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1 Introduction

The purpose of this paper is to develop a unified framework for a posteriori
error estimation for the Stokes problem discretized by different numerical
methods. In particular, we apply this framework to conforming divergence-
free, discontinuous Galerkin, conforming (stabilized), nonconforming, mixed,
and finite volume methods. Our estimates give a guaranteed (that is, not
featuring any undetermined constant) upper bound on the error measured
in the energy (semi-)norm, provided a bound on the inf–sup constant is
known. They are easily, fully, and locally computable. They are also locally
efficient in the sense that they represent local lower bounds for the energy
error. Numerical experiments show that their effectivity index (the ratio of
the estimated and exact error) is relatively close to the optimal value of one.

Our estimates are based on [H1
0 (Ω)]d-conforming velocity reconstruction

and H(div, Ω)-conforming, locally conservative flux (stress) reconstruction.
Such an approach has recently become popular in the framework of second-
order elliptic equations, see, e.g., [43,38,49,4,26,44,2,42,58,3,30,59] and the
references cited therein. Its main ideas are very physical and can be traced
back at least to the Prager–Synge equality [48]. Equilibrated flux estimates
have recently been shown to be robust with respect to inhomogeneities,
anisotropies, and reaction or convection dominance in [62,23,31] and with
respect to the approximation polynomial degree in [13]. In a unifying spirit,
similar to the present paper, they have been extended to the heat equation
in [33]. Stokes a posterior error estimates related to the present approach
have previously been studied in [28,50,10]. However, these estimates are
valid only for certain type of numerical approximations. Here, we develop
a unified framework covering most standard methods. The technique and
proofs that we use appear to be new for the Stokes problem, and as they
are nontrivial generalizations of the corresponding techniques for the Pois-
son problem, we present them in all details. For the classical residual-based
estimates presented in a unified framework, we refer to [20,22,21] and [63].

Locally conservativeH(div, Ω)-conforming flux reconstruction is straight-
forward in so-called locally conservative methods [2,42,58,3,30,60,32,31,61,
33]. For finite element-type methods, which are not locally conservative by
construction, this is less straightforward. However, for such methods, the re-
construction can be achieved by the equilibration procedure, see [4,26,13] and
the references therein. We follow here the approach for lowest-order methods
of [44,59,62], where no equilibration is needed. We generalize this approach
here to higher-order methods. It turns out that only small local problems
of fixed size (d + 1) × (d + 1) for each mesh element, where d is the space
dimension, need to be solved in order to obtain the equilibrated side normal
fluxes.

This paper is organized as follows. In Section 2, we state the considered
Stokes problem. In Section 3, we specify our notation and give some pre-
liminary results. Sections 4 and 5 collect our a posteriori error estimates,
first for conforming divergence-free approximations and then for arbitrary
ones. These results are stated in a general form independent of the numeri-
cal method at hand; we only suppose the existence of a locally conservative
H(div, Ω)-conforming flux reconstruction σh (cf. assumptions (4.3) and (5.9)
below). Section 6 then presents the efficiency of the estimates, still in a general
form independent of the numerical method at hand, only based on Assump-
tion 6.2. In Section 7, we apply the previous results to different numerical
methods. This consists in specifying the way of construction of σh and in
verifying the assumptions (4.3) or (5.9) and Assumption 6.2. Section 8 col-
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lects some numerical experiments. Appendix A gives a useful characteriza-
tion of the inf–sup constants and Appendix B presents the equilibration-type
procedure generalizing the dual mesh-based a posteriori error estimates to
higher-order conforming and conforming stabilized finite element methods.

2 The Stokes problem

Here, we describe the Stokes problem considered in this paper. We use stan-
dard notation; some details on the notation are given in Section 3 below.

LetΩ ⊂ R
d, d = 2, 3, be a polygonal (polyhedral) domain (open, bounded,

and connected set). We consider the Stokes problem: given f ∈ [L2(Ω)]d, find
u, the “velocity”, and p, the “pressure”, such that

−∆u+∇p = f in Ω, (2.1a)

∇·u = 0 in Ω, (2.1b)

u = 0 on ∂Ω. (2.1c)

Denote by V the space [H1
0 (Ω)]d and by Q the space of L2(Ω) functions

having zero mean value over Ω. For u,v ∈ V and q ∈ Q, set

a(u,v) := (∇u,∇v), (2.2a)

b(v, q) := −(q,∇·v). (2.2b)

The weak formulation of (2.1a)–(2.1c) reads: find (u, p) ∈ V ×Q such that

a(u,v) + b(v, p) = (f ,v) ∀v ∈ V, (2.3a)

b(u, q) = 0 ∀q ∈ Q. (2.3b)

The above problem is well-posed (cf. [36]) due to the inf–sup condition

inf
q∈Q

sup
v∈V

b(v, q)

‖∇v‖ ‖q‖=β, (2.4)

where β is a positive constant. Denote the divergence-free subspace of V by

V0 := {v ∈ V; ∇·v = 0}.
The velocity u can be equivalently characterized as: find u ∈ V0 such that

a(u,v) = (f ,v) ∀v ∈ V0. (2.5)

Recall also that by introducing the “stress” tensor σ ∈H(div, Ω), the prob-
lem (2.1a)–(2.1c) can be written as a system consisting of the constitutive
law

σ = ∇u− pI, (2.6)

the equilibrium equation
∇·σ + f = 0, (2.7)

and the divergence constraint

∇·u = 0, (2.8)

for which the pressure p is the Lagrange multiplier. Here I is the d×d identity
matrix. Alternatively, (2.6)–(2.7) may be replaced by

σ′ = ∇u (2.9)

and
∇·σ′ −∇p+ f = 0. (2.10)
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3 Notation and preliminaries

Here, we summarize the notation used throughout the paper and give some
preliminary results.

3.1 Notation

Let D ⊂ R
d. By (·, ·)D, we denote the scalar product in L2(D): (p, q)D :=

∫

D
pq dx. When D coincides with Ω, the subscript Ω will be dropped. We

use the same symbol (·, ·)D for the scalar product in L2(D) := [L2(D)]d

and in L2(D) := [L2(D)]d×d. More precisely, (u,v)D :=
∑d

i=1(u
i,vi)D for

u,v ∈ L2(D) and (σ, τ )D :=
∑d

i=1

∑d
j=1(σ

i,j , τ i,j)D for σ, τ ∈ L2(D). The

associated norm is denoted by ‖·‖D. We denote by 〈·, ·〉 the scalar product in
L2(D), D ⊂ R

d−1, and its vector and tensor versions. For vectors u,v ∈ R
d,

u⊗v defines a tensor σ ∈ R
d×d such that σi,j := uivj . Finally, for D ⊂ R

d′ ,
1 ≤ d′ ≤ d, |D| stands for the d′-dimensional Lebesgue measure of D and we
denote by ei ∈ R

d the i-th Euclidean unit vector.
Let Th be a polygonal (polyhedral) partition of Ω, whose elements can be

nonconvex or non star-shaped. The partition Th can be nonmatching, that is,
the intersection of two elements T , T ′ of Th is not necessarily their common
face, edge, or vertex or an empty set (so-called hanging nodes are allowed).
We denote by hT the diameter of T ∈ Th. We say that F is an interior side
of Th if it has a positive (d − 1)-dimensional Lebesgue measure and if there
are distinct T−(F ) and T+(F ) in Th such that F = ∂T−(F ) ∩ ∂T+(F ).
We define nF as the unit normal vector to F pointing from T−(F ) towards
T+(F ). Similarly, we say that F is a boundary side of Th if it has a positive
(d − 1)-dimensional Lebesgue measure and if there is T (F ) ∈ Th such that
F = ∂T (F ) ∩ ∂Ω and we define nF as the unit outward normal to ∂Ω.
The arbitrariness in the orientation of nF is irrelevant in the sequel. All the
interior (resp., boundary) sides of the mesh are collected into the set ∂T int

h
(resp., ∂T ext

h ) and we set ∂Th := ∂T int
h ∪ ∂T ext

h . For F ∈ ∂Th, hF stands for
its diameter. For T ∈ Th, we denote by FT all its sides and by F int

T those
sides of T which belong to ∂T int

h . We will also use the notation TT (resp.,
FT ) for the elements (resp., sides) of Th sharing a vertex with T . We denote
by Fint

T those sides of FT which belong to ∂T int
h . The notation Vh (resp., V int

h )
will be used for the set of all (resp., interior) vertices of Th. Let V ∈ Vh. Then
TV denotes all the elements of Th having V as vertex.

For a (sufficiently smooth) scalar, vector, or tensor function v that is
double-valued on an interior side F , its jump and average on F are defined
as

[[v]]F := v|T−(F ) − v|T+(F ), {{v}}F := 1
2 (v|T−(F ) + v|T+(F )). (3.1)

We set [[v]]F := v|F and {{v}}F := v|F on boundary sides. The subscript F in
the above jumps and averages is omitted if there is no ambiguity. We denote
by V(Th) the space of piecewise smooth vector functions on Th

V(Th) := {vh ∈ L2(Ω); vh|T ∈ [H1(T )]d ∀T ∈ Th}.

Note that V(Th) 6⊂ V. We employ the notation Pk(Th) for piecewise poly-
nomials of order k on Th. In the sequel, we use the signs ∇, ∆, and ∇·
respectively for the elementwise gradient, Laplace, and divergence operators.
Some additional notation will also be introduced later where needed.
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3.2 Preliminaries

Let T ∈ Th and denote by ϕT the average of ϕ over T , i.e., ϕiT = (ϕ, ei)T /|T |,
i = 1, . . . , d. Then the Poincaré inequality states

‖ϕ−ϕT ‖T ≤ CP,ThT ‖∇ϕ‖T ∀ϕ ∈ [H1(T )]d, (3.2)

where the constant CP,T is independent of hT . It depends only on the shape
of T . For a convex T , we have the estimate CP,T ≤ 1/π [46,9].

