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A POSTERIORI ERROR ESTIMATES FOR LOWEST-ORDER
MIXED FINITE ELEMENT DISCRETIZATIONS OF
CONVECTION-DIFFUSION-REACTION EQUATIONS*
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Abstract. We establish residual a posteriori error estimates for lowest-order Raviart—Thomas
mixed finite element discretizations of convection-diffusion-reaction equations on simplicial meshes
in two or three space dimensions. The upwind-mixed scheme is considered as well, and the emphasis
is put on the presence of an inhomogeneous and anisotropic diffusion-dispersion tensor and on a
possible convection dominance. Global upper bounds for the approximation error in the energy
norm are derived, where in particular all constants are evaluated explicitly, so that the estimators
are fully computable. Our estimators give local lower bounds for the error as well, and they hold
from the cases where convection or reaction are not present to convection- or reaction-dominated
problems; we prove that their local efficiency depends only on local variations in the coefficients
and on the local Péclet number. Moreover, the developed general framework allows for asymptotic
exactness and full robustness with respect to inhomogeneities and anisotropies. The main idea of
the proof is a construction of a locally postprocessed approximate solution using the mean value and
the flux in each element, known in the mixed finite element method, and a subsequent use of the
abstract framework arising from the primal weak formulation of the continuous problem. Numerical
experiments confirm the guaranteed upper bound and excellent efficiency and robustness of the
derived estimators.
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1. Introduction. We consider the convection-diffusion-reaction problem
(1.1a) -V -(SVp)+ V- -(pw)+rp=f in Q,
(1.1b) p=0 on 09,

where S is in general an inhomogeneous and anisotropic (nonconstant full-matrix)
diffusion-dispersion tensor, w is a (dominating) velocity field, r a reaction function,
f a source term, and Q C R d = 2,3, is a polygonal (polyhedral) domain (open,
bounded, and connected set). Our purpose is to derive a posteriori error estimates
for the lowest-order Raviart—Thomas mixed finite element discretization of the prob-
lem (1.1a)—(1.1b) on simplicial meshes (consisting of triangles if d = 2 and of tetra-
hedra if d = 3), as well as for its upwind variant; cf. Douglas and Roberts [17] and
Dawson [16].
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A posteriori error estimates, pioneered by Babuska and Rheinboldt [7], are nowa-
days well established for primal discretizations of second-order elliptic problems in-
volving only a diffusion term; cf., for example, the survey by Verfiirth [32] for the con-
forming finite element method. An approach encompassing all conforming, noncon-
forming, and discontinuous finite element methods was recently proposed by Ainsworth
[3], using a Helmholtz-like decomposition of the error in the numerical solution into its
conforming and nonconforming parts in order to give a computable error bound. In
most cases the analysis is given only for S being an identity matrix; an in-depth analy-
sis for the general inhomogeneous and anisotropic diffusion tensor in the framework of
the finite element method was presented by Bernardi and Verfiirth [9]. Similar results
have been obtained by Petzoldt [28], for nonconforming finite elements by Ainsworth
[4], and some developments for the finite volume box scheme (in the given case actu-
ally equivalent to the lowest-order Raviart—Thomas mixed finite element method) are
presented by El Alaoui and Ern [19]. In all these references, a hypothesis of the type
“monotonicity around vertices” on the distribution of the inhomogeneities is necessary.
In recent years a posteriori error estimates have been extended to convection-diffusion
problems as well. We cite in particular Verfiirth [33], who derived estimates in the
energy norm for the conforming Galerkin method and its stabilized SUPG (streamline
upwind Petrov—Galerkin) version. His estimates are both reliable (yielding a global
upper bound on the error between the exact and approximate solutions) and locally
efficient (giving a local lower bound). Moreover, they are semirobust in the sense
that the lower and upper bounds differ by constants whose dependence on the local
mesh discretization parameter vanishes as this approaches the ratio of the smallest
eigenvalue of S to the local size of the velocity field (i.e., when the local Péclet num-
ber gets sufficiently small). Recently, Verfiirth [34] improved his results while giving
estimates which are fully robust with respect to convection dominance in a norm in-
corporating a dual norm of the convective derivative. The new norm is not, however,
easily computable, there is no local lower bound, and the estimators do not change
with respect to [33], and hence the adaptive strategies will remain the same. Finally,
a different approach, yielding an estimate in the L'-norm, independent of the size of
the diffusion tensor, is given by Ohlberger [26] in the framework of the vertex-centered
finite volume method.

In comparison with primal methods, the literature on a posteriori error estimates
in the mixed finite element method is much less extensive. Most of the results have
been obtained for the Poisson equation (i.e., w = r = 0 in (1.1a)-(1.1b)) in two
space dimensions: Alonso [5] derived estimates for the error in the flux u := —SVp
of the scalar variable p and either Raviart—-Thomas [29] or Brezzi-Douglas—Marini
[11] mixed finite elements. Braess and Verfurth [10] proved estimates for both u and
p for Raviart-Thomas elements, based on mesh-dependent norms and a saturation
assumption. Carstensen [13] derived rigorous estimates for various mixed finite ele-
ment schemes and for both u and p. Achchab et al. [1] can imbed Raviart—Thomas
elements in their hierarchical a posteriori error estimates, whereas Carstensen and
Bartels [14] give an upper bound using averaging techniques. Kirby [24] proposed
simple residual-based estimates for Raviart—Thomas elements, where, however, the
flux estimator is not proved to yield a lower bound and is, moreover, obtained under
a saturation assumption. Wheeler and Yotov [39] were able to obtain a posteriori
error estimates for the mortar version of all families of mixed finite elements, also in-
cluding the three-dimensional case; a saturation assumption was, however, necessary
for the velocity estimate. Recently, Lovadina and Stenberg [25] employed an idea of
postprocessing similar to that used in this paper (with, however, the postprocessed
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1572 MARTIN VOHRALIK

scalar unknown of one degree lower than the one used here) in order to prove reliable
and efficient a posteriori error estimates for both the scalar and flux variables in a
mesh-dependent norm. Finally, Hoppe and Wohlmuth [22] treat a diffusion-reaction
problem in two space dimensions and use the relation of lowest-order Raviart—Thomas
mixed finite elements to nonconforming finite elements derived by Arnold and Brezzi
in [6] in order to control, under a saturation assumption, the L?-norm error in the
primal variable p.

To the author’s knowledge, no a posteriori estimates for mixed finite element
discretizations of convection-diffusion(-reaction) problems have been presented in the
literature so far. We do this in section 4 of this paper, after stating the assumptions
on the data and formulating the continuous problem in section 2 and after defining the
schemes in section 3. The estimates are derived in the energy norm for a new locally
(on each element) postprocessed scalar variable p;, such that its flux —SVpy, is equal
to uy and such that its mean on each element is equal to pp. By this construction, we
actually have the L?(2) control over both uj, —u and pj, —p. Our estimates, in contrast
to the usual practice, do not include any undetermined multiplicative constants, so
that they are fully (and locally and easily) computable. They represent local lower
bounds for the error as well, with efficiency constants of the form c; + ¢ min{Pe, g},
where Pe (the local Péclet number) and g are given below by (4.8) and where ¢y, ¢2
depend only on local variations in S (i.e., on local inhomogeneities and anisotropies),
on local variations in w and r, on the space dimension, on the polynomial degree of f,
and on the shape-regularity parameter of the mesh. They hold from the cases where
convection or reaction are not present to convection- or reaction-dominated problems
and are in particular semirobust as in [33] with respect to convection dominance. Next,
in the pure diffusion case, we can write the general framework for our estimators in a
form of an infimum over all H}(Q) functions plus a higher-order residual term, which
yields asymptotic exactness and full robustness with respect to inhomogeneities and
anisotropies, and this without any “monotonicity” hypothesis. Although in numerical
experiments we use only local discrete evaluations of the estimators, they remain
almost asymptotically exact (the ratio of the estimated and actual error is close to one,
and this even in the convection-diffusion-reaction case) and quite robust. Finally, as an
interesting consequence of our analysis, we find that in the pure diffusion case with
piecewise constant coefficients, the lowest-order mixed finite elements represent an
exact three-point scheme in one space dimension, and in two or three space dimensions,
the postprocessed approximation is exact with respect to some generalized continuous
solution. All these issues are discussed in detail in section 5.

Next, section 6 presents some discrete properties of the schemes and of the post-
processed scalar variable py. Namely, we show that p; is nonconforming in the sense
that it is not included in Hg(£2), but we prove that the means of its traces are con-
tinuous across interior sides (edges if d = 2, faces if d = 3) and equal to zero on
exterior sides of the mesh; they are, in fact, shown to equal the Lagrange multipliers
from the hybridized forms of the schemes. The actual proofs of our a posteriori error
estimates and of their local efficiency are then given in section 7. The key element
is Lemma 7.1 which states a primal weak formulation-based abstract framework al-
lowing for the above-discussed asymptotic exactness and asymptotic robustness. The
nonconformity of pj, is then treated by the techniques developed in [2, 23, 19]. Nei-
ther any additional regularity of the weak solution nor any saturation assumption is
needed. Finally, we illustrate the accuracy of the derived estimates in section 8 in
several numerical experiments.

