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ROBUST A POSTERIORI ERROR CONTROL AND ADAPTIVITY
FOR MULTISCALE, MULTINUMERICS, AND MORTAR COUPLING∗
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Abstract. We consider discretizations of a model elliptic problem by means of different nu-
merical methods applied separately in different subdomains, termed multinumerics, coupled using
the mortar technique. The grids need not match along the interfaces. We are also interested in the
multiscale setting, where the subdomains are partitioned by a mesh of size h, whereas the interfaces
are partitioned by a mesh of much coarser size H, and where lower-order polynomials are used in
the subdomains and higher-order polynomials are used on the mortar interface mesh. We derive
several fully computable a posteriori error estimates which deliver a guaranteed upper bound on the
error measured in the energy norm. Our estimates are also locally efficient and one of them is robust
with respect to the ratio H/h under an assumption of sufficient regularity of the weak solution. The
present approach allows bounding separately and comparing mutually the subdomain and interface
errors. A subdomain/interface adaptive refinement strategy is proposed and numerically tested.
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1. Introduction. In this paper we consider the model problem

(1.1) −∇·(K∇p) = f in Ω, p = 0 on ∂Ω,

where Ω ⊂ Rd, d = 2, 3, is a polygonal (polyhedral) domain (open, bounded, and
connected set), K is a symmetric, bounded, and uniformly positive definite tensor, and
f ∈ L2(Ω). The problem (1.1) can be equivalently written as the first-order system

(1.2) u = −K∇p in Ω, ∇·u = f in Ω, p = 0 on ∂Ω.

Casting (1.1) into a weak form (see (2.3) below), u given by (1.2) is the weak flux
satisfying u ∈ H(div,Ω), where H(div,Ω) := {v ∈ L2(Ω) : ∇·v ∈ L2(Ω)}. We are
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interested in discretizations of (1.1) by different numerical methods applied separately
in different subdomains Ωi of Ω. The coupling of these different methods is achieved
by the mortar technique. We allow for the cases where the grids of the individual sub-
domains do not match along the interfaces and where the subdomain grid elements
are a mixture of simplices and rectangular parallelepipeds for d = 2. We will call such
grids hybrid. We also investigate the case where the size of the subdomain grids, say
h, is much smaller than the size of the interface grid, say H . More precisely, we allow
that H = O(hβ) with β < 1; then lower-order polynomials are used in the subdomain
grids and higher-order polynomials on the mortar interface mesh. Particular exam-
ples of such discretizations are the multiscale mortar mixed finite element method
proposed in [7] or the multiscale mortar coupled mixed finite element–discontinuous
Galerkin (DG) method of [20]. Note that multiscale mortar techniques are especially
appealing as the discretization can be reduced to a global problem only involving
higher-order polynomials on the interface mortar mesh; see [7]. This leads to a paral-
lel domain decomposition implementation [21] that can be enhanced by constructing
a multiscale mortar basis as in [19] and applying multiscale preconditioners [36, 18].
This approach leads to high computational efficiency.

For previous work on a posteriori error estimates and adaptivity for multiscale
discretizations, we refer the reader to [28, 1, 26, 22] (cf. also [25]) and to the references
therein. A posteriori estimates for discretizations with mortar coupling have been
analyzed in [39, 9, 13, 10] for conforming and nonconforming Galerkin methods and
in [38, 7] for mixed finite element methods; a posteriori estimates for multinumerics
were studied in [10, 15]. Our approach is based on potential and flux reconstruction
and develops ideas going back to at least the Prager–Synge equality [30]. These ideas
have been recently used in [24, 16, 4, 35] (see also the references therein) but, to
the best of our knowledge, have not been applied to the case of multiscale mortar
discretizations.

The purpose of this paper is to derive a general and unified framework for optimal
a posteriori error estimation in the multiscale, multinumerics, and mortar coupling
setting. We derive several fully and locally computable estimates providing a guaran-
teed upper bound on the energy error. Our estimators are also locally efficient, giving
local lower bounds on the energy error. Importantly, this property holds indepen-
dently of the use of different discretization schemes in different parts of the domain,
of the use of the mortar coupling, and, to a reasonable degree, of the nonalignment of
the subdomain meshes at the interfaces. Our estimates are thus robust with respect
to the multinumerics and mortar coupling. Moreover, one of them gives estimates ro-
bust with respect to the ratio H/h and is thus robust with respect to the multiscale,
under an assumption of sufficient regularity of the weak solution.

This paper is organized as follows. In section 2, we set up basic notation, define the
admissible grids and finite-dimensional spaces, and describe the continuous setting.
Our a posteriori error estimates are stated and proved in section 3. We do so in a
general formulation, not mentioning any particular (combination of) discretizations
employed. We only suppose that we are given an approximate flux uh which isH(div)-
conforming inside each subdomain Ωi, locally conservative inside each subdomain Ωi,
and whose normal trace is weakly continuous across the interface; see Assumption 3.6.
As mentioned earlier, we derive several estimators. The first two, detailed in section 3,
rely on a construction of a globally H(div,Ω)-conforming flux th by solution of local
Neumann problems using mixed finite element methods. The first one requires a
construction of a matching h-sized grid T̂h of Ω and the local problems are H-sized
with lower-order polynomial degrees. The second one requires a construction of a
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matching H-sized grid TH of Ω and the local problems are Ωi-sized with higher-order
polynomial degrees.

Section 4 investigates the local efficiency of the derived estimates. Once again, this
is done generally, without a specification of the underlying numerical schemes; we need
only assume the weak continuity of the approximate potential p̃h (Assumption 3.7).
Section 5 then gives examples of multiscale, multinumerics, and mortar discretizations.
We therein also verify Assumptions 3.6 and 3.7 for each discretization in question.
We sketch in section 6 our last, alternative estimator, not requiring any construction
of a globally H(div,Ω)-conforming flux th.

In all of our estimates we distinguish and estimate separately the errors arising
inside of the subdomains and those emanating from the mortar coupling. In sec-
tion 7 we present an adaptive algorithm that balances the two error contributions
and provide numerical experiments illustrating the theoretical developments. Finally,
Appendix A gives a technical result necessary for the analysis on nonmatching grids.

2. Preliminaries. We introduce in this section the partitions of Ω, basic nota-
tion, weak solutions, and energy norms.

Let D ⊂ Ω. Then ‖ · ‖D stands for the L2(D) norm and (·, ·)D for the L2(D)
scalar product. When D coincides with Ω, the subscript D is dropped. The L2(D)
scalar product for D ⊂ Rd−1 will be denoted by 〈·, ·〉D. We also use the notation |D|
for the d′-dimensional Lebesgue measure of D ⊂ Rd′

, 1 ≤ d′ ≤ d. For v ∈ L1(D), we
denote by vD the mean value of v on D. Finally, for D ⊂ Ω, cK,D, CK,D stand for
the smallest and largest eigenvalue of K on D, respectively.

2.1. Partitions of Ω and of Γ. We suppose that Ω is decomposed into non-
overlapping polygonal (polyhedral) subdomains Ωi, i ∈ {1, . . . , n}. This partition can
be nonmatching in the sense that neighboring subdomains need not share complete
sides (edges if d = 2, faces if d = 3). We denote Γi,j := ∂Ωi∩∂Ωj , Γ := ∪1≤i<j≤nΓi,j ,
and Γi := ∂Ωi ∩ Γ. Let Th,i be a matching finite element mesh of Ωi, i ∈ {1, . . . , n}.
This can be composed of a mixture of triangles and rectangles for d = 2. We only
allow for either tetrahedra or rectangular parallelepipeds for d = 3; we would need
to introduce other elements like prisms or pyramids for hybrid grids for d = 3, which
we prefer to avoid for the sake of simplicity. At the present stage, we cannot take
into account general hexahedral grids with possibly nonplanar faces. We will consider
such an extension in a future work, following the ideas introduced in [37]. We set
Th := ∪n

i=1Th,i and denote by h the maximal element diameter in Th; note that
Th can be nonmatching as neighboring meshes Th,i and Th,j need not align on Γi,j .

Ω1

Ω2

Ω3

Ω4

Th

GH G∗
h

Fig. 2.1. Example of a domain Ω with subdomains Ωi and nonmatching mesh Th (left), interface
mesh GH (middle), and the corresponding interface mesh G∗

h (right).
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A generic element of the partition Th will be denoted by T ; hT stands for the diameter
of T . This setting is illustrated in Figure 2.1(left).

We use E int
h,i to denote the interior sides of Th,i, i ∈ {1, . . . , n}, and set E int

h :=

∪n
i=1E int

h,i ; E int
h thus contains neither the subdomain interfaces nor the outer boundary

of Ω. We let EΓ
h,i,j be the partition of Γi,j by the sides of Th,i and let EΓ

h,i be the

partition of Γi by the sides of Th,i. We denote by EΓ
h := ∪1≤i≤nEΓ

h,i all the sides of Th
located at the interface Γ and by Eext

h the sides of Th located at the boundary of Ω.

We also set E int,Γ
h := E int

h ∪ EΓ
h and Eh := E int

h ∪ EΓ
h ∪ Eext

h . The notation ET stands for
the sides of an element T ∈ Th. A generic side will be denoted by e and its diameter
by he.

Next, we let GH,i,j be the mortar interface finite element mesh of Γi,j . The
elements g ∈ GH,i,j are either line segments (if d = 2) or triangles or rectangles (if
d = 3). We do not require GH,i,j to be matching in the sense of a (d− 1)-dimensional
mesh of Γi,j . We set GH,i := ∪1≤j≤nGH,i,j and GH := ∪1≤i<j≤nGH,i,j ; cf. Figure 2.1
(middle). Maximal element diameter in GH is denoted byH . In the multiscale setting,
h < H ≤ 1 and the ratio H/h can be unbounded, H = O(hβ) with β < 1. Note that
on an interface Γi,j , GH,i,j is a unique (d−1)-dimensional surface mesh, whereas there
are two (different) meshes EΓ

h,i,j and EΓ
h,j,i from the two sides of the interface. Also,

the meshes EΓ
h,i,j and EΓ

h,j,i need, in general, not be refinements of GH,i,j ; we will,
however, need such a requirement for specific cases discussed later. We denote by Hg

the diameter of a side g ∈ GH .
We will need one last partition of Γ. We define the mesh G∗

h,i,j on each interface
Γi,j as a set of (d − 1)-dimensional sides g, where each g ∈ G∗

h,i,j is simultaneously

a union of sides from EΓ
h,i,j and a union of sides from EΓ

h,j,i. We choose the sides g

so as to be composed of the smallest possible number of sides from EΓ
h,i,j and EΓ

h,j,i.
There is one mesh G∗

h,i,j for each interface Γi,j . We set G∗
h,i := ∪1≤j≤nG∗

h,i,j and
G∗
h := ∪1≤i<j≤nG∗

h,i,j ; cf. Figure 2.1(right). We denote by hg the diameter of g ∈ G∗
h.

