbA JU

i\mathrm{s}
J \| 

\| FJ\| 
\leq 10 - 5 \| FJ  - \BbbA JU

0
J\| 

\| FJ\| 
.

We also introduce the average error contraction factor

\=\alpha :=
1

i\mathrm{s}

i\mathrm{s} - 1\sum 
i=0

\| \nabla (uJ  - ui+1
J )\| 

\| \nabla (uJ  - uiJ)\| 
.(6.5)

We expect a p-robust solver to converge in a similar number of iterations and have
similar error contraction factors at all iterations for different polynomial degrees p.
The tests below cover different numbers of mesh levels J = 3, 4, 5, polynomial degrees
p = 1, 3, 6, 9, and the ``small"" as well as the ``large"" patches as in Figure 2.

6.1. Performance of the damped additive Schwarz construction of the
solver. A crucial component in the definition of our a posteriori estimator and multi-
level solver is the construction of the residual lifting \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} of Definition 3.2, where we
have used damped additive Schwarz (dAS) to cope with overlapping:

dAS: \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} :=

J\sum 
j=0

\rho ij and \rho ij :=
1

w1

\sum 
\bfa \in \scrV j - s

\rho ij,\bfa , 1 \leq j \leq J,(6.6)

(\nabla \rho ij,\bfa ,\nabla vj,\bfa )\omega \bfa 
j,s

= (f, vj,\bfa )\omega \bfa 
j,s

 - (\nabla uiJ ,\nabla vj,\bfa )\omega \bfa 
j,s

 - 
1

w2

j - 1\sum 
k=0

(\nabla \rho ik,\nabla vj,\bfa )\omega \bfa 
j,s
.

For the three test cases we consider three different choices of the damping weights
which satisfy condition (3.5) (see Remark 3.4):

for problem (6.1): w1 = J(d+ 1) and w2 = 1;

for problem (6.2): w1 = 4
\surd 
J and w2 = \infty ;

for problem (6.3): w1 = d+ 1 and w2 = J.

Recall that the choice w2 = \infty means that the construction of the lifting \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} can
be implemented completely in parallel, levelwise as well as patchwise.

The results are presented in Figures 3--5 and in Table 1. They confirm the ex-
pected complete independence of the polynomial degree p for our multilevel solver
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Fig. 3. Sine problem (6.1), w1=J(d+1), w2=1: results of the solver (4.6) for p\prime =p in (2.10a),
``small"" (left) and ``large"" (right) patches, and stopping criterion (6.4). Top: error contraction

factors \| \nabla (uJ  - ui+1
J )\| /\| \nabla (uJ  - ui

J )\| . Bottom: relative algebraic error \| \nabla (uJ  - ui
J )\| /\| \nabla uJ\| .
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Fig. 4. Peak problem (6.2), w1 = 4
\surd 
J, w2 = \infty : results of the solver (4.6) for p\prime = p in (2.10a),

``small"" (left) and ``large"" (right) patches, and stopping criterion (6.4). Top: error contraction

factors \| \nabla (uJ  - ui+1
J )\| /\| \nabla (uJ  - ui

J )\| . Bottom: relative algebraic error \| \nabla (uJ  - ui
J )\| /\| \nabla uJ\| .

which uses the construction dAS (6.6) of the lifting. Actually, we observe better
contraction factors for higher polynomial degrees.

An inferior quality of the contraction factors for the case of p = 1 and the use
of damping factors w1 = J(d + 1) and w2 = 1 appears. This is in line with some
precedents in literature, where numerically p-robust solvers also perform worse for or-
der 1 approximations; we mention, for example, Griebel, Oswald, and Schweitzer [23,
Table 1] and Kronbichler and Wall [30, Table 1]. Recall that we consider no pre-
smoothing and only one postsmoothing step; an important drop in the number of
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Fig. 5. L-shape problem (6.3), w1=d+1, w2=J: results of the solver (4.6) for p\prime =p in (2.10a),
``small"" (left) and ``large"" (right) patches, and stopping criterion (6.4). Top: error contraction

factors \| \nabla (uJ  - ui+1
J )\| /\| \nabla (uJ  - ui

J )\| . Bottom: relative algebraic error \| \nabla (uJ  - ui
J )\| /\| \nabla uJ\| .

Table 1
dAS construction (6.6): problems (6.1)--(6.3), p\prime = p in (2.10a), ``small"" and ``large"" patches.

is: the number of iterations needed to reach the stopping criterion (6.4). \=\alpha : average error contraction
factor given by (6.5).

Sine problem (6.1) Peak problem (6.2) L-shape problem (6.3)

w1 = J(d+ 1), w2 = 1 w1 = 4
\surd 
J , w2 = \infty w1 = d+ 1, w2 = J

``small"" ``large"" ``small"" ``large"" ``small"" ``large""
J p DoF is \=\alpha is \=\alpha is \=\alpha is \=\alpha is \=\alpha is \=\alpha 
3 1 5e3 48 0.79 34 0.70 74 0.85 43 0.75 38 0.75 20 0.56

3 4e4 23 0.63 24 0.59 60 0.83 36 0.70 28 0.68 18 0.53
6 2e5 23 0.63 22 0.55 58 0.82 34 0.68 27 0.69 16 0.49
9 4e5 23 0.63 19 0.50 58 0.82 31 0.65 25 0.69 14 0.46

4 1 2e4 52 0.80 40 0.74 87 0.87 48 0.77 39 0.76 23 0.60
3 2e5 27 0.68 26 0.60 66 0.84 41 0.72 28 0.70 23 0.60
6 1e6 26 0.66 24 0.57 68 0.84 38 0.70 29 0.72 20 0.58
9 2e5 26 0.67 21 0.53 70 0.84 33 0.67 28 0.72 18 0.55

5 1 1e5 56 0.81 43 0.75 97 0.88 52 0.78 40 0.76 25 0.63
3 1e6 32 0.73 28 0.61 72 0.85 44 0.74 30 0.72 27 0.65
6 3e6 29 0.71 26 0.58 78 0.86 42 0.72 31 0.74 25 0.63
9 6e6 29 0.71 24 0.56 84 0.86 38 0.71 30 0.74 21 0.59

iterations appears if more smoothing steps are employed, which will be explored be-
low. Another observation is that the number of iterations depends on the number
of mesh levels J , in accordance with the theoretical result of section 7, even though
rather mildly.

The behavior of the contraction factor in each iteration in Figures 3--5 appears
quite different. This seems to be related partly to the smoothness of the problem and
partly to the choice of the damping weights. We explore this in more detail in Figure 6
by using different choices of the weights and number of postsmoothing steps \nu . In
particular the degradation of the contraction factors observed in Figure 3 disappears
when employing more smoothing steps.
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Fig. 6. Sine problem (6.1), ``small"" patches, p\prime = p: study of the contraction factor behavior
with respect to the number of postsmoothing steps and damping weights for the solver (4.6).

6.2. Performance of the weighted restrictive additive Schwarz (wRAS)
construction of the solver. As observed in the literature, replacing the damp-
ing with parameter w1 in (3.7) by hat function weighting via a restrictive additive
Schwarz often performs better; cf. Cai and Sarkis [15], Efstathiou and Gander [19],
and Loisel, Nabben, and Szyld [31]. Thus, in addition to the dAS construction (6.6),
we now numerically also explore the weighted restricted additive Schwarz (wRAS)
construction of the lifting \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}:

wRAS: \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} :=

J\sum 
j=0

\rho ij and \rho ij :=
\sum 

\bfa \in \scrV j - s

\scrI q
j (\psi 

\bfa 
j - s\rho 

i
j,\bfa ), 1 \leq j \leq J,(6.7)

(\nabla \rho ij,\bfa ,\nabla vj,\bfa )\omega \bfa 
j,s

= (f, vj,\bfa )\omega \bfa 
j,s

 - (\nabla uiJ ,\nabla vj,\bfa )\omega \bfa 
j,s

 - 
j - 1\sum 
k=0

(\nabla \rho ik,\nabla vj,\bfa )\omega \bfa 
j,s

with q = p\prime except for j = J where q = p, we denote by \scrI q
j the \BbbP q Lagrange interpo-

lation operator on the mesh level j, i.e., \scrI q
j : C0(\Omega ) \rightarrow V q

j , \scrI 
q
j (v) preserves the values

of v in the nodes corresponding to the Lagrange degrees of freedom. No damping
weights are to be chosen here.