Set
B((v, q), (z, r)) := a(v, z) + b(z, q) + b(v, r). (3.3)

The problem (2.3a)–(2.3b) can then be stated as: find (u, p) ∈ V × Q such
that

B((u, p), (v, q)) = (f ,v) ∀(v, q) ∈ V ×Q. (3.4)

We define the energy (semi-)norm for (v, q) ∈ V(Th)×Q as

|||(v, q)|||2 := ‖∇v‖2 + β2‖q‖2, (3.5)

where β is the constant from the inf–sup condition (2.4). The following sta-
bility estimate has been communicated to us by J.-F. Mâıtre [45]:

Lemma 3.1 (The inf–sup condition on V ×Q) There is a positive con-
stant CS such that

inf
(v,q)∈V×Q

sup
(z,r)∈V×Q

B((v, q), (z, r))
|||(z, r)||| |||(v, q)|||=CS (3.6)

with

CS =

√
5− 1

2
. (3.7)

Note that 1/CS = (
√
5 + 1)/2, which is the golden ratio. For the sake of

completeness, we give a proof of Lemma 3.1 in Appendix A below.

4 A posteriori error estimate for conforming divergence-free
approximations

In this section, we derive an a posteriori error estimate valid for arbitrary
conforming and divergence-free approximations, i.e., with velocities uh ∈ V0.
It can be considered as an intermediate result, as standard approximation
methods do not lead to uh ∈ V0. There exist, however, methods fulfilling
this constraint, like that of [51].

Given an approximation (uh, ph) ∈ V0×Q, not necessarily the numerical
solution, the a posteriori error estimators on T ∈ Th are defined as follows.
Let σh ∈H(div, Ω). We define the residual estimator

ηR,T := CP,ThT ‖∇·σh + f‖T , (4.1)

where CP,T is the constant from the Poincaré inequality (3.2), and the dif-
fusive flux estimator

ηDF,T := ‖∇uh − phI − σh‖T . (4.2)

We then have the following estimate.
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Theorem 4.1 (Velocity estimate for conforming divergence-free ap-
proximations.) Let u ∈ V0 be the weak solution given by (2.5) and let
(uh, ph) ∈ V0 ×Q be arbitrary. Let σh ∈H(div, Ω) be such that

(∇·σh + f , ei)T = 0, i = 1, . . . , d, ∀T ∈ Th. (4.3)

Then

‖∇(u− uh)‖ ≤
{

∑

T∈Th

(ηR,T + ηDF,T )
2

}1/2

. (4.4)

Proof Using (2.2a) and (2.5), we have

‖∇(u− uh)‖ = a

(

u− uh,
u− uh

‖∇(u− uh)‖

)

≤ sup
ϕ∈V0

a(u− uh,ϕ)

‖∇ϕ‖

= sup
ϕ∈V0

(f ,ϕ)− a(uh,ϕ)

‖∇ϕ‖ .

Let ϕ ∈ V0 be fixed. Then, using that ∇·ϕ = 0,

0 = (ph,∇·ϕ) = (phI,∇ϕ).
Moreover, using the Green theorem (σh,∇ϕ) = −(∇·σh,ϕ) and adding and
subtracting (σh,∇ϕ),

(f ,ϕ)− a(uh,ϕ)

= (f ,ϕ)− (∇uh,∇ϕ) + (phI,∇ϕ) + (σh,∇ϕ)− (σh,∇ϕ)
= (f +∇·σh,ϕ)− (∇uh − phI − σh,∇ϕ).

Let T ∈ Th. Then, using the assumption (4.3), the Cauchy–Schwarz inequal-
ity, the Poincaré inequality (3.2), and the definition (4.1), we get

(∇·σh + f ,ϕ)T = (∇·σh + f ,ϕ−ϕT )T ≤ ηR,T ‖∇ϕ‖T .
Next, the estimate

(∇uh − phI − σh,∇ϕ)T ≤ ηDF,T ‖∇ϕ‖T
is immediate by the Cauchy–Schwarz inequality and the definition (4.2). The
above developments give

‖∇(u− uh)‖ ≤ sup
ϕ∈V0

∑

T∈Th
{(ηR,T + ηDF,T )‖∇ϕ‖T }

‖∇ϕ‖ ,

whence (4.4) follows by the Cauchy–Schwarz inequality. ⊓⊔
Theorem 5.1 below, with sh = uh, gives the following additional result to

Theorem 4.1:

Corollary 4.1 (Pressure estimate for conforming divergence-free ap-
proximations) Let (u, p) ∈ V × Q be the weak solution given by (2.3a)–
(2.3b). Further, let (uh, ph) ∈ V0 × Q be arbitrary. Assume that σh ∈
H(div, Ω) satisfies (4.3). Then it holds

β‖p− ph‖ ≤ 1

CS

{

∑

T∈Th

(ηR,T + ηDF,T )
2

}1/2

. (4.5)
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5 A posteriori error estimate for general approximations

In this section we derive our main a posteriori error estimate. This estimate is
valid for an approximation (uh, ph) ∈ V(Th)×Q, not necessarily the numer-
ical solution. Note that the approximate velocity uh can be nonconforming
and non-divergence-free.

The a posteriori error estimators on T ∈ Th are defined as follows. The
possible nonconformity of uh, i.e., the fact that uh is not necessarily in V, is
estimated by the nonconformity estimator

ηNC,T := ‖∇(uh − sh)‖T , (5.1)

where sh ∈ V is arbitrary. Next, the divergence estimator, related to the
divergence-free constraint (2.8), is given by

ηD,T :=
‖∇·sh‖T

β
. (5.2)

As in Section 4, the key for our a posteriori error estimates is to construct a
flux (stress field) σh ∈ H(div, Ω) that is in approximate local equilibrium,
i.e., satisfying (4.3). It enters in the residual estimator

ηR,T := CP,ThT ‖∇·σh + f‖T , (5.3)

related to the possible violation of the equilibrium equation (2.7) in the
approximate solution (here CP,T is the constant from the Poincaré inequal-
ity (3.2)), and in the diffusive flux estimator

ηDF,T := ‖∇sh − phI − σh‖T , (5.4)

related to the fact that the constitutive law (2.6) is not satisfied exactly by the
approximate solution. Recall the definition (3.5) of the energy (semi-)norm.

Our main theorem is the following.

Theorem 5.1 (Estimate for general approximations) Let (u, p) ∈ V×
Q be the weak solution given by (2.3a)–(2.3b) and let (uh, ph) ∈ V(Th) ×
Q be arbitrary. Choose an arbitrary sh ∈ V and σh ∈ H(div, Ω) which
satisfies (4.3). Then it holds

|||(u − uh, p− ph)|||

≤
{

∑

T∈Th

η2NC,T

}1/2

+
1

CS

{

∑

T∈Th

{

(ηR,T + ηDF,T )
2 + η2D,T

}

}1/2

.
(5.5)

Proof By the triangle inequality we have

|||(u − uh, p− ph)||| ≤ ‖∇(uh − sh)‖+ |||(u− sh, p− ph)|||.
Using the stability estimate (3.6) (note that u− sh ∈ V), we obtain

|||(u − sh, p− ph)||| ≤
1

CS
sup

(ϕ,ψ)∈V×Q

B((u− sh, p− ph), (ϕ, ψ))

|||(ϕ, ψ)||| .

Let (ϕ, ψ) ∈ V × Q be fixed. Employing the definitions (3.3) and (3.4), we
have

B((u− sh, p− ph), (ϕ, ψ))

= B((u, p), (ϕ, ψ))− B((sh, ph), (ϕ, ψ))
= (f ,ϕ)− (∇sh,∇ϕ) + (∇·ϕ, ph) + (∇·sh, ψ).

(5.6)
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Next, using that (ph,∇·ϕ) = (phI,∇ϕ), adding and subtracting (σh,∇ϕ),
and using the Green theorem, we get

B((u− sh, p− ph), (ϕ, ψ))

= (f ,ϕ)− (∇sh,∇ϕ) + (phI,∇ϕ) + (∇·sh, ψ) + (σh,∇ϕ)− (σh,∇ϕ)
= (∇·σh + f ,ϕ)− (∇sh − phI − σh,∇ϕ) + (∇·sh, ψ).

We estimate the first two terms as in the proof of Theorem 4.1, using the
equilibrium condition (4.3) and the Poincaré inequality (3.2). For the last
term, we use the Cauchy–Schwarz inequality to obtain

B((u− sh, p− ph), (ϕ, ψ))

≤
∑

T∈Th

(ηR,T + ηDF,T )‖∇ϕ‖T +
β

β
‖∇·sh‖‖ψ‖

≤
{

∑

T∈Th

{

(ηR,T + ηDF,T )
2 + η2D,T

}

}1/2

|||(ϕ, ψ)|||.

The assertion then follows by collecting the above estimates. ⊓⊔

Let, for T ∈ Th, ηNC,T and ηD,T by given respectively by (5.1) and (5.2)
and set

ηR,T := CP,ThT ‖∇·σh −∇ph + f‖T (5.7)

and
ηDF,T := ‖∇sh − σh‖T . (5.8)

In the sequel, we will also need the following modified version of Theorem 5.1.

Corollary 5.1 (An alternative version of Theorem 5.1) Let (u, p) ∈
V×Q be the weak solution given by (2.3a)–(2.3b) and let (uh, ph) ∈ V(Th)×
[Q ∩H1(Ω)] be arbitrary. Choose an arbitrary sh ∈ V and σh ∈ H(div, Ω)
such that

(∇·σh −∇ph + f , ei)T = 0, i = 1, . . . , d, ∀T ∈ Th. (5.9)

Then it holds

|||(u− uh, p− ph)|||

≤
{

∑

T∈Th

η2NC,T

}1/2

+
1

CS

{

∑

T∈Th

{

(ηR,T + ηDF,T )
2 + η2D,T

}

}1/2

.
(5.10)

Proof We proceed as in the proof of Theorem 5.1; only the term (∇·ϕ, ph)
in (5.6) is treated differently. By the assumption ph ∈ H1(Ω) and the Green
theorem, we get (∇·ϕ, ph) = −(∇ph,ϕ). The rest of the proof follows easily
while using assumption (5.9) instead of (4.3). ⊓⊔

Remark 5.1 (Equilibrated flux σh) The equilibrated flux σh in Theorems 4.1
and 5.1 and in Corollary 4.1 is a H(div, Ω)-conforming reconstruction of the
flux∇uh−ph I. It is related to the decomposition (2.6)–(2.7). It will typically
apply to such numerical methods where ph 6∈ H1(Ω). The equilibrated flux
σh in Corollary 5.1 is instead a H(div, Ω)-conforming reconstruction of the
flux ∇uh. It is related to the decomposition (2.9)–(2.10). It will typically
apply to such numerical methods where ph ∈ H1(Ω).
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6 Local efficiencies

In this section, we prove the local efficiencies of the estimates introduced
above.

First, we make the following assumption. Note that this assumption is
only needed in this section.