In this paper we focus only on lowest-order methods since in practice they are
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by far the most commonly used and hence we believe they deserve a special treat-
ment; on the other hand, we do cover the three-dimensional case. Moreover, we have
shown in [36] that there exists a local flux-expression formula in lowest-order mixed
finite elements and that they can namely be implemented with only one unknown per
element, which enables us to significantly decrease their traditional increased compu-
tational cost. The extension to higher-order schemes is an ongoing work. Finally, we
have also generalized the presented type of a posteriori error estimates to the finite
volume method in the forthcoming paper [38]. We treat there among other questions
a larger variety of meshes and general inhomogeneous Dirichlet or Neumann boundary
conditions. This paper is a detailed description of the results previously announced
in [37].

2. Notation, assumptions, and the continuous problem. We introduce
here the notation, define admissible triangulations to which the space Wy (7},) and the
data will be related, and finally give details on the continuous problem (1.1a)—(1.1b).

2.1. Notation. For a domain S C R?, we denote by L?(S) and L?(S) = [L?(9)]¢
the Lebesgue spaces, by (-,-)s the L?(S) or L%(S) inner product, and by || - ||s
the associated norm; |S| stands for the Lebesgue measure of S. Next, H'(S) and
H}(S) are the Sobolev spaces of functions with square-integrable weak derivatives,
H(div,S) = {v € L%\S);V -v € L?(9)} is the space of functions with square-
integrable weak divergences, and (-, -)ss stands for (d — 1)-dimensional inner product
on S or for the duality pairing between H~2(95) and Hz (9S). We will also use the
“broken Sobolev space” H(7p,) := {p € L*(Q);¢|x € HY(K) VK € T5}. In what
follows we conceptually denote by Cy4, ca4 constants dependent only on a quantity A.

2.2. Triangulation, Poincaré and Friedrichs inequalities, and the space
Wo(7n). We suppose that 7, for all A > 0 consists of closed simplices such that
Q= UKeTh K and such that if K, L € 7, K # L, then K N L is either an empty
set or a common face, edge, or vertex of K and L. Let hx denote the diameter of
K and let h := maxge7, hx. We make the following shape-regularity assumption on
the family of triangulations {7}, denoting rr := |K|/h%.

Assumption A (shape-regularity of the meshes). There exists a constant k7 > 0
such that minge7, kx > k7 for all h > 0.

Let px denote the diameter of the largest ball inscribed in K. Then Assumption A
is equivalent to the usual requirement of the existence of a constant 87 > 0 such that
maxgeT, hi/px < O for all h > 0. We next denote by &, the set of all sides of 7p,,
by €t the set of interior, by £ the set of exterior, and by € the set of all the
sides of an element K € 7;,. Finally, h, stands for the diameter of o € &,.

Let K € T;, and ¢ € HY(K). Two inequalities play an essential role in our
analysis. First, the Poincaré inequality states that

(2.1) lp = exl% < Crabk|Vellk

where g is the mean of ¢ over K, ¢x := (¢,1)k/|K|, and where the constant Cp 4
can for a simplex (using its convexity) be evaluated as d/m; cf. [27, 8]. Next, the
following generalized Friedrichs inequalities have been proved in [35, Lemma 4.1]:

h2
(2.2) (pr — o) < CF,dﬁHVQDH%{a e — @ollk < Cr.ah% || Vel -

Here ¢, is the mean of ¢ over o € &k, v, := (p,1)s/|0], and Cr 4 = 3d.
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We finally define the space Wy(7,) of functions with mean values of the traces
continuous across interior sides and zero on exterior sides,

Wo(Th) = {p € L*(Q);p|lx € H'(K) VK € Ty,

(2.3) (ol — @lo: Doy, =0 Vox, € E™,
(p,1); =0Vo € 52’“},

and recall the discrete Friedrichs inequality

(2.4) el < Cor Y IVl Ve € Wo(Th), VA >0,
KeTy,

where Cpr depends only on 7 and infy,cga{thicky () }; cf. [35, Theorem 5.4].

2.3. Data. We suppose that there exists a basic triangulation Ty, of Q such that
the data of the problem (1.1a)—(1.1b) are related to 7}, in the following way.
Assumption B (data).

(B1) Sk := S|k is a constant, symmetric, bounded, and uniformly positive definite
tensor such that cs x v-v < Sgv-v<CsgVv-v,cgr >0, Csgx >0, for
all v e R? and all K € Ty; ~

(B2) we RTNO(Th) satisfies |W|K| < Cw.i; Cwix >0, for all K € Tp,;

(B3) 7k :=r|xk is a constant for all K € Tj,;

(B4) %VW‘K"'HK = Cw,r,K and |VW|K+TK‘ = CWJ‘,K) Cw,r, K > O; C(w,'r,K > 0;
for all K € ﬁ; B

(B5) flk is a polynomial of degree at most k for each K € Tp,;

(B6) if cw,r.x =0, then Cyw » x = 0.

The assumptions that S and r are piecewise constant on ’fh, that w € RTNO(’]~';L)
(cf. section 3.1 below for the definition of this space), and that f is a piecewise
polynomial are made for the sake of simplicity and are usually satisfied in practice.
If the functions at hand do not fulfill these requirements, interpolation can be used.
Finally, note that Assumption (B6) allows cw , x = 0 but w|x # 0.

2.4. Continuous problem. Let 7; be, as throughout the whole paper, a re-
finement of 7;,. We define a bilinear form B by
(2.5)

B(p,¢):i= > {(SVD,Vo)k + (V- (pw), @) + (rp, )k}, prp € H'(Th),
KeTy,

and the corresponding energy (semi)norm by
(2.6)

el == D Mellk,  Mellk = (SVe, Vo)k + cwrilleli, @€ H' (Th).
KeT,

In this way B(-,-) and ||| - ||| are well defined for p,p € H(2) as well as for p, ¢ that
are only piecewise regular. Note also that ||| - ||| is a norm on Wy(7},) even if there
exists K € 7}, such that ¢y k = 0 because of the discrete Friedrichs inequality (2.4)
and Assumption (B1). The weak formulation of the problem (1.1a)—(1.1b) is then to
find p € H}(Q) such that

(2.7) Blp.) = (f,0)a Vo€ HJ(Q).
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Assumption B, the Green theorem, and the Cauchy—Schwarz inequality imply that

(2.8) Blp,p) = |llellla Ve € Hy (),
1
(2.9) Bp.o) = llelle, + 5 Y (@ w moxc Vo € H'(Th),
KE,]-}L

CW,T,K
(o) < max {1, e { =2 ol
Cw,r, K

€Ty
(2.10) +max { CE Villallolle Ypog € HY(T)
. gax \/CST Pllallelia D, ¥ h)s

and problem (2.7) under Assumption B, in particular, admits a unique solution.
Remark 2.1 (notation). In estimate (2.10), if ¢w » xk = 0, the term Cyw , x /Cw r K

should be evaluated as zero, since Assumption (B6) in this case gives Cy .k = 0. To

simplify notation, we systematically use the convention 0/0 = 0 throughout the text.

3. Mixed finite element schemes. We define in this section the centered and
upwind-weighted mixed finite element schemes.

3.1. Function spaces. Let RTN?(7,) be the space of elementwise linear vec-
tor functions uy, such that, on each K € Ty, up|x = (ax + dgx, b + dgy) if d =2
and uy|g = (ax +dgx, b + dgy, cx +dxz) if d = 3. The Raviart—Thomas—Nédélec
space RTNO(’E) imposes the continuity of the normal trace across all o € S}L“t and
is given by RTN"(7,) := RTN",(7;,) N H(div,Q). There is one basis function v,
associated with each o € &,. For ox 1 € &M, vo, (%) = ﬁ(x - Vi), x € K;
Vor (X) = ﬁ(VL —X), X € L; vy, (x) = 0 otherwise, where Vi is the vertex of K
opposite to o and Vp, the vertex of L opposite to 0. We suppose that the orientation
of Vg ., i.e., the order of K and L, is fixed. For a boundary side o, the support
of v, consists only of K € T}, such that o € Ex. Next, the space ®(7;) consists of
elementwise constant scalar functions; we denote py|x = px for pr € ®(73). Recall
also that V -y, € ®(7;) for each uj, € RTN" | (73,).