We summarize the results obtained for each of the problems (6.1)--(6.3) in Table 2.
In addition to one postsmoothing step, \nu = 1, we also present the results for \nu = 3
postsmoothing steps. In both cases, no presmoothing has been employed. In the last
two columns for each problem, we present a comparison of our solver of Definition 4.4
employing (6.7) with two standard smoothers for multigrid, namely, the Jacobi (J)
and the Gauss--Seidel (GS) ones. Here, we employ no presmoothing step, one post-
smoothing step, and a coarse solve with polynomials of order 1 as in (3.3) to compare
with our approach.

The results using the wRAS (6.7) construction of the lifting indicate an improve-
ment in the error contraction factors with respect to dAS (6.6) of section 6.1 and,
moreover, present a complete numerical independence of the number of levels J . Fur-
thermore, the iteration numbers drop by at least half when three postsmoothing steps
are employed. In contrast to these results, we see that the multigrid with standard
smoothers degrades violently with respect to the polynomial degree p. Note in this
respect that for p = 1, the only difference between wRAS of (6.7) with small patches
and \nu = 1 and standard Jacobi lies in the optimally chosen step-size of Lemma 4.3.
This gives a spectacular gain in the number of iterations and makes the method
convergent even when the standard Jacobi fails.
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Table 2
Number of iterations needed to reach the stopping criterion (6.4): wRAS construction (6.7),

problems (6.1)--(6.3), p\prime = p in (2.10a), ``small"" and ``large"" patches, \nu postsmoothing steps, and
standard multigrid method with piecewise affine coarse solve (3.3), initialized by the coarse grid so-
lution, no presmoothing, one postsmoothing step, and Jacobi (J) and Gauss--Seidel (GS) smoothers.

Sine problem (6.1) Peak problem (6.2) L-shape problem (6.3)
wRAS MG wRAS MG wRAS MG

``small"" ``large"" \nu =1 ``small"" ``large"" \nu =1 ``small"" ``large"" \nu =1
J p \nu =1 \nu =3 \nu =1 \nu =3 J GS \nu =1 \nu =3 \nu =1 \nu =3 J GS \nu =1 \nu =3 \nu =1 \nu =3 J GS
3 1 21 10 9 4 - 10 19 9 9 4 68 8 17 9 8 4 44 9

3 15 5 6 3 - 81 15 6 6 3 - 70 12 4 5 3 - 49
6 13 5 6 3 - 470 14 6 6 3 - 462 10 4 5 2 - 228
9 13 5 6 3 - +600 14 6 5 3 - +600 10 4 5 2 - 586

4 1 23 11 9 4 - 11 20 9 9 4 - 10 18 9 8 4 - 9
3 15 5 6 3 - 81 15 6 5 3 - 79 12 4 5 3 - 42
6 13 5 6 3 - 468 14 6 5 3 - 460 10 4 5 2 - 186
9 13 5 5 3 - +600 14 6 5 3 - +600 9 4 5 2 - 454

5 1 22 11 9 4 - 11 20 11 9 4 - 11 17 9 8 4 - 8
3 15 5 6 3 - 81 15 6 5 3 - 80 12 4 5 3 - 35
6 13 5 6 3 - 470 14 6 5 3 - 461 9 4 5 2 - 147
9 13 5 5 3 - +600 13 6 5 3 - +600 8 3 4 2 - 333

6.3. Comparison with other multilevel solvers. Some recent comparisons
of state-of-the-art solvers for Poisson problems with multigrid methods in the high-
order setting include Gholami et al. [22], Sundar, Stadler, and Biros [46], and Kron-
bichler and Wall [30]. In [46], it was in particular reported that none of the methods
considered behaves fully independently of the polynomial degree. In this subsection,
we compare our developments with four well-established methods. We focus on the
number of iterations, but we also indicate CPU times of our vectorized MATLAB
implementation,1 trusting the reader to understand the trickiness inherent in such
implementation- and machine-dependent measurements. The timings below involve
the solution time only; i.e., they do not include the assembly time of the matrices.
The methods we consider for the comparison are as follows:
wRAS, \bfitnu = 1 (\sim MG(0,1)-bJ): Definition 4.4, small patches, p\prime =p in (2.10a) (to

illustrate the associated space hierarchy, we write ``1, p\rightarrow p""), wRAS con-
struction (6.7).

wRAS, \bfitnu = 3 (\sim MG(0,3)-bJ): Definition 4.4, small patches, p\prime = p in (2.10a)
(``1, p\rightarrow p""), wRAS construction (6.7), three postsmoothing steps employed.

wRAS, \bfitnu = 1 (\sim MG(0,1)-bJ): Definition 4.4, small patches, p\prime = 1 in (2.10a)
(``1 \rightarrow 1, p""), wRAS construction (6.7).

wRAS, \bfitnu = 3 (\sim MG(0,3)-bJ): Definition 4.4, small patches, p\prime = 1 in (2.10a)
(``1 \rightarrow 1, p""), wRAS construction (6.7), three postsmoothing steps employed.

PCG(MG(3,3)-bJ): Preconditioned conjugate gradient solver; the preconditioner
is multigrid V-cycle(3,3) with weighted restrictive additive Schwarz (block
Jacobi) smoother associated to small patches; the space hierarchy relies on
order p discretization, including the coarsest space (``p \rightarrow p""); the iterations
start with the zero vector. This choice of solver is motivated by Antonietti
and Pennesi [2], adapted to the conforming finite elements setting.

1The codes were prepared to benefit as much as possible from MATLAB's fast operations on
matrices and vectors. The experiments were run on one Dell C6220 dual-Xeon E5-2650 node of Inria
Sophia Antipolis - M\'editerran\'ee ``NEF"" computation cluster, in a sequential MATLAB script.
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Table 3
Comparison of various multilevel solvers (described in section 6.3) for the L-shape case (6.3).

is is the number of iterations to reach the stopping criterion (6.4).

wRAS wRAS wRAS wRAS PCG(MG MG(1,1)- MG(0,1)- MG(0,3)- MG(3,3)-
\nu = 1 \nu = 3 \nu = 1 \nu = 3 (3,3)-bJ) PCG(iChol) bGS bGS GS

1, p \rightarrow p 1, p \rightarrow p 1 \rightarrow 1, p 1 \rightarrow 1, p p \rightarrow p 1 \nearrow p 1 \rightarrow 1, p 1 \rightarrow 1, p 1 \nearrow p
J p is time is time is time is time is time is time is time is time is time
3 1 17 0.0 s 9 0.0 s 17 0.0 s 9 0.0 s 7 0.0 s 4 0.0 s 9 0.0 s 4 0.0 s 3 0.0 s