2.2. Finite-dimensional spaces and projection operators. We begin with
the mortar space MH . It is the space of discontinuous piecewise polynomials of order
m on the interface mesh GH ; MH thus, in particular, contains piecewise constant
functions on GH . We next define the spaces on Th. If T ∈ Th is a simplex, we let
Rr(T ) := Pr(T ) be the space of polynomials of total degree at most r. If T ∈ Th is a
rectangular parallelepiped, we let Rr(T ) := Qr(T ) be the space of polynomials of de-
gree at most r in each variable; Qr,r′(T ) and Qr,r′,r′′(T ) specify the degrees separately.
We then define Rr(Th) as the space such that for each w ∈ Rr(Th), w|T ∈ Rr(T );
we require no continuity at the sides. We set RTNk(Th,i) := {v ∈ H(div,Ωi) :
v|T ∈ [Rk(T )]

d + Rk(T )x for T ∈ Th,i simplex,v|T ∈ Qk,k+1(T ) × Qk+1,k(T ) if d =
2 and Qk,k+1,k+1(T ) × Qk+1,k,k+1(T ) × Qk+1,k+1,k(T ) if d = 3 and T ∈ Th,i rectan-
gular parallelepiped}.

Let Vh,i ×Wh,i ⊂ H(div,Ωi) × L2(Ωi) be the Raviart–Thomas–Nédélec (RTN)

mixed finite element spaces of order k, Vh,i := RTNk(Th,i), Wh,i := Rk(Th,i);
cf. [11, 32]. Illustration for d = 2 can be found in Figure 2.2. Our results can be
extended to other mixed finite element spaces. We can also take into account differ-
ent polynomial degrees in different subdomains and different polynomial degrees in
different elements; we restrict ourselves to the given setting for the sake of brevity
and clarity. We set Vh :=

⊕n
i=1 Vh,i, Wh :=

⊕n
i=1Wh,i. Note that the normal

components of vectors in Vh are continuous across the sides between elements in each
subdomain Ωi but not across Γ. We use V (S) to denote the restriction of a space V
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defined on Ω (mesh Th) to the subdomain (submesh) S.
We will also need two orthogonal projections: we let PWh

be the L2(Ω)-orthogonal
projection onto Wh and let PMH be the L2(Γ)-orthogonal projection onto MH ,

PWh
: L2(Ω) →Wh for w ∈ L2(Ω), (w − PWh

(w), wh) = 0 ∀wh ∈Wh,

PMH : L2(Γ) → MH for μ ∈ L2(Γ), 〈μ− PMH (μ), μH〉Γ = 0 ∀μH ∈MH .

The L2(Ω)-orthogonal projection onto Rl(T ) for a given mesh T and l ≥ 0 is denoted
by πl.

2.3. Other notation. Let H1(Th) := {ϕ ∈ L2(Ω) : ϕ|T ∈ H1(T ) ∀T ∈ Th} be
the broken Sobolev space. We will use the sign ∇ to denote the elementwise gradient.

For each interior side e ∈ E int
h , we fix a unit normal vector ne and denote the

neighboring elements T− and T+ in such a way that ne points from T− to T+. For
a sufficiently smooth function v, its jump and average on e are defined as

(2.1) [[v]] := v|T− − v|T+ , {{v}} := 1
2 (v|T− + v|T+).

For e ∈ Eext
h , we let ne coincide with the unit normal vector, outward to ∂Ω, and

set [[v]] := v|e and {{v}} := v|e. Let nΓ stand for the unit normal vector to Γ, with
arbitrary but fixed orientation; for the sides g from GH and G∗

h, we let ng point in the
direction of nΓ and also use (2.1). Finally, for a subset D of Ω, nD is used to denote
the unit normal vector, outward to ∂D.

Below we will utilize Poincaré’s inequality. It states that for an element T , there
exist a constant CP,T , equal to 1/π when T is convex, such that

(2.2) ‖ϕ− ϕT ‖T ≤ CP,ThT ‖∇ϕ‖T ∀ϕ ∈ H1(T ).

2.4. Weak solution and energy norm. The weak solution of (1.1) is a func-
tion p ∈ H1

0 (Ω) such that

(2.3) (K∇p,∇ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω).

We define the energy seminorm on H1(Th) by

(2.4) |||ϕ|||2 :=
∥∥K 1

2∇ϕ
∥∥2
, ϕ ∈ H1(Th),

and the energy norm on L2(Ω) by

(2.5) |||v|||2∗ :=
∥∥K− 1

2v
∥∥2
, v ∈ L2(Ω).

Fig. 2.2. Degrees of freedom in the RTN spaces RTNk(T ) (arrows and bullets) and Rk(T )
(squares) on triangles (left) and rectangles (right); k = 0 and k = 1.
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3. A posteriori error estimates. We present in this section our a posteriori
error estimates in a framework not relying on any particular discretization. Applica-
tions to different methods are presented in section 5.

3.1. Estimates for the flux. We first give an upper bound for the error in the
flux. We extend the results of [35] (see also the references therein and [30]) to the
multiscale, multinumerics, and mortar coupling setting. Let TH be a given mesh of Ω,
to be specified later.

Theorem 3.1 (estimate for the flux). Let u ∈ H(div,Ω) be the exact flux defined
by (1.2) and let uh ∈ L2(Ω) be arbitrary. For any sh ∈ H1

0 (Ω) and th ∈ H(div,Ω)
satisfying

(3.1) (∇·th, 1)T = (f, 1)T ∀T ∈ TH,

we have

(3.2) |||u − uh|||∗ ≤ ηP + ηM + ηR,H,

where the potential, mortar, and residual estimators are given, respectively, by

ηP := |||uh +K∇sh|||∗,(3.3)

ηM := |||uh − th|||∗,(3.4)

ηR,H :=

{ ∑
T∈TH

C2
P,Th

2
T c

−1
K,T ‖f −∇·th‖2T

} 1
2

.(3.5)

Proof. It follows readily from [35, Theorems 3.1 and 6.1] that

|||u − uh|||∗ ≤ inf
s∈H1

0 (Ω)
|||uh +K∇s|||∗

+ inf
t∈H(div,Ω)

{
|||uh − t|||∗ + sup

ϕ∈H1
0 (Ω), |||ϕ|||=1

(f −∇·t, ϕ)
}
.

(3.6)

The first two terms in (3.6) yield the ηP and the ηM estimators (3.3) and (3.4). Let
ϕ ∈ H1

0 (Ω) with |||ϕ||| = 1. By (3.1) and using the Cauchy–Schwarz inequality,
Poincaré’s inequality (2.2), and the definition of the ||| · ||| norm (2.4), we have

(f −∇·th, ϕ) =
∑

T∈TH

(f −∇·th, ϕ− ϕT )T ≤ ηR,H|||ϕ||| = ηR,H,(3.7)

which finishes the proof.
In section 3.5, we will specify concrete functions sh and th called a potential

reconstruction and a flux reconstruction, respectively.
Remark 3.2 (estimating the mortar error). The mortar estimator ηM differs

significantly from previous work (cf. [38, 7]), where it takes the form (6.1) below. The
present ηM allows for an optimal upper bound and robustness in a multiscale setting.

3.2. Estimates for the potential. Let TH be as in section 3.1. Extending the
results of [35] (see also the references therein and [30]) to the multiscale, multinumer-
ics, and mortar coupling setting, our potential bound is as follows.

Theorem 3.3 (estimate for the potential). Let p ∈ H1
0 (Ω) be the exact potential

defined by (2.3) and let p̃h ∈ H1(Th) be arbitrary. For any sh ∈ H1
0 (Ω) and th ∈

H(div,Ω) satisfying (3.1), we have

(3.8) |||p− p̃h||| ≤ ηNC + ηFM + ηR,H,
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where ηR,H is given by (3.5) and the nonconformity and flux–mortar estimators are
defined as

ηNC := |||p̃h − sh|||,(3.9)

ηFM := |||K∇p̃h + th|||∗.(3.10)

Proof. It follows from [35, Theorem 6.10] that

|||p− p̃h||| ≤ inf
s∈H1

0 (Ω)
|||p̃h − s|||

+ inf
t∈H(div,Ω)

sup
ϕ∈H1

0 (Ω), |||ϕ|||=1

((f −∇·t, ϕ)− (K∇p̃h + t,∇ϕ)).

Inequality (3.8) is straightforward using (3.7) and the Cauchy–Schwarz inequality.
Remark 3.4 (constitutive relation, equilibrium, and constraints). We observe

that the estimates of Theorems 3.1 and 3.3 are based on the error in the constitutive
relation uh = −K∇p̃h with constraints uh ∈ H(div,Ω) and p̃h ∈ H1

0 (Ω) and the
equilibrium condition ∇·uh = f on the discrete level. In this respect, they are closely
related to the Prager–Synge equality [30].

Remark 3.5 (subdomain discretization and mortar errors). Let

(3.11) ηF := |||K∇p̃h + uh|||∗.

The triangle inequality yields ηFM ≤ ηF + ηM. It should be noted that ηP, ηR,H, ηNC,
and ηF represent the subdomain error and ηM the interface mortar error.

3.3. Assumptions on uh and p̃h. One advantage of our approach is that
we can proceed generally, without the specification of any particular discretization
yielding the couple uh, p̃h. In order to proceed in this way, we henceforth make two
assumptions.

We first assume that (1) the approximate flux uh belongs to the RTN space inside
each subdomain; (2) uh is locally conservative inside each subdomain; and (3) normal
trace of uh is weakly continuous across the interfaces; this describes general locally
conservative multiscale mortar discretizations allowing for multinumerics [7, 20]:

Assumption 3.6 (properties of uh). Let
(1) uh ∈ Vh;
(2) (∇·uh, 1)T = (f, 1)T ∀T ∈ Th;
(3)

∑n
i=1〈uh·nΩi , μH〉Γi = 0 ∀μH ∈MH .

Let g ∈ GH,i,j be a mortar side. Since MH is a space of discontinuous piecewise
polynomials, Assumption 3.6(3) implies that

(3.12) 〈[[uh·ng]], μg〉g = 0 ∀μg ∈MH(g).

We thus can define F ∈MH such that

(3.13) F |Γi,j := PMH ((uh|Ωi ·nΓ)|Γi,j ) = PMH ((uh|Ωj ·nΓ)|Γi,j ) i, j ∈ {1, . . . , n}.

