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Abstract. We establish residual a posteriori error estimates for lowest-order Raviart–Thomas
mixed finite element discretizations of convection-diffusion-reaction equations on simplicial meshes
in two or three space dimensions. The upwind-mixed scheme is considered as well, and the emphasis
is put on the presence of an inhomogeneous and anisotropic diffusion-dispersion tensor and on a
possible convection dominance. Global upper bounds for the approximation error in the energy
norm are derived, where in particular all constants are evaluated explicitly, so that the estimators
are fully computable. Our estimators give local lower bounds for the error as well, and they hold
from the cases where convection or reaction are not present to convection- or reaction-dominated
problems; we prove that their local efficiency depends only on local variations in the coefficients
and on the local Péclet number. Moreover, the developed general framework allows for asymptotic
exactness and full robustness with respect to inhomogeneities and anisotropies. The main idea of
the proof is a construction of a locally postprocessed approximate solution using the mean value and
the flux in each element, known in the mixed finite element method, and a subsequent use of the
abstract framework arising from the primal weak formulation of the continuous problem. Numerical
experiments confirm the guaranteed upper bound and excellent efficiency and robustness of the
derived estimators.
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1. Introduction. We consider the convection-diffusion-reaction problem

−∇ · (S∇p) + ∇ · (pw) + rp = f in Ω,(1.1a)

p = 0 on ∂Ω,(1.1b)

where S is in general an inhomogeneous and anisotropic (nonconstant full-matrix)
diffusion-dispersion tensor, w is a (dominating) velocity field, r a reaction function,
f a source term, and Ω ⊂ R

d, d = 2, 3, is a polygonal (polyhedral) domain (open,
bounded, and connected set). Our purpose is to derive a posteriori error estimates
for the lowest-order Raviart–Thomas mixed finite element discretization of the prob-
lem (1.1a)–(1.1b) on simplicial meshes (consisting of triangles if d = 2 and of tetra-
hedra if d = 3), as well as for its upwind variant; cf. Douglas and Roberts [17] and
Dawson [16].
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A posteriori error estimates, pioneered by Babuška and Rheinboldt [7], are nowa-
days well established for primal discretizations of second-order elliptic problems in-
volving only a diffusion term; cf., for example, the survey by Verfürth [32] for the con-
forming finite element method. An approach encompassing all conforming, noncon-
forming, and discontinuous finite element methods was recently proposed by Ainsworth
[3], using a Helmholtz-like decomposition of the error in the numerical solution into its
conforming and nonconforming parts in order to give a computable error bound. In
most cases the analysis is given only for S being an identity matrix; an in-depth analy-
sis for the general inhomogeneous and anisotropic diffusion tensor in the framework of
the finite element method was presented by Bernardi and Verfürth [9]. Similar results
have been obtained by Petzoldt [28], for nonconforming finite elements by Ainsworth
[4], and some developments for the finite volume box scheme (in the given case actu-
ally equivalent to the lowest-order Raviart–Thomas mixed finite element method) are
presented by El Alaoui and Ern [19]. In all these references, a hypothesis of the type
“monotonicity around vertices” on the distribution of the inhomogeneities is necessary.
In recent years a posteriori error estimates have been extended to convection-diffusion
problems as well. We cite in particular Verfürth [33], who derived estimates in the
energy norm for the conforming Galerkin method and its stabilized SUPG (streamline
upwind Petrov–Galerkin) version. His estimates are both reliable (yielding a global
upper bound on the error between the exact and approximate solutions) and locally
efficient (giving a local lower bound). Moreover, they are semirobust in the sense
that the lower and upper bounds differ by constants whose dependence on the local
mesh discretization parameter vanishes as this approaches the ratio of the smallest
eigenvalue of S to the local size of the velocity field (i.e., when the local Péclet num-
ber gets sufficiently small). Recently, Verfürth [34] improved his results while giving
estimates which are fully robust with respect to convection dominance in a norm in-
corporating a dual norm of the convective derivative. The new norm is not, however,
easily computable, there is no local lower bound, and the estimators do not change
with respect to [33], and hence the adaptive strategies will remain the same. Finally,
a different approach, yielding an estimate in the L1-norm, independent of the size of
the diffusion tensor, is given by Ohlberger [26] in the framework of the vertex-centered
finite volume method.

In comparison with primal methods, the literature on a posteriori error estimates
in the mixed finite element method is much less extensive. Most of the results have
been obtained for the Poisson equation (i.e., w = r = 0 in (1.1a)–(1.1b)) in two
space dimensions: Alonso [5] derived estimates for the error in the flux u := −S∇p
of the scalar variable p and either Raviart–Thomas [29] or Brezzi–Douglas–Marini
[11] mixed finite elements. Braess and Verfürth [10] proved estimates for both u and
p for Raviart–Thomas elements, based on mesh-dependent norms and a saturation
assumption. Carstensen [13] derived rigorous estimates for various mixed finite ele-
ment schemes and for both u and p. Achchab et al. [1] can imbed Raviart–Thomas
elements in their hierarchical a posteriori error estimates, whereas Carstensen and
Bartels [14] give an upper bound using averaging techniques. Kirby [24] proposed
simple residual-based estimates for Raviart–Thomas elements, where, however, the
flux estimator is not proved to yield a lower bound and is, moreover, obtained under
a saturation assumption. Wheeler and Yotov [39] were able to obtain a posteriori
error estimates for the mortar version of all families of mixed finite elements, also in-
cluding the three-dimensional case; a saturation assumption was, however, necessary
for the velocity estimate. Recently, Lovadina and Stenberg [25] employed an idea of
postprocessing similar to that used in this paper (with, however, the postprocessed
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scalar unknown of one degree lower than the one used here) in order to prove reliable
and efficient a posteriori error estimates for both the scalar and flux variables in a
mesh-dependent norm. Finally, Hoppe and Wohlmuth [22] treat a diffusion-reaction
problem in two space dimensions and use the relation of lowest-order Raviart–Thomas
mixed finite elements to nonconforming finite elements derived by Arnold and Brezzi
in [6] in order to control, under a saturation assumption, the L2-norm error in the
primal variable p.

To the author’s knowledge, no a posteriori estimates for mixed finite element
discretizations of convection-diffusion(-reaction) problems have been presented in the
literature so far. We do this in section 4 of this paper, after stating the assumptions
on the data and formulating the continuous problem in section 2 and after defining the
schemes in section 3. The estimates are derived in the energy norm for a new locally
(on each element) postprocessed scalar variable p̃h such that its flux −S∇p̃h is equal
to uh and such that its mean on each element is equal to ph. By this construction, we
actually have the L2(Ω) control over both uh−u and p̃h−p. Our estimates, in contrast
to the usual practice, do not include any undetermined multiplicative constants, so
that they are fully (and locally and easily) computable. They represent local lower
bounds for the error as well, with efficiency constants of the form c1 + c2 min

{
Pe, �

}
,

where Pe (the local Péclet number) and � are given below by (4.8) and where c1, c2
depend only on local variations in S (i.e., on local inhomogeneities and anisotropies),
on local variations in w and r, on the space dimension, on the polynomial degree of f ,
and on the shape-regularity parameter of the mesh. They hold from the cases where
convection or reaction are not present to convection- or reaction-dominated problems
and are in particular semirobust as in [33] with respect to convection dominance. Next,
in the pure diffusion case, we can write the general framework for our estimators in a
form of an infimum over all H1

0 (Ω) functions plus a higher-order residual term, which
yields asymptotic exactness and full robustness with respect to inhomogeneities and
anisotropies, and this without any “monotonicity” hypothesis. Although in numerical
experiments we use only local discrete evaluations of the estimators, they remain
almost asymptotically exact (the ratio of the estimated and actual error is close to one,
and this even in the convection-diffusion-reaction case) and quite robust. Finally, as an
interesting consequence of our analysis, we find that in the pure diffusion case with
piecewise constant coefficients, the lowest-order mixed finite elements represent an
exact three-point scheme in one space dimension, and in two or three space dimensions,
the postprocessed approximation is exact with respect to some generalized continuous
solution. All these issues are discussed in detail in section 5.

Next, section 6 presents some discrete properties of the schemes and of the post-
processed scalar variable p̃h. Namely, we show that p̃h is nonconforming in the sense
that it is not included in H1

0 (Ω), but we prove that the means of its traces are con-
tinuous across interior sides (edges if d = 2, faces if d = 3) and equal to zero on
exterior sides of the mesh; they are, in fact, shown to equal the Lagrange multipliers
from the hybridized forms of the schemes. The actual proofs of our a posteriori error
estimates and of their local efficiency are then given in section 7. The key element
is Lemma 7.1 which states a primal weak formulation-based abstract framework al-
lowing for the above-discussed asymptotic exactness and asymptotic robustness. The
nonconformity of p̃h is then treated by the techniques developed in [2, 23, 19]. Nei-
ther any additional regularity of the weak solution nor any saturation assumption is
needed. Finally, we illustrate the accuracy of the derived estimates in section 8 in
several numerical experiments.

In this paper we focus only on lowest-order methods since in practice they are
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by far the most commonly used and hence we believe they deserve a special treat-
ment; on the other hand, we do cover the three-dimensional case. Moreover, we have
shown in [36] that there exists a local flux-expression formula in lowest-order mixed
finite elements and that they can namely be implemented with only one unknown per
element, which enables us to significantly decrease their traditional increased compu-
tational cost. The extension to higher-order schemes is an ongoing work. Finally, we
have also generalized the presented type of a posteriori error estimates to the finite
volume method in the forthcoming paper [38]. We treat there among other questions
a larger variety of meshes and general inhomogeneous Dirichlet or Neumann boundary
conditions. This paper is a detailed description of the results previously announced
in [37].

2. Notation, assumptions, and the continuous problem. We introduce
here the notation, define admissible triangulations to which the space W0(Th) and the
data will be related, and finally give details on the continuous problem (1.1a)–(1.1b).