3 12 0.2 s 4 0.1 s 18 0.2 s 6 0.1 s 3 0.2 s 14 0.6 s 8 0.6 s 4 0.8 s 4 0.1 s
6 10 1.8 s 4 1.7 s 15 1.9 s 6 2.0 s 2 2.0 s 21 8.6 s 7 1.8 s 4 2.7 s 9 1.5 s
9 10 9.9 s 4 10.2 s 14 9.7 s 6 11.2 s 2 10.1 s 63 1.2m 6 6.9 s 3 8.7 s 9 5.3 s

4 1 18 0.0 s 9 0.0 s 18 0.0 s 9 0.0 s 8 0.1 s 7 0.1 s 9 0.0 s 4 0.0 s 3 0.0 s
3 12 0.8 s 4 0.6 s 18 0.8 s 6 0.6 s 3 0.7 s 29 5.6 s 8 2.4 s 4 3.4 s 4 0.3 s
6 10 7.3 s 4 7.4 s 15 7.8 s 6 7.9 s 3 10.9 s 49 1.2 m 7 8.6 s 3 9.4 s 5 3.5 s
9 9 34.7 s 4 40.7 s 13 37.2 s 5 37.4 s 2 39.3 s 167 12.5m 6 28.3 s 3 36.7 s 8 20.7 s

5 1 17 0.1 s 9 0.1 s 17 0.1 s 9 0.1 s 8 0.2 s 19 1.2 s 8 0.1 s 4 0.1 s 3 0.1 s
3 12 3.2 s 4 2.3 s 17 3.4 s 6 2.6 s 3 3.1 s 77 57.7 s 8 10.7 s 4 15.7 s 4 1.5 s
6 9 27.6 s 4 30.3 s 14 32.0 s 6 33.8 s 3 45.6 s 129 11.6m 7 30.8 s 3 33.7 s 4 12.8 s
9 8 2.3m 3 2.1m 12 2.3m 5 2.5m 2 3.1m +200 +1.0 h 6 2.2m 3 2.7m 8 1.3m

MG(1,1)-PCG(iChol): Multigrid solver V-cycle(1,1); the smoother is PCG with
incomplete zero level fill-in Cholesky preconditioner; the space hierarchy is of
increasing order: from order 1 for the coarsest level to order p for the finest
level (``1 \nearrow p""); the iterations start with the zero vector. This choice of solver
is motivated by Botti, Colombo, and Bassi [10], adapted for a symmetric
setting.

MG(0,1)-bGS: Multigrid solver V-cycle(0,1); the smoother is block Gauss--Seidel
associated to small patches; the space hierarchy consists of order 1 for all
levels except the finest level, which is of order p (``1 \rightarrow 1, p""), i.e., as in (2.10a)
with p\prime =1; the iterations start with the zero vector. This choice of the solver
is motivated by NGSolve [43]; however, the multigrid is used here as a solver
instead of a preconditioner.

MG(0,3)-bGS: Multigrid solver analogous to MG(0,1)-bGS, where now three post-
smoothing steps are employed.

MG(3,3)-GS: Multigrid solver V-cycle(3,3); the smoother is standard Gauss--Seidel;
the space hierarchy is of increasing order: from order 1 for coarse level to order
p for the finest level (``1 \nearrow p""); the iterations start with the zero vector.

As one can see from Table 3, the presented methods split into two groups: numeri-
cally p-robust (wRAS, PCG(MG-bJ), MG-bGS) and not (MG-PCG(iChol), MG-GS).
Note that the choice of three pre- and three postsmoothing steps makes every itera-
tion of the methods PCG(MG(3,3)-bJ) and MG(3,3)-GS considerably more expensive
than those of the methods wRAS and MG-bGS with \nu = 1, where the minimalist (0,1)
choice is sufficient. The variants wRAS and MG-bGS with \nu = 3 are also cheaper.
In addition, in PCG(MG(3,3)-bJ), the coarse grid correction is more expensive as it
uses order p approximations. The inversion of the Jacobi blocks in PCG(MG(3,3)-
bJ) on the finest level J corresponds to solving the patch problems of order p as
in (3.8), so that its cost is the same as for the local problems of wRAS. As for
MG(1,1)-PCG(iChol), we find the method to be quite satisfactory for lower-order ap-
proximations and small J , but as soon as p and J increase, the number of iterations
degrades considerably. In contrast to wRAS, MG-bGS is a multiplicative Schwarz
method and is thus less suitable for parallelization. Finally, the classical MG(3,3)-GS
is a combination of h- and p-multigrid and gives the best timings in our experiments.
The numbers of pre- and postsmoothing steps, however, remain parameters, and their
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tuning might not be straightforward in order to get an efficient and numerically robust
multigrid solver in general (cf. the poor results of the very similar---up to the differ-
ent number of pre- and postsmoothing steps and a stronger hierarchy---MG(0,1)-GS
version in Table 2). The Gauss--Seidel smoother used therein again makes the method
harder to parallelize.

7. Proofs of the main results. As shown in Corollary 5.4, the results of The-
orems 5.1 and 5.3 are equivalent. Therefore it suffices to prove the first one. Our
approach to proving Theorem 5.1 consists in studying the uncomputable exact resid-
ual lifting \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} given by (3.1) and its approximation \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} given by Definition 3.2.

In particular, we will estimate p-robustly the quantities \| \nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| , \| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| , and

(f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) by local contributions \rho ij,\bfa of (3.8) used to construct \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g},
and we show that

(f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g})
\| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 

\geq \beta \| \nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| when \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} \not = 0,

\~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} = 0 when \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} = 0,

which also establishes Corollary 5.5.

7.1. Upper bound on \| \bfnabla \bfitrho \bfiti 
\bfitJ ,\bfa \bfl \bfg \| . We present here properties of the construc-

ted residual lifting \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} and its levelwise components \rho ij , where 1 \leq j \leq J .

Lemma 7.1 (estimate on \| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| and \| \nabla \rho ij\| by patchwise contributions). Let

\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} and \rho ij for j \in \{ 1, . . . , J\} be given by Definition 3.2. Then

\| \nabla \rho ij\| 2 \leq 
d+ 1

w2
1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s
,(7.1)

\| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 2 \leq C2
\mathrm{m}\mathrm{a}\mathrm{x}(w1)

\biggl( 
\| \nabla \rho i0\| 2 +

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

\biggr) 
,(7.2)

where

2 \leq C2
\mathrm{m}\mathrm{a}\mathrm{x}(w1) := 2max

\biggl( 
1,
J(d+ 1)

w2
1

\biggr) 
\leq 2J(d+ 1).(7.3)

Proof. Definition 3.2 and inequality | 
\sum d+1

k=1 ak| 2 \leq (d+ 1)
\sum d+1

k=1 | ak| 2 lead to

\| \nabla \rho ij\| 2 =
\sum 

K\in \scrT j - s

\| \nabla \rho ij\| 2K =
\sum 

K\in \scrT j - s

\bigm\| \bigm\| \bigm\| \bigm\| 1

w1

\sum 
\bfa \in \scrV K

\nabla \rho ij,\bfa 
\bigm\| \bigm\| \bigm\| \bigm\| 2
K

\leq 
d+ 1

w2
1

\sum 
K\in \scrT j - s

\sum 
\bfa \in \scrV K

\| \nabla \rho ij,\bfa \| 2K =
d+ 1

w2
1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s
.

Note that this allows us to write\bigm\| \bigm\| \bigm\| \bigm\| J\sum 
j=1

\nabla \rho ij
\bigm\| \bigm\| \bigm\| \bigm\| 2 \leq J

J\sum 
j=1

\| \nabla \rho ij\| 2 \leq 
J(d+ 1)

w2
1

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s
.(7.4)
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This property, together with some simple manipulations, gives the second estimate:

\| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 2 \leq 2\| \nabla \rho i0\| 2 + 2

\bigm\| \bigm\| \bigm\| \bigm\| J\sum 
j=1

\nabla \rho ij
\bigm\| \bigm\| \bigm\| \bigm\| 2 (7.4)

\leq 2\| \nabla \rho i0\| 2 +
2J(d+ 1)

w2
1

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

\leq 2max

\biggl( 
1,
J(d+ 1)

w2
1

\biggr) \biggl( 
\| \nabla \rho i0\| 2 +

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

\biggr) 
.