A particular consequence is that

〈{{uh·ng}}, 1〉g = 〈F, 1〉g ∀g ∈ GH,i,j , i, j ∈ {1, . . . , n}.(3.14)

Concerning p̃h, we assume that (1) p̃h is a piecewise polynomial; (2) means of the
traces of p̃h on interior subdomain sides are continuous and means of the traces of p̃h
on boundary sides are zero; (3) means of the traces of p̃h on collections of sides inside
the interface Γ are continuous:

Assumption 3.7 (properties of p̃h). Let
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(1) p̃h ∈ Rr(Th) for some r ≥ 1;
(2) 〈[[p̃h]], 1〉e = 0 ∀e ∈ E int

h ∪ Eext
h ;

(3) 〈[[p̃h]], 1〉g = 0 ∀g ∈ G∗
h.

In some parts of the paper, we will relax Assumptions 3.7(2)–(3).

3.4. Two additional partitions. In addition to Th, two other partitions of Ω
will be used in this paper. We first need a refinement T̂h of Th which is matching;
T̂h can consist of simplices and/or rectangular parallelepipeds and hybrid grids are

allowed for d = 2. We refer to Figure 3.1(left) for an example of T̂h. We denote by Êh
the sides of T̂h and use the notation T̂h,i for the restriction of T̂h on the subdomain Ωi.

We suppose that T̂h,i coincides with Th,i in the interior of each subdomain Ωi and only
differs from Th near the interfaces. More precisely, we assume that for each T ∈ Th
such that T ∩Γ = ∅, there exists an element T ′ ∈ T̂h such that T = T ′ and that every
side e′ ∈ Êh which shares a node with this T ′ either coincides with some e ∈ E int

h

or belongs to the interior of some T ′′ ∈ Th. We assume that T̂h adds no new nodes
and sides at the interface Γ in comparison with Th. The mesh TH is then formed by
groups of elements from Th, is matching, and the restriction of TH on Γ is the interface
mesh GH . As before, we use the notation TH,i for the restriction of TH on Ωi. We
refer to Figure 3.1(right) for an example of TH . For an element T ∈ TH , we denote
by GT the set of its sides.

As in section 2.2, we also define the pairs (V
̂h, Ŵh) and (VH , WH) as the RTN

spaces on T̂h and TH , respectively. In the second case, the order is m, whereas in the
first case, the order is k′, where typically k′ = k but k′ = k + 1 is necessary when
refining rectangles of Th with triangles in T̂h as in Figure 3.1(left). Then PW

̂h
stands

for the L2(Ω)-orthogonal projection onto W
̂h and PWH for the L2(Ω)-orthogonal pro-

jection onto WH , similarly to PWh
. We use the same notation as in section 2.3 for

the sides from Êh.

3.5. Practical construction of H1
0(Ω)- and H(div,Ω)-conforming po-

tential and flux reconstructions. We describe here practical constructions of a
H1

0 (Ω)-conforming potential reconstruction sh and an H(div,Ω)-conforming flux re-
construction th assumed in Theorems 3.1 and 3.3. We propose one method of con-
structing sh and two methods for constructing th, relying, respectively, on the meshes
T̂h and TH . We extend the constructions from [2, 23, 12, 34, 17] to the multiscale,
multinumerics, and mortar coupling setting and to nonmatching grids.

T̂h

TH

Fig. 3.1. Example of a matching refinement ̂Th of Th (left) and of a mesh TH (right) for the
meshes of Figure 2.1.
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3.5.1. Construction of sh. We propose here a particular construction of sh
relying on the mesh T̂h; other constructions, using only the mesh Th, are possible.

Recall that T̂h is the conforming refinement of Th and note that Rr(Th) ⊂ Rr′(T̂h),
r′ ≥ r, i.e., every piecewise polynomial on Th is also a piecewise polynomial on T̂h,
where possibly the polynomial degree r is increased to r′. Then we can apply the
averaging interpolation of [2, 23, 12, 34]. Let Iav : Rr′(T̂h) → Rr′(T̂h) ∩ H1

0 (Ω) be

defined as follows: for ϕh ∈ Rr′(T̂h) and a Lagrange node V ∈ Ω, Iav(ϕh)(V ) =
1

|̂TV |
∑

T∈̂TV
ϕh|T (V ), where T̂V = {T ∈ T̂h : V ∈ T } and |S| denotes the cardinality

of a set S. Note that Iav(ϕh)(V ) = ϕ(V ) at nodes V lying in the interior of T ∈ T̂h. At
boundary nodes, the value of Iav(ϕh) is set to zero. For the potential reconstruction,
we set sh := Iav(p̃h).

3.5.2. Construction of th ∈ V
̂h by the solution of h-grid-size k′th-order

local Neumann problems. We define here a flux reconstruction th that is of lower
order on the fine mesh T̂h (cf. Figure 3.1(left)), following [17]. This yields th ∈ V

̂h
with ∇·th = PW

̂h
(f).

Consider those elements of Th located in a band of width H along the interface
Γ and regroup them into macroelements T of size H of a macromesh T Γ

H . Denote the
remaining elements of Th by T int

H . We set

(3.15) th|T := uh|T T ∈ T int
H .

For a macroelement T ∈ T Γ
H , we consider the mesh T̂h|T and define on it the spaces

V
̂h,z,T = {vh ∈ V

̂h(T ) : vh·nT = z on ∂T }, where z is either {{uh·nT }} or 0. We seek

th|T ∈ V
̂h,{{uh·nT }},T and qh ∈ W

̂h(T ) such that (qh, 1)T = 0 satisfying

(K−1(th − uh),vh)T − (qh,∇·vh)T = 0 ∀vh ∈ V
̂h,0,T ,(3.16a)

(∇·th, wh)T = (f, wh)T ∀wh ∈W
̂h(T ) such that (wh, 1)T = 0.(3.16b)

Let t′h := th − uh. Then (t′h, qh) corresponds to the k′th-order mixed finite element
approximation to the local Neumann problem on T

−∇·(K∇q) = f −∇·uh in T,(3.17a)

−K∇q·nT = −ωg[[uh·ng]] on all g ∈ GT ,(3.17b)

(q, 1)T = 0,(3.17c)

where ωg := 1
2 when g �⊂ ∂Ω and ωg := 0 when g ⊂ ∂Ω. Note that these problems are

well-posed as the Neumann boundary conditions are in equilibrium with the load,∑
g∈GT

〈uh·nT − ωg[[uh·ng]], 1〉g = 〈{{uh·nT }}, 1〉∂T = (f, 1)T .

The above follows by (3.13)–(3.14), Green’s theorem, and Assumption 3.6(2). As the
mixed finite element method minimizes the complementary energy, an equivalent way
to rewrite (3.16) is

th|T = arg inf
vh∈V

̂h,{{uh·nT }},T ,∇·vh=PW
̂h
(f)

|||uh − vh|||∗,T .

Thus, on each macroelement T ∈ T Γ
H , th is the best choice from the spaceV

̂h,{{uh·nT }},T
to minimize the quantity |||uh − vh|||∗,T (the estimator ηM,T of (3.4)), subject to the
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constraint ∇·vh = PW
̂h
(f). Crucially, th given by (3.15)–(3.16) belongs to the space

V
̂h. Indeed, the Neumann boundary condition {{uh·nT }} of (3.16) yields the conti-

nuity of the normal component of th on ∂T ∩ Γ, while (3.15) guarantees the same on

∂T \Γ. All in all, th satisfies the assumptions of Theorems 3.1 and 3.3, with TH := T̂h.
Remark 3.8 (th given by (3.15)–(3.16)). The construction (3.15)–(3.16) is mod-

erately expensive as mixed finite element approximations of order k′ defined over
H-sized subdomains with h-sized grids need to be solved. We obtain local mass con-
servation on the fine mesh T̂h and (3.5) takes the form of data oscillation on T̂h,
ηR,̂h = {

∑
T∈̂Th

C2
P,Th

2
T c

−1
K,T ‖f − PW

̂h
(f)‖2T }

1
2 . The mortar error is evaluated in the

H-distance from the interface Γ, which, as we will see in Theorem 4.4, leads to its
overestimation when h� H .

3.5.3. Construction of th ∈ VH by the solution of H-grid-size mth-
order local Neumann problems. We define here th that is of higher order on
the coarse mesh TH (cf. Figure 3.1(right)), following [17]. This yields th ∈ VH with
∇·th = PWH (f).

For the purposes of this section, we need to extend the mesh GH from the interface
Γ to Γ ∪ ∂Ω; this extension, still denoted by GH , is defined on ∂Ω by the sides of TH
lying on ∂Ω. We also consider an extension of the mortar space MH to this GH .
Finally, let the flux function F be given by (3.13) on Γ. We extend it to Γ ∪ ∂Ω by
setting F |∂Ω := PMH ((uh·nΩ)|∂Ω).

Consider a fixed Ωi and the mesh TH,i. We solve local Neumann problems by
means of mth-order mixed finite elements to construct th. Define the spaces

VH,Z,Ωi = {vH ∈ VH(Ωi) : vH ·nΓ = Z on Γi, vH ·nΩi = Z on ∂Ωi ∩ ∂Ω},

where Z is either F or 0. We seek th|Ωi ∈ VH,F,Ωi and qH ∈ WH(Ωi) such that
(qH , 1)Ωi = 0 satisfying

(K−1(th − uh),vH)Ωi − (qH ,∇·vH)Ωi = 0 ∀vH ∈ VH,0,Ωi ,(3.18a)

(∇·th, wH)Ωi = (f, wH)Ωi ∀wH ∈WH(Ωi) such that (wH , 1)Ωi = 0.(3.18b)

Once again, these problems are well-posed as

〈FnΩi ·nΓ, 1〉∂Ωi∩Γ + 〈F, 1〉∂Ωi∩∂Ω = (f, 1)Ωi ,

by the same argument as in the previous section, and (3.18) is equivalent to

(3.19) th|Ωi = arg inf
vH∈VH,F,Ωi

,∇·vH=PWH
(f)

|||uh − vH |||∗,Ωi .

Finally, th ∈ VH , as the Neumann boundary condition on Γ given by F yields continu-
ity of the normal component of th. Thus th satisfies the assumptions of Theorems 3.1
and 3.3, with TH := TH .

Remark 3.9 (th given by (3.18)). The construction (3.18) is more expensive with
mixed finite element approximations of order m defined over the subdomains Ωi with
H-sized grids. We only obtain local conservation on the mesh TH and (3.5) takes the

form of the data oscillation on TH , ηR,H = {
∑

T∈TH
C2

P,TH
2
T c

−1
K,T ‖f − PWH (f)‖2T }

1
2 .