3.2. Centered scheme. The centered mixed finite element scheme (cf. [17])
reads: find u;, € RTNY(7;,) and p;, € ®(7;,) such that

(318,) (Sfluh,vh)g — (ph, AV Vh)Q =0 Vv € RTNO(/T}L),
(3:1b)  (V-up, dn)a = (S™ wp - W, dn)a + ((r + V- W)pn, dn)g = (f, én)a
Von € ®(Th).

3.3. Upwind-weighted scheme. The upwind-weighted mixed finite element
scheme reads: find u, € RTN"(7;,) and p,, € ®(7;,) such that

(3.2a) (S_luh,vh)g — (pn, V-vp)a =0 Vv € RTNO(%),

(3.2b) (Vowndn)a+ Y. Y Powkodi + (1o, dn)a = (f. ¢n)a

KeTp oelk

Vo € Pr(Th),
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1576 MARTIN VOHRALIK

where wk » 1= (w-n,1),, 0 € £k, with n being the unit normal vector of the side o,
outward to K, and where p, is the weighted upwind value defined by

R (1 - Vo’)pK + VoPL if WK, o Z 07
(3.3) Do 1=

(1 = vo)pr +vopr  if wi,e <0,

if o is an interior side between elements K and L, and

(3.4)

X (1-vo)px if wige >0,
Po = .
VoDK if wg s <0,
if o is a boundary side. Here, v, € [0,1/2] is the coefficient of the amount of upstream

weighting which may be, in order to reduce the excessive numerical diffusion added
by the full upstream weighting used in [16], chosen as

(3.5)
min Cso_ﬂ,1 ifUJKO-#OandUES},Lnt,
. " helwg | 2 7
Vg 1= orifo e S}el’“ and WK,c > 0,
0 if WK,o = 0orifo e 52Xt and WK, < 07

where cg  is the harmonic average of cs i and cg 1, if 0 = OKNJL and cs g otherwise.

4. A posteriori error estimates. We summarize in this section our a posteriori
estimates on the error between the weak solution p and a postprocessed variable py,
which we shall define first, along with its modified Oswald interpolate.

4.1. A postprocessed scalar variable pj. In standard mixed finite element
theory (see, e.g., Brezzi and Fortin [12] or Roberts and Thomas [31]) the two variables
pr, and uy, are considered as independent. In contrast, the basis for our a posteriori
error estimates is a construction of a postprocessed scalar variable p;, which links py,
and uy, on each simplex in the following way:

(4.1&) —SKV]ahh{ = llh|K VK € 7;“
Dh, 1
(4.1b) (p’|“K|)K —px VK €T

Note that, in particular, if S = Id, pp|x = —dr /2 (2?2 +y?) —axx —bry—ex if d =2
and pp|x = —di /2 (22 +y*+22) —agr—bry—crxz—ek if d = 3. Here ax—dy are the
coefficients from section 3.1, and ex is given so that (4.1b) was satisfied. If S # Id,
then pp, verifying (4.1a)—(4.1b) still exists due to the symmetry of S and is this time a
full second-order polynomial on each K € 7. The new variable pj, is nonconforming,
pn & HL(Q), but, by Lemma 6.1 below, p, € Wy(7,); i.e., its means on interior
sides are continuous and its means on exterior sides are equal to zero. In fact, by
Lemma 6.4 below, these means coincide with the Lagrange multipliers of hybridized
schemes. Moreover, the centered scheme can equivalently be rewritten with the help
of pp, (see Lemma 6.2 below), which corresponds to the employment of the Lagrange
multipliers in the convection term. Note that the proposed postprocessing is local on
each element and its cost is negligible.
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4.2. A modified Oswald interpolation operator. Let P;(7;) denote the
space of polynomials of degree at most [ on each simplex, not necessary continu-
ous. The Oswald interpolation operator Zos : P;(7,) — P;(7,) N HL(Q) has been
considered, e.g., in [2, 23, 19]. Given a function ¢y, € P;(71), Zos(pr) is prescribed at
the Lagrangian nodes (degrees of freedom; cf. [15, section 2.2]) of P;(7;) N HE () by
the average of the values of ¢; at this node. We will now construct its modification
which preserves the means of p; over the sides, since this will appear crucial when
convection is present.

The modified Oswald interpolation operator Zyo : Po(77) N Wo(7r) — Pa(7r) N
H}(Q) is defined as follows: at all Lagrangian nodes of Py(7;,) N H (), except for
those lying at the barycenters of the sides, the value of Zyio () is given by the average
of the values of ¢, at this node (as in the standard Oswald interpolation operator).
The values at the barycenters of the sides are then established so that the means of
Tao(pn) over the sides were given by the means of ¢p,. (The space Pa(75,) N Hi ()
in three space dimensions does not have Lagrangian nodes at side barycenters; this
is the reason to use P3(7;,) N H}(Q) in this case.) It is easily verified that, as in the
case of the Oswald interpolation operator, Zyo(¢n) is a uniquely defined piecewise
polynomial continuous function. Let [pp] be the jump of a function ¢, across a side
o: if 0 = 0K NOL, then [p] is the difference of the value of ¢), in K and L (the
order of K and L has no influence on what follows), and if o € £, then [¢p,] = ¢.
Then the following lemma is an easy modification of [23, Theorem 2.2] (c N K # 0
when o contains a vertex of K).

LEMMA 4.1 (modified Oswald interpolation operator). Let ¢y, € Po(7n)NWo(73),
and let Tvo (¢n) € Pa(Th) N HE(Q) be constructed as described above. Then

IV(en = Tnolen))lli <Cv > bt lllenlll2
o;0NK#D
where the constant Cy depends only on d and kr.

4.3. A posteriori error estimates. We now finally state the a posteriori error
estimates. Let K € 7j,. Let us first set

. h? 1
m%( := min {Cp’d K .
CS,K Cw,r,K

We define the residual estimator nr x by

(4.2) nr,k =Mkl f+V - (SVDPn) = V- (ppw) — rpn| k-

Next, denote v := pp, — Zmo (Pr). The nonconformity estimator nnc,k is given by
(4.3) e,k = [||v]l|x

and the convection estimator nc x by

(4.4)

1
IV (ow) — 507wl (cp,dh%(nv«wwni . 9||vv-w||%{)2} .

7c, Kk = min ,
VCew,r, K

CS, K 4CW,T,K

Finally, let

(4.5) m2 :=min{ max deM , max ﬂ
7 K;o€efk ’ |K|CS,K K;o0€lk ‘K|CW,T,K
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for all o € &,. We set Py := (Pp, 1)s/|o|, the mean of the postprocessed scalar variable
pr, over a side o € &; recall that p, is the upwind value given by (3.3) or (3.4); and
define the upwinding estimator ny i by

(4.6) o= Y, Mell(be — Po)w - nly -

c€fk

We have the following a posteriori error estimates.

THEOREM 4.2 (a posteriori error estimate for the centered mixed finite element
scheme). Let p be the weak solution of the problem (1.1a)-(1.1b) given by (2.7), and
let Py, be the postprocessed solution of the centered mized finite element scheme (3.1a)—
(3.1b) given by (4.1a)—(4.1b). Then

(4.7) llp = prllle < { > UI%IC,K} +{ > (77R,K+770,K)2} :

KeT, KeTy,

THEOREM 4.3 (a posteriori error estimate for the upwind-weighted mixed fi-
nite element scheme). Let p be the weak solution of the problem (1.1a)—(1.1b) given
by (2.7), and let py, be the postprocessed solution of the upwind-weighted mized finite
element scheme (3.2a)—(3.2b) given by (4.1a)—(4.1b). Then

2

1
2
llp = prllle < { > 771%0,1{} +{ > (nR,K+nc,K+77U,K)2}

KeTy KeTy,

4.4. Local efficiency of the estimates. Let the local Péclet number Peg and
ok be given by

Cw Cw
(4.8) S T S ¥ S—
CS, K VCew,r, K+/CS, K

Next, let, for p € HY(K),

‘V'W‘KF

2CW,T,I(

Cs,x

s

)

QK 1= CS K ( + 2Q§<> y Bik = Cwrk t+

s

4CW,T,K

Cs,x
CS,K

Qg K = CS,K ( + CP,dPe?(> o By = Cwrk T+

K

el i = e IVl + Buxcllellic, el x = awx Vel + Ba xllel -

Finally, let

4.9 c = min c¢sp, ¢ = min c , := min cg k.
( ) S, wk LLAK A0 S,L W, TW K LLNKA£D w,r,L S,Q KeT,, S, K
The theorem below discusses the local efficiency of our a posteriori error estimators.