The bounds (7.3) on C2
\mathrm{m}\mathrm{a}\mathrm{x}(w1) are easily obtained by using w1 \geq 1 requested in

Definition 3.2.

7.2. Lower bound on (\bfitf , \bfitrho \bfiti 
\bfitJ ,\bfa \bfl \bfg ) - (\bfnabla \bfitu \bfiti 

\bfitJ ,\bfnabla \bfitrho \bfiti 
\bfitJ ,\bfa \bfl \bfg ). While studying the term

(f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g})  - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}), the interaction of different level contributions \rho ij of the

lifting \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} arises naturally. In order to estimate these terms, the damping parameters
w1, w2 used in the construction (3.7) of our lifting prove to be essential.

Lemma 7.2 (estimate on (f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) from below by patchwise con-

tributions). Let \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} be given by Definition 3.2. Then

(f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) \geq C2
\mathrm{m}\mathrm{i}\mathrm{n}(w1, w2)

\left(  \| \nabla \rho i0\| 2 +
J\sum 

j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

\right)  ,(7.5)

where

1

6J(d+ 1)
\leq C2

\mathrm{m}\mathrm{i}\mathrm{n}(w1, w2) := min

\Biggl( 
1

4
,

1

w1
 - 
J(1 + 2

3w2
)(d+ 1)

2w2w2
1

\Biggr) 
\leq 

1

4
.(7.6)

Proof. We begin by using the construction of \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} given in Definition 3.2 to write

(f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) = (f, \rho i0) - (\nabla uiJ ,\nabla \rho i0) +
J\sum 

j=1

\Bigl( 
(f, \rho ij) - (\nabla uiJ ,\nabla \rho ij)

\Bigr) 
(3.3)
(3.7)
= \| \nabla \rho i0\| 2 +

1

w1

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\Bigl( 
(f, \rho ij,\bfa )\omega \bfa 

j,s
 - (\nabla uiJ ,\nabla \rho ij,\bfa )\omega \bfa 

j,s

\Bigr) 
(3.8)
= \| \nabla \rho i0\| 2 +

1

w1

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\Biggl( 
\| \nabla \rho ij,\bfa \| 2\omega \bfa 

j,s
+

1

w2

j - 1\sum 
k=0

(\nabla \rho ik,\nabla \rho ij,\bfa )\omega \bfa 
j,s

\Biggr) 

(3.7)
= \| \nabla \rho i0\| 2 +

1

w1

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

+
1

w2

J\sum 
j=1

j - 1\sum 
k=0

(\nabla \rho ik,\nabla \rho ij).

The first two terms above are of the right form to prove the result, but one needs to
be a bit more careful with the third one. We estimate it using Young's inequality and
the sum interchange

\sum J
j=2

\sum j - 1
k=1 =

\sum J - 1
k=1

\sum J
j=k+1; Young's parameter \mu is picked
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p-ROBUST ALGEBRAIC ERROR ESTIMATOR AND SOLVER 2875

later to control the dependence on J of the final estimate. We have

1

w2

J\sum 
j=1

j - 1\sum 
k=0

(\nabla \rho ik,\nabla \rho ij) =
1

w2

\left(  J\sum 
j=2

j - 1\sum 
k=1

(\nabla \rho ik,\nabla \rho ij) +
J\sum 

j=1

(\nabla \rho i0,\nabla \rho ij)

\right)  
\geq 

1

w2

J\sum 
j=2

j - 1\sum 
k=1

\Biggl( 
 - 
1

2
\| \nabla \rho ik\| 2  - 

1

2
\| \nabla \rho ij\| 2

\Biggr) 
+

1

w2

J\sum 
j=1

\Biggl( 
 - 

1

2\mu 
\| \nabla \rho i0\| 2  - 

\mu 

2
\| \nabla \rho ij\| 2

\Biggr) 

=  - 
1

2w2

J\sum 
j=1

(J  - j)\| \nabla \rho ij\| 2 - 
1

2w2

J\sum 
j=1

(j  - 1)\| \nabla \rho ij\| 2 - 
J

2\mu w2
\| \nabla \rho i0\| 2 - 

\mu 

2w2

J\sum 
j=1

\| \nabla \rho ij\| 2,

where we added the terms in the sum corresponding to k = J and j = 1 since they
are zero, and then renamed the summation index when there is no confusion. Picking
Young's inequality parameter \mu = 2J

3w2
, a few more manipulations on the right-hand

side give us

1

w2

J\sum 
j=1

j - 1\sum 
k=0

(\nabla \rho ik,\nabla \rho ij) \geq  - 
3

4
\| \nabla \rho i0\| 2  - 

J  - 1 + 2J
3w2

2w2

J\sum 
j=1

\| \nabla \rho ij\| 2

(7.1)

\geq  - 
3

4
\| \nabla \rho i0\| 2  - 

J(1 + 2
3w2

)(d+ 1)

2w2w2
1

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s
.

We return to the main estimate and obtain the result by using definition (7.6):

(f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g})\geq 
1

4
\| \nabla \rho i0\| 2+

\Biggl( 
1

w1
 - 
J(1 + 2

3w2
)(d+ 1)

2w2w2
1

\Biggr) 
J\sum 

j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

(7.6)

\geq C2
\mathrm{m}\mathrm{i}\mathrm{n}(w1, w2)

\left(  \| \nabla \rho i0\| 2 +
J\sum 

j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

\right)  .(7.7)

The upper bound on C2
\mathrm{m}\mathrm{i}\mathrm{n}(w1, w2) in (7.6) is immediate due to the minimum in

its expression, while the lower bound is obtained by rewriting condition (3.5) on w2:

w2 \geq 5J2(d+ 1)2

w16J(d+ 1)
\bigl( 
1 - w1

6J(d+1)

\bigr) \leftrightarrow 1

w1
 - 5

6

J(d+ 1)

w2w2
1

\geq 1

6J(d+ 1)
.(7.8)

Since also w2 \geq 1,

1

w1
 - 
J(1 + 2

3w2
)(d+ 1)

2w2w2
1

\geq 
1

w1
 - 
J(1 + 2

3 )(d+ 1)

2w2w2
1

=
1

w1
 - 

5

6

J(d+ 1)

w2w2
1

(7.8)

\geq 1

6J(d+ 1)
.

7.3. Polynomial-degree-robust multilevel stable decomposition. Now,
we devise a p-robust multilevel stable decomposition. This decomposition relies on the
one level p-robust stable decomposition given in Sch\"oberl et al. [44, Proof of Theorem
2.1] and the piecewise affine multilevel decomposition in the spirit of Xu, Chen, and
Nochetto [50, Theorems 3.1 and 4.3]. These results are presented below in the form of
lemmas. Note that in the decomposition, only ``small"" patches are used, which will be
sufficient for our purposes. Recall also the definition of the local spaces (2.12), which
will be useful below. Hereafter, we always assume that Assumption 2.1 is satisfied.