The mortar error is, however, evaluated in the entire domain, which, as we will see in
Theorem 4.4, leads to its optimal estimation in the multiscale setting when h� H .
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4. Local efficiency of the estimates. We derive here local efficiency of the
estimates of Theorems 3.1 and 3.3. In order to proceed generally without the def-
inition of any particular scheme, we rely on Assumptions 3.6 and 3.7. The results
presented herein are nontrivial extensions of the previously known results to the mul-
tiscale, multinumerics, and mortar setting, and lead to robustness in certain cases.
For convenience we will denote by η·,S the restriction of an estimator to the set S and
similarly for the (semi-)norms ||| · |||∗, ||| · |||.

The following result is immediate using the triangle inequality.
Theorem 4.1 (local efficiency of the flux and potential estimators). Let (u, p)

be the exact solutions satisfying (1.2). Let p̃h ∈ H1(Th), uh ∈ L2(Ω), sh ∈ H1
0 (Ω),

and th ∈ H(div,Ω) be arbitrary. Then, for all T ∈ Th,

ηF,T ≤ |||u− uh|||∗,T + |||p− p̃h|||T ,
ηP,T ≤ ηF,T + ηNC,T ,

ηFM,T ≤ ηF,T + ηM,T .

We will henceforth assume that the mesh families {Th}h>0, {T̂h}h>0, and {TH}H>0

are shape-regular. A family {Th}h>0 is shape-regular when there exists a constant
κTh

> 0 such that minT∈Th
ρT /hT ≥ κTh

for all h > 0, where ρT denotes the diameter
of the largest ball inscribed in T . Note that shape-regularity does not exclude sharp
local refinements. We also suppose that there exists a positive constant CG∗

h
such

that, for all g ∈ G∗
h,

(4.1)
hg
he

≤ CG∗
h

∀e ∈ EΓ
h , e ⊂ g.

Assuming (4.1), we avoid the case where hg/he is only bounded by a function of H/h.
In the rest of this paper, if not stated otherwise, C stands for a constant that can

depend on the space dimension d, the polynomial degrees r of p̃h, r
′ of sh, k of uh, k

′

or m of th, on the shape regularity parameters κTh
of Th, κ̂Th

of T̂h, and κTH of TH ,
on K, and on the constant CG∗

h
from (4.1). However, C is independent of any mesh

size, the domain Ω, and the regularity of the weak solution (u,p) of (1.2).
For T ∈ Th, denote by GT all the sides in G∗

h that contain a node of T , and let
TT = {T ′ ∈ Th : T ′ shares a node with T } and TT,Γ = {T ′ ∈ Th : T ′ shares a node
with T or GT }. Similarly, for a macroelement T ∈ T Γ

H , denote by GT all the sides in
GH that contain a side of T and let TT,Γ = {T ′ ∈ Th : T ′ shares a node with GT }.
Set hTT,Γ := minT ′∈TT,Γ hT ′ .

We now establish the following two local efficiency theorems.
Theorem 4.2 (local efficiency of the nonconformity estimator). Let p be the exact

solution satisfying (2.3). Let Assumption 3.7 hold for p̃h and let sh be constructed as
in section 3.5.1. Then, for all T ∈ Th,

ηNC,T ≤ C|||p − p̃h|||TT if T ∩ Γ = ∅,(4.2a)

ηNC,T ≤ C|||p − p̃h|||TT,Γ if T ∩ Γ �= ∅.(4.2b)

Proof. Let T ′ ∈ T̂h. We proceed as in [34, 35], using the following two results:

From [23, 12] it follows that locally on each T ′, for any p̃h ∈ Rr′(T̂h),

(4.3) ‖∇(p̃h − Iav(p̃h))‖T ′ ≤ C
∑

e′∈̂Eh; e′∩T ′ 	=∅

h
− 1

2

e′ ‖[[p̃h]]‖e′ ,
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where C depends only on d, r′, and κ
̂Th
. In [2, Theorem 10] it was established that

for e′ ∈ Êh and p̃h ∈ H1(T̂h) with 〈[[p̃h]], 1〉e′ = 0,

(4.4) h
− 1

2

e′ ‖[[p̃h]]‖e′ ≤ C
∑

T ′∈̂Th; e′∈ET ′

‖∇(p̃h − ψ)‖T ′ ,

where ψ ∈ H1
0 (Ω) is arbitrary and C depends only on d and κ

̂Th
.

Let T ∈ Th be such that T ∩ Γ = ∅. Using the definition of T̂h, there exists an
element T ′ ∈ T̂h such that T = T ′. Moreover, every side e′ ∈ Êh such that e′ ∩ T ′ �= ∅
either coincides with a side e ∈ E int

h or belongs to the interior of some T ′′ ∈ Th
by assumption. Recalling Assumptions 3.7(1)–(2), we see that on each such side e′,
〈[[p̃h]], 1〉e′ = 0. Combining (4.3) and (4.4) with ψ = p,

‖∇(p̃h − Iav(p̃h))‖T ≤ C‖∇(p̃h − p)‖TT ,

where we have used that T̂h is a refinement of Th. Thus, (4.2a) follows after an
appropriate scaling with respect to the tensor K.

Now let T ∈ Th such that T ∩ Γ �= ∅ be given. Using (4.3), we get

‖∇(p̃h − Iav(p̃h))‖2T =
∑

T ′∈̂Th; T ′⊂T

‖∇(p̃h − Iav(p̃h))‖2T ′ ≤ C
∑

e∈̂Eh; e∩T 	=∅

h−1
e ‖[[p̃h]]‖2e.

For all e ∈ Êh such that e∩ T �= ∅ and such that e �⊂ Γ, we have 〈[[p̃h]], 1〉e = 0 by the
same reasoning as above. Thus we can apply (4.4). All other sides e are included in
some g ∈ G∗

h. We now use assumption (4.1) in combination with the assumption that

T̂h does not add any new nodes on Γ with respect to Th. We conclude that∑
e∈̂Eh; e⊂g∈G∗

h, g∩T 	=∅

h−1
e ‖[[p̃h]]‖2e ≤ CG∗

h

∑
g∈G∗

h
, g∩T 	=∅

h−1
g ‖[[p̃h]]‖2g.

In Lemma A.1, we prove a particular consequence of Assumption 3.7(3). Using this
result with ψ = p, (4.2b) follows after a scaling with respect to the tensor K.

Remark 4.3 (efficiency of ηNC). We show in section 5.1 that the multiscale mortar
mixed finite element method of [7] satisfies Assumptions 3.7(1)–(3). If a method only
satisfies Assumption 3.7(1), it follows from the proof of Theorem 4.2 that

ηNC,T ≤ C
∑

e∈̂Eh; e∩T 	=∅

h
− 1

2
e ‖[[p̃h]]‖e.

Then, noticing that [[p̃h]] = [[p̃h − p]] for all e ∈ Êh, one can add
∑

e∈̂Eh
h
− 1

2
e ‖[[p̃h]]‖e to

both the error and estimate, as is usually done in the discontinuous Galerkin method,
in order to obtain robust two-sided bounds in this case.

Henceforth, we consider for simplicity a polynomial form of the datum f (other-
wise the data oscillation terms would remain).

Theorem 4.4 (local efficiency of the residual and mortar estimators). Let u be
the exact solution satisfying (1.2) and let Assumption 3.6 hold for uh. We consider
the following two cases:
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1. Let th be constructed as in section 3.5.2. Let additionally f ∈ Rk(Th) and
∇·uh = f . Then

ηR,̂h,T = 0, T ∈ T̂h,(4.5a)

ηM,T = 0, T ∈ T int
H ,(4.5b)

ηM,T ≤ C

(
HT

hTT,Γ

) 1
2

|||u− uh|||∗,TT,Γ , T ∈ T Γ
H .(4.5c)

2. Let th be constructed as in section 3.5.3. Assume f ∈ Rm(TH), ∇·uh = f , and
sufficient smoothness leading to (4.9), (4.10). Let T ∈ TH and i ∈ {1, . . . , n}. Then

ηR,H,T = 0,(4.6a)

ηM,Ωi ≤ |||uh − u|||∗,Ωi + CHm+1.(4.6b)

Proof. (1) We first prove (4.5a)–(4.5c), with th defined as in section 3.5.2.

First, (4.5a) is immediate from the assumption f ∈ Rk(Th), the fact that T̂h
is a refinement of Th, k′ ≥ k, and (3.16). Next, (4.5b) follows readily from (3.15).
To prove (4.5c), we fix a macroelement T ∈ T Γ

H and let (th, qh) be the solution

of (3.16). Let t′h := th − uh. We denote by T ′ a generic element of T̂h|T . Consider
the local postprocessing of [5, 35]; see section 5.1 for details and notation. This gives
q̃h ∈ W̃

̂h(T ) such that PṼ
̂h
(−K∇q̃h) = t′h and PW

̂h
(q̃h) = qh. Moreover, [[q̃h]] is

orthogonal to Rk′(e) for any interior side e of T̂h|T . Thus,

|||t′h|||2∗,T = (K−1t′h, t
′
h)T = −(∇q̃h, t′h)T(4.7a)

=
∑
T ′⊂T

{(q̃h,∇·t′h)T ′ − 〈q̃h, t′h·nT ′〉∂T ′} = 〈q̃h, 12 [[uh·ng]]〉∂T∩Γ(4.7b)

= 〈q̃h − (q̃h)T ,
1
2 [[uh·ng]]〉∂T∩Γ(4.7c)

≤ C
∑

g∈GH , g⊂∂T

‖[[uh·ng]]‖gH
1
2

T c
− 1

2

K,T |||q̃h|||T(4.7d)

≤ C|||t′h|||∗,T
∑

g∈GH , g⊂∂T

‖[[uh·ng]]‖gH
1
2

T c
− 1

2

K,T .(4.7e)

Here we have used the definition of the postprocessing in (4.7a) and Green’s theorem
in (4.7b). The observations that ∇·t′h = PW

̂h
(f −∇·uh) = 0 since f − ∇·uh = 0

and that t′h ∈ V
̂h(T ), q̃h ∈ W̃

̂h(T ) as well as t′h·nT = 0 on ∂T \ Γ and t′h·nT =
− 1

2 [[uh·ng]] on all g ⊂ ∂T∩Γ yield the second equality in (4.7b). Applying (q̃h, 1)T = 0
which follows from the assumption (qh, 1)T = 0 and from PW

̂h
(q̃h) = qh results

in (4.7c). The discrete trace inequality ‖q̃h − (q̃h)T ‖g ≤ CH
1
2

T ‖∇q̃h‖T , which can be
obtained as discrete Poincaré’s and Friedrichs’ inequalities in [33, Theorems 5.4 and
8.1] gives (4.7d). Finally (4.7e) is obtained using the inequality (cf. [35, Lemma 5.4])
|||q̃h|||T ≤ C|||t′h|||∗,T . Thus ηM,T = |||th−uh|||∗,T = |||t′h|||∗,T is bounded by the terms

‖[[uh·ng]]‖gH
1
2

T , which are estimated by (4.5c) in [38].
(2) We now prove (4.6), with th defined as in section 3.5.3.
Let T ∈ TH be given. The assumption f ∈ Rm(TH) and (3.18) give (4.6a). Next,



A POSTERIORI CONTROL FOR MULTISCALE AND MORTARS 539

let i ∈ {1, . . . , n} and consider the subdomain problem

−∇·(K∇q) = f in Ωi,(4.8a)

−K∇q·nΩi = F |∂Ωi(nΩi ·nΓ) on ∂Ωi,(4.8b)

(q, 1)Ωi = (p, 1)Ωi .(4.8c)

Denote by (t#H , q
#
H) its mixed finite element approximation in VH,F,Ωi × WH(Ωi).