2.1. Notation. For a domain S ⊂ R
d, we denote by L2(S) and L2(S) = [L2(S)]d

the Lebesgue spaces, by (·, ·)S the L2(S) or L2(S) inner product, and by ‖ · ‖S
the associated norm; |S| stands for the Lebesgue measure of S. Next, H1(S) and
H1

0 (S) are the Sobolev spaces of functions with square-integrable weak derivatives,
H(div, S) = {v ∈ L2(S);∇ · v ∈ L2(S)} is the space of functions with square-
integrable weak divergences, and 〈·, ·〉∂S stands for (d− 1)-dimensional inner product

on ∂S or for the duality pairing between H− 1
2 (∂S) and H

1
2 (∂S). We will also use the

“broken Sobolev space” H1(Th) := {ϕ ∈ L2(Ω);ϕ|K ∈ H1(K) ∀K ∈ Th}. In what
follows we conceptually denote by CA, cA constants dependent only on a quantity A.

2.2. Triangulation, Poincaré and Friedrichs inequalities, and the space
W0(Th). We suppose that Th for all h > 0 consists of closed simplices such that
Ω =

⋃
K∈Th

K and such that if K,L ∈ Th, K 	= L, then K ∩ L is either an empty
set or a common face, edge, or vertex of K and L. Let hK denote the diameter of
K and let h := maxK∈Th

hK . We make the following shape-regularity assumption on
the family of triangulations {Th}h, denoting κK := |K|/hd

K .
Assumption A (shape-regularity of the meshes). There exists a constant κT > 0

such that minK∈Th
κK ≥ κT for all h > 0.

Let ρK denote the diameter of the largest ball inscribed in K. Then Assumption A
is equivalent to the usual requirement of the existence of a constant θT > 0 such that
maxK∈Th

hK/ρK ≤ θT for all h > 0. We next denote by Eh the set of all sides of Th,
by E int

h the set of interior, by Eext
h the set of exterior, and by EK the set of all the

sides of an element K ∈ Th. Finally, hσ stands for the diameter of σ ∈ Eh.
Let K ∈ Th and ϕ ∈ H1(K). Two inequalities play an essential role in our

analysis. First, the Poincaré inequality states that

(2.1) ‖ϕ− ϕK‖2
K ≤ CP,dh

2
K‖∇ϕ‖2

K ,

where ϕK is the mean of ϕ over K, ϕK := (ϕ, 1)K/|K|, and where the constant CP,d

can for a simplex (using its convexity) be evaluated as d/π; cf. [27, 8]. Next, the
following generalized Friedrichs inequalities have been proved in [35, Lemma 4.1]:

(2.2) (ϕK − ϕσ)2 ≤ CF,d
h2
K

|K| ‖∇ϕ‖2
K , ‖ϕ− ϕσ‖2

K ≤ CF,dh
2
K‖∇ϕ‖2

K .

Here ϕσ is the mean of ϕ over σ ∈ EK , ϕσ := 〈ϕ, 1〉σ/|σ|, and CF,d = 3d.
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We finally define the space W0(Th) of functions with mean values of the traces
continuous across interior sides and zero on exterior sides,

W0(Th) :=
{
ϕ ∈ L2(Ω) ;ϕ|K ∈ H1(K) ∀K ∈ Th,
〈ϕ|K − ϕ|L, 1〉σK,L

= 0 ∀σK,L ∈ E int
h ,(2.3)

〈ϕ, 1〉σ = 0 ∀σ ∈ Eext
h

}
,

and recall the discrete Friedrichs inequality

(2.4) ‖ϕ‖2
Ω ≤ CDF

∑
K∈Th

‖∇ϕ‖2
K ∀ϕ ∈ W0(Th), ∀h > 0,

where CDF depends only on κT and infb∈Rd{thickb(Ω)}; cf. [35, Theorem 5.4].

2.3. Data. We suppose that there exists a basic triangulation T̃h of Ω such that
the data of the problem (1.1a)–(1.1b) are related to T̃h in the following way.

Assumption B (data).
(B1) SK := S|K is a constant, symmetric, bounded, and uniformly positive definite

tensor such that cS,K v · v ≤ SKv · v ≤ CS,K v · v, cS,K > 0, CS,K > 0, for

all v ∈ R
d and all K ∈ T̃h;

(B2) w ∈ RTN0(T̃h) satisfies
∣∣w|K

∣∣ ≤ Cw,K , Cw,K ≥ 0, for all K ∈ T̃h;
(B3) rK := r|K is a constant for all K ∈ T̃h;
(B4) 1

2∇·w|K+r|K = cw,r,K and
∣∣∇·w|K+rK

∣∣ = Cw,r,K , cw,r,K ≥ 0, Cw,r,K ≥ 0,

for all K ∈ T̃h;
(B5) f |K is a polynomial of degree at most k for each K ∈ T̃h;
(B6) if cw,r,K = 0, then Cw,r,K = 0.

The assumptions that S and r are piecewise constant on T̃h, that w ∈ RTN0(T̃h)
(cf. section 3.1 below for the definition of this space), and that f is a piecewise
polynomial are made for the sake of simplicity and are usually satisfied in practice.
If the functions at hand do not fulfill these requirements, interpolation can be used.
Finally, note that Assumption (B6) allows cw,r,K = 0 but w|K 	= 0.

2.4. Continuous problem. Let Th be, as throughout the whole paper, a re-
finement of T̃h. We define a bilinear form B by
(2.5)

B(p, ϕ) :=
∑

K∈Th

{
(S∇p,∇ϕ)K + (∇ · (pw), ϕ)K + (rp, ϕ)K

}
, p, ϕ ∈ H1(Th),

and the corresponding energy (semi)norm by
(2.6)

|||ϕ|||2Ω :=
∑

K∈Th

|||ϕ|||2K , |||ϕ|||2K := (S∇ϕ,∇ϕ)K + cw,r,K‖ϕ‖2
K , ϕ ∈ H1(Th).

In this way B(·, ·) and ||| · |||Ω are well defined for p, ϕ ∈ H1(Ω) as well as for p, ϕ that
are only piecewise regular. Note also that ||| · |||Ω is a norm on W0(Th) even if there
exists K ∈ Th such that cw,r,K = 0 because of the discrete Friedrichs inequality (2.4)
and Assumption (B1). The weak formulation of the problem (1.1a)–(1.1b) is then to
find p ∈ H1

0 (Ω) such that

(2.7) B(p, ϕ) = (f, ϕ)Ω ∀ϕ ∈ H1
0 (Ω).
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Assumption B, the Green theorem, and the Cauchy–Schwarz inequality imply that

B(ϕ,ϕ) = |||ϕ|||2Ω ∀ϕ ∈ H1
0 (Ω),(2.8)

B(ϕ,ϕ) = |||ϕ|||2Ω +
1

2

∑
K∈Th

〈ϕ2,w · n〉∂K ∀ϕ ∈ H1(Th),(2.9)

B(p, ϕ) ≤ max

{
1, max

K∈Th

{
Cw,r,K

cw,r,K

}}
|||p|||Ω|||ϕ|||Ω

+ max
K∈Th

{
Cw,K√
cS,K

}
|||p|||Ω‖ϕ‖Ω ∀p, ϕ ∈ H1(Th),(2.10)

and problem (2.7) under Assumption B, in particular, admits a unique solution.
Remark 2.1 (notation). In estimate (2.10), if cw,r,K = 0, the term Cw,r,K/cw,r,K

should be evaluated as zero, since Assumption (B6) in this case gives Cw,r,K = 0. To
simplify notation, we systematically use the convention 0/0 = 0 throughout the text.

3. Mixed finite element schemes. We define in this section the centered and
upwind-weighted mixed finite element schemes.

3.1. Function spaces. Let RTN0
−1(Th) be the space of elementwise linear vec-

tor functions uh such that, on each K ∈ Th, uh|K = (aK + dKx, bK + dKy) if d = 2
and uh|K = (aK + dKx, bK + dKy, cK + dKz) if d = 3. The Raviart–Thomas–Nédélec
space RTN0(Th) imposes the continuity of the normal trace across all σ ∈ E int

h and
is given by RTN0(Th) := RTN0

−1(Th) ∩ H(div,Ω). There is one basis function vσ

associated with each σ ∈ Eh. For σK,L ∈ E int
h , vσK,L

(x) = 1
d|K| (x − VK), x ∈ K;

vσK,L
(x) = 1

d|L| (VL−x), x ∈ L; vσK,L
(x) = 0 otherwise, where VK is the vertex of K

opposite to σ and VL the vertex of L opposite to σ. We suppose that the orientation
of vσK,L

, i.e., the order of K and L, is fixed. For a boundary side σ, the support
of vσ consists only of K ∈ Th such that σ ∈ EK . Next, the space Φ(Th) consists of
elementwise constant scalar functions; we denote ph|K = pK for ph ∈ Φ(Th). Recall
also that ∇ · uh ∈ Φ(Th) for each uh ∈ RTN0

−1(Th).

3.2. Centered scheme. The centered mixed finite element scheme (cf. [17])
reads: find uh ∈ RTN0(Th) and ph ∈ Φ(Th) such that

(S−1uh,vh)Ω − (ph,∇ · vh)Ω = 0 ∀vh ∈ RTN0(Th),(3.1a)

(∇ · uh, φh)Ω − (S−1uh · w, φh)Ω + ((r + ∇ · w)ph, φh)Ω = (f, φh)Ω(3.1b)

∀φh ∈ Φ(Th).

3.3. Upwind-weighted scheme. The upwind-weighted mixed finite element
scheme reads: find uh ∈ RTN0(Th) and ph ∈ Φ(Th) such that

(S−1uh,vh)Ω − (ph,∇ · vh)Ω = 0 ∀vh ∈ RTN0(Th),(3.2a)

(∇ · uh, φh)Ω +
∑

K∈Th

∑
σ∈EK

p̂σwK,σφK + (rph, φh)Ω = (f, φh)Ω(3.2b)

∀φh ∈ Φh(Th),
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where wK,σ := 〈w ·n, 1〉σ, σ ∈ EK , with n being the unit normal vector of the side σ,
outward to K, and where p̂σ is the weighted upwind value defined by

(3.3) p̂σ :=

{
(1 − νσ)pK + νσpL if wK,σ ≥ 0,

(1 − νσ)pL + νσpK if wK,σ < 0,

if σ is an interior side between elements K and L, and

(3.4) p̂σ :=

{
(1 − νσ)pK if wK,σ ≥ 0,

νσpK if wK,σ < 0,

if σ is a boundary side. Here, νσ ∈ [0, 1/2] is the coefficient of the amount of upstream
weighting which may be, in order to reduce the excessive numerical diffusion added
by the full upstream weighting used in [16], chosen as
(3.5)

νσ :=

⎧⎪⎪⎨⎪⎪⎩
min

{
cS,σ

|σ|
hσ|wK,σ|

,
1

2

}
if wK,σ 	= 0 and σ ∈ E int

h ,

or if σ ∈ Eext
h and wK,σ > 0,

0 if wK,σ = 0 or if σ ∈ Eext
h and wK,σ < 0,

where cS,σ is the harmonic average of cS,K and cS,L if σ = ∂K∩∂L and cS,K otherwise.