Assumption 6.1 (Local efficiency) We suppose that, for some k ≥ 1,

– uh ∈ [Pk(Th)]d, ph ∈ Pk(Th), and f ∈ [Pk(Th)]d,
– there exists a shape-regular matching simplicial submesh Sh of Th,
– for each T ∈ Th, the number of subelements T ′ ⊂ T , T ′ ∈ Sh, is uniformly

bounded
– the reconstructed flux σh ∈ [Pk(Sh)]d×d.

When Th is itself simplicial and matching, we will in many cases simply
use Sh = Th. A mesh Sh 6= Th will be needed for conforming methods or
when Th is not a simplicial mesh or is nonmatching.

We next introduce some new notation. We use A . B when there exists a
positive constant C, independent of the mesh size, of Ω, and of u and p but
dependent on the space dimension d, on the shape regularity parameter of
the mesh Sh, and on the maximal polynomial degree k, such that A ≤ CB.

In order to proceed without specifying a particular numerical method, we
will now make an additional assumption. In Section 7 below, this assumption
will be verified for the methods in question. Recall that for T ∈ Th, the
classical local residual error indicator (cf. [55,56,25,39]) writes

η2res,T :=
∑

T∈TT

{

h2T ‖f +∆uh −∇ph‖2T + ‖∇·uh‖2T
}

+
∑

F∈Fint
T

hF ‖[[(∇uh − phI)nF ]]‖2F +
∑

F∈FT

h−1
F ‖[[uh]]‖2F .

(6.1)

We assume that a quantity linked to our estimators ηDF,T is a local lower
bound for ηres,T :

Assumption 6.2 (Approximation property) For all T ∈ Th, there holds
‖∇uh − phI − σh‖T . ηres,T (6.2)

in the case where σh satisfies (4.3) and

‖∇uh − σh‖T . ηres,T (6.3)

in the case where σh satisfies (5.9).

By Iav : [Pk(Sh)]d → [Pk(Sh)]d ∩ V, we denote the following averaging
operator: let vh ∈ [Pk(Sh)]d. Then Iav prescribes the Lagrangian degrees of
freedom of Iav(vh) ∈ [Pk(Sh)]d ∩V inside Ω by the average of the values of
vh and sets 0 on ∂Ω. For the analysis we need the following result [1,41,19,
60].

Lemma 6.3 (Averaging approximation estimate) For sh = Iav(uh),
there holds, for all T ∈ Th,

‖∇(uh − sh)‖T .

{

∑

F∈FT

h−1
F ‖[[uh]]‖2F

}1/2

, (6.4a)

‖uh − sh‖T .

{

∑

F∈FT

hF ‖[[uh]]‖2F

}1/2

. (6.4b)
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We now state and prove the main result of this section.

Theorem 6.1 (Local efficiency) Let Assumptions 6.1 and 6.2 be satisfied.
Let sh = Iav(uh) and let, for T ∈ Th, any of the following possibilities hold:

– ηR,T and ηDF,T are given by (4.1)–(4.2),
– ηNC,T , ηD,T , ηR,T , and ηDF,T are given by (5.1)–(5.4),
– ηNC,T and ηD,T are given by (5.1)–(5.2) and ηR,T and ηDF,T are given

by (5.7)–(5.8).

Let finally (u, p) ∈ V×Q be the weak solution given by (2.3a)–(2.3b). Then
it holds

ηT . |||(u− uh, p− ph)|||TT
+

{

∑

F∈FT

h−1
F ‖[[uh]]‖2F

}1/2

for all the local estimators ηT = ηNC,T , ηD,T , ηR,T , and ηDF,T .

Proof Let T ∈ Th. We will first bound the individual estimators by ηres,T or
by its components.

For ηDF,T given by (4.2), we have ηDF,T . ηres,T by Assumption 6.2. For
ηDF,T given by (5.4), the triangle inequality gives

ηDF,T ≤ ‖∇sh −∇uh‖T + ‖∇uh − phI − σh‖T ,

whence ηDF,T . ηres,T by combining Assumption 6.2 and (6.4a). For the
third alternative, ηDF,T given by (5.8), using the triangle inequality,

ηDF,T ≤ ‖∇sh −∇uh‖T + ‖∇uh − σh‖T ,

whence once again ηDF,T . ηres,T by Assumption 6.2 and (6.4a).
The estimator ηNC,T is bounded directly by (6.4a).
For the estimator ηR,T of (4.1), we have

ηR,T . hT ‖f +∆uh −∇ph‖T + hT ‖ −∆uh +∇ph +∇·σh‖T
= hT ‖f +∆uh −∇ph‖T + hT ‖∇·(∇uh − phI − σh)‖T
. hT ‖f +∆uh −∇ph‖T + ‖∇uh − phI − σh‖T

by the triangle inequality and by the inverse inequality. The bound ηR,T .
ηres,T thus follows by Assumption 6.2. For ηR,T given by (5.7), we similarly
have

ηR,T . hT ‖f +∆uh −∇ph‖T + hT ‖ −∆uh +∇·σh‖T
. hT ‖f +∆uh −∇ph‖T + ‖∇uh − σh‖T ,

whence ηR,T . ηres,T by Assumption 6.2.
We are left with bounding ηD,T . We have

ηD,T ≤ 1

β
(‖∇·(sh − uh)‖T + ‖∇·uh‖T ) .

1

β
(h−1
T ‖sh − uh‖T + ‖∇·uh‖T ),

whence, by (6.4b), ηD,T . ηres,T .
We have now bounded all the local error indicators by ηres,T . The asser-

tion of the theorem follows by the fact that this classical residual a poste-
riori error estimate is a lower bound for the energy error, up to the term
{
∑

F∈FT
h−1
F ‖[[uh]]‖2F }1/2, cf., e.g., [55,56,25]. ⊓⊔
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Remark 6.1 (The jump seminorm in Theorem 6.1) For conforming approxi-
mations, i.e., uh ∈ V, [[uh]] = 0 and the jump seminorm contribution

{

∑

F∈FT

h−1
F ‖[[uh]]‖2F

}1/2

vanishes. Consequently, we have the global upper and local lower bounds
in the energy norm. In order to obtain both-sided estimates in the same
(semi-)norm when uh 6∈ V, several options are possible. Most easily, noticing
that

‖[[uh]]‖F = ‖[[u− uh]]‖F , F ∈ ∂Th,
we can add {

∑

F∈∂Th
h−1
F ‖[[u − uh]]‖2F }1/2 to both the energy (semi-)norm

and the estimate as usually done in the discontinuous Galerkin method, cf.,
e.g. [39]. Alternatively, when 〈[[uh]], ei〉F = 0 for all F ∈ ∂Th and i = 1, . . . , d
(this is in particular the case in the Crouzeix–Raviart nonconforming finite
element method and can be achieved for a postprocessed ũh in place of uh
in mixed finite element methods), proceeding as in [1, Theorem 10], one can
show that

{

∑

F∈FT

h−1
F ‖[[uh]]‖2F

}1/2

. ‖∇(u− uh)‖TT
.

Finally, following [3] or [33], the jump seminorm contribution in the discon-
tinuous Galerkin method may be bounded by the energy (semi-)norm even
when the above mean value condition does not hold.

7 Application to different numerical methods

In this section, we derive a posteriori error estimates for different numerical
methods using Theorem 4.1, Corollary 4.1, Theorem 5.1, or Corollary 5.1.
This consists in specifying a way for constructing the flux σh ∈ H(div, Ω)
satisfying (4.3) or (5.9). Remark that this construction is always local. We
also check, via Theorem 6.1, that the local efficiency holds for the derived
estimates. This consists in verifying Assumption 6.2.

7.1 Discontinuous Galerkin method

We apply here Theorems 5.1 and 6.1 for deriving locally efficient a posteriori
error estimates for the discontinuous Galerkin method. For simplicity, we
suppose that Th consists of simplices and is matching. The straightforward
modifications to general meshes Th can be carried out along the lines of [32]
or [31, Appendix].

Define

Vh := [Pk(Th)]d, (7.1a)

Qh := Pk−1(Th) ∩Q, (7.1b)

k ≥ 1. Next, set

ah(uh,vh) :=
∑

T∈Th

(∇uh,∇vh)T +
∑

F∈∂Th

γFh
−1
F 〈[[uh]], [[vh]]〉F

−
∑

F∈∂Th

{

〈{{∇uh}}nF , [[vh]]〉F + θ〈{{∇vh}}nF , [[uh]]〉F
}

(7.2)
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and

bh(vh, qh) := −
∑

T∈Th

(qh,∇·vh)T +
∑

F∈∂Th

〈{{qh}}, [[vh]]·nF 〉F . (7.3)

Here, γF > 0, F ∈ ∂Th, is a parameter (chosen sufficiency large), and θ =
{−1, 0, 1}. The discontinuous Galerkin method for the problem (2.3a)–(2.3b)
reads: find (uh, ph) ∈ Vh ×Qh such that

ah(uh,vh) + bh(vh, ph) = (f ,vh) ∀vh ∈ Vh, (7.4a)

bh(uh, qh) = 0 ∀qh ∈ Qh. (7.4b)

We now specify σh ∈ H(div, Ω) satisfying (4.3). We follow [42,30] in
the second-order elliptic setting. For a recent similar reconstruction for the
Stokes problem, we refer to [10]. Our postprocessed flux σh will belong to
the Raviart–Thomas–Nédélec space of tensor functions,

Σl(Th) =
{

υh ∈H(div, Ω); υh|T ∈ Σl(T ) ∀T ∈ Th
}

, (7.5)

where l is either k − 1 or k and

Σl(T ) = [Pl(T )]
d×d + [Pl(T )]

d ⊗ x.

In particular, υh ∈ Σl(Th) is such that ∇·υh|T ∈ [Pl(T )]
d for all T ∈ Th,

υhnF ∈ [Pl(F )]
d for all F ∈ FT and all T ∈ Th, and such that its normal

trace is continuous, cf. [17].

We prescribe σh ∈ Σl(Th) locally on all T ∈ Th as follows: for all F ∈ FT
and all qh ∈ [Pl(F )]

d,

〈σhnF ,qh〉F = 〈{{∇uh − phI}}nF − γFh
−1
F [[uh]],qh〉F , (7.6)

and for all τh ∈ [Pl−1(T )]
d×d,

(σh, τh)T = (∇uh − phI, τh)T − θ
∑

F∈FT

〈ωFτhnF , [[uh]]〉F , (7.7)

where ωF := 1
2 for F ∈ ∂T int

h and ωF := 1 for F ∈ ∂T ext
h . Observe that

the quantities prescribing the moments of σhnF are uniquely defined for
each side F ∈ ∂Th, whence the continuity of the normal trace of σh. The
two following lemmas are of decisive importance, implying (4.3) and (6.2),
respectively.