By [44, Proof of Theorem 2.1], we have the following.
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2876 ANI MIRA\c CI, JAN PAPE\v Z, AND MARTIN VOHRAL\'IK

Lemma 7.3 (one-level p-robust stable decomposition). For all vJ \in V p
J , there ex-

ists a finest-level decomposition vJ =v
\#
J +

\sum 
\bfb \in \scrV J

vpJ,\bfb , where v
\#
J \in V 1

J and vpJ,\bfb \in V \bfb 
J,0,

b \in \scrV J , and this decomposition is stable in the sense that

(7.9) \| \nabla v\#J \| 2 +
\sum 
\bfb \in \scrV J

\| \nabla vpJ,\bfb \| 
2
\omega \bfb 

J,0
\leq C2

\mathrm{S}\mathrm{D}\| \nabla vJ\| 2,

where C\mathrm{S}\mathrm{D} \geq 1 only depends on the mesh shape regularity parameter \kappa \scrT and space
dimension d.

Similarly to [50, Lemma 3.1 and Theorem 3.1], in the case of quasi-uniform meshes
with bounded refinement strength, we have the following.

Lemma 7.4 (\BbbP 1-multilevel stable decomposition for quasi-uniform meshes). For

all v\#J \in V 1
J , there exists a multilevel piecewise affine decomposition v\#J = v10 +\sum J

j=1

\sum 
\bfb \in \scrV j

v1j,\bfb with v10 \in V 1
0 and v1j,\bfb \in V \bfb 

j,0 = \BbbP 1(\scrT \bfb 
j,0) \cap H1

0 (\omega 
\bfb 
j,0). Under As-

sumption 2.2, this decomposition is stable as

\| \nabla v10\| 2 +
J\sum 

j=1

\sum 
\bfb \in \scrV j

\| \nabla v1j,\bfb \| 2\omega \bfb 
j,0

\leq C2
\mathrm{M}\mathrm{D}\| \nabla v

\#
J \| 2,(7.10)

where C\mathrm{M}\mathrm{D} \geq 1 only depends on the space dimension d, the mesh shape regularity
parameter \kappa \scrT , the maximum strength of refinement parameter C\mathrm{r}\mathrm{e}\mathrm{f} , and the quasi-
uniformity parameter C\mathrm{q}\mathrm{u}.

Proof. Let v\#J \in V 1
J . We first apply levelwise decomposition that follows from

Xu, Chen, and Nochetto in [50, Lemma 3.1] by keeping the gradient on level zero.

This gives us v\#J =
\sum J

j=0 v
1
j with v1j \in V 1

j such that

\| \nabla v10\| 2 +
J\sum 

j=1

h - 2
j \| v1j \| 2 \leq C2

\mathrm{m}\mathrm{l}\| \nabla v
\#
J \| 2,(7.11)

where C\mathrm{m}\mathrm{l} \geq 1 has the same dependencies as C\mathrm{M}\mathrm{D}.
We further decompose each of the above v1j \in V 1

j , j \geq 1, into patchwise compo-

nents. For this purpose, we use the standard nodal decomposition v1j =
\sum 

\bfb \in \scrV j
v1j,\bfb ,

where v1j,\bfb = v1j (b)\psi j,\bfb belongs to the local space V \bfb 
j,0 for p = p\prime = 1. By stability of

the \BbbP 1 nodal decomposition, \sum 
\bfb \in \scrV j

\| v1j,\bfb \| 2\omega \bfb 
j,0

\leq C2
\mathrm{n}\mathrm{d}\| v1j \| 2,(7.12)

where C\mathrm{n}\mathrm{d} only depends on the space dimension d and the mesh shape regularity
parameter \kappa \scrT . This can, for instance, be shown by considering a patch \omega \bfb 

j,0 and an

element K contained in the patch. Since v1j,\bfb = v1j (b)\psi j,\bfb \in V \bfb 
j,0 and by equivalence

of norms in finite dimension, we have

\| v1j (b)\psi j,\bfb \| \omega \bfb 
j,0

\approx \| v1j (b)\psi j,\bfb \| K \leq \| v1j (b)\psi j,\bfb \| \infty ,K | K| 12

\leq 
\bigm\| \bigm\| \bigm\| \sum 

\bfb \in \scrV K

v1j (b)\psi j,\bfb 

\bigm\| \bigm\| \bigm\| 
\infty ,K

| K| 12 = \| v1j \| \infty ,K | K| 12 \lesssim \| v1j \| K .(7.13)

The result (7.12) is obtained by summing both sides over all vertices.
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Now, the claim (7.10) follows by using an inverse inequality on patches, the quasi-
uniformity of the meshes, and the above decompositions as

J\sum 
j=1

\sum 
\bfb \in \scrV j

\| \nabla v1j,\bfb \| 2\omega \bfb 
j,0

\leq C2
\mathrm{i}\mathrm{n}\mathrm{v}

J\sum 
j=1

\sum 
\bfb \in \scrV j

h - 2
\omega \bfb 

j,0

\| v1j,\bfb \| 2\omega \bfb 
j,0

(2.8)

\leq C2
\mathrm{i}\mathrm{n}\mathrm{v}C

 - 2
\mathrm{q}\mathrm{u}

J\sum 
j=1

h - 2
j

\sum 
\bfb \in \scrV j

\| v1j,\bfb \| 2\omega \bfb 
j,0

(7.12)

\leq C2
\mathrm{i}\mathrm{n}\mathrm{v}C

 - 2
\mathrm{q}\mathrm{u} C

2
\mathrm{n}\mathrm{d}

J\sum 
j=1

h - 2
j \| v1j \| 2

(7.11)

\leq C2
\mathrm{i}\mathrm{n}\mathrm{v}C

 - 2
\mathrm{q}\mathrm{u} C

2
\mathrm{n}\mathrm{d}C

2
\mathrm{m}\mathrm{l}\| \nabla v

\#
J \| 2

and by summing the left-hand side with \| \nabla v10\| 2, which satisfies a similar bound from
(7.11). We set C2

\mathrm{M}\mathrm{D} := C2
\mathrm{i}\mathrm{n}\mathrm{v}C

 - 2
\mathrm{q}\mathrm{u} C

2
\mathrm{n}\mathrm{d}C

2
\mathrm{m}\mathrm{l} + C2

\mathrm{m}\mathrm{l} to obtain the result.

By [50, Theorem 4.3], in the case of graded meshes, we have the following.

Lemma 7.5 (\BbbP 1-multilevel stable decomposition for graded meshes). For all v\#J \in 
V 1
J , there exists a multilevel piecewise affine decomposition v\#J = v10+

\sum J
j=1

\sum 
\bfb \in \scrV j

v1j,\bfb 
with v10 \in V 1

0 and v1j,\bfb \in V \bfb 
j,0 = \BbbP 1(\scrT \bfb 

j,0) \cap H1
0 (\omega 

\bfb 
j,0). Under Assumption 2.3, this

decomposition is stable as

\| \nabla v10\| 2 +
J\sum 

j=1

\sum 
\bfb \in \scrV j

\| \nabla v1j,\bfb \| 2\omega \bfb 
j,0

\leq C2
\mathrm{M}\mathrm{D}\| \nabla v

\#
J \| 2,(7.14)

where C\mathrm{M}\mathrm{D} \geq 1 only depends on the space dimension d, the mesh shape regularity
parameter \kappa \scrT , the coarse mesh quasi-uniformity parameter C0

\mathrm{q}\mathrm{u}, and the local quasi-

uniformity parameter C \mathrm{l}\mathrm{o}\mathrm{c}
\mathrm{q}\mathrm{u} .