Using (3.19) and the triangle inequality we obtain

|||uh − th|||∗,Ωi ≤ |||uh − t#H |||∗,Ωi ≤ |||t#H +K∇q|||∗,Ωi + |||uh +K∇q|||∗,Ωi .

Assuming that q is sufficiently smooth, we have

(4.9) |||t#H +K∇q|||∗,Ωi ≤ CHm+1.

Using [35, Theorem 3.1] yields

|||uh +K∇q|||∗,Ωi ≤ |||uh +K∇p|||∗,Ωi +

∣∣∣∣∣
(
uh +K∇q, ∇(p− q)

|||p− q|||Ωi

)
Ωi

∣∣∣∣∣ .
Setting ϕ := (p − q)/|||p − q|||Ωi , noting that ϕ ∈ H1(Ωi) with ϕΩi = 0, and using
∇·uh = f , we have

|||uh +K∇q|||∗,Ωi ≤ |||uh − u|||∗,Ωi + |(uh +K∇q,∇ϕ)Ωi |
= |||uh − u|||∗,Ωi + |〈(uh +K∇q)·nΩi , ϕ〉∂Ωi |
= |||uh − u|||∗,Ωi + |〈uh·nΩi − F |∂Ωi(nΩi ·nΓ), ϕ− PMH (ϕ)〉∂Ωi |
≤ |||uh − u|||∗,Ωi + ‖uh·nΩi − F |∂Ωi(nΩi ·nΓ)‖∂Ωi‖ϕ− PMH (ϕ)‖∂Ωi .

The first term in the above inequality is the actual error. In addition, if both p and q
(and consequently ϕ) are sufficiently smooth, from [7, estimate (3.5)] we have

(4.10) ‖ϕ− PMH (ϕ)‖∂Ωi ≤ CHm+1.

Both estimates (4.9) and (4.10) are, of course, not sharp as C is unknown con-
stant and depends on the smoothness of p and q. We expect the term ‖uh·nΩi −
F |∂Ωi(nΩi ·nΓ)‖∂Ωi to be bounded in view of (3.13).

Remark 4.5 (robustness with respect to the ratio H/h). Theorems 4.1 and 4.2
(cf. also Remark 4.3) give the overestimation factor independent of the ratio H/h.
According to Theorem 4.4, the flux reconstruction of section 3.5.2 does not lead to a
similar multiscale robustness result. A different situation appears to arise using the
reconstruction of section 3.5.3. The a priori error estimates presented in [7] for the
multiscale mortar mixed finite element method indicate that in that case, |||uh −u|||∗
converges as O(Hm+ 1

2 ), so that the factor CHm+1 of (4.6b) is of higher order. This
multiscale robustness is not optimal as it hinges on the high regularity of the exact
solution and a priori arguments, but is demonstrated numerically in section 7.

5. Multiscale, multinumerics, and mortar discretizations. We present
here different methods that fit into the framework of the previous sections. In order
to check that the presented a posteriori error estimates and their efficiencies hold true,
we need only verify that Assumptions 3.6 and 3.7(1) or 3.7(1)–(3) are satisfied. To
the best of our knowledge, this is the first time that guaranteed, locally efficient (and
robust) a posteriori estimates are given for these methods.
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5.1. Multiscale mortar mixed finite element method. The multiscale mor-
tar mixed finite element method [7, 6] for (1.2) is defined as follows: Find uh ∈ Vh,
ph ∈Wh, and λH ∈MH such that

(K−1uh,vh)Ωi − (ph,∇·vh)Ωi + 〈λH ,vh·nΩi〉Γi = 0 ∀vh ∈ Vh,i, ∀i,(5.1a)

(∇·uh, wh)Ωi = (f, wh)Ωi ∀wh ∈ Wh,i, ∀i,(5.1b)
n∑

i=1

〈uh·nΩi , μH〉Γi = 0 ∀μH ∈MH .(5.1c)

Here uh immediately satisfies Assumption 3.6. The ph obtained from (5.1) is not suit-
able to be used as p̃h in the a posteriori framework of sections 3–4; see the discussion
in [35]. We devote the rest of this section to obtaining a suitable p̃h.

Let i be fixed and let Λh,i be the usual Lagrange multiplier space associated with

Vh,i ×Wh,i; see [11, 32]. Let Ṽh,i be the space without the interelement constraints,

Ṽh,i :=
⊕

T∈Th,i
Vh,i(T ). Set Λh :=

⊕n
i=1 Λh,i, Ṽh :=

⊕n
i=1 Ṽh,i. Let (uh, ph) be

the solution of (5.1). We define λh ∈ Λh by

(5.2) 〈λh,ve·nT 〉e := −(K−1uh,ve)T + (ph,∇·ve)T

for all flux basis functions ve of Ṽh,i associated with the element T ∈ Th and its

side e. Let PṼh
be the L2(Ω)-orthogonal projection onto Ṽh with respect to the

scalar product (K−1·, ·) and let PΛh
be the L2(E int,Γ

h )-orthogonal projection onto Λh,
i.e.,

PṼh
: L2(Ω) → Ṽh for v ∈ L2(Ω), (K−1(v − PṼh

(v)),vh) = 0 ∀vh ∈ Ṽh,

PΛh
: L2(E int,Γ

h ) → Λh for μ ∈ L2(E int,Γ
h ), (μ− PΛh

(μ), μh)E int,Γ
h

= 0 ∀μh ∈ Λh.

Our basic tool for the a posteriori error analysis of the mixed finite element method
will be the local postprocessing of the potential ph introduced in [5]; see also [35]. Let
W̃h be a polynomial space of functions ϕh satisfying

(5.3) 〈[[ϕh]], ψh〉e = 0 ∀e ∈ E int
h ∪ Eext

h , ∀ψh ∈ Rk(e)

and specified in [5, 35]. Then set the following.
Definition 5.1 (postprocessing p̃h of ph). We define p̃h ∈ W̃h by

PWh
(p̃h) = ph,(5.4a)

PΛh
(p̃h) = λh.(5.4b)

Employing (5.4) in (5.2) or using (5.1a) for such vh that vh·nT = 0 on ∂T and
noting that ∇·Vh(T ) =Wh(T ) and Vh(T )·nT |∂T\∂Ω = Λh(T ) gives, for all T ∈ Th,

(5.5) (K−1uh,vh)T − (p̃h,∇·vh)T + 〈p̃h,vh·nT 〉∂T\∂Ω = 0 ∀vh ∈ Vh(T ).

Applying Green’s theorem for the two last terms in the above expression gives

(K−1(uh +K∇p̃h),vh)T = 0 ∀vh ∈ Vh(T ) ∀T ∈ Th,

which implies PṼh
(−K∇p̃h) = uh. We refer the reader to [5, 35] for more details.
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The postprocessed potential p̃h satisfies Assumption 3.7(1) as W̃h is a piecewise
polynomial space. Moreover, Assumption 3.7(2) is implied by (5.3). The following
lemma shows that Assumption 3.7(3) for the above p̃h holds as well.

Lemma 5.2 (weak continuity of p̃h). For any union of interface sides g ∈ G∗
h,

(5.6) 〈[[p̃h]], ψh〉g = 0 ∀ψh ∈ Rk(g).

Moreover, for all e ∈ EΓ
h , let Te be the element of Th having e as side. Then

(5.7) 〈p̃h|Te − λH , ψh〉e = 0 ∀ψh ∈ Rk(e).

Proof. Fix e ∈ EΓ
h and take all basis functions ve in (5.1a). Using (5.5) and (5.4a)

yields 〈−p̃h|Te + λH ,ve·nTe〉e = 0, whence (5.7) follows. To prove (5.6), take any
g ∈ G∗

h. Thus g is given by one or more sides from some Ωi and by one or more sides
from some Ωj . By summing (5.7) over sides, we obtain (5.6).

5.2. Multiscale mortar discontinuous Galerkin method. We consider here
the multiscale mortar DG method of [20] for the problem (1.1). For simplicity, let K
be piecewise constant on Th in this section and let k ≥ 1. Then the method reads as
follows: Find ph ∈Wh and λH ∈MH such that

Bh,i(ph, λH ;ϕh) = (f, ϕh)Ωi ∀ϕh ∈Wh,i, ∀i ∈ {1, . . . , n},(5.8a)

n∑
i=1

∑
g∈GH,i

〈
−K∇ph|Ωi ·nΩi + αg

σK,g

Hg

(
ph|Ωi − πk,EΓ

h,i
(λH)

)
, μH

〉
g
= 0 ∀μH ∈MH ,

(5.8b)

where Bh,i(ph, λH ;ϕh) is given by

−
∑

e∈E int
h,i

{
〈{{K∇ph·ne}}, [[ϕh]]〉e+θ〈{{K∇ϕh·ne}}, [[ph]]〉e−

〈
αe
σK,e

he
[[ph]], [[ϕh]]

〉
e

}

−
∑

g∈GH,i

{〈
K∇ph|Ωi ·nΩi − αg

σK,g

Hg
(ph|Ωi − λH), ϕh|Ωi

〉
g

+ θ̄〈K∇ϕh|Ωi ·nΩi , ph|Ωi − λH〉g
}
+ (K∇ph,∇ϕh)Ωi .

(5.9)

Here αe, e ∈ E int
h , and αg, g ∈ GH , are the penalty parameters (taken sufficiently

large), σK,e and σK,g are K-dependent weights, and θ, θ̄ ∈ {−1, 0, 1} lead to the
usual choices of the various schemes. For the sake of simplicity, we suppose here that
EΓ
h,i is a refinement of GH,i for all i ∈ {1, . . . , n}. In fact, in comparison with [20],

we have replaced in (5.8b) λH by πk,EΓ
h,i

(λH). Note that as ϕh ∈ Wh,i, ϕh|Γi is a

piecewise polynomial of order k on EΓ
h,i. Consequently, we can equivalently replace

λH by πk,EΓ
h,i

(λH) also in the fifth term of (5.9). Likewise, it is equivalent to replace

λH by πk,EΓ
h,i

(λH) in the multiscale mortar mixed finite element method (5.1).