Lemma 7.1 (Reconstructed flux in the discontinuous Galerkin me-
thod) For T ∈ Th, let σh be defined by (7.6)–(7.7). Then, there holds

(∇·σh + f ,vh)T = 0 ∀vh ∈ [Pl(T )]
d, (7.8)

i.e.,

(∇·σh)|T = −(Πlf)|T , (7.9)

where Πl is the L2-orthogonal projection onto [Pl(Th)]d. Thus, in particular,
(4.3) holds.
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Proof Let T ∈ Th and let vh ∈ [Pl(T )]
d. Owing to the Green theorem, it

holds

(∇·σh,vh)T = −(σh,∇vh)T +
∑

F∈FT

〈σhnT ,vh〉F =: T1 + T2.

Since ∇vh|T ∈ [Pl−1(T )]
d×d, using (7.7) yields

T1 = −(∇uh − phI,∇vh)T + θ
∑

F∈FT

〈ωF∇vhnF , [[uh]]〉F .

Furthermore, the fact that vh|F ∈ [Pl(F )]
d for all F ∈ FT and (7.6) yield

T2 =
∑

F∈FT

〈{{∇uh − phI}}nF − γFh
−1
F [[uh]],nT ·nFvh〉F .

Extend vh by 0 outside of T . Using the above identities, (7.2), (7.3), and (7.4a)
yields

T1 + T2 = −ah(uh,vh)− bh(vh, ph) = −(f ,vh)T ,

whence (7.8) is valid. Finally, (7.9) results from (7.8) and the fact that
∇·σh|T ∈ [Pl(T )]

d. ⊓⊔

Lemma 7.2 (Approximation property of the reconstructed flux in
the discontinuous Galerkin method) For T ∈ Th, let σh be defined
by (7.6)–(7.7). Then (6.2) holds.

Proof The proof follows the lines of that in the case of second-order elliptic
equations. Recall that in the present case (Sh = Th), Th is shape-regular
by Assumption 6.1. Using the equivalence of norms on finite-dimensional
spaces, the Piola transformation, and scaling arguments, one shows that for
all T ∈ Th and all υh ∈ Σl(T )

‖υh‖2T .

{

hT
∑

F∈FT

‖υhnF ‖2F +

(

sup
τ

h
∈[Pl−1(T )]d×d

(υh, τ h)T
‖τh‖T

)2}

. (7.10)

Define υh := ∇uh − phI − σh. Then, using (7.7) and the Cauchy–Schwarz
and inverse inequalities, we get

(υh, τh)T = θ
∑

F∈FT

〈ωFτ hnF , [[uh]]〉F . |θ|h−1/2
T ‖τh‖T

∑

F∈FT

‖[[uh]]‖F .

Note that (7.6) gives

σhnF |F = {{∇uh − phI}}nF − γFh
−1
F Πl([[uh]]).

Thus, using (7.10) and the above developments, we have

‖υh‖2T .

{

hT
∑

F∈F int
T

‖[[∇uh − phI]]nF ‖2F + hT
∑

F∈FT

‖γFh−1
F Πl([[uh]])‖2F

+ |θ|2h−1
T

∑

F∈FT

‖[[uh]]‖2F

}

,

whence (6.2) follows. ⊓⊔
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7.2 Conforming and conforming stabilized methods

We will show here how locally efficient a posteriori error estimates can be ob-
tained for conforming and conforming stabilized methods using Corollary 5.1
and Theorem 6.1. We suppose that Th consists of simplices and is matching.
In this section, Vh ⊂ V, so that we systematically set sh = uh throughout
this section.

The conforming methods for the problem (2.3a)–(2.3b) that we consider
read: find (uh, ph) ∈ Vh ×Qh such that

a(uh,vh) + b(vh, ph) = (f ,vh) ∀vh ∈ Vh, (7.11a)

b(uh, qh) = 0 ∀qh ∈ Qh. (7.11b)

In particular, we consider the Taylor–Hood family [53,16], where, for k ≥ 1,

Vh = [Pk+1(Th)]d ∩V, Qh = Pk(Th) ∩ C(Ω) ∩Q.

The Mini element [7], where

Vh := [Pb
1(Th)]d ∩V, Qh = P1(Th) ∩ C(Ω) ∩Q,

where P
b
1(Th) stands for P1(Th) enriched by bubbles, is likewise considered.

We also include the lowest-order methods, namely the cross-grid P1–P1 ele-
ment [47], where

Vh := [P1(T c
h )]

d ∩V, Qh = P1(Th) ∩ C(Ω) ∩Q,

with T c
h formed from Th by adding the barycenter as a node and cutting the

simplex into (d+ 1) subsimplices, and the P1 iso P2–P1 element [12], where

Vh := [P1(Th/2)]d ∩V, Qh = P1(Th) ∩ C(Ω) ∩Q,

with Th/2 formed from Th by adding the edge barycenters as nodes and

cutting the simplex into 2d subsimplices.
We also consider the conforming stabilized methods written in the general

form: find (uh, ph) ∈ Vh ×Qh such that

a(uh,vh) + b(vh, ph)+th(uh, ph;vh) = (f ,vh) ∀vh ∈ Vh, (7.12a)

sh(uh, ph; qh) + b(uh, qh) = 0 ∀qh ∈ Qh. (7.12b)

Let δ > 0 be a parameter and let

Vh := [Pk(Th)]d ∩V, Qh = Pk(Th) ∩ C(Ω) ∩Q.

Then the Brezzi–Pitkäranta method [18] uses

sh(uh, ph; qh) = −δ
∑

T∈Th

h2T (∇ph,∇qh)T ,

th(uh, ph;vh) = 0

and k = 1, the Hughes–Franca–Balestra method [40] uses

sh(uh, ph; qh) = δ
∑

T∈Th

h2T (f +∆uh −∇ph,∇qh)T ,

th(uh, ph;vh) = 0
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and k ≥ 1, and the Brezzi–Douglas method [15] uses

sh(uh, ph; qh) = δ
∑

T∈Th

h2T {(f −∇ph,∇qh)T + 〈∆uh·nT , qh〉∂T∩∂Ω},

th(uh, ph;vh) = 0

and k ≥ 1.
For

Vh := [Pk(Th)]d ∩V, Qh = Pk−1(Th) ∩ C(Ω) ∩Q,
k ≥ 2, and a parameter ρ = −1, 1, we also consider the following optimally
converging Hughes–Franca–Balestra family [40], see [35,34] for an error anal-
ysis:

sh(uh, ph; qh) = δ
∑

T∈Th

h2T (f +∆uh −∇ph,∇qh)T , (7.13a)

th(uh, ph;vh) = δρ
∑

T∈Th

h2T (f +∆uh −∇ph, ∆vh)T . (7.13b)

7.2.1 Lowest-order continuous pressure elements

We consider here the lowest-order methods with the velocity and pressure
spaces formed by continuous piecewise P1 polynomials, namely the cross-grid
P1–P1 element, the P1 iso P2–P1 element, and the above stabilized methods
with k = 1. In the sequel, for the first two methods, T c

h or Th/2 is to be
substituted systematically in place of Th. We follow the approach introduced
in [44,59,62].

First, we need to introduce some more notation. Let the dual mesh Dh be
formed around each vertex of Th using the edge, elements, (and face in 3D)
barycenters as indicated in the left part of Figure 7.1. Let Dint

h correspond to
the interior vertices and Dext

h to the boundary ones. Finally, we cut each D ∈
Dh into a simplicial mesh SD as indicated in the right part of Figure 7.1; the
matching simplicial submesh Sh of Th (and of Dh), needed in Assumption 6.1,
is created by collecting the local meshes SD. We denote by FD all the sides
of a given D ∈ Dh, by ∂Sh all the sides of Sh, and by ∂S int

h all the interior
sides of Sh. Similarly, for D ∈ Dh, we will employ the notation ∂SD for all
the sides of SD, ∂S int

D for all the interior sides of SD, and ∂Sext
D for all the

boundary sides of SD. The notation introduced in Section 3.1 for the mesh
Th will be used in this section also for the meshes Dh and Sh. For a vertex
V ∈ Vh, let ψV be the associated P1 finite element “hat” basis function. Let
ψV,i, i = 1, . . . , d, be its vector variants such that ψiV,i = ψV , ψ

j
V,i = 0 for

j = 1, . . . , d, j 6= i.
For a side F ∈ ∂S int

h such that F ⊂ ∂D for some D ∈ Dh, define the
normal flux functions

ΥF (uh) := (∇uhnF )|F . (7.14)

Note that all such sides lie inside some T ∈ Th, cf. Figure 7.1, so that ∇uh
is indeed univalued thereon. The following important property holds for all
the above-listed methods.

Lemma 7.3 (Local conservativity of lowest-order conforming meth-
ods) Let f be piecewise constant on Th and let (uh, ph) ∈ Vh × Qh be
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Th

Dh

D

SD

Fig. 7.1 Dual mesh Dh (left) and a simplicial submesh SD of D ∈ Dh (right) for
conforming methods in two space dimensions

given by (7.11a)–(7.11b) or by (7.12a)–(7.12b) for any of the spaces described
above. Let ΥF (uh) be given by (7.14). Then

∑

F∈FD

〈ΥF (uh)nD·nF , ei〉F − (∇ph, ei)D + (f , ei)D = 0,

i = 1, . . . , d ∀D ∈ Dint
h .

(7.15)

Proof For a given dual volume D ∈ Dint
h and associated vertex V , fix i ∈

{1, . . . , d} and consider ψV,i as the test function vh in (7.11a) or (7.12a).
Recall that the support of ψV,i is given by TV , all the elements of Th sharing
V . Then, under the assumption that f is piecewise constant on Th,

(f ,ψV,i)TV
= (f , ei)D (7.16)

easily follows as |D ∩ T | = |T |/(d + 1) for all T ∈ TV , (cf., e.g., [62,
Lemma 3.11]). Next, one derives

(∇uh,∇ψV,i)TV
= −〈∇uhnD, ei〉∂D

as in [8, Lemma 3] or [62, Lemma 3.8]. Thus, using (7.14),

(∇uh,∇ψV,i)TV
= −

∑

F∈FD

〈ΥF (uh)nD·nF , ei〉F .