Proof. Let v\#J \in V 1
J . We apply the results on stable decomposition on graded

meshes of Xu, Chen, and Nochetto in [50, Theorem 4.3]. On the one hand, this gives
us the decomposition

v\#J = v10 +

J\sum 
j=1

\sum 
\bfb \in \scrB j

v1j,\bfb +
\sum 
\bfb \in \scrV J

v1J,\bfb ,

where v10 \in V 1
0 , \forall b \in \scrB j , v

1
j,\bfb \in V \bfb 

j,0 for p = p\prime = 1, and \forall b \in \scrB J , v
1
J,\bfb \in V \bfb 

J,0 for
p = 1. On the other hand, the result also gives us the following stability inequality:

\| \nabla v10\| 2 +
J\sum 

j=1

h - 2
\scrB j

\bigm\| \bigm\| \bigm\| \bigm\| \sum 
\bfb \in \scrB j

v1j,\bfb 

\bigm\| \bigm\| \bigm\| \bigm\| 2 + \sum 
\bfb \in \scrV J

h - 2
\omega \bfb 

J,0

\| v1J,\bfb \| 2\omega \bfb 
J,0

\leq C2
\mathrm{g}\mathrm{r}\mathrm{a}\| \nabla v

\#
J \| 2,(7.15)

where C\mathrm{g}\mathrm{r}\mathrm{a} has the same dependencies as C\mathrm{M}\mathrm{D}.
First, since the mesh hierarchy is created via bisections, we have the local quasi-

uniformity property (2.9). This, together with an inverse inequality and L2-stability
as in (7.13), gives us

J\sum 
j=1

\sum 
\bfb \in \scrB j

\| \nabla v1j,\bfb \| 2\omega \bfb 
j,0
\leq C2

\mathrm{i}\mathrm{n}\mathrm{v}

J\sum 
j=1

\sum 
\bfb \in \scrB j

h - 2
\omega \bfb 

j,0

\| v1j,\bfb \| 2\omega \bfb 
j,0

(2.9)

\leq C2
\mathrm{i}\mathrm{n}\mathrm{v}(C

\mathrm{l}\mathrm{o}\mathrm{c}
\mathrm{q}\mathrm{u} )

 - 2C2
\mathrm{n}\mathrm{d}

J\sum 
j=1

h - 2
\scrB j

\bigm\| \bigm\| \bigm\| \bigm\| \sum 
\bfb \in \scrB j

v1j,\bfb 

\bigm\| \bigm\| \bigm\| \bigm\| 2.
Second, we only need an inverse inequality to obtain\sum 

\bfb \in \scrV J

\| \nabla v1J,\bfb \| 2\omega \bfb 
J,0

\leq C2
\mathrm{i}\mathrm{n}\mathrm{v}

\sum 
\bfb \in \scrV J

h - 2
\omega \bfb 

J,0

\| v1J,\bfb \| 2\omega \bfb 
J,0
.
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Third, we can sum together the above estimations and use (7.15) to obtain

\| \nabla v10\| 2 +
J\sum 

j=1

\sum 
\bfb \in \scrB j

\| \nabla v1j,\bfb \| 2\omega \bfb 
j,0

+
\sum 
\bfb \in \scrV J

\| \nabla v1J,\bfb \| 2\omega \bfb 
J,0

\leq C2
\mathrm{M}\mathrm{D}\| \nabla v

\#
J \| 2,

where C\mathrm{M}\mathrm{D} := C\mathrm{g}\mathrm{r}\mathrm{a} \cdot max(C\mathrm{i}\mathrm{n}\mathrm{v}, C\mathrm{i}\mathrm{n}\mathrm{v}C\mathrm{n}\mathrm{d}(C
\mathrm{l}\mathrm{o}\mathrm{c}
\mathrm{q}\mathrm{u} )

 - 1, 1). Finally, since \scrB j \subset \scrV j , we can

set v1j,\bfb :=0 for b \in \scrV j \setminus \scrB j and have a new decomposition v\#J =v10 +
\sum J

j=1

\sum 
\bfb \in \scrV j

v1j,\bfb 
(reusing the notation) such that (7.14) holds.

Proposition 7.6 (p-robust multilevel stable decomposition). Let vJ \in V p
J . Un-

der either Assumption 2.2 or 2.3, there exists a decomposition

vJ = v10 +

J\sum 
j=1

\sum 
\bfb \in \scrV j

vj,\bfb , v10 \in V 1
0 , vj,\bfb \in V \bfb 

j,0,(7.16)

stable as

\| \nabla v10\| 2 +
J\sum 

j=1

\sum 
\bfb \in \scrV j

\| \nabla vj,\bfb \| 2\omega \bfb 
j,0

\leq C2
\mathrm{S}\mathrm{M}\mathrm{D}\| \nabla vJ\| 2,(7.17)

where C\mathrm{S}\mathrm{M}\mathrm{D} :=
\surd 
2C\mathrm{S}\mathrm{D}C\mathrm{M}\mathrm{D} \geq 1 only depends on the space dimension d, the mesh

shape regularity parameter \kappa \scrT , and, depending on whether Assumption 2.2 or 2.3 is
satisfied, on either the quasi-uniformity parameter C\mathrm{q}\mathrm{u} and the maximum strength of
refinement parameter C\mathrm{r}\mathrm{e}\mathrm{f} or the coarse mesh and local quasi-uniformity parameters
C0

\mathrm{q}\mathrm{u},C
\mathrm{l}\mathrm{o}\mathrm{c}
\mathrm{q}\mathrm{u} , respectively.

Proof. Let vJ \in V p
J , and let us begin by applying the decomposition of Lemma 7.3.

This gives vJ = v\#J +
\sum 

\bfb \in \scrV J
vpJ,\bfb with v\#J \in V 1

J and vpJ,\bfb \in V \bfb 
J,0 \forall b \in \scrV J . Then we

further decompose v\#J using either Lemma 7.4 or 7.5, depending on whether Assump-

tion 2.2 or 2.3 is satisfied. We obtain v\#J = v10 +
\sum J

j=1

\sum 
\bfb \in \scrV j

v1j,\bfb , where v
1
0 \in V 1

0 and

v1j,\bfb \in V \bfb 
j,0 (actually V \bfb 

j,0 \cap \BbbP 1(\scrT \bfb 
j,0)). We set vj,\bfb := v1j,\bfb \forall b \in \scrV j , j \in \{ 0, . . . , J  - 1\} 

and vJ,\bfb := v1J,\bfb + vpJ,\bfb . Thus, we have vJ = v10 +
\sum J

j=1

\sum 
\bfb \in \scrV j

vj,\bfb with v10 \in V 1
0 and

vj,\bfb \in V \bfb 
j,0. The stable decomposition results presented in the previous lemmas allow

us to write

\| \nabla v10\| 2 +
J\sum 

j=1

\sum 
\bfb \in \scrV j

\| \nabla vj,\bfb \| 2\omega \bfb 
j,0

\leq 2

\left(  \| \nabla v10\| 2+
J\sum 

j=1

\sum 
\bfb \in \scrV j

\| \nabla v1j,\bfb \| 2\omega \bfb 
j,0

+
\sum 
\bfb \in \scrV J

\| \nabla vpJ,\bfb \| 
2
\omega \bfb 

J,0

\right)  
(7.10) \mathrm{o}\mathrm{r} (7.14)

\leq 2C2
\mathrm{M}\mathrm{D}

\Biggl( 
\| \nabla v\#J \| 2 +

\sum 
\bfb \in \scrV J

\| \nabla vpJ,\bfb \| 
2
\omega \bfb 

J,0

\Biggr) 
(7.9)

\leq 2C2
\mathrm{S}\mathrm{D}C

2
\mathrm{M}\mathrm{D}\| \nabla vJ\| 2.