Following [24, 16], we now introduce the flux uh. We use it in our a posteriori
estimates but we remark that it is of independent interest. For this we need the space
Rk−1,∗,d(T ) given by [Pk−1(T )]

d for a simplex and Qk−1,k(T ) × Qk,k−1(T ) if d = 2
and Qk−1,k,k(T )×Qk,k−1,k(T )×Qk,k,k−1(T ) if d = 3 for a rectangular parallelepiped.
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Definition 5.3 (DG flux reconstruction). Let T ∈ Th. Then the reconstructed
flux uh|T ∈ Vh(T ) is given by

〈uh·ne, qh〉e =
〈
−{{K∇ph·ne}}+ αe

σK,e

he
[[ph]], qh

〉
e

∀qh ∈ Rk(e), ∀e ∈ ET , e �⊂ Γ,(5.10a)

〈uh·ne, qh〉e =
〈
−K∇ph·ne + αg

σK,g

Hg
(ph − λH), qh

〉
e

∀qh ∈ Rk(e), ∀e ∈ ET , e ⊂ g ∈ GH ,(5.10b)

(uh, rh)T = − (K∇ph, rh)T + θ
∑

e∈ET , e	⊂Γ

ωe〈Krh·ne, [[ph]]〉e

+ θ̄
∑

e∈ET , e⊂Γ

〈Krh·ne, (ph − λH)nT ·ne〉e

∀rh ∈ Rk−1,∗,d(T ),(5.10c)

where ωe :=
1
2 if e ∈ E int

h and ωe := 1 if e ∈ Eext
h .

We now establish the following lemma.
Lemma 5.4 (DG reconstructed flux property). Let uh be given by Definition 5.3.

Then uh satisfies Assumption 3.6.
Proof. Assumption 3.6(1) holds by construction (the normal components on sides

from E int
h,i are continuous). Let i ∈ {1, . . . , n}, T ∈ Th,i, and ξh ∈ Rk(T ) be arbitrary.

Since ξh|e ∈ Rk(e) for all e ∈ ET , ∇ξh ∈ Rk−1,∗,d(T ), and uh satisfies (5.10), we have
with ϕh = ξh on T and ϕh = 0 otherwise,

(∇·uh, ξh)T = −(uh,∇ξh)T +
∑
e∈ET

〈uh·nT , ξh〉e = Bh,i(ph, λH ;ϕh) = (f, ξh)T

by Green’s theorem. Thus, ∇·uh = πk(f), and, consequently Assumption 3.6(2)
follows. Finally, Assumption 3.6(3) is immediate from (5.8b) noting that (5.10b)
implies, on all e ∈ EΓ

h,i,

uh|Ωi ·ne = −K∇ph|Ωi ·ne + αg
σK,g

Hg

(
ph|Ωi − πk,EΓ

h,i
(λH)

)
.

The multiscale mortar DG solution ph ∈ Wh can directly be used as p̃h; such
p̃h, in general, satisfies only Assumption 3.7(1) and not Assumptions 3.7(2)–(3); cf.
Remark 4.3.

5.3. Multiscale mortar coupled mixed finite element–discontinuous Ga-
lerkin method. We give here an example of a multinumerics discretization. Follow-
ing [20], we consider the multiscale mortar coupled mixed finite element–DG method.
For simplicity, we assume K is piecewise constant on Th. Let IDG denote the index
set of the subdomains where the kth-order DG method is used and let IMFE be the
index set of the subdomains where the kth-order mixed finite element method is used.
We seek, for k ≥ 1, ph|Ωi ∈ Wh,i, i ∈ IDG, (uh, ph)|Ωi ∈ Vh,i ×Wh,i, i ∈ IMFE, and
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λH ∈MH such that

Bh,i(ph, λH ;ϕh) = (f, ϕh)Ωi ∀ϕh ∈ Wh,i, i ∈ IDG,(5.11a)

(K−1uh,vh)Ωi − (ph,∇·vh)Ωi + 〈λH ,vh·nΩi〉Γi = 0 ∀vh∈Vh,i, i ∈ IMFE,(5.11b)

(∇·uh, wh)Ωi = (f, wh)Ωi ∀wh ∈Wh,i, i ∈ IMFE,(5.11c) ∑
i∈IMFE

〈uh·nΩi , μH〉Γi +
∑

i∈IDG

∑
g∈GH,i

〈
−K∇ph|Ωi ·nΩi

+ αg
σK,g

Hg

(
ph|Ωi − πk,EΓ

h,i
(λH)

)
, μH

〉
g
= 0 ∀μH ∈MH .(5.11d)

The following lemma is a straightforward generalization of the above results.
Lemma 5.5 (coupled mixed finite element–DG flux property). Let uh|Ωi ∈ Vh,i,

i ∈ IMFE, be given by (5.11). Define uh|Ωi ∈ Vh,i, i ∈ IDG, using the flux reconstruc-
tion of Definition 5.3. Then uh satisfies Assumption 3.6.

Thus, defining p̃h|Ωi by ph|Ωi for i ∈ IDG and by the postprocessing (5.4) for
i ∈ IMFE, the results of sections 3–4 can be applied to the coupling (5.11).

5.4. Multiscale mortar finite volume methods. The present approach can
be easily extended to finite volume–type multiscale mortar methods and their cou-
plings with other multiscale mortar methods, following the example of section 5.3 in
combination with the results of [34].

6. An a posteriori error estimate without flux reconstruction. We de-
scribe here briefly an alternative and simpler a posteriori error estimate not requiring
any construction of a globally H(div,Ω)-conforming flux th.

For a given subdomain Ωi and a given interface side g ∈ GH,i, let Ti,g denote the
element of a mesh TH,i having g as a side. Here, TH is a coarse-scale mesh described in

section 3.4. Recall the trace inequality ‖ϕ−ϕg‖g ≤ Ct,Ti,g ,gH
1
2
g ‖∇ϕ‖Ti,g . It has been

shown in [27, Lemma 3.5] that Ct,Ti,g ,g = (Ct,d)
1
2 (|g|H2

Ti,g
/(|Ti,g|Hg))

1
2 , where Ct,d ≈

0.77708 for a triangle, Ct,d ≈ 3.84519 for a tetrahedron, and Ct,d = 1/(π tanhπ) for
a rectangle. Then the following corollary holds (see [29] for the proof).

Corollary 6.1 (alternative estimate for the flux and the potential). Let u be
the exact flux defined by (1.2), let p be the exact potential defined by (1.1), let uh

satisfy Assumption 3.6 and let p̃h ∈ H1(Th) be arbitrary. Then, for any sh ∈ H1
0 (Ω),

|||u− uh|||∗ ≤ ηP + ηR,h + η̃M,

|||p− p̃h||| ≤ ηNC + ηR,h + η̃M + ηF,

with ηP given by (3.3), ηNC by (3.9), ηF by (3.11), ηR,h by (3.5) with TH := Th, and

η̃M :=

{
n∑

i=1

n∑
j=1

∑
g∈GH,i,j

(
1
2‖[[uh·ng]]‖gCt,Ti,g ,gH

1
2
g c

− 1
2

K,Ti,g

)2
} 1

2

.(6.1)

It follows from [38, 7, 29] that the efficiency of η̃M is as in Theorem 4.4, Case 1.

7. Numerical experiments. We present here several numerical experiments
for problem (1.1) illustrating the different a posteriori error estimators.

We will use the following shorthand notation:
• Method 1: Estimates of Theorems 3.1 and 3.3, flux reconstruction of sec-
tion 3.5.2.
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• Method 2: Estimates of Theorems 3.1 and 3.3, flux reconstruction of sec-
tion 3.5.3.

• Method 3: Estimates of Corollary 6.1, no flux reconstruction needed.
We focus on the four major issues of our paper, mortars, multiscale, multinumer-

ics, and adaptivity. In the implementation, we reduce the problem to a coarse-scale
interface operator and use the multiscale mortar basis method developed in [19, 36]
to solve the coarse-scale interface equations.

7.1. Mortar coupling. This first example focuses on the mortar coupling. We
set Ω := (0, 1)× (0, 1) and take a diagonal highly oscillating tensor coefficient K,

K :=

{
15− 10 sin(10πx) sin(10πy) x, y ∈ (0, 1/2) or x, y ∈ (1/2, 1),

15− sin(2πx) sin(2πy) otherwise.

We impose the source term f according to the analytic solution p(x, y) = x(1 − x)
y(1−y) and use the multiscale mortar mixed finite element method (5.1). The domain
Ω is divided into four subdomains Ωi; in each subdomain Ωi, we use the lowest-
order RTN mixed finite element method on a square mesh Th,i, Vh,i := RTN0(Th,i),
Wh,i := R0(Th,i). Thus k = 0. The mortar space MH is the space of discontinuous
first-order polynomials on the interface mesh GH . Thus m = 1. The meshes Th,i
do not match along the interface Γ; see Figure 7.1(left). We perform several levels
of uniform grid refinement where both subdomain and mortar element diameters are
halved, so that H = 4

√
2h on each level. Note that this setting is rather extreme,

with coarse mortar grid and fine subdomain grids and relatively large CG∗
h
= 5. We

have chosen this example to test our estimates when the mortar error is significant.
Figure 7.2(left) compares the actual and estimated flux errors |||u−uh|||∗ against

the total number of degrees of freedom for Methods 1 and 3. The corresponding
effectivity indices, given as the ratios of the estimate over the error, are plotted in
Figure 7.2(right). We see that the estimates give an upper bound on the error, as
predicted by the theory. In Figure 7.3(left), we plot the mortar estimators ηM for
Method 1 and η̃M for Method 3. We can see that Method 1 exibits better results for
both the mortar error and the overall error.

Figure 7.3(right) compares the flux estimators ηP, ηR,̂h, and ηM for Method 1.

The estimator ηP, as well as the flux error |||u− uh|||∗, converges as O(h). Since f is

Fig. 7.1. Initial subdomains grid Th and interface grid GH , section 7.1 (left) and section 7.2
(right).
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smooth, ηR,̂h converges as O(h2). Here, ηM converges faster than O(h) and eventually
becomes negligible. For the same reason, the overall precision of both Methods 1 and 3
becomes closer with increasing refinement levels; cf. Figure 7.2.

We next show in Figure 7.4 the estimated and actual spatial distribution of the
flux errors |||u−uh|||∗ of Method 1 on the third level refinement. We can see that the
error estimator can detect the actual error distribution very well. In particular, both
the error inside each subdomain and the interface mortar error are well predicted.

7.2. Multiscale. The second example focuses on the multiscale setting and com-
pares all Methods 1, 2, and 3. We set Ω := (0, 1)× (0, 1),

K :=

(
3 2
2 3

)
,

and impose f according to the analytic solution p(x, y) = sin(2πx) sin(2πy). Note
that p ∈ C∞(Ω) and hence is smooth enough for the proof of Theorem 4.4, Case 2.