THEOREM 4.4 (local efficiency of the a posteriori error estimators). Let p be the
weak solution of the problem (1.1a)—(1.1b) given by (2.7), and let Py be the postpro-
cessed solution of the centered mixed finite element scheme (3.1a)—(3.1b) or of the
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upwind-weighted mized finite element scheme (3.2a)—(3.2b) given by (4.1a)—(4.1b).
Then, for the residual estimator nr, x on each K € Ty, there holds
(4.10)

. Cs,x Cwr. i . Cs,x
e < Callp =l § /S5 e {1, Sty i Fpese, [ S04 4
CS K Cw,r,K CS K

where the constant Cy depends only on the space dimension d, on the shape-reqularity
parameter k1, and on the polynomial degree k of f (see Lemma 7.6 below). Next, for
the nonconformity and velocity estimators nnc,x and nc,x on each K € Tp,, we have

{ Bi, i ﬁu{h%}

. Oy K .
7712\10’[{ + 77%,1{ < (s mln{ 5% 4 min

CS,wK Cw,r,wi , CS wi
h2
(4.11) %%Hm{WKf“KH S o - aall
CSwi Cwrwk CSwrc L;LNK #)
+ C384,K inf > dp—sullz,

snEP(TH)NHL(Q) it

where the constant Cs depends only on d and k1 (see Lemma 7.7 below). Finally, the
upwinding estimator nu, k s not efficient and we have only

1 2 C
(4.12) E 77% x < (4 max g, max gx ming — E 115 ,||st22 DF ,
Ket, ’ o€y KeTy, 2 KeT, Cw,r, K Cs.Q

where Cpr 1is the constant from the discrete Friedrichs inequality (2.4), the constant
Cy depends only on d and k1 (see Lemma 7.8 below), and

2
max Cs K max Cw,r,L
) Kiocx _ . 9 o LiLNKeg, "
Qo ‘= . 5 Ok = Imin (PeK) ’ (QK) .
min c¢s g min = Cw,rr
Kioc€lx L;LNK €&,

5. Various remarks. We give several remarks in this section.

5.1. Nature of the estimates. The basis of the a posteriori error estimates
derived in this paper is the construction of the postprocessed scalar variable p; and
the consequent application of the abstract framework arising from the primal weak
formulation (2.7) of the continuous problem; cf. Lemmas 7.1 and 7.2 below. Com-
pared to Galerkin finite element approximations, the crucial advantage is that py, an
elementwise quadratic polynomial, has the normal traces of its flux —SVp;, (which
is, by (4.1a), nothing else than the mixed finite element vector variable uj) con-
tinuous across interior sides. Hence the side error estimators penalizing the mass
balance common in Galerkin finite element methods (cf. [33]) do not appear here at
all. This advantage is, however, compensated by the fact that p, ¢ HJ(Q2), so that
the estimators known from nonconforming and discontinuous Galerkin finite elements
(cf. [19, 23]) appear. Next, whereas in the lowest-order Galerkin finite element method
V- (SkVps)|k is always equal to zero on all K € 7j,, the element residuals (4.2) give
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a very good sense. We also notice that using (2.6), (4.1a), and (2.4),

(5.1)
~ _1 ~
o =pnllE = > {IS7H @ —wn)lik + cwrucllp = Bl }
KeTy,
1 o2 - cs,0 N
> Y 35l872(u— )% + ewrrllp — Bl ¢ + lp — Brll3
KeTy, 2 ZCDF

so that we have the usual mixed finite element L?(£2) control over the error in both
the scalar and vector unknowns even if ¢y x = 0 for some K € 7p,.

5.2. The estimates and their local efficiency with respect to S and w.
We discuss here our a posteriori error estimates and their local efficiency that we have
been able to prove in Theorem 4.4. For further remarks, see the next section.

The minimum in the definition of the residual estimator ng x (4.2) prevents it
from growing to extreme values on coarse elements with a small value cs x when
cw,r, ik > 0. Its local efficiency depends only on anisotropy in its element expressed by
the ratio 1/Cs i /cs,k and there is no dependency on inhomogeneities. Next, under
the given assumptions, Cy r k/Cw.r.k < 2 whenever rg is nonnegative. Finally, the
minimum of the local Péclet number Peg and gy ensures boundedness if ¢y , x 7# 0
and if hy is large and optimal efficiency as Pex becomes small.

The minimum in the definition of the convection estimator nc x (4.4) prevents
it from exploding when ¢y, x = 0 but Cyw x # 0. Together with the nonconformity
estimator nnc, ik (4.3), they give local efficiency, up to higher-order terms if ¢y, x 7 0
(the part inf, cp,(7,)nm1(Q)) Which is shown to be a function of a local (meaning all
elements sharing a vertex with the given one) maximal ratio of inhomogeneities (the
term /o Kk /cswy ) and of \/Cs k/cs k in each element concerning anisotropy. For
further remarks, see the next section. Finally, the efficiency gets into optimal values
with respect to convection dominance as Peg gets sufficiently small. We note also that
the estimate is robust (up to the higher-order term) in the reaction-dominated case
as well, since the quantities Cyw , i /cw,r.k and \/Bs K /Cw rwy remain well bounded
in the limit.

The fact that the upwinding estimator ny x (4.6) cannot in general give a lower
bound for the error is quite obvious: it is not difficult to imagine a situation where
p = pp, whereas (P, — Py ), the difference of the mean value of p;, on a side o and of the
combination of the mean values of p;, on the elements sharing o, is generally nonzero.
However, we at least show that there is an upper bound for the contributions of this
estimator, which moreover decreases with the local Péclet numbers as O(h). It should
be noted that this estimator does not change the limit optimality of the schemes and
estimates—see section 5.5 below for a remark on this point.

5.3. Asymptotic exactness and asymptotic robustness with respect to
inhomogeneities and anisotropies. We show in this remark that the (global
asymptotic) efficiency of our estimates is indeed even better than that proved in
Theorem 4.4 and discussed in the previous section.

5.3.1. Pure diffusion problems. Let us first consider a pure diffusion problem,
ie,r=w=0in (1.1a)-(1.1b). Using that in this case =V -(SxVDr|x) = V-up|x =
fx for all K € 7Ty, where fi is the mean value of f over K, the analysis for the general

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



A POSTERIORI ESTIMATES FOR MIXED FINITE ELEMENTS 1581

case simplifies to the a posteriori error estimate (4.7) with ¢ x = 0 and

h2
(5.2) N = Cp7dc—K|\f - fxl%
(5.3) ek = 1SEV(En — s)|I% .

where in particular s € HJ(Q2) can be chosen arbitrarily (cf. Lemma 7.2 below).
Examples are the Oswald or the modified Oswald interpolates of pp—in the pure
diffusion case, all the presented results hold similarly for these two operators. Also
note that since V-(u—uy,)|x = f — fk is fully computable for all K € 7}, the control
over [[u—upllq + ||V (u—up)|lq immediately follows using (5.1).

Our main point is, however, that the above developments in fact imply

SEHE(Q) cs

KeTy, ’

1
B . N h2 ’
(5.4) llp = prllle < inf ||Ph—5|||9+{ E Cpa I;Hf—fKHi} ;

which, in the case where f is piecewise constant, by virtue of

it 1= slla <11 ~ pll.
gives asymptotic global efficiency of such an estimator with a constant 1, i.e., asymp-
totic exactness and asymptotic full robustness with respect to inhomogeneities and
anisotropies (asymptotic with respect to the approximation of pj, by some, e.g., poly-
nomial, s € H3(Q) on a fixed grid 73,). In the general case, if, e.g., f € H*(73), then
|f = fxll% < Cp.ah%||Vf||%, and asymptotic exactness and asymptotic robustness
still hold true (this time asymptotic also with respect to h — 0). Although we use
only the Oswald or the modified Oswald interpolates of p;, instead of evaluating or
approximating the infimum in (5.4), the numerical experiments of section 8.1 below
show that estimators of section 4.3 remain almost asymptotically exact and robust
with respect to inhomogeneities and anisotropies.

5.3.2. Convection-diffusion-reaction problems. The above considerations
roughly extend to the convection-diffusion-reaction case in the following sense: for the
centered mixed finite element scheme (3.1a)—(3.1b), one has (7.4) and consequently a
superconvergence of the residual estimators nr g (4.2) to zero. Next, for divergence-
free velocity fields w, the second arguments of the convection estimators n¢ g in (4.4)
again superconverge to zero since py, € Wy(7,) (both as h — 0). Hence the estimate
will be asymptotically given only by the nonconformity estimators nnc,x of (4.3)
and thus by the best approximation of p, by s € Hg(£) such that its means are
given by the means of pj,. (This property is needed when convection is present; see
Lemma 7.4 below.) This asymptotic almost optimal efficiency is again observed below
in numerical experiments in section 8.2.