7.4. Upper bound on \| \bfnabla \~\bfitrho \bfiti 
\bfitJ ,\bfa \bfl \bfg \| . Recall that \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}, introduced in (3.1), is

the unknown exact algebraic error. We now estimate \| \nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| from above. We
introduce some helpful notation first. For all a \in \scrV j - s, let \scrI \bfa \subset \scrV j be a set containing
(fine-mesh) vertices of the interior of the patch \omega \bfa 

j,s such that \{ \scrI \bfa \} \bfa \in \scrV j - s
cover \scrV j

and are mutually disjoint; if s = 0, we have \scrI \bfa = \{ a\} . This allows us to write\sum 
\bfb \in \scrV j

=
\sum 

\bfa \in \scrV j - s

\sum 
\bfb \in \scrI \bfa 

. Moreover, since the indices of \scrI \bfa are localized in the

interior of the patch \omega \bfa 
j,s, we have

\sum 
\bfb \in \scrI \bfa 

vj,\bfb \in V \bfa 
j,s when vj,\bfb \in V \bfb 

j,0. Writing it
this way will help us to apply the results on the p-robust stable decomposition of
Lemma 7.6 given for ``small"" patches only to the ``large"" patch setting as well.
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Lemma 7.7 (estimating \| \nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| by local contributions). Let \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} \in V p
J be de-

fined by (3.1). We have

\| \nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 2 \leq C2
\mathrm{m}\mathrm{a}\mathrm{x}(w1, w2)

\left(  \| \nabla \rho i0\| 2 +
J\sum 

j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

\right)  ,(7.18)

where

2(d+ 1) \leq C2
\mathrm{m}\mathrm{a}\mathrm{x}(w1, w2) := 2(d+ 1)C2

\mathrm{S}\mathrm{M}\mathrm{D}

\Biggl( 
1 +

J2

w2
max

\biggl( 
1,
d+ 1

w2
1

\biggr) \Biggr) 
(7.19)

\leq 4(d+ 1)2C2
\mathrm{S}\mathrm{M}\mathrm{D}J

2.

Proof. The main ingredient of the proof is to replace locally the uncomputable
\~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} = uJ  - uiJ by the constructed local contributions \rho ij,\bfa using the problems they

solve on patches. We begin by using Proposition 7.6 applied to \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} \in V p
J , writing

\~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} = e0 +
\sum J

j=1

\sum 
\bfb \in \scrV j

ej,\bfb . Then

\| \nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 2=
\Bigl( 
\nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g},\nabla e0 +

J\sum 
j=1

\sum 
\bfb \in \scrV j

\nabla ej,\bfb 
\Bigr) 
(3.4)
=
\Bigl( 
\nabla \rho i0,\nabla e0

\Bigr) 
+

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\Bigl( 
\nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g},

\sum 
\bfb \in \scrI \bfa 

\nabla ej,\bfb 
\Bigr) 
\omega \bfa 

j,s

(3.1)
=
\Bigl( 
\nabla \rho i0,\nabla e0

\Bigr) 
+

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\Biggl( \Bigl( 
f,
\sum 
\bfb \in \scrI \bfa 

ej,\bfb 

\Bigr) 
\omega \bfa 

j,s

 - 
\Bigl( 
\nabla uJ ,

\sum 
\bfb \in \scrI \bfa 

\nabla ej,\bfb 
\Bigr) 
\omega \bfa 

j,s

\Biggr) 

(3.8)
=
\Bigl( 
\nabla \rho i0,\nabla e0

\Bigr) 
+

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\Biggl( \Bigl( 
\nabla \rho ij,\bfa ,

\sum 
\bfb \in \scrI \bfa 

\nabla ej,\bfb 
\Bigr) 
\omega \bfa 

j,s

+
1

w2

j - 1\sum 
k=0

\Bigl( 
\nabla \rho ik,

\sum 
\bfb \in \scrI \bfa 

\nabla ej,\bfb 
\Bigr) 
\omega \bfa 

j,s

\Biggr) 

=
\Bigl( 
\nabla \rho i0,\nabla e0

\Bigr) 
+

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\Bigl( 
\nabla \rho ij,\bfa ,

\sum 
\bfb \in \scrI \bfa 

\nabla ej,\bfb 
\Bigr) 
\omega \bfa 

j,s

+
1

w2

J\sum 
j=1

j - 1\sum 
k=0

\Bigl( 
\nabla \rho ik,

\sum 
\bfb \in \scrV j

\nabla ej,\bfb 
\Bigr) 
.

We will now estimate each of the above three terms using Young's inequality and
patch overlap arguments as done in the proof of Lemma 7.1. First, we have

\Bigl( 
\nabla \rho i0,\nabla e0

\Bigr) 
\leq 
C2

\mathrm{S}\mathrm{M}\mathrm{D}

2
\| \nabla \rho i0\| 2 +

1

2C2
\mathrm{S}\mathrm{M}\mathrm{D}

\| \nabla e0\| 2.

For the second term, we similarly obtain

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\Bigl( 
\nabla \rho ij,\bfa ,

\sum 
\bfb \in \scrI \bfa 

\nabla ej,\bfb 
\Bigr) 
\omega \bfa 

j,s

\leq 
J\sum 

j=1

\sum 
\bfa \in \scrV j - s

\left(    2(d+1)C2
\mathrm{S}\mathrm{M}\mathrm{D}

2
\| \nabla \rho ij,\bfa \| 2\omega \bfa 

j,s
+

\bigm\| \bigm\| \bigm\| \sum 
\bfb \in \scrI \bfa 

\nabla ej,\bfb 
\bigm\| \bigm\| \bigm\| 2
\omega \bfa 

j,s

2(2(d+1)C2
\mathrm{S}\mathrm{M}\mathrm{D})

\right)    
\leq (d+1)C2

\mathrm{S}\mathrm{M}\mathrm{D}

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

+
1

4C2
\mathrm{S}\mathrm{M}\mathrm{D}

J\sum 
j=1

\sum 
\bfb \in \scrV j

\| \nabla ej,\bfb \| 2\omega \bfb 
j,0
.

Finally, for the third term we additionally use the property w2 \geq 1 and rename
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summation indices when there is no confusion:

1

w2

J\sum 
j=1

j - 1\sum 
k=0

\Bigl( 
\nabla \rho ik,

\sum 
\bfb \in \scrV j

\nabla ej,\bfb 
\Bigr) 
\leq 2(d+1)C2

\mathrm{S}\mathrm{M}\mathrm{D}J

2w2

J\sum 
j=1

j - 1\sum 
k=0

\| \nabla \rho ik\| 2 +

J\sum 
j=1

j - 1\sum 
k=0

\bigm\| \bigm\| \bigm\| \sum 
\bfb \in \scrV j

\nabla ej,\bfb 
\bigm\| \bigm\| \bigm\| 2

2w2(2(d+1)C2
\mathrm{S}\mathrm{M}\mathrm{D}J)

\leq (d+1)C2
\mathrm{S}\mathrm{M}\mathrm{D}J

2

w2

J\sum 
k=0

\| \nabla \rho ik\| 2 +
1

4C2
\mathrm{S}\mathrm{M}\mathrm{D}

J\sum 
j=1

\sum 
\bfb \in \scrV j

\| \nabla ej,\bfb \| 2\omega \bfb 
j,0

(7.1)

\leq (d+1)C2
\mathrm{S}\mathrm{M}\mathrm{D}J

2

w2

\Bigl( 
\| \nabla \rho i0\| 2+

d+1

w2
1

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

\Bigr) 
+

1

4C2
\mathrm{S}\mathrm{M}\mathrm{D}

J\sum 
j=1

\sum 
\bfb \in \scrV j

\| \nabla ej,\bfb \| 2\omega \bfb 
j,0
.