4. A posteriori error estimates. We summarize in this section our a posteriori
estimates on the error between the weak solution p and a postprocessed variable p̃h,
which we shall define first, along with its modified Oswald interpolate.

4.1. A postprocessed scalar variable p̃h. In standard mixed finite element
theory (see, e.g., Brezzi and Fortin [12] or Roberts and Thomas [31]) the two variables
ph and uh are considered as independent. In contrast, the basis for our a posteriori
error estimates is a construction of a postprocessed scalar variable p̃h which links ph
and uh on each simplex in the following way:

−SK∇p̃h|K = uh|K ∀K ∈ Th,(4.1a)

(p̃h, 1)K
|K| = pK ∀K ∈ Th.(4.1b)

Note that, in particular, if S = Id, p̃h|K = −dK/2 (x2 +y2)−aKx−bKy−eK if d = 2
and p̃h|K = −dK/2 (x2+y2+z2)−aKx−bKy−cKz−eK if d = 3. Here aK–dK are the
coefficients from section 3.1, and eK is given so that (4.1b) was satisfied. If S 	= Id,
then p̃h verifying (4.1a)–(4.1b) still exists due to the symmetry of S and is this time a
full second-order polynomial on each K ∈ Th. The new variable p̃h is nonconforming,
p̃h 	∈ H1

0 (Ω), but, by Lemma 6.1 below, p̃h ∈ W0(Th); i.e., its means on interior
sides are continuous and its means on exterior sides are equal to zero. In fact, by
Lemma 6.4 below, these means coincide with the Lagrange multipliers of hybridized
schemes. Moreover, the centered scheme can equivalently be rewritten with the help
of p̃h (see Lemma 6.2 below), which corresponds to the employment of the Lagrange
multipliers in the convection term. Note that the proposed postprocessing is local on
each element and its cost is negligible.
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4.2. A modified Oswald interpolation operator. Let Pl(Th) denote the
space of polynomials of degree at most l on each simplex, not necessary continu-
ous. The Oswald interpolation operator IOs : Pl(Th) → Pl(Th) ∩ H1

0 (Ω) has been
considered, e.g., in [2, 23, 19]. Given a function ϕh ∈ Pl(Th), IOs(ϕh) is prescribed at
the Lagrangian nodes (degrees of freedom; cf. [15, section 2.2]) of Pl(Th) ∩H1

0 (Ω) by
the average of the values of ϕh at this node. We will now construct its modification
which preserves the means of p̃h over the sides, since this will appear crucial when
convection is present.

The modified Oswald interpolation operator IMO : P2(Th) ∩W0(Th) → Pd(Th) ∩
H1

0 (Ω) is defined as follows: at all Lagrangian nodes of Pd(Th) ∩ H1
0 (Ω), except for

those lying at the barycenters of the sides, the value of IMO(ϕh) is given by the average
of the values of ϕh at this node (as in the standard Oswald interpolation operator).
The values at the barycenters of the sides are then established so that the means of
IMO(ϕh) over the sides were given by the means of ϕh. (The space P2(Th) ∩H1

0 (Ω)
in three space dimensions does not have Lagrangian nodes at side barycenters; this
is the reason to use P3(Th) ∩H1

0 (Ω) in this case.) It is easily verified that, as in the
case of the Oswald interpolation operator, IMO(ϕh) is a uniquely defined piecewise
polynomial continuous function. Let [ϕh] be the jump of a function ϕh across a side
σ: if σ = ∂K ∩ ∂L, then [ϕh] is the difference of the value of ϕh in K and L (the
order of K and L has no influence on what follows), and if σ ∈ Eext

h , then [ϕh] = ϕh.
Then the following lemma is an easy modification of [23, Theorem 2.2] (σ ∩ K 	= ∅
when σ contains a vertex of K).

Lemma 4.1 (modified Oswald interpolation operator). Let ϕh ∈ P2(Th)∩W0(Th),
and let IMO(ϕh) ∈ Pd(Th) ∩H1

0 (Ω) be constructed as described above. Then

‖∇(ϕh − IMO(ϕh))‖2
K ≤ C1

∑
σ;σ∩K �=∅

h−1
σ ‖[ϕh]‖2

σ ,

where the constant C1 depends only on d and κT .

4.3. A posteriori error estimates. We now finally state the a posteriori error
estimates. Let K ∈ Th. Let us first set

m2
K := min

{
CP,d

h2
K

cS,K
,

1

cw,r,K

}
.

We define the residual estimator ηR,K by

(4.2) ηR,K := mK‖f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h‖K .

Next, denote v := p̃h − IMO(p̃h). The nonconformity estimator ηNC,K is given by

(4.3) ηNC,K := |||v|||K

and the convection estimator ηC,K by

(4.4)

ηC,K := min

{
‖∇ · (vw) − 1

2v∇ · w‖K√
cw,r,K

,

(
CP,dh

2
K‖∇v · w‖2

K

cS,K
+

9‖v∇ · w‖2
K

4cw,r,K

) 1
2

}
.

Finally, let

(4.5) m2
σ := min

{
max

K;σ∈EK

{
CF,d

|σ|h2
K

|K|cS,K

}
, max
K;σ∈EK

{
|σ|

|K|cw,r,K

}}
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for all σ ∈ Eh. We set p̃σ := 〈p̃h, 1〉σ/|σ|, the mean of the postprocessed scalar variable
p̃h over a side σ ∈ Eh; recall that p̂σ is the upwind value given by (3.3) or (3.4); and
define the upwinding estimator ηU,K by

(4.6) ηU,K :=
∑
σ∈EK

mσ‖(p̂σ − p̃σ)w · n‖σ .

We have the following a posteriori error estimates.
Theorem 4.2 (a posteriori error estimate for the centered mixed finite element

scheme). Let p be the weak solution of the problem (1.1a)–(1.1b) given by (2.7), and
let p̃h be the postprocessed solution of the centered mixed finite element scheme (3.1a)–
(3.1b) given by (4.1a)–(4.1b). Then

(4.7) |||p− p̃h|||Ω ≤
{ ∑

K∈Th

η2
NC,K

} 1
2

+

{ ∑
K∈Th

(ηR,K + ηC,K)2

} 1
2

.

Theorem 4.3 (a posteriori error estimate for the upwind-weighted mixed fi-
nite element scheme). Let p be the weak solution of the problem (1.1a)–(1.1b) given
by (2.7), and let p̃h be the postprocessed solution of the upwind-weighted mixed finite
element scheme (3.2a)–(3.2b) given by (4.1a)–(4.1b). Then

|||p− p̃h|||Ω ≤
{ ∑

K∈Th

η2
NC,K

} 1
2

+

{ ∑
K∈Th

(ηR,K + ηC,K + ηU,K)2

} 1
2

.

4.4. Local efficiency of the estimates. Let the local Péclet number PeK and
�K be given by

(4.8) PeK := hK
Cw,K

cS,K
, �K :=

Cw,K√
cw,r,K

√
cS,K

.

Next, let, for ϕ ∈ H1(K),

α∗,K := cS,K

(
CS,K

cS,K
+ 2�2

K

)
, β∗,K := cw,r,K +

∣∣∇ · w|K
∣∣2

2cw,r,K
,

α#,K := cS,K

(
CS,K

cS,K
+ CP,dPe2

K

)
, β#,K := cw,r,K +

9
∣∣∇ · w|K

∣∣2
4cw,r,K

,

|||ϕ|||2∗,K := α∗,K‖∇ϕ‖2
K + β∗,K‖ϕ‖2

K , |||ϕ|||2#,K := α#,K‖∇ϕ‖2
K + β#,K‖ϕ‖2

K .

Finally, let

(4.9) cS,ωK
:= min

L;L∩K �=∅
cS,L, cw,r,ωK

:= min
L;L∩K �=∅

cw,r,L, cS,Ω := min
K∈Th

cS,K .

The theorem below discusses the local efficiency of our a posteriori error estimators.
Theorem 4.4 (local efficiency of the a posteriori error estimators). Let p be the

weak solution of the problem (1.1a)–(1.1b) given by (2.7), and let p̃h be the postpro-
cessed solution of the centered mixed finite element scheme (3.1a)–(3.1b) or of the
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upwind-weighted mixed finite element scheme (3.2a)–(3.2b) given by (4.1a)–(4.1b).
Then, for the residual estimator ηR,K on each K ∈ Th, there holds
(4.10)

ηR,K ≤ C2|||p− p̃h|||K

{√
CS,K

cS,K
max

{
1,

Cw,r,K

cw,r,K

}
+ min

{
PeK ,

√
CS,K

cS,K
�K

}}
,

where the constant C2 depends only on the space dimension d, on the shape-regularity
parameter κT , and on the polynomial degree k of f (see Lemma 7.6 below). Next, for
the nonconformity and velocity estimators ηNC,K and ηC,K on each K ∈ Th, we have

η2
NC,K + η2

C,K ≤ C3 min

{
α∗,K
cS,ωK

+ min

{
β∗,K

cw,r,ωK

,
β∗,Kh2

K

cS,ωK

}
,

α#,K

cS,ωK

+ min

{
β#,K

cw,r,ωK

,
β#,Kh2

K

cS,ωK

}} ∑
L;L∩K �=∅

|||p− p̃h|||2L(4.11)

+ C3β#,K inf
sh∈P2(Th)∩H1

0 (Ω)

∑
L;L∩K �=∅

‖p− sh‖2
L ,

where the constant C3 depends only on d and κT (see Lemma 7.7 below). Finally, the
upwinding estimator ηU,K is not efficient and we have only

(4.12)
∑

K∈Th

η2
U,K ≤ C4 max

σ∈Eh

�σ max
K∈Th

�̃K min

{
1

2

∑
K∈Th

‖f‖2
K

cw,r,K
, ‖f‖2

Ω

CDF

cS,Ω

}
,

where CDF is the constant from the discrete Friedrichs inequality (2.4), the constant
C4 depends only on d and κT (see Lemma 7.8 below), and

�σ :=

⎛⎝ max
K;σ∈EK

cS,K

min
K;σ∈EK

cS,K

⎞⎠2

, �̃K := min

⎧⎨⎩(PeK)2, (�K)2
max

L;L∩K∈Eh

cw,r,L

min
L;L∩K∈Eh

cw,r,L

⎫⎬⎭ .