Next, using the assumption ph ∈ P1(Th) ∩ C(Ω), implying ph ∈ H1(Ω), the
Green theorem, and the fact that ψV,i = 0 on ∂TV , one comes to

b(ψV,i, ph) = −(∇·ψV,i, ph)TV
= (ψV,i,∇ph)TV

.

The above right-hand side can still be rewritten equivalently as

(ψV,i,∇ph)TV
= (ei,∇ph)D. (7.17)

This follows from the fact that ∇ph is piecewise constant on Th, so we can
use the same arguments as for obtaining (7.16). Thus, combining the above
arguments, (7.15) is implied by (7.11a) or by (7.12a). ⊓⊔

Remark 7.1 (Lemma 7.3) Note that, actually, only (7.11a) or (7.12a), nei-
ther (7.11b) nor (7.12b), is needed in Lemma 7.3.
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We will now define a suitable σh ∈ H(div, Ω); more precisely, we will
construct σh in the Raviart–Thomas–Nédélec spaceΣ0(Sh), see (7.5), on the
fine simplicial mesh Sh. Prior to proceeding to a construction ensuring (5.9)
(that is, a local conservation property on the mesh Th), let us make the
following remark.

Remark 7.2 (Simple construction of σh) Following [59,62], the simplest con-
struction of σh ∈ Σ0(Sh) is by

σhnF := {{∇uhnF }} ∀F ∈ ∂Sh, (7.18)

that is, we merely prescribe the degrees of freedom of σh by averaging the
normal components of the discontinuous approximate flux ∇uh over those
sides of the mesh Sh which are contained in ∂Th and by setting directly
∇uhnF on those sides of the mesh Sh which are not contained in ∂Th. The
flux σh defined by (7.18) (which is consistent with (7.14)) in virtue of (7.15)
clearly satisfies (5.9), but on the mesh Dint

h and not on the mesh Th. The
upper bound would then needed to be written on the mesh Dh instead of Th,
following [59,62]. The proof of the approximation property (6.3) is in this
case straightforward: using (7.18) and (7.10), on T ∈ Sh,

‖∇uh − σh‖T .

{

hF
∑

F∈FT

‖[[∇uh]]nF ‖2F

}1/2

,

whence (6.3) follows taking into account the fact that [[phInF ]] is zero since
ph ∈ C(Ω).

Let us now define σh ∈ Σ0(Sh) such that (5.9) holds, that is, such that
the local conservation property is satisfied on the original mesh Th. For this
purpose, we adapt to the present setting the approach of [32,62]. It consists
in mixed finite element solutions of local Neumann/Dirichlet problems. A
local linear system on each D ∈ Dh has to be solved here but numerical
experiments reveal better performance of this approach.

Let a dual volume D ∈ Dh and a polynomial degree l ≥ 0 be given. In this
section, l = 0, but l ≥ 1 will be required later for higher-order conforming
methods. Let the normal flux function ΥF (uh) be defined by (7.14). We
generalize this notation to ΥF (uh, ph), required once again later for higher-
order conforming methods. Denote

Σl
N(SD) := {υh ∈ Σl(SD); υhnF = ΥF (uh, ph) ∀F ∈ ∂S int

h , F ⊂ ∂D}.
(7.19)

This is a space of Raviart–Thomas–Nédélec tensor stresses on the given dual
volume D whose normal fluxes are given by ΥF (uh, ph) on ∂D \ ∂Ω. Let Πl

denote the L2-orthogonal projection onto [Pl(Sh)]d. We then define σh, the

equilibrated flux being at the heart of our analysis, in the space Σl(Sh) by
solving on each D ∈ Dh the following minimization problem:

σh|D := arg inf
υ

h
∈Σl

N
(SD),∇·υ

h
=∇ph−Πlf

‖∇uh − υh‖D. (7.20)

Note that the fact that ΥF (uh, ph) are univalued and the definition (7.19)
ensure that such a flux σh has the normal component continuous and thus

indeed belongs to Σl(Sh).
Let Σl

N,0(SD) be as Σl
N(SD) but with the normal flux condition υhnF =

0 on F ∈ ∂S int
h , F ⊂ ∂D. Let [P∗

l (SD)]d be spanned by piecewise constant
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vectors on SD with zero mean on D in each component when D ∈ Dint
h ; when

D ∈ Dext
h , the mean value condition is not imposed. Then it is easy to show,

cf. [32], that (7.20) is equivalent to finding σh ∈ Σl
N(SD) and rh ∈ [P∗

l (SD)]d
such that

(σh −∇uh,υh)D + (rh,∇·υh)D = 0 ∀υh ∈ Σl
N,0(SD), (7.21a)

−(∇·σh,φh)D − (f −∇ph,φh)D = 0 ∀φh ∈ [P∗
l (SD)]d. (7.21b)

The existence and uniqueness of a solution to the above system are standard.
This system is a mixed finite element approximation of a local Neumann prob-
lem on D ∈ Dint

h ; the Neumann boundary conditions are given by the normal
flux functions ΥF (uh, ph). Note in particular that ΥF (uh, ph) satisfy the Neu-
mann compatibility condition by (7.15). When D ∈ Dext

h , this system is a
mixed finite element approximation of a local Neumann/Dirichlet problem;
homogeneous Dirichlet boundary condition is prescribed on ∂D ∩ ∂Ω.

These developments imply:

Lemma 7.4 (Reconstructed flux in lowest-order conforming meth-
ods) Let f be piecewise constant on Th and let (uh, ph) ∈ Vh ×Qh be given
by (7.11a)–(7.11b) or by (7.12a)–(7.12b) for any of the lowest-order methods.
Let ΥF (uh) be given by (7.14) and prescribe σh by (7.20), with l = 0. Then
(5.9) holds. More precisely,

(∇·σh)|T = (∇ph − f)|T ∀T ∈ Sh. (7.22)

To finish this section, we have:

Lemma 7.5 (Approximation property of the reconstructed flux in
lowest-order conforming methods) Let the assumptions of Lemma 7.4
be verified. Then the approximation property (6.3) holds.

Proof Let D ∈ Dh and let σh ∈ Σ0
N(SD) and rh ∈ [P∗

0(SD)]d be given
by (7.21a)–(7.21b). Extending the approach of [58, Section 4.1] (cf. also [6,
5]) to the vector case, we define a postprocessing r̃h of rh such that

∇r̃h|T = (σh −∇uh)|T ∀T ∈ SD, (7.23a)

(r̃h, ei)T
|T | = rih|T , i = 1, . . . , d, ∀T ∈ SD. (7.23b)

Note that this is a cheap local procedure. It follows from (7.23a), (7.23b),
and (7.21a) that

(∇r̃h,υh)D + (r̃h,∇·υh)D = 0 ∀υh ∈ Σl
N,0(SD).

Fixing one F ∈ ∂S int
D , choosing the basis functions of Σl

N,0(SD) having
nonzero normal trace only across this side, and using the Green theorem, we
arrive at

〈[[r̃h]], ei〉F = 0, i = 1, . . . , d. (7.24)

This means that the postprocessed r̃h has the mean value of the jump in
each component equal to zero on the interior sides of SD. Alternatively, we
can say that r̃h has means of traces continuous on the interior sides of SD.

If D ∈ Dext
h , we arrive similarly at

〈r̃h, ei〉F = 0, i = 1, . . . , d, (7.25)
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for all F ∈ ∂Sext
D such that F ⊂ ∂Ω. Thus, on exterior sides of SD belonging

to ∂Ω, the mean value of each component of r̃h is zero.
Finally, for D ∈ Dint

h , we have that (rh, ei)D = 0, i = 1, . . . , d, from the
definition of [P∗

0(SD)]d. From this fact and (7.23b), we deduce that

(r̃h, ei)D = 0, i = 1, . . . , d. (7.26)

Thus, on dual volumes not touching the boundary, the mean value of each
component of r̃h is zero.

We denote by M(SD) ⊂ [P2(SD)]d the corresponding space of polyno-
mials verifying (7.24), (7.25), and (7.26). Using the above developments, we
have

‖∇uh − σh‖D = sup
mh∈M(SD), ‖∇mh‖D=1

(∇uh − σh,∇mh)D. (7.27)

We now develop the right-hand side of (7.27). Using the Green theorem,
the fact that ∇·σh = ∇ph − f for all T ∈ SD, see (7.22), (7.24) (with r̃h
replaced by mh) and the facts that ((∇uh − σh)nT )|F is in [P0(F )]

d and
that [[σhnF ]]|F = 0 for all sides F ∈ ∂S int

D , we arrive at

(∇uh − σh,∇mh)D

=
∑

T∈SD

{−(mh,∇·(∇uh − σh))T + 〈(∇uh − σh)nT ,mh〉∂T }

= −
∑

T∈SD

(mh, f +∆uh −∇ph)T +
∑

F∈∂Sint
D

〈[[∇uhnF ]],mh〉F .
(7.28)

We have also used that σhnF = ∇uhnF for all boundary sides F of SD
not included in ∂Ω since σh ∈ Σ0

N(SD), and (7.25) for all boundary sides
F of SD included in ∂Ω. By the Cauchy–Schwarz inequality and the inverse

inequality ‖mh‖F . h
− 1

2

F ‖mh‖T , we can further estimate

(∇uh − σh,∇mh)D

≤
{

∑

T∈SD

h−2
T ‖mh‖2T

}1/2{
∑

T∈SD

h2T ‖f +∆uh −∇ph‖2T

}1/2

+

{

∑

F∈∂Sint
D

h−1
F ‖mh‖2F

}1/2{
∑

F∈∂Sint
D

hF ‖[[∇uhnF ]]‖2F

}1/2

. h−1
D ‖mh‖D

{

∑

T∈SD

h2T ‖f +∆uh −∇ph‖2T +
∑

F∈∂Sint
D

hF ‖[[∇uhnF ]]‖2F

}1/2

.

Recall that, as mh ∈ M(SD), we have (7.25) or (7.26) for mh. Thus, the
discrete Poincaré/Friedrichs inequality

‖mh‖D . hD‖∇mh‖D

can be easily proven along the lines of [57]. Consequently, (6.3) follows from
the above estimates, the fact that [[phInF ]] = 0 for all F ∈ S int

D since ph ∈
C(Ω), and (7.27). ⊓⊔
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7.2.2 Higher-order continuous pressure elements

The approach of the previous section does not generalize directly to higher-
order conforming and conforming stabilized methods. When Vh contains
piecewise polynomials of degree higher than 1 or f is not piecewise constant
on Th, the local conservation property (7.15) does not hold. Here, we extend
the approach of Section 7.2.1 to higher-order elements, namely the Taylor–
Hood elements, the mini element, and higher-order stabilized methods.