Summing these components together, we can now pursue our main estimate:

\| \nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 2
(7.19)

\leq C2
\mathrm{m}\mathrm{a}\mathrm{x}(w1, w2)

2

\Bigl( 
\| \nabla \rho i0\| 2 +

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

\Bigr) 

+

\| \nabla e0\| 2 +
J\sum 

j=1

\sum 
\bfb \in \scrV j

\| \nabla ej,\bfb \| 2\omega \bfb 
j,0

2C2
\mathrm{S}\mathrm{M}\mathrm{D}

(7.17)

\leq C2
\mathrm{m}\mathrm{a}\mathrm{x}(w1, w2)

2

\Bigl( 
\| \nabla \rho i0\| 2 +

J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

\Bigr) 
+

1

2
\| \nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 2.

After subtracting 1
2\| \nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 2 on both sides, we finally obtain the desired result.

The lower bound on C2
\mathrm{m}\mathrm{a}\mathrm{x}(w1, w2) in (7.19) is obtained by using C\mathrm{S}\mathrm{M}\mathrm{D} \geq 1 from

Proposition 7.6. To derive the upper bound, we use the fact that weights of Defini-

tion 3.2 satisfy w1 \geq 1, w2 \geq 1. This gives J2

w2
\leq J2 and d+1

w2
1

\leq d+ 1, leading to the

desired result:

C2
\mathrm{m}\mathrm{a}\mathrm{x}(w1, w2) \leq 2(d+ 1)C2

\mathrm{S}\mathrm{M}\mathrm{D}

\bigl( 
1 + J2(d+ 1)

\bigr) 
\leq 2(d+ 1)C2

\mathrm{S}\mathrm{M}\mathrm{D}

\bigl( 
2J2(d+ 1)

\bigr) 
.

7.5. Proof of Theorem 5.1. The results of the previous subsections allow us
now to give a concise proof of Theorem 5.1.

Proof of Theorem 5.1.
Case \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} = 0. By Definition 4.1 this means \eta i\mathrm{a}\mathrm{l}\mathrm{g} = 0, so that it suffices to show

that uJ = uiJ in this case. We do this by using Lemmas 7.2 and 7.7, which lead to

\| \nabla (uJ  - uiJ)\| 2
(3.2)
= \| \nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 2

(7.18)

\leq C2
\mathrm{m}\mathrm{a}\mathrm{x}(w1, w2)

\left(  \| \nabla \rho i0\| 2 + J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

\right)  
(7.5)

\leq C2
\mathrm{m}\mathrm{a}\mathrm{x}(w1, w2)

C2
\mathrm{m}\mathrm{i}\mathrm{n}(w1, w2)

\Bigl( 
(f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g})

\Bigr) 
= 0.(7.20)
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Case \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} \not = 0. In this case, we combine the results of Lemmas 7.1, 7.2, and 7.7:

\eta i\mathrm{a}\mathrm{l}\mathrm{g}=
(f, \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}) - (\nabla uiJ ,\nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g})

\| \nabla \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 

(7.2)
(7.7)

\geq 
C2

\mathrm{m}\mathrm{i}\mathrm{n}(w1, w2)

C\mathrm{m}\mathrm{a}\mathrm{x}(w1)

\left(  \| \nabla \rho i0\| 2+ J\sum 
j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

\right)  1
2

(7.18)

\geq 
C2

\mathrm{m}\mathrm{i}\mathrm{n}(w1, w2)

C\mathrm{m}\mathrm{a}\mathrm{x}(w1)C\mathrm{m}\mathrm{a}\mathrm{x}(w1, w2)
\| \nabla \~\rho iJ,\mathrm{a}\mathrm{l}\mathrm{g}\| 

(3.2)
= \beta \| \nabla (uJ  - uiJ)\| 

(7.21)

for

1

12
\surd 
2C\mathrm{S}\mathrm{M}\mathrm{D}J

5
2 (d+ 1)

5
2

\leq \beta :=
C2

\mathrm{m}\mathrm{i}\mathrm{n}(w1, w2)

C\mathrm{m}\mathrm{a}\mathrm{x}(w1)C\mathrm{m}\mathrm{a}\mathrm{x}(w1, w2)
\leq 

1

8
\surd 
d+ 1

.

The bounds on \beta follow from (7.3), (7.6), and (7.19).

Example 7.8 (specific choices of weights). We illustrate here a bound on the ef-
ficiency factor \beta in (5.1) for different choices of the damping weights satisfying the
compatibility condition (3.5) from Remark 3.4:

w1 = J(d+ 1) and w2 = 1 :
1

12C\mathrm{S}\mathrm{M}\mathrm{D}J2
\sqrt{} 

2(d+ 1)3
\leq \beta .

w1 = d+ 1 and w2 = J :
1

12C\mathrm{S}\mathrm{M}\mathrm{D}J
\sqrt{} 
2(d+ 1)3

\leq \beta .

w1 = w2 =
\sqrt{} 
J(d+ 1) :

1

12
\surd 
2C\mathrm{S}\mathrm{M}\mathrm{D}J

5
4 (d+ 1)

\leq \beta .

w1 = 1 and w2 = \infty :
1

8C\mathrm{S}\mathrm{M}\mathrm{D}

\surd 
J(d+ 1)

\leq \beta .

w1 = 4
\surd 
J and w2 = \infty :

1

8C\mathrm{S}\mathrm{M}\mathrm{D}

\sqrt{} 
J(d+ 1)

\leq \beta .

7.6. Proof of Corollary 5.6. If \rho iJ,\mathrm{a}\mathrm{l}\mathrm{g} = 0, as a result of (7.20), we have

\| \nabla (uJ  - uiJ)\| = \| \nabla \rho i0\| 2+
\sum J

j=1

\sum 
\bfa \in \scrV j - s

\| \nabla \rho ij,\bfa \| 2\omega \bfa 
j,s

= 0. Otherwise by (7.18) we set

C1 := C\mathrm{m}\mathrm{a}\mathrm{x}(w1, w2) and by (4.2) and (7.21), C2 = 1
\beta = C\mathrm{m}\mathrm{a}\mathrm{x}(w1)C\mathrm{m}\mathrm{a}\mathrm{x}(w1,w2)

C2
\mathrm{m}\mathrm{i}\mathrm{n}(w1,w2)

gives the

result.

8. Conclusions and outlook. In this work, we presented a hierarchical con-
struction of the algebraic residual lifting in the spirit of Pape\v z et al. [38]. This lifting
approximates the algebraic error by one iteration of a V-cycle multigrid with no pre-
smoothing step, a single damped additive Schwarz postsmoothing step, and a coarse
solve of the lowest polynomial degree. The lifting leads us to an a posteriori estimator
on the algebraic error and to a linear iterative solver. We showed that the two follow-
ing results are equivalent: the (reliable) a posteriori estimator is p-robustly efficient,
and the solver contracts p-robustly the error at each iteration. The provided numeri-
cal tests agree with these theoretical findings. Moreover, we also presented numerical
results for a modified solver corresponding to a weighted restricted additive Schwarz
smoothing. In accordance with the literature, this modified solver provides a further
speed-up compared to the damped Schwarz smoothing. Although we currently cannot
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show that our p-robust theoretical result also applies to this construction, the use of
high-degree polynomials does not seem to cause a degradation of the solver. So far,
our theory involves estimates depending algebraically on the number of mesh levels J ,
which we do not observe in the numerical results for the weighted restricted variant.
In forthcoming works, we plan to develop adaptivity based on the property (5.4), i.e.,
a computable splitting equivalent to the error and localized not only levelwise but
also patchwise. Applications to more involved problems are also on our work list.

Acknowledgment. The authors are grateful to Inria Sophia Antipolis - M\'editer-
ran\'ee ``NEF"" computation cluster for providing resources and support.
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