5. Various remarks. We give several remarks in this section.

5.1. Nature of the estimates. The basis of the a posteriori error estimates
derived in this paper is the construction of the postprocessed scalar variable p̃h and
the consequent application of the abstract framework arising from the primal weak
formulation (2.7) of the continuous problem; cf. Lemmas 7.1 and 7.2 below. Com-
pared to Galerkin finite element approximations, the crucial advantage is that p̃h, an
elementwise quadratic polynomial, has the normal traces of its flux −S∇p̃h (which
is, by (4.1a), nothing else than the mixed finite element vector variable uh) con-
tinuous across interior sides. Hence the side error estimators penalizing the mass
balance common in Galerkin finite element methods (cf. [33]) do not appear here at
all. This advantage is, however, compensated by the fact that p̃h 	∈ H1

0 (Ω), so that
the estimators known from nonconforming and discontinuous Galerkin finite elements
(cf. [19, 23]) appear. Next, whereas in the lowest-order Galerkin finite element method
∇ · (SK∇ph)|K is always equal to zero on all K ∈ Th, the element residuals (4.2) give
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a very good sense. We also notice that using (2.6), (4.1a), and (2.4),

(5.1)

|||p− p̃h|||2Ω =
∑

K∈Th

{
‖S− 1

2 (u − uh)‖2
K + cw,r,K‖p− p̃h‖2

K

}

≥
∑

K∈Th

{
1

2
‖S− 1

2 (u − uh)‖2
K + cw,r,K‖p− p̃h‖2

K

}
+

cS,Ω
2CDF

‖p− p̃h‖2
Ω ,

so that we have the usual mixed finite element L2(Ω) control over the error in both
the scalar and vector unknowns even if cw,r,K = 0 for some K ∈ Th.

5.2. The estimates and their local efficiency with respect to S and w.
We discuss here our a posteriori error estimates and their local efficiency that we have
been able to prove in Theorem 4.4. For further remarks, see the next section.

The minimum in the definition of the residual estimator ηR,K (4.2) prevents it
from growing to extreme values on coarse elements with a small value cS,K when
cw,r,K > 0. Its local efficiency depends only on anisotropy in its element expressed by

the ratio
√
CS,K/cS,K and there is no dependency on inhomogeneities. Next, under

the given assumptions, Cw,r,K/cw,r,K ≤ 2 whenever rK is nonnegative. Finally, the
minimum of the local Péclet number PeK and �K ensures boundedness if cw,r,K 	= 0
and if hK is large and optimal efficiency as PeK becomes small.

The minimum in the definition of the convection estimator ηC,K (4.4) prevents
it from exploding when cw,r,K = 0 but Cw,K 	= 0. Together with the nonconformity
estimator ηNC,K (4.3), they give local efficiency, up to higher-order terms if cw,r,K 	= 0
(the part infsh∈P2(Th)∩H1

0 (Ω)), which is shown to be a function of a local (meaning all
elements sharing a vertex with the given one) maximal ratio of inhomogeneities (the
term

√
α∗,K/cS,ωK

) and of
√

CS,K/cS,K in each element concerning anisotropy. For
further remarks, see the next section. Finally, the efficiency gets into optimal values
with respect to convection dominance as PeK gets sufficiently small. We note also that
the estimate is robust (up to the higher-order term) in the reaction-dominated case
as well, since the quantities Cw,r,K/cw,r,K and

√
β∗,K/cw,r,ωK

remain well bounded
in the limit.

The fact that the upwinding estimator ηU,K (4.6) cannot in general give a lower
bound for the error is quite obvious: it is not difficult to imagine a situation where
p = p̃h, whereas (p̂σ− p̃σ), the difference of the mean value of p̃h on a side σ and of the
combination of the mean values of p̃h on the elements sharing σ, is generally nonzero.
However, we at least show that there is an upper bound for the contributions of this
estimator, which moreover decreases with the local Péclet numbers as O(h). It should
be noted that this estimator does not change the limit optimality of the schemes and
estimates—see section 5.5 below for a remark on this point.

5.3. Asymptotic exactness and asymptotic robustness with respect to
inhomogeneities and anisotropies. We show in this remark that the (global
asymptotic) efficiency of our estimates is indeed even better than that proved in
Theorem 4.4 and discussed in the previous section.

5.3.1. Pure diffusion problems. Let us first consider a pure diffusion problem,
i.e., r = w = 0 in (1.1a)–(1.1b). Using that in this case −∇·(SK∇p̃h|K) = ∇·uh|K =
fK for all K ∈ Th, where fK is the mean value of f over K, the analysis for the general
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case simplifies to the a posteriori error estimate (4.7) with ηC,K = 0 and

η2
R,K := CP,d

h2
K

cS,K
‖f − fK‖2

K ,(5.2)

η2
NC,K := ‖S 1

2∇(p̃h − s)‖2
K ,(5.3)

where in particular s ∈ H1
0 (Ω) can be chosen arbitrarily (cf. Lemma 7.2 below).

Examples are the Oswald or the modified Oswald interpolates of p̃h—in the pure
diffusion case, all the presented results hold similarly for these two operators. Also
note that since ∇· (u−uh)|K = f−fK is fully computable for all K ∈ Th, the control
over ‖u − uh‖Ω + ‖∇ · (u − uh)‖Ω immediately follows using (5.1).

Our main point is, however, that the above developments in fact imply

(5.4) |||p− p̃h|||Ω ≤ inf
s∈H1

0 (Ω)
|||p̃h − s|||Ω +

{ ∑
K∈Th

CP,d
h2
K

cS,K
‖f − fK‖2

K

} 1
2

,

which, in the case where f is piecewise constant, by virtue of

inf
s∈H1

0 (Ω)
|||p̃h − s|||Ω ≤ |||p̃h − p|||Ω,

gives asymptotic global efficiency of such an estimator with a constant 1, i.e., asymp-
totic exactness and asymptotic full robustness with respect to inhomogeneities and
anisotropies (asymptotic with respect to the approximation of p̃h by some, e.g., poly-
nomial, s ∈ H1

0 (Ω) on a fixed grid Th). In the general case, if, e.g., f ∈ H1(Th), then
‖f − fK‖2

K ≤ CP,dh
2
K‖∇f‖2

K , and asymptotic exactness and asymptotic robustness
still hold true (this time asymptotic also with respect to h → 0). Although we use
only the Oswald or the modified Oswald interpolates of p̃h instead of evaluating or
approximating the infimum in (5.4), the numerical experiments of section 8.1 below
show that estimators of section 4.3 remain almost asymptotically exact and robust
with respect to inhomogeneities and anisotropies.

5.3.2. Convection-diffusion-reaction problems. The above considerations
roughly extend to the convection-diffusion-reaction case in the following sense: for the
centered mixed finite element scheme (3.1a)–(3.1b), one has (7.4) and consequently a
superconvergence of the residual estimators ηR,K (4.2) to zero. Next, for divergence-
free velocity fields w, the second arguments of the convection estimators ηC,K in (4.4)
again superconverge to zero since p̃h ∈ W0(Th) (both as h → 0). Hence the estimate
will be asymptotically given only by the nonconformity estimators ηNC,K of (4.3)
and thus by the best approximation of p̃h by s ∈ H1

0 (Ω) such that its means are
given by the means of p̃h. (This property is needed when convection is present; see
Lemma 7.4 below.) This asymptotic almost optimal efficiency is again observed below
in numerical experiments in section 8.2.

5.4. Pure diffusion problems: Mixed finite elements and a generalized
weak solution. Let us in this remark consider r = w = 0 in (1.1a)–(1.1b) and
generalize the classical weak solution to a function p̃ ∈ W0(Th) such that

(5.5) B(p̃, ϕ) = (f, ϕ)Ω ∀ϕ ∈ W0(Th) .

(In)equalities (2.9) and (2.10) together with the discrete Friedrichs inequality (2.4)
ensure the existence of a unique solution of (5.5).
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We thus have

|||p̃− p̃h|||Ω =
B(p̃− p̃h, p̃− p̃h)

|||p̃− p̃h|||Ω
≤ sup

ϕ∈W0(Th), |||ϕ|||Ω=1

B(p̃− p̃h, ϕ)

and develop, similarly as in the proof of Lemma 7.2 below,

B(p̃− p̃h, ϕ) = (f, ϕ)Ω +
∑

K∈Th

{
(∇ · (S∇p̃h), ϕ)K − 〈S∇p̃h · n, ϕ〉∂K

}
=

∑
K∈Th

(f −∇ · uh, ϕ)K +
∑
σ∈Eh

〈uh · n, [ϕ]〉σ

=
∑

K∈Th

(f −∇ · uh, ϕ)K =
∑

K∈Th

(f − fK , ϕ− ϕK)K ,

using the bilinearity of B(·, ·), the definition (5.5) of the generalized weak solution p̃,
the Green theorem in each K ∈ Th, the relation (4.1a) between p̃h and uh, reordering
the summation over the boundaries of elements to the summation over the sides,
using the continuity of the normal trace of uh expressed by uh|K ·nK = −uh|L ·nL on
σK,L ∈ E int

h , the fact that uh ·n is constant on all sides σ ∈ Eh and the definition (2.3)
of the space W0(Th), and finally the equation (3.1b) of the definition of the mixed
finite element scheme (ϕK is the mean of ϕ over K). Next, estimate (7.5) given below
holds true also in this case, so that finally the Cauchy–Schwarz inequality leads to

|||p̃− p̃h|||Ω ≤
{ ∑

K∈Th

η2
R,K

} 1
2

with ηR,K given by (5.2).
First, this is a completely data-dependent a posteriori error estimate, and sec-

ond, this is in fact an a priori error estimate as well: it shows that the mixed finite
element solutions p̃h and uh (cf. (5.1), which still holds true) converge both as O(h2)
in the L2(Ω), L2(Ω), respectively, norms to the generalized weak solution p̃ given
by (5.5) and its flux ũ, ũ|K := −S∇p̃|K (for f ∈ H1(Th)). Moreover, as soon as f
is piecewise constant, p̃h is directly equal to the generalized solution! We emphasize
that these results hold true for S piecewise constant but arbitrarily inhomogeneous
and anisotropic; they apparently confirm the observations of a very good behavior of
mixed methods in these circumstances. There are also very interesting consequences
in one space dimension; cf. section 5.6 below.