Recall that each dual volume D ∈ Dint
h is associated with one vertex V ∈

V int
h and recall also the definition ψV,i, i = 1, . . . , d, of the vector Lagrange

basis functions, see Section 7.2.1. For V ∈ Vh, denote by ∂Tint
V all the interior

sides of the patch TV . Then, choosing vh = ψV,i, i = 1, . . . , d as the test
function in (7.11a) or (7.12a) (note that ∆vh becomes 0 in (7.13b)) and
combining with the Green theorem, we obtain the following result:

Lemma 7.6 (Higher-order conforming methods on a dual mesh) Let
(uh, ph) ∈ Vh × Qh be given by (7.11a)–(7.11b) or by (7.12a)–(7.12b) with
Vh ⊂ V and Qh ⊂ H1(Ω). Let the normal flux functions ΥF (uh) be given
by (7.14). Then

∑

F∈FD

〈ΥF (uh)nD·nF , ei〉F − (∇ph, ei)D + (f , ei)D

= (f +∆uh −∇ph, ei)D − (f +∆uh −∇ph,ψV,i)TV

+
∑

F∈∂Tint
V

〈[[∇uhnF ]],ψV,i〉F −
∑

F∈∂Sint
D

〈[[∇uhnF ]], ei〉F ,

i = 1, . . . , d, ∀D ∈ Dint
h .

(7.29)

We know that lowest-order methods are locally conservative on the ele-
mentsD of Dint

h , see (7.15). We can see from (7.29) that higher-order methods
are not locally conservative because of the to additional terms featuring the
element residuals f + ∆uh − ∇ph and edge residuals [[∇uhnF ]]. We intend
to redistribute these correction terms to the normal flux functions ΥF (uh)
of (7.14) to obtain new normal flux functions ΥF (uh, ph) satisfying

∑

F∈FD

〈ΥF (uh, ph)nD·nF , ei〉F − (∇ph, ei)D + (f , ei)D = 0,

i = 1, . . . , d ∀D ∈ Dint
h .

(7.30)

We achieve this in a spirit similar to the equilibration technique of [4]. As
this represents a conceptually new technique for dual meshes Dh-based a
posteriori error estimates, which is of independent interest, we present it in
Appendix B below.

Achieving, via Appendix B, (7.30), we can now proceed as in Section 7.2.1.

Recall the definition of the space Σl(SD) by (7.5). For the new normal flux

functions ΥF (uh, ph) of (B6), we can define the space Σl
N(SD) by (7.19). We

then set σh ∈ Σl(Sh) by (7.20) or, equivalently, by (7.21a)–(7.21b), where
we put l = k−1. Note that the equation (7.30) holds for the new normal flux
functions ΥF (uh, ph), whence the local Neumann problems are well-posed for
D ∈ Dint

h . We now have the following equivalent of Lemma 7.4:

Lemma 7.7 (Reconstructed flux in higher-order conforming meth-
ods) Let (uh, ph) ∈ Vh × Qh be given by (7.11a)–(7.11b) or by (7.12a)–
(7.12b). Let ΥF (uh, ph) be given by (B6) from Appendix B and prescribe σh
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by (7.20). Then (5.9) holds. If f is piecewise polynomial of degree l on Th,
then, more precisely,

(∇·σh)|T = (∇ph − f)|T ∀T ∈ Sh. (7.31)

Finally, we have:

Lemma 7.8 (Approximation property of the reconstructed flux in
higher-order conforming methods) Let the assumptions of Lemma 7.7
be verified. Then the approximation property (6.3) holds.

Proof We proceed as in Lemma 7.5. Let D ∈ Dh. Firstly, we need to replace
the definition (7.23a)–(7.23b), valid in the lowest-order case, by defining r̃h ∈
M(SD) by

ΠΣ
h
(T )(∇r̃h|T ) = (σh −∇uh)|T ∀T ∈ SD, (7.32a)

ΠVh(T )(r̃h|T ) = rh|T ∀T ∈ SD. (7.32b)

HereΠΣh(T ) is the L
2-orthogonal projection onto Σh(T ) and ΠVh(T ) is the

L2-orthogonal projection onto Vh(T ). The space M(SD) is a vector variant
of that of [6,5]. What is important in the present analysis is that by (7.32a)–
(7.32b), the properties (7.24), (7.25), and (7.26) still hold. More precisely,
the orthogonality in (7.24) and (7.25) holds up to polynomials of order l in
each component and not only for constants in each component. Similarly
to (7.27), we now have

‖∇uh − σh‖D . sup
mh∈M(SD), ‖∇mh‖D=1

(∇uh − σh,∇mh)D,

using [61, Lemma 5.4]. Suppose now for simplicity that f ∈ [Pl(Sh)]d instead
of f ∈ [Pk(Sh)]d required in Assumption 6.1. Then (7.28) still holds but with
an additional factor

−
∑

F∈∂Sext
D
, F 6⊂∂Ω

〈υF (uh, ph)nD·nF ,mh〉F

in the last equality. We thus need to bound this factor, which we do by the
Cauchy–Schwarz inequality and obtain

{

∑

F∈∂Sext
D
, F 6⊂∂Ω

h−1
F ‖mh‖2F

}1/2{
∑

F∈∂Sext
D
, F 6⊂∂Ω

hF ‖υF (uh, ph)‖2F

}1/2

.

The first term above can be treated as in Lemma 7.5 and we are left with
bounding the second one.

Let F ∈ ∂S int
h , let T ∈ Th be such that F ⊂ T , and let Vj , Dj , j =

1, . . . , d+1, be the vertices of T and the associated dual volumes. Using (B1),
(B3), and (B4), we arrive at

h
1/2
F ‖υF (uh, ph)‖F

. h
1/2
F

d+1
∑

j=1

d
∑

i=1

‖|F |−1(f +∆uh −∇ph, ei|Dj
−ψVj ,i)T ‖F

+ h
1/2
F

∑

F ′∈F int
T

d+1
∑

j=1

d
∑

i=1

‖|F |−1〈[[∇uhnF ′ ]], ei|Dj
−ψVj ,i〉F ′‖F .
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Let i ∈ {1, . . . , d}, j ∈ {1, . . . , d+ 1}, and F ′ ∈ F int
T be given. Then,

h
1/2
F ‖|F |−1(f +∆uh −∇ph, ei|Dj

−ψVj ,i)T ‖F
= h

1/2
F |F |−1/2|(f +∆uh −∇ph, ei|Dj

−ψVj ,i)T |
≤ h

1/2
F |F |−1/2‖f +∆uh −∇ph‖T ‖ei|Dj

−ψVj ,i‖T
. h

1/2
F |F |−1/2‖f +∆uh −∇ph‖T |T |

1
2

. hT ‖f +∆uh −∇ph‖T

by the Cauchy–Schwarz inequality and the facts that ‖ei|Dj
−ψVj ,i‖T . |T | 12 ,

|T | 12 /|F | 12 . h
1/2
F , and hF . hT . Similarly,

h
1/2
F ‖|F |−1〈[[∇uhnF ′ ]], ei|Dj

−ψVj ,i〉F ′‖F
= h

1/2
F |F |−1/2|〈[[∇uhnF ′ ]], ei|Dj

−ψVj ,i〉F ′ |
. h

1/2
F |F |−1/2‖[[∇uhnF ′ ]]‖F ′‖ei|Dj

−ψVj ,i‖F ′

. |F |−1/2‖[[∇uhnF ′ ]]‖F ′‖ei|Dj
−ψVj ,i‖T

. h
1/2
F ′ ‖[[∇uhnF ′ ]]‖F ′ ,

employing also the inverse inequality ‖ei|Dj
− ψVj ,i‖F ′ . h

−1/2
F ′ ‖ei|Dj

−
ψVj ,i‖T . Combining all the above results, we arrive at the conclusion that
the approximation property (6.3) holds in the higher-order case as well. ⊓⊔

Remark 7.3 (Standard equilibration techniques) The equilibration techniques

of [4,26,14] can be used in order to produce σh ∈ Σl(Th) satisfying (5.9).
Under the condition that (6.3) holds, they can likewise be used in the present
framework.

7.3 Nonconforming methods

Here, we derive locally efficient a posteriori error estimates for the lowest-
order nonconforming Crouzeix–Raviart method using Theorems 5.1 and 6.1.
We follow the approach of Section 7.2.1. Extension to higher-order methods
is possible along the lines of the approach of Section 7.2.2.

Let Th be simplicial and matching and let

Vh := {vh ∈ [P1(Th)]d; 〈[[vh]], ei〉F = 0, i = 1, . . . , d, ∀F ∈ ∂Th},
Qh := P0(Th) ∩Q.

The lowest-order nonconforming Crouzeix–Raviart method for the problem
(2.3a)–(2.3b) reads, see [24]: find (uh, ph) ∈ Vh ×Qh such that

a(uh,vh) + b(vh, ph) = (f ,vh) ∀vh ∈ Vh, (7.33a)

b(uh, qh) = 0 ∀qh ∈ Qh. (7.33b)

Let the dual mesh Dh be formed around each side of Th using the element
barycenters as indicated in Figure 7.2; Dint

h correspond to the interior sides
and Dext

h to the boundary ones. For a side F ∈ ∂Th, let ψF be the P1

nonconforming finite element basis function. Let ψF,i, i = 1, . . . , d, be its

vector variants such that ψiF,i = ψF , ψ
j
F,i = 0 for j = 1, . . . , d, j 6= i. We
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Th

Dh

Fig. 7.2 Dual mesh Dh for the nonconforming Crouzeix–Raviart method in two
space dimensions

will also need the fine simplicial mesh Sh formed by the d + 1 subsimplices
of each T ∈ Th, cf. once again Figure 7.2.

For a side F ∈ ∂S int
h such that F ⊂ ∂D for some D ∈ Dh, define the

normal flux functions

ΥF (uh, ph) := (∇uh − phI)nF . (7.34)

Note that, as in the conforming setting of Section 7.2, all such sides lie inside
some T ∈ Th, cf. Figure 7.2, so that∇uh and ph are indeed univalued thereon.