As in the previous example, we use the multiscale mortar mixed finite element
method (5.1). The subdomains Ωi, the initial subdomain meshes Th,i, and the mortar
mesh GH are illustrated in Figure 7.1(right). We keep Vh,i := RTN0(Th,i), Wh,i :=
R0(Th,i), i.e., k = 0. We, however, increase the polynomial order approximation on
the interface mesh GH . More precisely, we consider two cases, where MH consists
of discontinuous piecewise quadratic polynomials, i.e., m = 2, in case (a), and of
discontinuous piecewise linear polynomials, i.e., m = 1, in case (b). For both cases,
we perform several levels of uniform grid refinement where we halve mortar element
diameters and reduce four times the subdomain element diameters, so H = 2−

3
4

√
h.

Case (a) corresponds to the a priori analysis of [7] and to our robustness result
for Method 2 in Remark 4.5. Case (b) is not covered by the a priori theory nor
by Remark 4.5 but is much more computationally efficient than case (a). Recall
that (5.1) can be reduced to an interface problem on MH , which is given in case (b)
only by piecewise first-order polynomials on GH . For both cases we observe the same
accuracy; the overall error decreases as O(h). It should be noted that no relation
between k and m is required for our estimates nor for their efficiency, except for
Method 2 in Theorem 4.4 and Remark 4.5. So we can use our estimates to monitor
the asymptotic accuracy, especially in case (b), where the mortar error is expected to
be rather significant and presents a challenging test.
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Fig. 7.2. Estimated and actual flux error (left) and effectivity indices (right) on uniformly
refined meshes of Figure 7.1(left) using Methods 1 and 3 for section 7.1.
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Fig. 7.3. Mortar estimators using Methods 1 and 3 (left) and different estimators using
Method 1 (right) on uniformly refined meshes of Figure 7.1(left) for section 7.1.
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Fig. 7.4. Estimated (left) and actual (right) flux error distribution on a uniformly refined mesh
of Figure 7.1(left) using Method 1 for section 7.1.
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residual − method 2, rate=1.99
diff.flux−mortar − method 1, rate=1.00
diff.flux−mortar − method 2, rate=1.01

Fig. 7.5. Potential effectivity indices using Methods 1, 2, and 3 (left) and different potential
estimators using Methods 1 and 2 (right) on uniformly refined meshes of Figure 7.1(right) for
section 7.2, case (a).

Figure 7.5 shows the results for case (a) and Figure 7.6 for case (b). As predicted
by Theorem 4.4, the estimators ηM of Method 1 and η̃M of Method 3 are not robust
with respect to the ratio H/h (see, in particular, Figure 7.6(right), where ηM decays
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residual − method 1, rate=1.82
residual − method 2, rate=1.49
mortar − method 1, rate=0.64
mortar − method 2, rate=0.85

Fig. 7.6. Flux effectivity indices using Methods 1, 2, and 3 (left) and different flux estimators
using Methods 1 and 2 (right) on uniformly refined meshes of Figure 7.1(right) for section 7.2,
case (b).

Fig. 7.7. Estimated (left) and actual (right) flux error distribution on a uniformly refined mesh
of Figure 7.1(right) using Method 2 for section 7.2, case (a).

with a slope O(h0.64) inferior to O(h) of ηP,T and of |||u− uh|||∗). Consequently, the
effectivity index (see Method 3 in Figure 7.6(left)) although quite close to the optimal
value of one on coarse meshes, grows with the refinement level. On the other hand,
as predicted by Theorem 4.4 in conjunction with Remark 4.5, the estimator ηM of
Method 2 is fully robust with respect to the ratio H/h; see Figure 7.5(right), where
ηM for Method 2 decays with the slope O(h) of ηP,T and of |||u − uh|||∗. The rate
in Figure 7.6(right) is no longer optimal, as it is not covered by Remark 4.5 (0.85
instead of 1), but is still much better than 0.64 of Method 1. The estimated and the
actual spatial distribution of the flux errors |||u − uh|||∗ in case (a) for Method 2 on
the third level of refinement are shown in Figure 7.7. They once again match closely.

7.3. Multinumerics and adaptivity. The third example focuses on the mul-
tinumerics and local adaptivity of both the subdomain and mortar grids. Set Ω :=
(−1, 1)× (−1, 1) and

K :=

{
5 (x, y) ∈ (−1, 0)× (−1, 0) or (x, y) ∈ (0, 1)× (0, 1),

1 otherwise.

We impose the source term f and Dirichlet boundary conditions according to the
analytic solution, which is given (in polar coordinates) by p(r, θ)|Ωi = rα(ai sin(αθ)+
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bi cos(αθ)), where i ∈ {1, . . . , 4} corresponds to the axis quadrants and where α =
0.53544, a1 = 0.44721, b1 = 1, a2 = −0.74536, b2 = 2.33333, a3 = −0.94412, b3 =
0.55556, a4 = −2.4017, and b4 = −0.48148. Inhomogeneous Dirichlet boundary
conditions are set according to the solution; the error stemming from their discrete
approximation is neglected. This solution has been studied previously in, e.g., [31],
and provides an excellent test for a posteriori error estimation and adaptive mesh
refinement due to the singularity at the point (0, 0).

The domain Ω is divided into sixteen subdomains Ωi with the interface Γ along the
lines x = −1/2, 0, 1/2 and y = −1/2, 0, 1/2. On the inner subdomains intersecting the
point (0, 0) where the singularity resides, we use the piecewise linear Nonsymmetric
Interior Penalty Galerkin (NIPG) finite element method on triangular meshes [20]. In
the remaining subdomains we use the lowest-order RTN mixed finite element method
on a square mesh. The coupling is achieved via (5.11).

The mortar space MH is the space of discontinuous second-order polynomials
on the interface mesh GH (m = 2). For initial meshes we use 4 × 4 rectangular
meshes in the mixed subdomains and similar 4 × 4 meshes divided into triangles in
the NIPG subdomains. The initial mortar grid GH has one element on all GH,i,j , so
that H = 1/4 for the coarsest mesh. We note that the initial subdomain grids match
along the interface, but in the adaptive algorithm the subdomains may each be refined
independently.

Figure 7.8(left) compares the actual and estimated potential errors for Methods 1
and 3 on uniformly refined meshes. The corresponding effectivity indices are plotted
in Figure 7.8(right). We observe very good behavior in this multinumerics setting.
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Fig. 7.8. Estimated and actual potential error (left) and effectivity indices (right) on uniformly
refined meshes (cf. Figure 7.9) using Methods 1 and 3 for section 7.3.

Next, we use the a posteriori error estimate for adaptive mesh refinement. For
our refinement criteria, we compute the maximum of the subdomain and mortar error
indicators and mark a subdomain or mortar mesh element for refinement if its error
indicator is larger that 0.8 times this maximum. Within the mixed finite element
subdomains the grids are refined uniformly, while within the NIPG subdomains and
on the mortar interface grid the elements are refined locally.

Figure 7.9 shows the adapted subdomain (left) and mortar (right) mesh after 12
refinements using Method 1. We see that the refinements are concentrated around
the singularity. Figure 7.10(left) gives the corresponding effectivity indices.

Finally, in Figure 7.10(right) we compare the estimated and actual flux errors
on uniform and adaptive meshes. Clearly, the adaptively refined meshes are able
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Fig. 7.9. Adaptive subdomain mesh (left) and mortar mesh (right) after 12 steps of adaptive
refinement using Method 1 for section 7.3.
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Fig. 7.10. Flux and potential effectivity indices (left) and estimated and actual flux error (right)
on adaptively refined meshes of Figure 7.9 using Method 1 for section 7.3.

to provide an accurate solution with far fewer degrees of freedom. The convergence
order is approximately O(h0.55) for uniform refinement and O(h1.03) for the adaptive
algorithm which indicates that the refinement resolves the singularity.

7.4. Mortar adaptivity in a realistic case. Our last example considers the
layer 75 of the SPE-10 permeability field [14] and focuses on mortar adaptivity. We
set Ω := [0, 1200]× [0, 2200] and define the permeability field K (scalar) as shown in
Figure 7.11(left). We impose a uniform pressure drop from the bottom to the top of
the domain with no-flow boundary conditions on the lateral sides. The pressure and
velocity fields on the fine scale, 120× 220 grid, are shown in Figure 7.11(middle) and
(right), respectively.

The domain Ω is divided into 66 subdomains (6 × 11), and each Th,i is a square
20×20 mesh corresponding to the given permeability field. We employ the multiscale
mortar mixed finite element method (5.1). In each subdomain, we use the lowest-order
RTN spaces (k = 0), whereas the initial mortar spaceMH is the space of discontinuous
first-order polynomials (m = 1) on the mesh GH coinciding with the subdomain
interfaces. The logarithm of the magnitude of the velocity field corresponding to this
coarse mortar discretization is shown in Figure 7.12(left). Note that, at first sight,
the velocity field corresponding to the coarse mortars appears to be close to the fine
scale velocity field of Figure 7.11(right), but the error is actually quite large (the plots
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Fig. 7.11. Logarithm of the permeability field K for the layer 75 of the SPE-10 data set (left),
pressure field using the fine scale mortars (120×220 grid) (middle), and logarithm of the magnitude
of the velocity field using the fine scale mortars (right) for section 7.4.

Fig. 7.12. Logarithm of the magnitude of the initial velocity using the coarse mortars (left), the
adaptively refined mortar mesh (middle-left), the pressure field using the adaptively refined mortars
(middle-right), and logarithm of the magnitude of the velocity field using the adaptively refined
mortars (right) for section 7.4.
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Fig. 7.13. Convergence of the mortar error using both uniform and adaptive refinement for
section 7.4.

are in a logarithmic scale).
We perform the adaptivity with respect to the mortar space MH , or, more

precisely, with respect to the mortar mesh GH , keeping the subdomain grids and
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discretizations fixed. We compute the a posteriori error estimates for the subdomains
and the mortars using Method 3 and refine the mortar mesh until the mortar con-
tribution is approximately equal to the subdomain contribution. The final adaptive
mortar mesh, as well as the pressure field and the logarithm of the magnitude of
the velocity field corresponding to this mesh, are shown in Figure 7.12(middle-left),
(middle-right), and (right), respectively.

To demonstrate the efficiency of the adaptivity, we compare the mortar error for
both uniform and adaptive refinement of the mesh GH in Figure 7.13. We observe
that the adaptive algorithm is able to achieve a much smaller mortar error with fewer
degrees of freedom for the mortars. In a sense, the adaptive algorithm provides the
solution with the minimal amount of coupling between the subdomains subject to the
error budget. We are reducing the errors from the various contributions to the same
level to maximize efficiency and to avoid oversolving some part of the problem.