5.5. A combination of the centered and upwind-weighted schemes. The
scheme (3.2a)–(3.2b) guarantees stability in the convection-dominated case, but the
additional upwinding estimator ηU,K given by (4.6) is unfortunately not efficient. On
the other hand, the scheme (3.1a)–(3.1b), however precise if h is sufficiently small,
may give completely wrong results on coarse meshes. Hence a good idea may be a
smooth transition from the upwind-weighted to the centered scheme under the form

(S−1uh,vh)Ω − (ph,∇ · vh)Ω = 0 ∀vh ∈ RTN0(Th),

(∇ · uh, φK)K +
∑
σ∈EK

{
(μσp̂σ + (1 − μσ)p̃σ)wK,σφK

}
+ (rph, φK)K = (f, φK)K

∀K ∈ Th,
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where p̂σ is the upstream value and μσ is set to 1−2νσ with νσ given by (3.5). Notice
that such a scheme is fully rewritable in terms of the original unknowns ph, uh, using
that

∑
σ∈EK

p̃σwK,σφK = 〈p̃hw · n, φK〉∂K and Lemma 6.2 below.

5.6. The estimates in one space dimension. As the last remark, it appears
that the above results have interesting particular consequences in one space dimension,
where the two schemes (3.1a)–(3.1b) and (3.2a)–(3.2b) can likewise be defined.

5.6.1. One dimension: No nonconformity. First of all, Lemma 6.1 below
reduces in one space dimension to the assertion that the postprocessed variable p̃h
given by (4.1a)–(4.1b) is continuous, i.e., that in this case p̃h ∈ H1

0 (Ω). An immediate
consequence is that the parts of the a posteriori error estimates of Theorems 4.2–4.3
related to nonconformity disappear.

5.6.2. Lowest-order mixed finite elements: An exact three-point scheme
for one-dimensional diffusion problems with piecewise constant coefficients.
Another quite interesting consequence is related to the remark of section 5.4 and re-
sults of [36]. As there is no nonconformity, the superconvergence O(h2) of both p̃h
and uh (this time towards the weak solution and its flux, coinciding with the gener-
alized one) always holds true, and, moreover, it appears that in one space dimension,
one can always rewrite the schemes with only pK , K ∈ Th, as unknowns. Hence the
lowest-order mixed finite elements represent a scheme with a three-point stencil which
is exact for one-dimensional pure diffusion problems, where the diffusion tensor S (this
time a scalar function) and the right-hand side f are piecewise constant (and hence
possibly arbitrarily discontinuous). This should be compared to the known results for
the finite volume/finite difference method. In particular, the (best known?) scheme
proposed by Ewing, Iliev, and Lazarov in [21] is exact only when the right-hand side
is constant (the diffusion tensor may be piecewise constant); cf. Remark 2.4 in [21].

6. Discrete properties of the schemes. In this section we prove different
properties of the schemes (3.1a)–(3.1b) and (3.2a)–(3.2b) and of the postprocessed
scalar variable p̃h needed in the paper.

Lemma 6.1 (continuity of the means of traces of p̃h). It holds that p̃h ∈ W0(Th);
i.e.,

〈p̃h|K − p̃h|L, 1〉σK,L
= 0 ∀σK,L ∈ E int

h ,

〈p̃h, 1〉σ = 0 ∀σ ∈ Eext
h .

Proof. Let us consider a side σK,L ∈ E int
h . Then taking vh equal to the basis

function vσK,L
(cf. section 3.1) in (3.1a) or (3.2a) yields

0 = −(∇p̃h,vσK,L
)K∪L − (p̃h,∇ · vσK,L

)K∪L

= −〈vσK,L
· n, p̃h〉∂K − 〈vσK,L

· n, p̃h〉∂L = 〈vσK,L
· nK , p̃h|L − p̃h|K〉σK,L

,

using the definition (4.1a)–(4.1b) of p̃h, the fact that ∇ · vh for vh ∈ RTN0(Th) is
constant in each simplex (which allows us to replace ph by p̃h), the Green theorem,
and the fact that vσK,L

has a nonzero normal flux only through σK,L. The first

assertion of the lemma follows by the fact that vh · n for vh ∈ RTN0(Th) is constant
on each side σ ∈ Eh. The proof for boundary sides is completely similar.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1584 MARTIN VOHRALÍK

Lemma 6.2 (equivalent form of the centered scheme). The scheme (3.1a)–(3.1b)
can be equivalently written: find uh ∈ RTN0(Th) and ph ∈ Φ(Th) such that

(S−1uh,vh)Ω − (p̃h,∇ · vh)Ω = 0 ∀vh ∈ RTN0(Th),(6.1a)

(∇ · uh, φK)K + 〈p̃hw · n, φK〉∂K + (rp̃h, φK)K = (f, φK)K ∀K ∈ Th,(6.1b)

where p̃h is defined by (4.1a)–(4.1b).
Proof. Since ∇ · vh for vh ∈ RTN0(Th) is constant in each simplex and since r

was in Assumption (B3) supposed piecewise constant as well, one can replace ph by
p̃h in the terms (ph,∇·vh)Ω and (rph, φK)K using (4.1b). Similarly, using in addition
the Green theorem,

−(S−1
K uh · w, φK)K + (pK∇ · w, φK)K = (∇p̃h · w, φK)K + (p̃h∇ · w, φK)K

= (∇ · (p̃hw), φK)K = 〈p̃hw · n, φK〉∂K .

Remark 6.3 (hybridization of the schemes). Mixed finite element schemes can
equivalently be reformulated while relaxing the continuity of the normal trace of
uh required in the definition of the space RTN0(Th) and imposing it instead with
the help of Lagrange multipliers λσ, σ ∈ E int

h ; cf. [12, section V.1.2]. The centered
scheme (3.1a)–(3.1b), taking into account its equivalent form given by Lemma 6.2,
then changes to: find uh ∈ RTN0

−1(Th), ph ∈ Φ(Th), and λσ, σ ∈ E int
h , with p̃h

defined by (4.1a)–(4.1b), such that

∑
K∈Th

⎧⎨⎩(S−1uh,vh)K − (p̃h,∇ · vh)K +
∑

σ∈EK∩Eint
h

〈vh · n, λσ〉σ

⎫⎬⎭ = 0(6.2a)

∀vh ∈ RTN0
−1(Th),

(∇ · uh, φK)K + 〈p̃hw · n, φK〉∂K + (rp̃h, φK)K = (f, φK)K ∀K ∈ Th,(6.2b)

〈(uh · n)|K + (uh · n)|L, 1〉σK,L
= 0 ∀σK,L ∈ E int

h ,(6.2c)

whereas the upwind-weighted scheme (3.2a)–(3.2b) becomes: find uh ∈ RTN0
−1(Th),

ph ∈ Φ(Th), and λσ, σ ∈ E int
h such that

∑
K∈Th

⎧⎨⎩(S−1uh,vh)K − (ph,∇ · vh)K +
∑

σ∈EK∩Eint
h

〈vh · n, λσ〉σ

⎫⎬⎭ = 0(6.3a)

∀vh ∈ RTN0
−1(Th),

(∇ · uh, φK)K +
∑
σ∈EK

p̂σwK,σφK + (rph, φK)K = (f, φK)K ∀K ∈ Th,(6.3b)

〈(uh · n)|K + (uh · n)|L, 1〉σK,L
= 0 ∀σK,L ∈ E int

h .(6.3c)

Lemma 6.4 (relation of p̃h to the Lagrange multipliers λσ). It holds that

λσ = p̃σ =
〈p̃h, 1〉σ

|σ| ∀σ ∈ E int
h .
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Proof. The proof is similar to that of Lemma 6.1. Let K ∈ Th and σ ∈ EK ∩ E int
h .

Then taking vh = vσ in (6.2a) or (6.3a), we have

0 = −(∇p̃h,vσ)K − (p̃h,∇ · vσ)K + 〈vσ · n, λσ〉σ = 〈vσ · n, λσ − p̃h〉σ ,

using the definition (4.1a)–(4.1b) of p̃h, the fact that ∇·vσ is constant in each simplex,
the fact that vσ has a nonzero normal flux only through σ, and the Green theorem.
The assertion of the lemma follows by the fact that vσ · n is constant on σ.

Lemma 6.5 (a priori estimate for the upwind-weighted scheme). Let uh, ph be the
solutions of the upwind-weighted scheme (3.2a)–(3.2b), and let p̃h be the postprocessed
scalar variable given by (4.1a)–(4.1b). Then

∑
K∈Th

{
cS,K‖∇p̃h‖2

K +
1

2
cw,r,K ‖ph‖2

K

}
≤ 1

2

∑
K∈Th

‖f‖2
K

cw,r,K

if cw,r,K > 0 for all K ∈ Th and

∑
K∈Th

{
1

2
cS,K‖∇p̃h‖2

K + cw,r,K ‖ph‖2
K

}
≤ ‖f‖2

Ω

2

CDF

cS,Ω
,

where cS,Ω is given by (4.9) and CDF is the constant from the discrete Friedrichs
inequality (2.4).