5.4. Pure diffusion problems: Mixed finite elements and a generalized
weak solution. Let us in this remark consider r = w = 0 in (1.1a)—(1.1b) and
generalize the classical weak solution to a function p € Wy(7,) such that

(5.5) B(p, ) = (f,¢)a Vo € Wo(Th) -

(In)equalities (2.9) and (2.10) together with the discrete Friedrichs inequality (2.4)
ensure the existence of a unique solution of (5.5).
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We thus have

L B(D — Pn,D — Dn .
15 —pnlla =SB PP —Pn) o B )
112 = Prllle CEWo(T), lll¢lllo=1

and develop, similarly as in the proof of Lemma 7.2 below,

B(p—pn,p) = (f,9)a+ Y {(V-(SVin),0)x — (SVin - n, @)ox }
KeTy,
=D (F=Veow,x+ Y (w-n ),
KeTy, g€e&y
=Y (f-Vw,pk= > (f-fx.0— oK)k,
KeT, KeT,,

using the bilinearity of B(-, ), the definition (5.5) of the generalized weak solution p,
the Green theorem in each K € 7y, the relation (4.1a) between pj, and uy, reordering
the summation over the boundaries of elements to the summation over the sides,
using the continuity of the normal trace of uy expressed by up|x -ng = —up|L-ny on
oK, € 5,"1“, the fact that uy -n is constant on all sides o € &, and the definition (2.3)
of the space Wy(73), and finally the equation (3.1b) of the definition of the mixed
finite element scheme (¢ is the mean of ¢ over K). Next, estimate (7.5) given below
holds true also in this case, so that finally the Cauchy—Schwarz inequality leads to

1
2
115 — Bullle < { > n%,K}

KeT,

with ng x given by (5.2).

First, this is a completely data-dependent a posteriori error estimate, and sec-
ond, this is in fact an a priori error estimate as well: it shows that the mixed finite
element solutions pj, and uy, (cf. (5.1), which still holds true) converge both as O(h?)
in the L2(Q), L%(Q), respectively, norms to the generalized weak solution p given
by (5.5) and its flux @, Q|x := —SVp|x (for f € H'(73)). Moreover, as soon as f
is piecewise constant, pj is directly equal to the generalized solution! We emphasize
that these results hold true for S piecewise constant but arbitrarily inhomogeneous
and anisotropic; they apparently confirm the observations of a very good behavior of
mixed methods in these circumstances. There are also very interesting consequences
in one space dimension; cf. section 5.6 below.

5.5. A combination of the centered and upwind-weighted schemes. The
scheme (3.2a)—(3.2b) guarantees stability in the convection-dominated case, but the
additional upwinding estimator 77y g given by (4.6) is unfortunately not efficient. On
the other hand, the scheme (3.1a)—(3.1b), however precise if h is sufficiently small,
may give completely wrong results on coarse meshes. Hence a good idea may be a
smooth transition from the upwind-weighted to the centered scheme under the form

(S™twp,vi)o — Pr. V- vi)a=0 Vv, € RIN%(7,),

(V-up, o)k + Z {(toPo + (1 = po)Po)Wk,0OK } + (rPh, 0Kk = (. OK) K

c€EK

VK € Ty,
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where p, is the upstream value and p, is set to 1 —2v, with v, given by (3.5). Notice
that such a scheme is fully rewritable in terms of the original unknowns py, uy, using
that 20651( DoWk o0 = (PrhW -1, K )ox and Lemma 6.2 below.

5.6. The estimates in one space dimension. As the last remark, it appears
that the above results have interesting particular consequences in one space dimension,
where the two schemes (3.1a)—-(3.1b) and (3.2a)—(3.2b) can likewise be defined.

5.6.1. One dimension: No nonconformity. First of all, Lemma 6.1 below
reduces in one space dimension to the assertion that the postprocessed variable py,
given by (4.1a)—(4.1b) is continuous, i.e., that in this case p, € H}(Q). An immediate
consequence is that the parts of the a posteriori error estimates of Theorems 4.2-4.3
related to nonconformity disappear.

5.6.2. Lowest-order mixed finite elements: An exact three-point scheme
for one-dimensional diffusion problems with piecewise constant coefficients.
Another quite interesting consequence is related to the remark of section 5.4 and re-
sults of [36]. As there is no nonconformity, the superconvergence O(h?) of both pj,
and uy, (this time towards the weak solution and its flux, coinciding with the gener-
alized one) always holds true, and, moreover, it appears that in one space dimension,
one can always rewrite the schemes with only pg, K € 7, as unknowns. Hence the
lowest-order mixed finite elements represent a scheme with a three-point stencil which
is exact for one-dimensional pure diffusion problems, where the diffusion tensor S (this
time a scalar function) and the right-hand side f are piecewise constant (and hence
possibly arbitrarily discontinuous). This should be compared to the known results for
the finite volume/finite difference method. In particular, the (best known?) scheme
proposed by Ewing, Iliev, and Lazarov in [21] is exact only when the right-hand side
is constant (the diffusion tensor may be piecewise constant); cf. Remark 2.4 in [21].

6. Discrete properties of the schemes. In this section we prove different
properties of the schemes (3.1a)—(3.1b) and (3.2a)—(3.2b) and of the postprocessed
scalar variable pj, needed in the paper.

LEMMA 6.1 (continuity of the means of traces of pp,). It holds that pr, € Wo(7r);
i.e.,

(Pnlk = Drle Vox, =0 Vox.1 € EX,
(Pr,1)e =0 Vo € &,

Proof. Let us consider a side o 1 € S}L“t. Then taking v; equal to the basis

function v, , (cf. section 3.1) in (3.1a) or (3.2a) yields
0= —(VDh Vor.r ) kUL — (Prs V " Vor L ) KUL
= ~(Vogr "W Pn)ox — (Vor.p "M, Pn)oL = (Vor.p - DK, PrlL — PrlK)ox
using the definition (4.1a)—(4.1b) of fy, the fact that V - vy, for v, € RTN’(7,) is

constant in each simplex (which allows us to replace p, by pr), the Green theorem,
and the fact that v,, , has a nonzero normal flux only through og ;. The first

assertion of the lemma follows by the fact that v, - n for vy € RTNO(’]}L) is constant
on each side o € &,. The proof for boundary sides is completely similar. ]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1584 MARTIN VOHRALIK

LEMMA 6.2 (equivalent form of the centered scheme). The scheme (3.1a)—(3.1b)
can be equivalently written: find v, € RTN°(T;,) and pj, € ®(T3,) such that

(6.1a) (S™tup, vi)a — (Bn.V-vi)a=0 Vv, € REN(7,),
(6.1b) (V-un,dx)k + (W -0, b )ox + (ron, ox)x = (f,ox)xk VK € Ty,

where py, is defined by (4.1a)—(4.1b).

Proof. Since V - vy, for v, € RTNO(’Th) is constant in each simplex and since r
was in Assumption (B3) supposed piecewise constant as well, one can replace p by
Dp, in the terms (pp, V- vp)q and (rpp, ¢ ) k using (4.1b). Similarly, using in addition
the Green theorem,

—(SEMun - w, 0Kk + PV W, 0k )k = (Vii - W, dr )i + (PnV - W, b ) i
= (V- (pnw),dx)x = (PnW -0, ¢x)ox. O

Remark 6.3 (hybridization of the schemes). Mixed finite element schemes can
equivalently be reformulated while relaxing the continuity of the normal trace of
uy, required in the definition of the space RTN(7,) and imposing it instead with
the help of Lagrange multipliers \,, o € &M% cf. [12, section V.1.2]. The centered
scheme (3.1a)-(3.1b), taking into account its equivalent form given by Lemma 6.2,
then changes to: find u, € RTN" (7), pr € ®(73), and A, 0 € Ent with py,
defined by (4.1a)—(4.1b), such that

(62a) > (ST vk — (B Vovik+ Y. (Vi mAg)e p =0
KeTn oceExNE

Vv, € RTN? [ (75,),
(6.2b) (V- -up, ¢x)x + (prwW -0, ¢ )ar + (rPr, ¢x )k = (f, dx)K VK € Ty,

(6.2¢) ((up -m)|g + (up - m)|p, op, =0 Yok 1 € E,il“t,

whereas the upwind-weighted scheme (3.2a)(3.2b) becomes: find u;, € RTN?,(7},),
prn € ®(71,), and \,, o € E" such that

(6.32) > (ST'wvi)k — (o VoVt > (Vi A p =0
KeTy oEENEInt

Vv, € RTN? ,(75,),
(6.3b) (V- -up,¢r)k + Z PoWk, oK + (TP, Ox )k = (f, Pk ) K VK €Ty,

o€k
(636) ((uh 'n)|K+(uh -l’l)|L,1>0K7L =0 VCTK,L Gg}iLnt'

LEMMA 6.4 (relation of p;, to the Lagrange multipliers A, ). It holds that

Vo € &,
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Proof. The proof is similar to that of Lemma 6.1. Let K € 7, and o € Eg N E}Lnt.
Then taking v, = v, in (6.2a) or (6.3a), we have

0= _(vﬁhavcr)K - (ﬁhv V. VU)K + <VU - n, )\cr>a = <VU - n, Ao — ﬁh>dv

using the definition (4.1a)—(4.1b) of py, the fact that V-v, is constant in each simplex,
the fact that v, has a nonzero normal flux only through o, and the Green theorem.
The assertion of the lemma follows by the fact that v, - n is constant on o. ]

LEMMA 6.5 (a priori estimate for the upwind-weighted scheme). Let uy,, py be the
solutions of the upwind-weighted scheme (3.2a)—(3.2b), and let py, be the postprocessed
scalar variable given by (4.1a)—(4.1b). Then

. 21 o1 %
> yesl Vanli + gewnscllpnllie p < 5 D0

C
KeTy, KeT;, w,r, K

if cwr i >0 for all K € Tj, and

1 s T3 Cor
5 {Gesc Tl + cw Il p < 1] 0

)
c
Ket, S,Q

where cg.q is given by (4.9) and Cpr is the constant from the discrete Friedrichs
inequality (2.4).