As in Lemma 7.3 in the conforming case, the following important property
holds.

Lemma 7.9 (Local conservativity of the nonconforming Crouzeix–
Raviart method) Let f be piecewise constant on Th and let (uh, ph) ∈
Vh × Qh be given by (7.33a)–(7.33b). Let ΥF (uh, ph) be given by (7.34).
Then

∑

F∈FD

〈ΥF (uh, ph)nD·nF , ei〉F + (f , ei)D = 0,

i = 1, . . . , d, ∀D ∈ Dint
h .

(7.35)

Proof For a given dual volume D ∈ Dint
h and associated side F , fix i ∈

{1, . . . , d} and consider ψF,i as the test function vh in (7.33a). Recall that
the support of ψF,i is given by the two elements sharing F , denoted by TF .
Then, under the assumption that f is piecewise constant on Th,

(f ,ψF,i)TF
= (f , ei)D

easily follows as |D∩T | = |T |/(d+1) for all T ∈ TF . Next, consider T ∈ TF .
One has

(∇uh,∇ψF,i)T = (∇uih,∇ψF )T = −(∆uih, ψF )T + 〈∇uih·nT , ψF 〉∂T
= 〈∇uih·nT , ψF 〉F = 〈∇uih·nT , 1〉F
= −

∑

F ′∈FD, F ′⊂T

〈∇uih·nD, 1〉F ′

= −
∑

F ′∈FD, F ′⊂T

〈∇uhnD, ei〉F ′ ,

(7.36)

using the fact that ∆uih = 0 as uh|T ∈ [P1(T )]
d, the facts that ∇uih·nT is

constant on all sides F ∈ FT , that 〈1, ψF 〉F ′ = 0 for F ′ ∈ FT , F ′ 6= F , and
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that 〈1, ψF 〉F = 〈1, 1〉F , and finally once again the Green theorem and the
fact that ∆uih = 0. Finally,

b(ψF,i, ph) = −(∇·ψF,i, ph)TF
= −(∇ψF,i, phI)TF

= −
∑

T∈TF

(∇ψF ,∇(phx
i))T =

∑

F ′∈FD,

〈∇(phx
i)·nD, 1〉F ′

=
∑

F ′∈FD

〈phei·nD, 1〉F ′ =
∑

F ′∈FD

〈phInD, ei〉F ′

by the same arguments as in (7.36) and using that ph ∈ P0(Th). Combining
the above results, the assertion of the lemma follows. ⊓⊔

We will now construct σh in the space Σ0(Sh), see (7.5), on the fine
simplicial mesh Sh. For a given D ∈ Dh and ΥF (uh, ph) given by (7.34), let

Σ0
N(SD) := {υh ∈ Σ0(SD); υhnF = ΥF (uh, ph) ∀F ∈ ∂S int

h , F ⊂ ∂D}.

We define σh ∈ Σ0(Sh) by solving on each D ∈ Dh the following minimiza-
tion problem:

σh|D := arg inf
υh∈Σ0

N
(SD),∇·υh=−Π0f

‖∇uh − phI − υh‖D. (7.37)

Note that as we only have to set the normal fluxes over the side F associated
with the givenD ∈ Dh, the linear system (7.37), contrarily to (7.20), is trivial,
with a diagonal d× d matrix; thus a direct flux formula follows from (7.37).
We have the following result.

Lemma 7.10 (Reconstructed flux in the nonconforming Crouzeix–
Raviart method) Let f be piecewise constant on Th and let (uh, ph) ∈
Vh × Qh be given by (7.33a)–(7.33b). Let σh be defined by (7.37). Then
(4.3) holds. More precisely,

(∇·σh)|T = −f |T ∀T ∈ Sh. (7.38)

Finally, the next result follows along the lines of the proof of Lemma 7.5.

Lemma 7.11 (Approximation property of the nonconforming Crou-
zeix–Raviart method) Let the assumptions of Lemma 7.10 be verified.
Then the approximation property (6.2) holds.

7.4 Finite volume and related locally conservative methods

This section is devoted to the application of the estimates of Theorems 5.1
and 6.1 to finite volume methods, cf., e.g., [29], and, in a larger sense, to
general locally conservative methods such as the mimetic finite difference
one, cf., e.g., [11].

A general locally conservative method for the problem (2.3a)–(2.3b) en-
ables to find the side normal fluxes ΥF , constant d-dimensional vectors for
each side F ∈ ∂Th, such that

∑

F∈FT

Υ iF (nT ·nF ) + (f , ei)T = 0, i = 1, . . . , d, ∀T ∈ Th. (7.39)

Usually, velocities uh ∈ [P0(Th)]d and pressures ph ∈ P0(Th) are also obtained
from the given numerical scheme.
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Suppose first that Th is simplicial and matching. In order to obtain a
posteriori error estimates in this case, we define a flux (stress) σh in the

Raviart–Thomas–Nédélec space Σ0(Th), see (7.5), prescribing its degrees of
freedom by

σhnF |F =
ΥF

|F | ∀F ∈ FT , ∀T ∈ Th. (7.40)

Then (4.3) immediately follows from (7.39), (7.40), and the Green theorem.
Consequently, Theorem 5.1 could directly be applied to obtain an a posteriori
error estimate for |||(u − uh, p− ph)|||. As, however, uh ∈ [P0(Th)]d, ∇uh is
a zero tensor and such an estimate would be of very little practical value.
We thus, following [58,60], introduce a postprocessed velocity ũh ∈ [P2(Th)]d
satisfying

∇ũh|T − phI|T = σh|T ∀T ∈ Th, (7.41a)

(ũh, ei)T
|T | = uih|T , i = 1, . . . , d, ∀T ∈ Th. (7.41b)

Note that such a postprocessing is local on each mesh element T and is
cheap, as we merely prescribe the degrees of freedom of ũh. The advantage
of this postprocessing is twofold: firstly, ∇ũh is no more a zero tensor and
it gives a good sense to estimate |||(u − ũh, p − ph)|||; secondly, by (7.41a),
‖∇ũh − phI − σh‖T = 0. Thus, (6.2) (with uh replaced by ũh) is trivially
satisfied. This is perfectly in agreement with the “flux-conforming” nature of
locally conservative methods.

Meshes consisting of general polygons (polyhedrons), possibly nonconvex
and not star-shaped, and nonmatching meshes can be taken into account
following [60, Section 5]: one introduces a simplicial submesh ST of each T ∈
Th such that ST form a conforming simplicial mesh Sh of Ω. One then uses
the validity of the balance equation (7.39) on each T ∈ Th in order to solve
on the mesh ST of each T ∈ Th a local Stokes problem, yielding a side normal
flux ΥF for each side F ∈ ∂Sh and uh ∈ [P0(Sh)]d and ph ∈ P0(Sh). Then
the approach of the previous paragraph can be applied in a straightforward
way on the mesh Sh.
Remark 7.4 (Estimates for the fluxes σh) Estimates on the error directly in
the fluxes σh can be established along the lines of the analysis in [61].

7.5 Mixed finite element methods

Here, we derive locally efficient a posteriori error estimates for mixed finite
element methods using Corollary 5.1 and Theorem 6.1. We suppose that Th
is simplicial and matching.

The mixed finite element method for problem (2.3a)–(2.3b) reads: find
(σh,uh, ph) ∈ Σh ×Vh ×Qh, the approximation to the stress tensor σ, the
velocity u, and the pressure p, respectively, such that

(σh, τh) + (uh,∇·τ h) = 0 ∀τh ∈ Σh, (7.42a)

−(∇·σh,vh) + (∇ph,vh) = (f ,vh) ∀vh ∈ Vh, (7.42b)

(uh,∇qh) = 0 ∀qh ∈ Qh. (7.42c)

We consider the Raviart–Thomas–Nédélec spaces Σh := Σk(Th) (see (7.5)),
Vh := [Pk(Th)]d, and Qh := Pk+1(Th) ∩ C(Ω) ∩ Q, k ≥ 0. Brezzi–Douglas–
Marini/Brezzi–Douglas–Durán–Fortin finite element spaces can also be con-
sidered, as in [52].



26 Antti Hannukainen et al.

In order to obtain an upper bound on the error |||(u − uh, p − ph)|||,
we could now directly apply Corollary 5.1. Indeed, σh ∈ Σh, so that σh
belongs to H(div, Ω) by definition, and (5.9) follows from (7.42b). As, how-
ever, explained in Section 7.4, such a direct application is not too wise. Thus,
following [6,5,58,61], we once again introduce a cheap elementwise postpro-
cessing of the velocity uh. Let T ∈ Th and let Σh(T ) denote the restriction
of Σh onto T and similarly for Vh(T ). We look for ũh|T ∈ Mh(T ) such that

(∇ũh − σh, τh)T = 0 ∀τh ∈ Σh(T ), (7.43a)

(ũh − uh,vh) = 0 ∀vh ∈ Vh(T ). (7.43b)

Equivalently, the above definition can be expressed as

ΠΣ
h
(T )(∇ũh|T ) = σh|T , (7.44a)

ΠVh(T )(ũh|T ) = uh|T , (7.44b)

whereΠΣ
h
(T ) is the L

2-orthogonal projection ontoΣh(T ) andΠVh(T ) is the

L2-orthogonal projection onto Vh(T ). The spaces Mh(T ) are vector variants
of those of [6,5]. They are typically [Pk+1(Th)]d spaces enriched by bub-
bles. Moreover, in the lowest-order case (k = 0), as in (7.41a)–(7.41b) (cf.
also (7.23a)–(7.23b)), following [58], one can easily build ũh such that

∇ũh|T = σh|T ∀T ∈ Th, (7.45a)

(ũh, ei)T
|T | = uih|T , i = 1, . . . , d, ∀T ∈ Th. (7.45b)

We then apply Corollary 5.1 in order to estimate |||(u− ũh, p− ph)|||. In the
lowest-order case (k = 0) and constructing ũh by (7.45a)–(7.45b), ‖∇ũh −
σh‖T = 0. Hence in this case, (6.3) is trivially satisfied, once again in agree-
ment with the flux-conforming nature of mixed finite elements. For k ≥ 1, this
property does not hold exactly anymore. By (7.44a), however, ‖∇ũh−σh‖T
is expected to be small and act as a numerical quadrature. Finally, we note
that Remark 7.4 applies here as well. Proceeding as in [61], rigorous both-
sided estimates, also including the estimates on the error directly in the fluxes
σh, can be obtained.