Proof. Let us set φh = ph in (3.2b). We then can rewrite the first term of the
left-hand side of (3.2b) as∑
K∈Th

(∇ · uh, pK)K =
∑

K∈Th

{
−(uh,∇p̃h)K + 〈uh · n, p̃h〉∂K

}
=

∑
K∈Th

(SK∇p̃h,∇p̃h)K

+
∑

σK,L∈Eint
h

〈uh · nK , p̃h|K − p̃h|L〉σK,L
+

∑
σ∈Eext

h

〈uh · n, p̃h〉σ ≥
∑

K∈Th

cS,K‖∇p̃h‖2
K ,

using the fact that ∇ · uh is constant on each K ∈ Th and we thus can replace ph by
p̃h employing (4.1b), the Green theorem, (4.1a), the fact that uh · n is constant on
each σ ∈ Eh, the continuity of the means of the traces of p̃h given by Lemma 6.1, and
finally Assumption (B1). Next,∑

K∈Th

∑
σ∈EK

p̂σwK,σpK =
∑

σK,L∈Eint
h

{p̂σwK,σpK + p̂σwL,σpL} +
∑

σK∈Eext
h

p̂σwK,σpK

=
∑

σK,L∈Eint
h , wK,σ≥0

wK,σ

(
pK(pK − pL) − νσ(pL − pK)2

)
+

∑
σK∈Eext

h

p̂σwK,σpK

=
1

2

∑
σK,L∈Eint

h , wK,σ≥0

wK,σ(p2
K − p2

L) +
∑

σK,L∈Eint
h

|wK,σ|(pL − pK)2
(

1

2
− νσ

)

+
∑

σK∈Eext
h

{
1

2
p2
KwK,σ + |wK,σ|p2

K

(
1

2
− νσ

)}
≥ 1

2

∑
K∈Th

p2
K(∇ · w, 1)K ,

where we have rewritten the summation over the sides and fixed denotation of K,L ∈
Th sharing a side σK,L ∈ E int

h such that wK,σ ≥ 0; used that wK,σ = −wL,σ, the
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definition (3.3)–(3.4) of p̂σ, and the relation 2a(a − b) = (a − b)2 + a2 − b2; esti-
mated using 0 ≤ νσ ≤ 1/2, which follows from (3.5); rewritten the summation back
over the elements and their sides; and finally employed the Green theorem, giving∑

σ∈EK
wK,σ = (∇ · w, 1)K . Finally, (rph, ph)Ω =

∑
K∈Th

p2
K(r, 1)K .

The right-hand side of (3.2b) with φh = ph can be estimated either by

(f, ph)Ω ≤
∑

K∈Th

‖f‖K
√
cw,r,K

√
cw,r,K

‖ph‖K ≤ 1

2

∑
K∈Th

‖f‖2
K

cw,r,K
+

1

2

∑
K∈Th

cw,r,K‖ph‖2
K

or by

(f, ph)Ω ≤ ‖f‖Ω‖ph‖Ω ≤ ‖f‖2
Ω

2

CDF

cS,Ω
+

cS,Ω
CDF

‖p̃h‖2
Ω

2
≤ ‖f‖2

Ω

2

CDF

cS,Ω
+

cS,Ω
2

∑
K∈Th

‖∇p̃h‖2
K ,

using the Cauchy–Schwarz, ab ≤ εa2/2 + b2/(2ε), ε > 0, ‖ph‖K ≤ ‖p̃h‖K , and the
discrete Friedrichs (2.4) inequalities. The assertion follows by combining the above
estimates.

Remark 6.6 (existence and uniqueness for the upwind-weighted scheme). From
Lemma 6.5, existence and uniqueness for the upwind-weighted scheme (3.2a)–(3.2b)
easily follows. Indeed, let f = 0. Then ph = 0 and uh = −S∇p̃h = 0 for all K ∈ Th.

Remark 6.7 (existence and uniqueness for the centered scheme). In contrast with
the upwind-weighted scheme, existence and uniqueness for the centered scheme (3.1a)–
(3.1b) is in [17] guaranteed only for “h sufficiently small.” Alternatively, there exists
a unique solution if Cw,K ≤ 2(1 − μ)

√
cS,K

√
c̃w,r,K for some μ ∈ (0, 1) and all

K ∈ Th, where (∇ ·w + r)|K = c̃w,r,K > 0, which corresponds to the case that is not
convection-dominated.

7. Proofs of the a posteriori error estimates and of their local efficiency.
We shall prove in this section the a posteriori error estimates stated by Theorems 4.2–
4.3, as well as their local efficiency discussed in Theorem 4.4.

7.1. Proofs of the a posteriori error estimates. To begin with, we state
the following result, the purpose of which is to give an optimal abstract bound on the
error between p ∈ H1(Ω) and p̃ ∈ H1(Th) in the energy (semi)norm ||| · |||Ω. (H1

D(Ω)
is the subspace of H1(Ω) of functions with traces vanishing on ΓD ⊂ ∂Ω.)

Lemma 7.1 (abstract framework). Let ΓD ⊂ ∂Ω, |ΓD| 	= 0, let Γin := {x ∈
∂Ω;w ·n < 0} ⊂ ΓD, let p, s ∈ H1(Ω) be such that p−s ∈ H1

D(Ω), and let p̃ ∈ H1(Th)
be arbitrary. Then

|||p− p̃|||Ω ≤ |||p̃− s|||Ω +

∣∣∣∣∣B
(
p− p̃,

p− s

|||p− s|||Ω

)

+
∑

K∈Th

(
∇ · ((p̃− s)w) − 1

2
(p̃− s)∇ · w,

p− s

|||p− s|||Ω

)
K

∣∣∣∣∣ .
Proof. Let us set, for p, ϕ ∈ H1(Th),

BS(p, ϕ) :=
∑

K∈Th

{
(S∇p,∇ϕ)K +

((
1

2
∇ · w + r

)
p, ϕ

)
K

}
,

BA(p, ϕ) :=
∑

K∈Th

(
∇ · (pw) − 1

2
p∇ · w, ϕ

)
K

,
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so that

B(p, ϕ) = BS(p, ϕ) + BA(p, ϕ) ∀p, ϕ ∈ H1(Th),(7.1)

BS(ϕ,ϕ) = |||ϕ|||2Ω ∀ϕ ∈ H1(Th),(7.2)

BA(ϕ,ϕ) ≥ 0 ∀ϕ ∈ H1
D(Ω),(7.3)

using (2.9) and
∑

K∈Th
〈ϕ2,w · n〉∂K ≥ 0 for ϕ ∈ H1

D(Ω) in the estimate.

We then have, using that p− s ∈ H1
D(Ω),

|||p− s|||2Ω ≤ B(p− s, p− s) = B(p− p̃, p− s) + B(p̃− s, p− s)

= BS(p̃− s, p− s) + B(p− p̃, p− s) + BA(p̃− s, p− s)

≤ |||p̃− s|||Ω|||p− s|||Ω + |||p− s|||ΩB
(
p− p̃,

p− s

|||p− s|||Ω

)

+ |||p− s|||ΩBA

(
p̃− s,

p− s

|||p− s|||Ω

)
,

employing the Cauchy–Schwarz inequality in the first term. If |||p− p̃|||Ω ≤ |||p− s|||Ω,
this concludes the proof. In general, we could use the triangle inequality |||p− p̃|||Ω ≤
|||p− s|||Ω + |||s− p̃|||Ω and the above bound for |||p− s|||Ω, but this would lead to an
estimate which is not optimal (the term |||p̃− s|||Ω would be replaced by 2|||p̃− s|||Ω).
We thus show below that the same bound holds true also when |||p−s|||Ω ≤ |||p− p̃|||Ω.

We have, using (7.3) and the Cauchy–Schwarz inequality,

|||p− p̃|||2Ω = BS(p− p̃, p− p̃) = BS(p− p̃, p− s) + BS(p− p̃, s− p̃)

= BS(p− p̃, s− p̃) + B(p− p̃, p− s) − BA(p− p̃, p− s)

= BS(p− p̃, s− p̃) + B(p− p̃, p− s) − BA(p− s, p− s) + BA(p̃− s, p− s)

≤ BS(p− p̃, s− p̃) + B(p− p̃, p− s) + BA(p̃− s, p− s)

≤ |||p− p̃|||Ω|||s− p̃|||Ω + |||p− s|||ΩB
(
p− p̃,

p− s

|||p− s|||Ω

)

+ |||p− s|||ΩBA

(
p̃− s,

p− s

|||p− s|||Ω

)
,

which, by virtue of |||p− s|||Ω ≤ |||p− p̃|||Ω supposed in this second case, concludes the
proof.

Consequently, the following bound for the error |||p− p̃h|||Ω holds.
Lemma 7.2 (abstract error estimate). Let p be the weak solution of the prob-

lem (1.1a)–(1.1b) given by (2.7), and let s ∈ H1
0 (Ω) be arbitrary. If p̃h is the post-

processed solution of the centered mixed finite element scheme (3.1a)–(3.1b) given
by (4.1a)–(4.1b), then

|||p− p̃h|||Ω ≤ |||p̃h − s|||Ω + sup
ϕ∈H1

0 (Ω), |||ϕ|||Ω=1

{
TR(ϕ) + TC(ϕ)

}
,
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and if p̃h is the postprocessed solution of the upwind-weighted mixed finite element
scheme (3.2a)–(3.2b), given by (4.1a)–(4.1b), then

|||p− p̃h|||Ω ≤ |||p̃h − s|||Ω + sup
ϕ∈H1

0 (Ω), |||ϕ|||Ω=1

{
TR(ϕ) + TC(ϕ) + TU(ϕ)

}
,

where

TR(ϕ) :=
∑

K∈Th

(
f + ∇ · S∇p̃h −∇ · (p̃hw) − rp̃h, ϕ− ϕK

)
K
,

TC(ϕ) :=
∑

K∈Th

(
∇ · ((p̃h − s)w) − 1

2
(p̃h − s)∇ · w, ϕ

)
K

,

TU(ϕ) :=
∑

K∈Th

∑
σ∈EK

〈(p̂σ − p̃h)w · n, ϕK〉σ,

and where ϕK is the mean of ϕ over K ∈ Th, ϕK := (ϕ, 1)K/|K|.
Proof. Let us consider an arbitrary ϕ ∈ H1

0 (Ω). We have, using the bilinearity
of B(·, ·), the definition (2.7) of the weak solution p, and the Green theorem in each
K ∈ Th,

B(p− p̃h, ϕ) = (f, ϕ)Ω −
∑

K∈Th

{
(S∇p̃h,∇ϕ)K +

(
∇ · (p̃hw), ϕ

)
K

+ (rp̃h, ϕ)K
}

=
∑

K∈Th

{(
f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h, ϕ

)
K
− 〈S∇p̃h · n, ϕ〉∂K

}
=

∑
K∈Th

(
f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h, ϕ

)
K
.