Proof. Let us set ¢p = pp in (3.2b). We then can rewrite the first term of the
left-hand side of (3.2b) as

S (Veuwnpk)x = Y {—(n Vin)k + (an 0 pr)ox } = > (SkVin, Vin)k
KeT,, KeT,, KeTy,

+ Z (p - npg, Prli — PrlL)os,,, + Z (up 1m0, Pr)o > Z es i | Vonll%

Uz(,LEg;Lnt 0652’“ KeTy,

using the fact that V - uy, is constant on each K € 7;, and we thus can replace pp by
Pp, employing (4.1b), the Green theorem, (4.1a), the fact that up - n is constant on
each o € &, the continuity of the means of the traces of pj given by Lemma 6.1, and
finally Assumption (B1). Next,

Z Z f)awK,UpK = Z {ﬁo’wK,a'pK +ﬁ0'wL,opL} + Z ﬁo’wK,apK

KeT, €€k ok, EER o EERE
2 ~

= > wi.o (P (Px = PL) = vo(pL —PK)*) + Y PoWk.oDK

O'K,LGS;JN,’LUK,GZO aKefg’“

1 1

2 2 2
=3 ) wio(Pk —p1)+ Y. |wkel(pL — px) 3 Vo
oK, LEEIMY, WK 6 >0 ok, EEN

1 1 1
+ X {Ghewna +lualok (3 -0 ) } 2 5 5 (T wbi

ox e KeT,

where we have rewritten the summation over the sides and fixed denotation of K, L €
Ty, sharing a side ok, € & such that wg,, > 0; used that wg, = —wr 4, the
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definition (3.3)-(3.4) of p,, and the relation 2a(a — b) = (a — b)? + a® — b?; esti-
mated using 0 < v, < 1/2, which follows from (3.5); rewritten the summation back
over the elements and their sides; and finally employed the Green theorem, giving

degK WK,c = (v * W, 1)K FinaHY> (rphaph)ﬂ = ZKGTh p%{(/n l)K
The right-hand side of (3.2b) with ¢, = p, can be estimated either by

V/Cw.r K I1£11%
e < Y Ik YK e < 3 37 0 4 25 ol
KeT, Yas Ket, WK KeTh

or by

flI& Cor | csa |lbn TG Cor L s _
(Frowa < I fllallplle < 118 Cor | csa IPnlls 171 S IV,
2 Cs.Q CDF 2 2 CSQ KeT,

using the Cauchy—Schwarz, ab < ea?/2 + b*/(2¢), € > 0, |prllx < ||Pnllx, and the
discrete Friedrichs (2.4) inequalities. The assertion follows by combining the above
estimates. O

Remark 6.6 (existence and uniqueness for the upwind-weighted scheme). From
Lemma 6.5, existence and uniqueness for the upwind-weighted scheme (3.2a)—(3.2b)
easily follows. Indeed, let f = 0. Then p;, =0 and u;, = —SVp, =0 for all K € 7.

Remark 6.7 (existence and uniqueness for the centered scheme). In contrast with
the upwind-weighted scheme, existence and uniqueness for the centered scheme (3.1a)—
(3.1b) is in [17] guaranteed only for “h sufficiently small.” Alternatively, there exists
a unique solution if Cw x < 2(1 — p)\/Cs K \/Cw,r i for some p € (0,1) and all
K € Ty, where (V- w +7)|x = éw .k > 0, which corresponds to the case that is not
convection-dominated.

7. Proofs of the a posteriori error estimates and of their local efficiency.
We shall prove in this section the a posteriori error estimates stated by Theorems 4.2—
4.3, as well as their local efficiency discussed in Theorem 4.4.

7.1. Proofs of the a posteriori error estimates. To begin with, we state
the following result, the purpose of which is to give an optimal abstract bound on the
error between p € H'(Q) and p € H'(7},) in the energy (semi)norm ||| - |||lq. (HE ()
is the subspace of H!(Q) of functions with traces vanishing on I'p C 95.)

LEMMA 7.1 (abstract framework). Let I'p C 99, [I'p| # 0, let Ty, := {x €
O w-n <0} CTp, let p,s € H(Q) be such that p—s € HL(Q), and let p € H' (Ty)

be arbitrary. Then
~ p—Ss
B <p - D >
llp = sllle

+ 3 (V-((ﬁS)W);(ﬁSW'W’M)K

P o — sl

lllp = pllle <|lIp = sllla +

Proof. Let us set, for p, o € H(7},),

K;h {(SVP,W?)K + ((;V-WJH“) pw)K},

Batr)i= 3 (V- w) - o7 i)

KeTy, K

Bs(p, ) :
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so that

(7.1) B(p,¢) = Bs(p,¢) + Ba(p,p)  Vp,p € H'(Tp),
(7.2) Bs(p,9) = el Ve € H (Tn),

(7.3) Balp, ) >0 Ve HH(Q),

using (2.9) and Y g7 (9>, W-n)gx > 0 for p € HE(Q) in the estimate.
We then have, using that p — s € HJ(Q),

|||p_8|||?2 SB(p—S,p—S) =B(p—]5,p—s)—|—l3’(]5—s,p—s)

:BS(ﬁfsap78)+B(p7i)7pfs)+BA(ﬁ7‘sap78)

- . p-—3s
<115~ sllally = sl + 1l = sllat (5 - 5 =5 )

- p—S
1llp — sllaBa (p s ) ,
o = sl

employing the Cauchy—Schwarz inequality in the first term. If |||p — p|lla < |||lp — slla;

this concludes the proof. In general, we could use the triangle inequality |||p — pll|a <

lllp = sllla + llls — plllq and the above bound for |||p — sl||q, but this would lead to an

estimate which is not optimal (the term |||p — s||q would be replaced by 2|||p — s|||q)-

We thus show below that the same bound holds true also when |||p—sl||la < |[lp—5lla-
We have, using (7.3) and the Cauchy—Schwarz inequality,

lp — Bl = Bs(p — p,p — ) = Bs(p — p,p — 8) + Bs(p — b, s — p)
=Bs(p—p,s—p) +B(p—p,p—5)—Balp—p,p—5)
=Bs(p—p,5s—p)+Bp—p,p—35) —Balp—5,p—5)+Balp—5,p—5)

<Bs(p—p,s—p)+Bp—p,p—5)+Ba(p—s,p—)

- _ . p—Ss
<Illp = Blllallls = Blllo + [llp — sllloB <P - D Mz)

- — S
T {llp - sllloBa (p— o P8 ) ,
o =5l

which, by virtue of |||p — s|l|a < |[lp — Pl|la supposed in this second case, concludes the
proof. 0

Consequently, the following bound for the error |||[p — pp||lq holds.

LEMMA 7.2 (abstract error estimate). Let p be the weak solution of the prob-
lem (1.1a)—(1.1b) given by (2.7), and let s € HL(Q) be arbitrary. If py, is the post-
processed solution of the centered mized finite element scheme (3.1a)—(3.1b) given
by (4.1a)—(4.1b), then

llp = Pallle < {llpn = slllo + sup {Tr(p) + Te(e)},
peHF), lllella=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1588 MARTIN VOHRALIK

and if py, is the postprocessed solution of the upwind-weighted mized finite element
scheme (3.2a)-(3.2b), given by (4.1a)—(4.1b), then

llp — Bullle < [[[n — sllla + sup {Tr(p) +Tc(p) + Tul(e) },
eeH(Q), lllellle=1

where

Th(p) = Y (f+V SVpL — V- (paW) — 15h. ¢ — 9K) -

KeT,
1
Te(p) == V- ((pr = s)w) = o (Pn — 5)V - W, :
cly KZE; < Phn 5 P sD)K
Tu(p) = Z Z ((Ps = Pr)W - 1, 0K )0,

KeT, o€l

and where pg is the mean of ¢ over K € Tp, v = (o, 1)k /| K]|.