8. Concluding remarks. We have introduced in this paper a general framework
for guaranteed a posteriori error estimates for multiscale, multinumerics, and mortar
coupling. In section 7, we have classified the various estimators into three meth-
ods. Method 1, which uses the H(div,Ω)-conforming flux reconstruction th following
section 3.5.2, is moderately involved to implement, while requiring the solution of
local Neumann problems. It gives the best results for almost all of the test cases.
Method 2, with th constructed following section 3.5.3, is more expensive but robust
in the multiscale setting, under sufficient regularity assumptions. Method 3, with the
estimates of Corollary 6.1, where no H(div,Ω)-conforming flux reconstruction is used,
appears as a cheaper alternative with less sharp results especially in truly multiscale
situations.

Appendix A. A technical result for nonmatching meshes. We give here a
robust result for nonmatching meshes which is necessary in the proof of Theorem 4.2.

Lemma A.1. Let p̃h ∈ H1(Th) satisfying Assumptions 3.7(2)–(3) be given. Then

h
− 1

2
g ‖[[p̃h]]‖g ≤ C

∑
T∈Th; |g∩∂T |	=0

‖∇(p̃h − ψ)‖T

for all g ∈ G∗
h, where ψ ∈ H1(Ω) is arbitrary and C depends on d, κTh

, and CG∗
h
.

Proof. The proof is a generalization of [2, Theorem 10] to the case where g ∈
G∗
h is a union of sides from EΓ

h , arising from each side of the interface, such that
only 〈[[p̃h]], 1〉g = 0 holds. If not specified otherwise, C denotes a generic constant
depending on d, κTh

, and CG∗
h
, not necessarily the same at each occurrence.

Consider g ∈ G∗
h and all the elements T ′

i and T ′′
j of Th from the two subdomains

Ωi and Ωj such that |g ∩ ∂T ′
i | �= 0 and |g ∩ ∂T ′′

j | �= 0; cf. Figure 2.1. Denote ∪T ′
i by

T ′ and ∪T ′′
j by T ′′. Let T ∗ = T ′ or T ′′ and consider the following local Neumann

problems:

−Δϕ = 0 in T ∗,(A.1a)

∇ϕ·ng = [[p̃h]] on ∂T ∗ ∩ g,(A.1b)

∇ϕ·nT∗ = 0 on ∂T ∗ \ g,(A.1c)

(ϕ, 1)T∗ = 0.(A.1d)

Using Assumption 3.7(3), it follows that the above problems are well-posed. Now let
ψ ∈ H1(T ′ ∪ T ′′) be arbitrary. Set ψ̃|T ′ := ψ|T ′ + cT ′ and ψ̃|T ′′ := ψ|T ′′ + cT ′′ , where
cT ′ := (p̃h − ψ)T ′ and cT ′′ := (p̃h − ψ)T ′′ . The function ψ is on T ′, T ′′ shifted by
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the constants cT ′ and cT ′′ so that ψ̃ has the same mean value as p̃h on both T ′, T ′′,
(ψ̃, 1)T ′ = (p̃h, 1)T ′ , (ψ̃, 1)T ′′ = (p̃h, 1)T ′′ . Thus, we have

(∇ϕ,∇(ψ̃ − p̃h))T ′∪T ′′ =
∑

T⊂T ′∪T ′′
(∇ϕ,∇(ψ̃ − p̃h))T =

∑
T⊂T ′∪T ′′

〈∇ϕ·nT , ψ̃ − p̃h〉∂T

− ‖[[p̃h]]‖2g + 〈[[p̃h]], [[ψ̃]]〉g −
∑

T⊂T ′∪T ′′
nT ·ng〈[[p̃h]], ψ̃ − p̃h〉∂T∩g,

using Green’s theorem, (A.1a), and noting that p̃h is by assumption only regular on
the elements T of Th. This leads to

‖[[p̃h]]‖2g≤‖∇ϕ‖T ′∪T ′′‖∇(ψ̃ − p̃h)‖T ′∪T ′′ +
∑

T⊂T ′∪T ′′
‖∇ϕ·nT ‖− 1

2 ,∂T
‖ψ̃ − p̃h‖ 1

2 ,∂T

+
∑

T⊂T ′∪T ′′
‖[[p̃h]]‖∂T∩g‖ψ̃ − p̃h‖∂T∩g + |〈[[p̃h]], [[ψ̃]]〉g|,

(A.2)

where ‖ · ‖− 1
2 ,∂T

and ‖ · ‖ 1
2 ,∂T

are defined by duality as in [3, 8]. We now estimate

each of the above right-hand side terms separately.

(1) The trace inequality ‖ϕ‖g ≤ Ch
1
2
g ‖∇ϕ‖T ′ (recall that (A.1d) holds) gives

‖∇ϕ‖2T ′ = 〈∇ϕ·nT ′ , ϕ〉∂T ′ = nT ′ ·ng〈[[p̃h]], ϕ〉g ≤ C‖[[p̃h]]‖gh
1
2
g ‖∇ϕ‖T ′ .

Proceeding similarly on T ′′, it follows that the first term of (A.2) can be bounded by

(A.3) C‖[[p̃h]]‖gh
1
2
g ‖∇(ψ̃ − p̃h)‖T ′∪T ′′ = C‖[[p̃h]]‖gh

1
2
g ‖∇(ψ − p̃h)‖T ′∪T ′′ .

Here we have also used the fact that ∇ψ̃ = ∇ψ (recall ∇ is the piecewise gradient).
(2) The second term of (A.2) can be bounded by

C‖∇ϕ‖T ′∪T ′′
(
‖∇(ψ̃ − p̃h)‖2T ′∪T ′′ + h−2

g ‖ψ̃ − p̃h‖2T ′ + h−2
g ‖ψ̃ − p̃h‖2T ′′

) 1
2

≤ C‖∇ϕ‖T ′∪T ′′‖∇(ψ̃ − p̃h)‖T ′∪T ′′ ,

where we have employed the trace theorem and the Cauchy–Schwarz inequality. In
addition, we have used the fact that hT and hg are comparable for all T ⊂ T ′ ∪ T ′′

and the discrete Poincaré inequality ‖ψ̃ − p̃h‖T∗ ≤ Chg‖∇(ψ̃ − p̃h)‖T∗ , T ∗ = T ′, T ′′;
cf. [33, Theorem 8.1]. The latter result is justified by Assumption 3.7(2).

(3) Let T ∈ Th and e ∈ ET . Using the trace inequality ‖χ‖2e ≤ C(hT ‖∇χ‖2T +
h−1
T ‖χ‖2T ), χ ∈ H1(T ),

‖ψ̃ − p̃h‖2∂T∩g ≤ C(hT ‖∇(ψ̃ − p̃h)‖2T + h−1
T ‖ψ̃ − p̃h‖2T )

for any T ⊂ T ′ ∪ T ′′. Consequently, the third term of (A.2) is bounded by

C‖[[p̃h]]‖g
(
hg‖∇(ψ̃ − p̃h)‖2T ′∪T ′′ + h−1

g ‖ψ̃ − p̃h‖2T ′ + h−1
g ‖ψ̃ − p̃h‖2T ′′

) 1
2

≤ C‖[[p̃h]]‖gh
1
2
g ‖∇(ψ̃ − p̃h)‖T ′∪T ′′ = C‖[[p̃h]]‖gh

1
2
g ‖∇(ψ − p̃h)‖T ′∪T ′′ ,

using the same argument as in (2).
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(4) Let us finally turn to the last term of (A.2). We have, using the Cauchy–
Schwarz inequality, the fact that |[[ψ̃]]| = |cT ′ −cT ′′ |, adding and subtracting (p̃h−ψ)g,
and employing the triangle inequality,

|〈[[p̃h]], [[ψ̃]]〉g | ≤ ‖[[p̃h]]‖g‖cT ′ − cT ′′‖g ≤ ‖[[p̃h]]‖g(‖(p̃h − ψ)T ′ − (p̃h − ψ)g‖g
+ ‖(p̃h − ψ)T ′′ − (p̃h − ψ)g‖g).

Now, using the same technique as in [34, Lemma 7.2] and employing discrete Frie-
drichs’ inequality [33, Theorem 5.4 and Remark 5.9] ‖χ‖T∗ ≤ Chg‖∇χ‖T∗ , T ∗ =
T ′, T ′′, with χ := (p̃h − ψ) − (p̃h − ψ)g (it is again crucial that Assumption 3.7(2)
holds), we have

|〈[[p̃h]], [[ψ̃]]〉g | ≤ C‖[[p̃h]]‖gh
1
2
g ‖∇(ψ − p̃h)‖T ′∪T ′′ .

Combining the above estimates on the individual terms of (A.2), we come to

‖[[p̃h]]‖g ≤ Ch
1
2
g ‖∇(ψ − p̃h)‖T ′∪T ′′ , whence the assertion of the lemma follows.
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[17] A. Ern and M. Vohraĺık, Flux reconstruction and a posteriori error estimation for discon-
tinuous Galerkin methods on general nonmatching grids, C. R. Math. Acad. Sci. Paris,
347 (2009), pp. 441–444.



554 PENCHEVA, VOHRALÍK, WHEELER, AND WILDEY

[18] B. Ganis, G. Pencheva, M. F. Wheeler, T. Wildey, and I. Yotov, A frozen Jacobian mul-
tiscale mortar preconditioner for nonlinear interface operators, Multiscale Model. Simul.,
10 (2012), pp. 853–873.

[19] B. Ganis and I. Yotov, Implementation of a mortar mixed finite element method using a
multiscale flux basis, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 3989–3998.

[20] V. Girault, S. Sun, M. F. Wheeler, and I. Yotov, Coupling discontinuous Galerkin and
mixed finite element discretizations using mortar finite elements, SIAM J. Numer. Anal.,
46 (2008), pp. 949–979.

[21] R. Glowinski and M. F. Wheeler, Domain decomposition and mixed finite element methods
for elliptic problems, in Proceedings of the First International Symposium on Domain De-
composition Methods for Partial Differential Equations (Paris, 1987), SIAM, Philadelphia,
1988, pp. 144–172.

[22] H. Hajibeygi and P. Jenny, Adaptive iterative multiscale finite volume method, J. Comput.
Phys., 230 (2011), pp. 628–643.

[23] O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galer-
kin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41 (2003),
pp. 2374–2399.

[24] K. Y. Kim, A posteriori error estimators for locally conservative methods of nonlinear elliptic
problems, Appl. Numer. Math., 57 (2007), pp. 1065–1080.

[25] V. Kippe, J. E. Aarnes, and K.-A. Lie, A comparison of multiscale methods for elliptic
problems in porous media flow, Comput. Geosci., 12 (2008), pp. 377–398.
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