Note that we have, in particular, used the continuity of the normal trace of S∇p̃h (i.e.,
by (4.1a), the mixed finite element continuity of the normal trace of uh), yielding

〈(S∇p̃h · n)|K + (S∇p̃h · n)|L, ϕ〉σK,L
= 〈0, ϕ〉σK,L

= 0 ∀σK,L ∈ E int
h

(the fact that 〈S∇p̃h · n, ϕ〉σ = 0 for σ ∈ Eext
h follows by ϕ ∈ H1

0 (Ω)).
Now the equation (6.1b) of the equivalent form of the centered scheme by the

definition of p̃h (4.1a)–(4.1b) and by the Green theorem implies that (recall that ϕK

is the constant mean of ϕ over K)

(7.4)
(
f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h, ϕK

)
K

= 0 ∀K ∈ Th.

Hence in the case of the centered scheme,

B(p− p̃h, ϕ) =
∑

K∈Th

(
f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h, ϕ− ϕK

)
K

= TR(ϕ).

For the upwind-weighted scheme, we have

B(p− p̃h, ϕ) = TR(ϕ) + TU(ϕ).

To conclude the proof, if now suffices to use Lemma 7.1.
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We now estimate the terms TR, TC, and TU separately, setting s = IMO(p̃h) in
Lemma 7.2.

Lemma 7.3 (residual estimate). Let ϕ ∈ H1
0 (Ω) be arbitrary. Then

TR(ϕ) ≤
∑

K∈Th

ηR,K |||ϕ|||K ,

where ηR,K is given by (4.2).
Proof. The Poincaré inequality (2.1) and the definition of ||| · |||K by (2.6) imply

(7.5) ‖ϕ− ϕK‖2
K ≤ CP,dh

2
K‖∇ϕ‖2

K ≤ CP,d
h2
K

cS,K
|||ϕ|||2K .

Next, the estimate

‖ϕ− ϕK‖2
K ≤ ‖ϕ‖2

K ≤ 1

cw,r,K
|||ϕ|||2K

is obvious using the definition of ||| · |||K by (2.6). Thus the Schwarz inequality implies

TR(ϕ) ≤
∑

K∈Th

∥∥f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h
∥∥
K
‖ϕ− ϕK‖K

≤
∑

K∈Th

ηR,K |||ϕ|||K .

Lemma 7.4 (convection estimate). Let ϕ ∈ H1
0 (Ω) be arbitrary. Then

TC(ϕ) ≤
∑

K∈Th

ηC,K |||ϕ|||K ,

where ηC,K is given by (4.4).
Proof. Denote v := p̃h − IMO(p̃h). Then, for each K ∈ Th,(

∇ · (vw) − 1

2
v∇ · w, ϕ

)
K

≤
‖∇ · (vw) − 1

2v∇ · w‖K√
cw,r,K

|||ϕ|||K .

Note that this estimate is valid for an arbitrary s ∈ H1
0 (Ω) instead of s = IMO(p̃h).

Next, the fact that the modified Oswald interpolation operator of section 4.2
preserves the means of p̃h over the sides and that w ·n is constant on all sides implies

(7.6) (∇ · (vw), ϕK)K = 〈vw · n, ϕK〉∂K = 0,

where again ϕK := (ϕ, 1)K/|K|. Thus we also have an alternative estimate(
∇ · (vw) − 1

2
v∇ · w, ϕ

)
K

= (∇v · w, ϕ− ϕK)K +

(
1

2
v∇ · w, ϕ

)
K

− (v∇ · w, ϕK)K

≤
√

CP,dhK‖∇v · w‖K√
cS,K

√
cS,K‖∇ϕ‖K +

3‖v∇ · w‖K
2
√
cw,r,K

√
cw,r,K‖ϕ‖K

≤
(
CP,dh

2
K‖∇v · w‖2

K

cS,K
+

9‖v∇ · w‖2
K

4cw,r,K

) 1
2

|||ϕ|||K ,
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using the Cauchy–Schwarz inequality and the Poincaré inequality (2.1).
Finally, the proof of the following lemma can be found in [38].
Lemma 7.5 (upwinding estimate). Let ϕ ∈ H1

0 (Ω) be arbitrary. Then

TU(ϕ) ≤
∑

K∈Th

ηU,K |||ϕ|||K ,

where ηU,K is given by (4.6).
Lemmas 7.1–7.5 and the Cauchy–Schwarz inequality prove Theorems 4.2–4.3.

7.2. Proofs of the local efficiency of the estimates.
Lemma 7.6 (local efficiency of the residual estimator). Let K ∈ Th and let ηR,K

be the residual estimator given by (4.2). Then (4.10) holds true.
Proof. The proof follows that given in [33]. Let ψK be the bubble function on K,

given as the product of the d+1 linear functions that take the value 1 at one vertex of K
and vanish at the other vertices, and let us denote v := (f+∇·(S∇p̃h)−∇·(p̃hw)−rp̃h)
on a given K ∈ Th. Note that v is a polynomial in K by Assumption B. Then the
equivalence of norms on finite-dimensional spaces, the inverse inequality (cf., e.g., [15,
Theorem 3.2.6]), and the definition of ||| · |||K by (2.6) give

c ‖v‖2
K ≤ (v, ψKv)K ,

‖ψKv‖K ≤ ‖v‖K ,

|||ψKv|||K ≤ C min

{
hK√
CS,K

,
1

√
cw,r,K

}−1

‖v‖K ,

with the constants c and C depending only on the polynomial degree k of f , d, and
κK . Next, we immediately have (cf. the proof of Lemma 7.2)

B(p− p̃h, ψKv) = (v, ψKv)K ,

and, using (2.10),

B(p− p̃h, ψKv) ≤ max

{
1,

Cw,r,K

cw,r,K

}
|||p− p̃h|||K |||ψKv|||K

+
Cw,K√
cS,K

|||p− p̃h|||K‖ψKv‖K .

Combining the above estimates, one comes to

c‖v‖2
K ≤ |||p− p̃h|||K‖v‖K

·

⎧⎨⎩max

{
1,

Cw,r,K

cw,r,K

}
C min

{
hK√
CS,K

,
1

√
cw,r,K

}−1

+
Cw,K√
cS,K

⎫⎬⎭ .

Considering the definition of ηR,K by (4.2) and that of PeK and �K by (4.8) concludes
the proof.

Lemma 7.7 (local efficiency of the nonconformity and velocity estimators). Let
K ∈ Th and let ηNC,K and ηC,K be the nonconformity and velocity estimators given,
respectively, by (4.3) and (4.4). Then (4.11) holds true.
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Proof. One shows easily that (with ||| · |||∗,K and ||| · |||#,K defined in section 4.4)

η2
NC,K + η2

C,K ≤ min
{
|||p̃h − IMO(p̃h)|||2∗,K , |||p̃h − IMO(p̃h)|||2#,K

}
.

Throughout the rest of the proof, let C denote a constant depending only on d
and on κT , not necessarily the same at each occurrence. We first show that
(7.7)

|||p̃h − IMO(p̃h)|||2∗,K ≤ C

(
α∗,K

∑
σ;σ∩K �=∅

h−1
σ ‖[p̃h]‖2

σ + β∗,K
∑

σ;σ∩K �=∅
hσ‖[p̃h]‖2

σ

)
.

The first part of the estimate follows directly from Lemma 4.1 and the definition of
|||·|||∗,K . To estimate β∗,K‖p̃h−IMO(p̃h)‖2

K , we notice that the means of p̃h−IMO(p̃h)
over all sides of a simplex K ∈ Th are by the construction of the modified Oswald
interpolation operator equal to 0. Hence

‖p̃h − IMO(p̃h)‖2
K ≤ CF,dh

2
K‖∇(p̃h − IMO(p̃h))‖2

K

by the generalized Friedrichs inequality (2.2). The fact that hK/hσ for K ∩ σ 	= ∅
depends only on κT , which will be used in what follows as well, and another use
of Lemma 4.1 proves the second part of the estimate.

We will next use the inequality

h
− 1

2
σ ‖[p̃h]‖σ ≤ C

∑
L;σ∈EL

‖∇(p̃h − ϕ)‖L

established in [2, Theorem 10] for σ ∈ E int
h and an arbitrary ϕ ∈ H1(Ω). It generalizes

easily to the case σ ∈ Eext
h and ϕ ∈ H1

0 (Ω). This inequality implies that

(7.8) hγ
σ‖[p̃h]‖2

σ ≤ C
hγ+1
σ

minL;σ∈EL
cS,L

∑
L;σ∈EL

cS,L‖∇(p̃h − p)‖2
L ,

where we set γ = −1, 1. Next, for an arbitrary sh ∈ P2(Th) ∩H1
0 (Ω),

h
1
2
σ ‖[p̃h]‖σ ≤ hσC

∑
L;σ∈EL

‖∇(p̃h − sh)‖L ≤ C
∑

L;σ∈EL

hL‖∇(p̃h − sh)‖L

≤ C
∑

L;σ∈EL

‖p̃h − sh‖L ≤ C
∑

L;σ∈EL

‖p̃h − p‖L + C
∑

L;σ∈EL

‖p− sh‖L,

by the inverse inequality (cf. [15, Theorem 3.2.6]) and the triangle inequality. Hence

(7.9) hσ‖[p̃h]‖2
σ ≤ C

1

minL;σ∈EL
cw,r,L

∑
L;σ∈EL

cw,r,L‖p̃h − p‖2
L + C

∑
L;σ∈EL

‖p− sh‖2
L

holds as well, which gives a sense when all cw,r,L for L such that σ ∈ EL are nonzero.
Combining estimates (7.7)–(7.9) while estimating minL;σ∈EL

cL for a side σ such that
σ∩K 	= ∅ from below by minL;L∩K �=∅ cL concludes the proof for |||p̃h−IMO(p̃h)|||∗,K .
The proof for |||p̃h − IMO(p̃h)|||#,K is completely similar.