Proof. Let us consider an arbitrary ¢ € H(€2). We have, using the bilinearity
of B(,-), the definition (2.7) of the weak solution p, and the Green theorem in each
K €7,

B(p—pn.@) = (£.0)a— > {(SVin Vo)k + (V- (buw), )« + (rpn, 0)x }
KeTn

Z {(f +V-(SVBr) = V- (brw) — 1P, ), — (SVPr -1, )oK }
KeTy,

Z (erV - (SVpn) = V- (prw) *Tﬁhv‘p)K'
KeT,

Note that we have, in particular, used the continuity of the normal trace of SVpy, (i.e.,
by (4.1a), the mixed finite element continuity of the normal trace of uy,), yielding

<(Svﬁh ’ n)‘K + (Svf)h : 1’1)|L, ()0>UK,L = <O7 (10>0'K‘L =0 VO'KL € E;Lnt

(the fact that (SVpy, - n, ), = 0 for o € X follows by ¢ € H(Q)).

Now the equation (6.1b) of the equivalent form of the centered scheme by the
definition of p (4.1a)—(4.1b) and by the Green theorem implies that (recall that px
is the constant mean of ¢ over K)

(7.4) (f+V - (SVpr) =V - (prW) = 1Ph, oK) =0 VK €T

Hence in the case of the centered scheme,

B(p — pn,p) = Z (f+ V- (SVp) = V- (puwW) — 7, ¢ — ¢k ) ;o = Tr(¢).
KeTy,

For the upwind-weighted scheme, we have

B(p — pn,¢) = Tr(p) + Tu(p).

To conclude the proof, if now suffices to use Lemma 7.1. ]
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We now estimate the terms Tr, T¢, and Ty separately, setting s = Zyo(pr) in

Lemma 7.2.
LEMMA 7.3 (residual estimate). Let ¢ € H}(2) be arbitrary. Then

Tr(p) < > nroxlllellx,
KeTy,

where Ny, x s given by (4.2).
Proof. The Poincaré inequality (2.1) and the definition of ||| - |||k by (2.6) imply

h2
(7.5) lp = exl% < Crahk|Vellk < CP,dCSI; llelll% -
Next, the estimate
1
le = exllk < lelx < ——llell
w,r, K

is obvious using the definition of ||| |||k by (2.6). Thus the Schwarz inequality implies

Tr(p) < Y ||f+ V- (SVin) = V- (paw) — rpn| o — exllx
KeTy,

<> mxllellx. O
KeTy,

LEMMA 7.4 (convection estimate). Let ¢ € HE(S2) be arbitrary. Then

To(p) < Y noxllellx,
KeTy,

where nc,x 15 given by (4.4).
Proof. Denote v := pj, — Iyo (Pr). Then, for each K € Ty,

Y- ow) — 5oV w

e lll ¢

(v  (vw) — %UV - W,go)

K Cw,r,

Note that this estimate is valid for an arbitrary s € H{ () instead of s = Zyio (5n)-
Next, the fact that the modified Oswald interpolation operator of section 4.2
preserves the means of pj, over the sides and that w - n is constant on all sides implies

(7.6) (V- (vw), o)k = (vWw -1, pi)ax =0,

where again ¢x := (¢, 1)k /|K|. Thus we also have an alternative estimate
1
(V S(vw) — oV - w, <p>
2 K

1
=(Vo-w,0 —9r)k + (2UV.W,@> - (vV-w,pK)k
K

VCp.ahk||Vv - wlk 3oV - Wik
S : CS K v K + ——/C K K
e vl + A el

1
4 Pl K,
CS,K Cw,r, K

<
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using the Cauchy—Schwarz inequality and the Poincaré inequality (2.1). |
Finally, the proof of the following lemma can be found in [38].
LEMMA 7.5 (upwinding estimate). Let o € HE(Q) be arbitrary. Then

Tu(p) < > nukllellx,
KeT,

where Nu k s given by (4.6).
Lemmas 7.1-7.5 and the Cauchy—Schwarz inequality prove Theorems 4.2—4.3.

7.2. Proofs of the local efficiency of the estimates.

LEMMA 7.6 (local efficiency of the residual estimator). Let K € 7, and let ng i
be the residual estimator given by (4.2). Then (4.10) holds true.

Proof. The proof follows that given in [33]. Let ¢k be the bubble function on K,
given as the product of the d+1 linear functions that take the value 1 at one vertex of K
and vanish at the other vertices, and let us denote v := (f+V-(SVpr)—V-(prwW)—1Dp)
on a given K € 7,. Note that v is a polynomial in K by Assumption B. Then the
equivalence of norms on finite-dimensional spaces, the inverse inequality (cf., e.g., [15,
Theorem 3.2.6]), and the definition of ||| - |||x by (2.6) give

cllvlk < (v, ¥Kv)k,

[xvllx < vl

-1
h 1
K ; ||UHK3
\/ OS7K VCw,r, K

with the constants ¢ and C' depending only on the polynomial degree k of f, d, and
k. Next, we immediately have (cf. the proof of Lemma 7.2)

ool < cmm{

B(p — pn, vxv) = (v, Ykv) K,

and, using (2.10),

. Cw,r K -
By~ o) < max {1, 2l gyl ol

w,r, K
C(w,K
VCS, K

Combining the above estimates, one comes to

+

llp = pulllx kvl -

cllvll% < llp = Bulllx vl x

Cw,r,K . hx 1 - Cw, K
max ¢ 1, ——— » C'min , +
Cw,r,K \/CS)K VCw,r, K VCS, K
Considering the definition of ng x by (4.2) and that of Pex and gx by (4.8) concludes
the proof. ]
LEMMA 7.7 (local efficiency of the nonconformity and velocity estimators). Let

K € T}, and let nno,x and ne i be the nonconformity and velocity estimators given,
respectively, by (4.3) and (4.4). Then (4.11) holds true.
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Proof. One shows easily that (with ||| - |||«,x and ||| - |||4, x defined in section 4.4)

Mo,k + 18,k < min {[[Ipn — Zno Br)lIIZ k- 15n — o ()l i } -

Throughout the rest of the proof, let C' denote a constant depending only on d
and on k7, not necessarily the same at each occurrence. We first show that
(7.7)

|||ﬁh - IMO(ﬁh)lHi,K < C<O¢*,K Z hz;l”[ﬁh]ni + ﬂ*,K Z hGH[ﬁh}g) .

o;0NK#D o;0NK#D

The first part of the estimate follows directly from Lemma 4.1 and the definition of
|1l k- To estimate 3. k ||pn —Zno (Pr) || %, We notice that the means of pr, — o (Pr)
over all sides of a simplex K € 7 are by the construction of the modified Oswald
interpolation operator equal to 0. Hence

15 — Inao (Bn) % < Cr,ahk ||V (Br — Inio (Bn)) |5

by the generalized Friedrichs inequality (2.2). The fact that hx/hs for K No # 0
depends only on k7, which will be used in what follows as well, and another use
of Lemma 4.1 proves the second part of the estimate.

We will next use the inequality

he *lnlls <€ 32 IV Gh— @)l

Lioe€&y,

established in [2, Theorem 10] for o € £ and an arbitrary ¢ € H'(Q2). It generalizes
easily to the case o € £ and p € Hi(Q). This inequality implies that

N Ryt N
(7.8) WBllE € C———— > es oIV -7,
mnr;seg&;, €S, L Lioesy

where we set v = —1,1. Next, for an arbitrary s, € Po(7,) N H}(Q),

hllBnlle < hoC D VG —su)le <C Y hillV(Bn —sn)lx

Lioe&y, L;oc€€&y
<C D> n=sulle<C D> IBn—plle+C > llp—sullL,
Lio€é&y, Li;o€&y, Lioc€€&y

by the inverse inequality (cf. [15, Theorem 3.2.6]) and the triangle inequality. Hence

S ewrrlin—pl3+C Y p—sul?