Lemma 7.8 ((non)efficiency of the upwinding estimator). Let K ∈ Th and let
ηU,K be the upwinding estimator given by (4.6). Then (4.12) holds true.
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Proof. Let K ∈ Th, ϕ ∈ H1(K), and ϕσ := 〈ϕ, 1〉σ/|σ|. Let us set ϕ̃ := ϕ − ϕσ

and ϕ̃K := (ϕ̃, 1)K/|K|. We now note that ϕ̃σ := 〈ϕ̃, 1〉σ/|σ| = 0 and that ∇ϕ̃ = ∇ϕ,
which allows us to estimate

‖ϕK − ϕσ‖2
σ = ϕ̃2

K |σ| ≤ |σ|
|K| ‖ϕ̃‖

2
K ≤ CF,d

|σ|h2
K

|K| ‖∇ϕ‖2
K ,

employing the generalized Friedrichs inequality (2.2). Now using the definition of p̂σ
for σ ∈ E int

h by (3.3), the fact that 0 ≤ νσ ≤ 1/2, (4.1b), and the above estimate,

‖p̂σ − p̃σ‖σ = ‖(1 − νσ)(pK − p̃σ) + νσ(pL − p̃σ)‖σ

≤ max
M ;σ∈EM

{
CF,d|σ|h2

M

|M |

} 1
2

(‖∇p̃h‖K + ‖∇p̃h‖L)

for suitable denotation K,L of the two elements sharing σ. For σ ∈ Eext
h , a similar

estimate holds. The assertion of the lemma follows by using the above estimate, (4.5),
(4.6), the definition of κK , the estimate |σ| ≤ hd−1

K /(d − 1), the Cauchy–Schwarz
inequality, and estimating the term

∑
K∈Th

cS,K‖∇p̃h‖2
K using Lemma 6.5.

Lemmas 7.6–7.8 together prove Theorem 4.4.

8. Numerical experiments. We test our a posteriori error estimates on two
model problems in this section. The first problem contains a strongly inhomogeneous
diffusion-dispersion tensor, and the second one is convection-dominated; in both cases,
the analytical solution is known. Estimators for inhomogeneous Dirichlet (and Neu-
mann) boundary conditions are adapted from [38].

8.1. Model problem with strongly inhomogeneous diffusion-dispersion
tensor. This model problem is taken from [30, 18] and is motivated by the fact that
in real-life applications, the diffusion-dispersion tensor S may be discontinuous and
strongly inhomogeneous. We consider in particular Ω = (−1, 1) × (−1, 1) and (1.1a)
with w = 0, r = 0, and f = 0. We suppose that Ω is divided into four subdomains
Ωi corresponding to the axis quadrants (in the counterclockwise direction) and that
S is constant and equal to si Id in Ωi. Under such conditions, an analytical solution
writing

p(r, θ) = rα(ai sin(αθ) + bi cos(αθ))

in each Ωi can be found. Here (r, θ) are the polar coordinates in Ω, ai and bi are
constants depending on Ωi, and α is a parameter. This solution is continuous across
the interfaces, but only the normal component of its flux u = −S∇p is continuous; it
finally exhibits a singularity at the origin. We assume Dirichlet boundary conditions
given by this solution and consider two sets of the coefficients, with s1 = s3 = 5,
s2 = s4 = 1 in the first case and s1 = s3 = 100, s2 = s4 = 1 in the second one:

α = 0.53544095 α = 0.12690207
a1 = 0.44721360 b1 = 1 a1 = 0.1 b1 = 1
a2 = −0.74535599 b2 = 2.33333333 a2 = −9.60396040 b2 = 2.96039604
a3 = −0.94411759 b3 = 0.55555556 a3 = −0.48035487 b3 = −0.88275659
a4 = −2.40170264 b4 = −0.48148148 a4 = 7.70156488 b4 = −6.45646175

The original grid consisted of 24 right-angled triangles, and we have refined it
either uniformly (up to five refinements) or adaptively on the basis of our estimator.
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Fig. 8.1. Estimated (left) and actual (right) error distribution, α = 0.53544095 (the maximum
is attained at the origin).
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Fig. 8.2. Approximate solution and the corresponding adaptively refined mesh, α = 0.12690207.

In the latter case, we refine each element where the estimated ||| · |||Ω-error is greater
than the half of the maximum of the estimators regularly into four subelements and
then use the “longest edge” refinement to recover an admissible mesh. In the given
case, the residual estimators ηR,K of (5.2) are zero for each K ∈ Th, and hence the
a posteriori error estimate is entirely given by the nonconformity estimators ηNC,K

in (5.3). We have done numerical experiments with two choices, s = IOs(p̃h) and
s = IMO(p̃h), and present the results with the first one, which gives a slightly better
efficiency.

We can see in Figure 8.1 that the predicted error distribution on an adaptively
refined mesh for the first test case is excellent. In particular, even if the solution
is smoother, the singularity is well recognized. Next, Figure 8.2 gives an example
of the approximate solution on an adaptively refined mesh and this mesh in the
second test case. Here, the singularity is much more important, and consequently
the grid is highly refined around the origin (for 1800 triangles, the diameter of the
smallest ones is 10−16, and 73% of them are contained in the circle of radius 0.1).
Figure 8.3 then reports the estimated and actual errors of the numerical solutions
on uniformly/adaptively refined grids in the two test cases. The energy norm (2.6)
was approximated with a 7-point quadrature formula in each triangle. It can be seen
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Fig. 8.3. Estimated and actual error against the number of elements in uniformly/adaptively
refined meshes for α = 0.53544095 (left) and α = 0.12690207 (right).
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Fig. 8.4. Overall efficiency of the a posteriori error estimates against the number of elements
in uniformly/adaptively refined meshes for α = 0.53544095 (left) and α = 0.12690207 (right).

from these plots that one can substantially reduce the number of unknowns necessary
to attain the prescribed precision using the derived a posteriori error estimates and
adaptively refined grids. Finally, Figure 8.4 gives the efficiency plots for the two
cases, i.e., the ratio of the estimated ||| · |||Ω-error to the actual ||| · |||Ω-error. This
quantity simply expresses how many times we have overestimated the error—recall
that there are no undetermined multiplicative constants in our estimates. These plots
confirm the theoretical results of section 5.3. Even while only using IOs(p̃h) instead of
evaluating the infimum in (5.4), (approximate) asymptotic exactness and robustness
with respect to inhomogeneities is confirmed.

8.2. Convection-dominated model problem. This problem is a modification
of a problem considered in [20]. We set Ω = (0, 1) × (0, 1), w = (0, 1), and r = 1
in (1.1a) and consider three cases with S = ε Id and ε equal to, respectively, 1, 10−2,
and 10−4. The right-hand-side term f , Neumann boundary conditions on the upper
side, and Dirichlet boundary conditions elsewhere are chosen so that

p(x, y) = 0.5

(
1 − tanh

(
0.5 − x

a

))
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Fig. 8.5. Estimated and actual error using s = IMO(p̃h) (left) and s = IOs(p̃h) (right) against
the number of elements, ε = 1, a = 0.5.
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Fig. 8.6. Overall efficiency using s = IMO(p̃h) (left) and s = IOs(p̃h) (right) against the
number of elements, ε = 1, a = 0.5.

was the exact solution. It is, in fact, one-dimensional and possesses an internal layer
of width a which we set, respectively, equal to 0.5, 0.05, and 0.02. We start the
computations from an unstructured grid of Ω consisting of 46 triangles and refine it
either uniformly (up to five refinements) or adaptively. We use the scheme described
in section 5.5.

We first compare, for ε = 1 and a = 0.5, the estimates with s = IMO(p̃h) as
proposed in section 4.3 and a modification with s = IOs(p̃h), corresponding to the
approach chosen in [38, 37], on uniformly refined grids. In the latter case, we no
longer have the important property (7.6), and consequently there is an additional
term which we associate with the upwinding estimator; it, however, turns out to be
of higher order; see Figure 8.5. Note that the (approximate) asymptotic exactness
observed in Figure 8.6 is in full correspondence with the theoretical considerations
of section 5.3.2. In this case, s = IOs(p̃h) gives a slightly better efficiency. In the
following examples, however, we use s = IMO(p̃h), since it turns out to be the better
choice.

For ε = 10−2 and a = 0.05 (convection-dominated regime on coarse meshes and
diffusion-dominated regime with progressive refinement), still the distribution of the
error is predicted very well; cf. Figure 8.7. Note in particular the correct localization of
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Fig. 8.7. Estimated (left) and actual (right) error distribution, ε = 10−2, a = 0.05.
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Fig. 8.8. Approximate solution and the corresponding adaptively refined mesh, ε = 10−4, a = 0.02.

the error away from the center of the shock, as well as the sensitivity of our estimator to
the shape of the elements. Next, an example of an adaptively refined mesh and of the
corresponding solution for ε = 10−4 and a = 0.02 is given in Figure 8.8. For these two
test cases, we have used as a refinement criterion 0.2- and 0.05-times the maximum of
the estimators, respectively. The estimated and actual errors are plotted against the
number of elements in uniformly/adaptively refined meshes in Figure 8.9. Again, one
can see that we can substantially reduce the number of unknowns necessary to attain
the prescribed precision using the derived estimators and adaptively refined grids.
Finally, the efficiency plots are given in Figure 8.10. In the first case, the efficiency
is almost optimal for finest grids, whereas in the second one, only the elements in
the refined shock region start to leave the convection-dominated regime, and thus the
efficiency starts to decrease.
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Fig. 8.9. Estimated and actual error against the number of elements in uniformly/adaptively
refined meshes for ε = 10−2, a = 0.05 (left) and ε = 10−4, a = 0.02 (right).
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[36] M. Vohraĺık, Equivalence between lowest-order mixed finite element and multi-point finite
volume methods on simplicial meshes, M2AN Math. Model. Numer. Anal., 40 (2006),
pp. 367–391.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A POSTERIORI ESTIMATES FOR MIXED FINITE ELEMENTS 1599
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