L;oce€p L;o€e€y,

1

(7.9) holl[pn]lZ < C—————
mmr:segr Cw,r,L
holds as well, which gives a sense when all ¢y, .1, for L such that o € £ are nonzero.
Combining estimates (7.7)—(7.9) while estimating miny.,c¢g, cr, for a side o such that
oNK # 0 from below by miny, ;g ¢z, concludes the proof for |||pr, —Zno (Pr) |||+, x -
The proof for |||pr, — Inmo (Pr)]||#,x is completely similar. 0

LEMMA 7.8 ((non)efficiency of the upwinding estimator). Let K € T and let
nu.k be the upwinding estimator given by (4.6). Then (4.12) holds true.
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Proof. Let K € Tp,, ¢ € HY(K), and ¢, = {p,1)s/|c|. Let us set ¢ := ¢ — 0o
and @ = (¢, 1)k /| K|. We now note that @, := (@, 1),/|o| = 0 and that V@ = Ve,
which allows us to estimate

o] ol

— |2 = < gk < ¢ Vol
lex = ¢olls = ¢xklol < |K|||<PIIK_ R Vel

employing the generalized Friedrichs inequality (2.2). Now using the definition of p,
for o € £ by (3.3), the fact that 0 < v, < 1/2, (4.1b), and the above estimate,

||230 _ﬁcr”cr = ||(]- - Vo’)(pK _ﬁa) + Vcr(pL _f)a)|‘0'
1
Croalohir? /1o- R
< el M
< oo { ST 19+ 1701

for suitable denotation K, L of the two elements sharing o. For o € &', a similar

estimate holds. The assertion of the lemma follows by using the above estimate, (4.5),

(4.6), the definition of kg, the estimate |o| < h%1/(d — 1), the Cauchy Schwarz

inequality, and estimating the term > o cs,k ||VPn||% using Lemma 6.5. d
Lemmas 7.6-7.8 together prove Theorem 4.4.

8. Numerical experiments. We test our a posteriori error estimates on two
model problems in this section. The first problem contains a strongly inhomogeneous
diffusion-dispersion tensor, and the second one is convection-dominated; in both cases,
the analytical solution is known. Estimators for inhomogeneous Dirichlet (and Neu-
mann) boundary conditions are adapted from [38].

8.1. Model problem with strongly inhomogeneous diffusion-dispersion
tensor. This model problem is taken from [30, 18] and is motivated by the fact that
in real-life applications, the diffusion-dispersion tensor S may be discontinuous and
strongly inhomogeneous. We consider in particular Q@ = (—1,1) x (=1,1) and (1.1a)
with w = 0, 7 = 0, and f = 0. We suppose that 2 is divided into four subdomains
Q; corresponding to the axis quadrants (in the counterclockwise direction) and that
S is constant and equal to s; Id in ;. Under such conditions, an analytical solution
writing

p(r,0) = r*(a; sin(afd) + b; cos(ah))

in each §; can be found. Here (r,6) are the polar coordinates in 2, a; and b; are
constants depending on 2;, and « is a parameter. This solution is continuous across
the interfaces, but only the normal component of its flux u = —SVp is continuous; it
finally exhibits a singularity at the origin. We assume Dirichlet boundary conditions
given by this solution and consider two sets of the coefficients, with s; = s3 = 5,
So = 84 = 1 in the first case and s; = s3 = 100, s = s4 = 1 in the second one:

a = 0.53544095 a = 0.12690207
= 0.44721360 b1 = 1 ap = 0.1 b= 1
= —0.74535599 by = 2.33333333 | a2 = —9.60396040 by = 2.96039604
= —0.94411759 b3 = 0.55555556 | a3z = —0.48035487 b3 = —0.88275659
= —2.40170264 by = —0.48148148 | a4 = 7.70156488 by = —6.45646175

al
az
as
aq

The original grid consisted of 24 right-angled triangles, and we have refined it
either uniformly (up to five refinements) or adaptively on the basis of our estimator.
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Fic. 8.1. Estimated (left) and actual (right) error distribution, o = 0.53544095 (the mazimum
is attained at the origin).

y -1 1 X

F1c. 8.2. Approzimate solution and the corresponding adaptively refined mesh, o = 0.12690207.

In the latter case, we refine each element where the estimated ||| - |||q-error is greater
than the half of the maximum of the estimators regularly into four subelements and
then use the “longest edge” refinement to recover an admissible mesh. In the given
case, the residual estimators ngr x of (5.2) are zero for each K € 7y, and hence the
a posteriori error estimate is entirely given by the nonconformity estimators nnc, x
in (5.3). We have done numerical experiments with two choices, s = Zos(py) and
s = Iyo(Pr), and present the results with the first one, which gives a slightly better
efficiency.

We can see in Figure 8.1 that the predicted error distribution on an adaptively
refined mesh for the first test case is excellent. In particular, even if the solution
is smoother, the singularity is well recognized. Next, Figure 8.2 gives an example
of the approximate solution on an adaptively refined mesh and this mesh in the
second test case. Here, the singularity is much more important, and consequently
the grid is highly refined around the origin (for 1800 triangles, the diameter of the
smallest ones is 10716, and 73% of them are contained in the circle of radius 0.1).
Figure 8.3 then reports the estimated and actual errors of the numerical solutions
on uniformly/adaptively refined grids in the two test cases. The energy norm (2.6)
was approximated with a 7-point quadrature formula in each triangle. It can be seen
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Fi1G. 8.3. FEstimated and actual error against the number of elements in uniformly/adaptively
refined meshes for oo = 0.53544095 (left) and oo = 0.12690207 (right).
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Fi1G. 8.4. Owerall efficiency of the a posteriori error estimates against the number of elements
in uniformly/adaptively refined meshes for a = 0.53544095 (left) and o = 0.12690207 (right).

from these plots that one can substantially reduce the number of unknowns necessary
to attain the prescribed precision using the derived a posteriori error estimates and
adaptively refined grids. Finally, Figure 8.4 gives the efficiency plots for the two
cases, i.e., the ratio of the estimated ||| - |||[q-error to the actual ||| - |||q-error. This
quantity simply expresses how many times we have overestimated the error—recall
that there are no undetermined multiplicative constants in our estimates. These plots
confirm the theoretical results of section 5.3. Even while only using Zos(pr) instead of

evaluating the infimum in (5.4), (approximate) asymptotic exactness and robustness
with respect to inhomogeneities is confirmed.

8.2. Convection-dominated model problem. This problem is a modification
of a problem considered in [20]. We set Q@ = (0,1) x (0,1), w = (0,1), and r = 1
in (1.1a) and consider three cases with S = ¢ I'd and ¢ equal to, respectively, 1, 1072,
and 10™%. The right-hand-side term f, Neumann boundary conditions on the upper
side, and Dirichlet boundary conditions elsewhere are chosen so that

p(z,y) = 0.5 <1 — tanh (0‘:_:”»
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F1G. 8.5. Estimated and actual error using s = Inio (Pr) (left) and s = Zos(Pr) (right) against
the number of elements, e =1, a = 0.5.
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F1G. 8.6. Overall efficiency using s = Inmo(Pr) (left) and s = Zos(Pn) (right) against the
number of elements, e =1, a = 0.5.

was the exact solution. It is, in fact, one-dimensional and possesses an internal layer
of width @ which we set, respectively, equal to 0.5, 0.05, and 0.02. We start the
computations from an unstructured grid of {2 consisting of 46 triangles and refine it
either uniformly (up to five refinements) or adaptively. We use the scheme described
in section 5.5.

We first compare, for ¢ = 1 and a = 0.5, the estimates with s = Tyo(pr) as
proposed in section 4.3 and a modification with s = Zos(pr), corresponding to the
approach chosen in [38, 37], on uniformly refined grids. In the latter case, we no
longer have the important property (7.6), and consequently there is an additional
term which we associate with the upwinding estimator; it, however, turns out to be
of higher order; see Figure 8.5. Note that the (approximate) asymptotic exactness
observed in Figure 8.6 is in full correspondence with the theoretical considerations
of section 5.3.2. In this case, s = Zos(pp) gives a slightly better efficiency. In the
following examples, however, we use s = Iy (Pr), since it turns out to be the better
choice.

For e = 1072 and a = 0.05 (convection-dominated regime on coarse meshes and
diffusion-dominated regime with progressive refinement), still the distribution of the
error is predicted very well; cf. Figure 8.7. Note in particular the correct localization of
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Fig. 8.7. Estimated (left) and actual (right) error distribution, e = 1072, a = 0.05.
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FiG. 8.8. Approzimate solution and the corresponding adaptively refined mesh, e = 1074, a = 0.02.

the error away from the center of the shock, as well as the sensitivity of our estimator to
the shape of the elements. Next, an example of an adaptively refined mesh and of the
corresponding solution for ¢ = 10~* and a = 0.02 is given in Figure 8.8. For these two
test cases, we have used as a refinement criterion 0.2- and 0.05-times the maximum of
the estimators, respectively. The estimated and actual errors are plotted against the
number of elements in uniformly/adaptively refined meshes in Figure 8.9. Again, one
can see that we can substantially reduce the number of unknowns necessary to attain
the prescribed precision using the derived estimators and adaptively refined grids.
Finally, the efficiency plots are given in Figure 8.10. In the first case, the efficiency
is almost optimal for finest grids, whereas in the second one, only the elements in
the refined shock region start to leave the convection-dominated regime, and thus the
efficiency starts to decrease.
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Vallée, France, for pointing out the compact form of the proof of Lemma 7.1.
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in uniformly/adaptively refined meshes for e = 1072, a = 0.05 (left) and ¢ = 104, a = 0.02 (right).
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