8 Numerical experiments

In this section, we illustrate the theory on numerical experiments using
discontinuous, conforming, and nonconforming methods. As a discontinu-
ous method, we consider first- and second-order symmetric discontinuous
Galerkin (DG) method of Section 7.1, i.e., (7.2) with θ = 1 and k = 1, 2.
The conforming example will be computed using the P1 iso P2–P1 method
of Section 7.2 and the nonconforming example using the Crouzeix–Raviart
method of Section 7.3.

The a posteriori error estimates for these methods are obtained by recov-
ering the equilibrated flux σh and applying Theorem 5.1 or Corollary 5.1,
depending on the method. For the discontinuous Galerkin method of order k,
we recover the flux from the space Σk(Th). The error estimator is obtained
by applying Theorem 5.1. For such flux and sufficiently regular f , Lemma 7.1
guarantees superconvergence for the residual error estimators ηR,T of (5.3)
by two orders of magnitude. As we will see, this is not true if f is not suf-
ficiently regular. For the P1 iso P2–P1 and Crouzeix–Raviart methods, the
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Fig. 8.1 Estimated and exact errors for the first-order DG, second-order DG, P1

iso P2–P1, and Crouzeix–Raviart methods for the smooth test case

flux is recovered by solving local minimization problems (7.20) and (7.37),
respectively. In order for Lemmas 7.4 and 7.10 hold, we, as usual, implement
these methods with f replaced by Π0f , where Π0 is the L2-orthogonal pro-
jection onto [P0(Th)]d. We then include the data oscillation in the residual
error estimators ηR,T (5.7) and (5.3) as CP,ThT ‖f −Π0f‖T , which are also
superconvergent (by one order of magnitude) for smooth f . The error esti-
mate for the P1 iso P2–P1 method is obtained by applying Corollary 5.1 and
for the Crouzeix–Raviart method by applying Theorem 5.1.

Throughout this section, we will consider domain Ω = (0, 1)2. To evaluate
the energy (semi-)norm (3.5) and the divergence error estimator ηD,T of (5.2)
the inf–sup constant β has to be estimated. Although the inf–sup constant
can be estimated analytically for rectangular domains, we have computed
β with the procedure from [27]. Based on these computations, the value
β = 0.44 is used.

The load function f is chosen to correspond to the solution

u = ∇× (x− 1)2x1+α(y − 1)2y2e3, p = x+ y − 1. (8.1)

For α > 0, the velocity field u has a zero divergence, ∇·u = 0, and satisfies
the zero Dirichlet boundary condition, u = 0 on ∂Ω. The regularity of u is
[H

1
2
+α(Ω)]d for α 6∈ N and [C∞(Ω)]d for α ∈ N.
For all methods, we will first consider problem with a smooth solution.

For this purpose, the parameter α is chosen as α = 1. To compare the error
estimator with the exact error in uniform refinement, we have solved the
problem at hand with each of the mentioned methods on a set of uniformly
refined meshes. The error and estimates behavior for the different schemes
are visualized in Figure 8.1. The corresponding effectivity indices, given as
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Fig. 8.2 Effectivity indices for the first-order DG, second-order DG, P1 iso P2–P1,
and Crouzeix–Raviart methods for the smooth test case

10
0

10
1

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

NUMBER OF NODES

FIRST−ORDER DG

 

 

NC
DIV
RES
DIFF
OPTIMAL SPEED

10
0

10
1

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

NUMBER OF NODES

SECOND−ORDER DG

 

 

NC
DIV
RES
DIFF
OPTIMAL SPEED

10
0

10
1

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

NUMBER OF NODES

P1 iso P2−P1

 

 

DIV
RES
DIFF
OPTIMAL SPEED

10
0

10
1

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

NUMBER OF NODES

CR

 

 

NC
DIV
RES
DIFF
OPTIMAL SPEED

Fig. 8.3 Different estimators for the first-order DG, second-order DG, P1 iso P2–
P1, and Crouzeix–Raviart methods for the smooth test case

the ratios of the estimate over the error, are presented in Figure 8.2. The
different estimators, namely

{

∑

T∈Th

η2T

}1/2

, (8.2)

with ηT = ηNC,T , ηDF,T /CS, ηR,T /CS, and ηD,T /CS, are plotted in Figure 8.3.
For each method, the predicted superconvergence for the ηR,T part is ob-
served.

The error distributions from refinement step 5 for discontinuous Galerkin
methods, the P1 iso P2–P1 method, and the Crouzeix–Raviart method are
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Fig. 8.4 Estimated (left) and exact (right) error distributions for the first-order
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Fig. 8.5 Estimated (left) and exact (right) error distributions for the second-order
DG method in the smooth test case

given respectively in Figures 8.4, 8.5, 8.6, and 8.7. As the error bounds given
in Theorem 5.1 or Corollary 5.1 are not in an elementwise form, we have
estimated the upper bound as

|||(u− uh, p− ph)|||2 ≤ 2
∑

T∈Th

{

η2NC,T +
1

C2
S

(ηR,T + ηDF,T )
2 + η2D,T

}

.

We have used the term ηT := {2(η2NC,T +C−2
S (ηR,T + ηDF,T )

2 + η2D,T )}1/2 as
elementwise error estimator. For comparison of the exact and estimated error
distributions, we have also included local the effectivity indices in Figure 8.8.
Based on our results, we can conclude that the predicted and exact error
distributions match quite well.

In the second example, we set α = 0.75, so that the velocity u is in
[H1.25(Ω)]d and there is a boundary singularity on the edge x = 0. In this
example, all computations were performed using the first-order DG method.
The problem was solved either on uniformly refined meshes or using a sim-
ple adaptive procedure. In the adaptive routine, we refine ten percents of
elements in each step using the Matlab PDE toolbox refinemesh algorithm.
The elements are chosen such that they have the largest element estimators
ηT .

The error behavior in the adaptive and uniform refinement procedures
is visualized in Figure 8.10 and the corresponding effectivity index in the
adaptive case in Figure 8.10, left. The uniform mesh refinement displays
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Fig. 8.6 Estimated (left) and exact (right) error distributions for the P1 iso P2–P1

method in the smooth test case
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Fig. 8.7 Estimated (left) and exact (right) error distributions for the nonconform-
ing Crouzeix–Raviart method in the smooth test case

the convergence rate O(h0.25), which is in agreement with the [H1.25(Ω)]d

regularity of the weak solution. The adaptive refinement procedure has con-
siderably faster convergence rate. However, the optimal convergence rate is
not achieved even with the adaptive solution strategy. This is probably due to
the difficult nature of the problem. In order to exclude that this phenomenon
is caused by our error estimator, we include Figure 8.10, right. Here we give
a comparison of the adaptive refinement process when driven by our a pos-
teriori error estimate and when done following the exact distribution of the
error (known herein). Clearly, the exact error behavior is not dependent on
the applied error distribution used to drive the adaptivity. As in the smooth
test case, the error estimate overestimates the error, but decreases with the
same speed as the exact error.

Figure 8.11 shows the estimated and exact error distributions in the sin-
gular test case. They once again match quite well; in particular the boundary
singularity is well detected. The superconvergence of ηR,T does not appear
anymore as f is not sufficiently regular. For the sake of completeness, initial,
third, and fifth adaptive mesh are visualized in Figure 8.12. One can observe
the expected refinement towards the boundary singularity.
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Fig. 8.9 Estimated and exact errors in uniform/adaptive refinement (left) and
components of the error estimator in adaptive refinement (right) for the first-order
DG method in the singular test case

Appendix

A Characterization of the inf–sup constants

In this section we will show a proof of Lemma 3.1, following the ideas of [45].
We start by the following well-known result [37,54]:
Lemma A.1 (Characterization of the inf–sup constant) The inf–sup con-
stant β of (2.4) is the square root of the smallest eigenvalue to the following gen-
eralized eigenvalue problem

a(u,v) + b(v, p) = 0 ∀v ∈ V, (A.1a)

b(u, q) = −λ(p, q) ∀q ∈ Q. (A.1b)
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Proof Define the following operators

A := −∆ : V → V∗
,

B := ∇ : Q → V∗
,

so that it holds

a(v,v) = (A1/2v, A1/2v) and b(v, q) = (B∗v, q)

for all v ∈ V and all q ∈ Q. With this notation, we have

b(v, q)

‖∇v‖ ‖q‖ =
(B∗v, q)

‖A1/2v‖ ‖q‖ .
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Substituting z := A1/2v gives

b(v, q)

‖∇v‖ ‖q‖ =
(B∗A−1/2z, q)

‖z‖ ‖q‖ =
(z, A−1/2Bq)

‖z‖ ‖q‖
and hence the supremum is obtained by choosing

z =
A−1/2Bq

‖A−1/2Bq‖
and we come to

β = inf
q∈Q

‖A−1/2Bq‖
‖q‖ .

Squaring gives

β
2 = inf

q∈Q

‖A−1/2Bq‖2
‖q‖2 .

This is the Rayleigh quotient for the eigenvalue problem

B
∗
A

−1
Bp = λp. (A.3)

Denoting u = −A−1Bp this is written as

Au+Bp = 0,

B
∗u =− λp,

i.e., the operator form of (A.1). ⊓⊔
We are now ready to prove Lemma 3.1.

Proof (Proof of Lemma 3.1) In complete analogy to the preceding proof, with B,A
replaced by

B =

(

A B
B∗ 0

)

and A =

(

A 0
0 β2I

)

,

respectively, the inf–sup constant is the square root of the smallest eigenvalue µ of

B∗A−1BV = µAV.
Written out explicitly, with VT = (u, p)T , this is

(

A B
B∗ 0

)(

A−1 0
0 β−2I

)(

A B
B∗ 0

)(

u
p

)

= µ

(

A 0
0 β2I

)(

u
p

)

.

From here we see that µ = ν2, where ν is the eigenvalue to
(

A B
B∗ 0

)(

u
p

)

= ν

(

A 0
0 β2I

)(

u
p

)

.

Explicitly,

Au+Bp = νAu,

B
∗u = β

2
νp.

From here, we see that ν = 1 is an eigenvalue. Suppose next that ν 6= 1. Solving
for (ν − 1)u in the first equation and substituting in the second one gives

B
∗
A

−1
Bp = β

2
ν(ν − 1)p.

Comparing with (A.3) shows that

ν(ν − 1) = 1,

giving

ν =
1±

√
5

2
.

The constant in the stability condition is thus min |ν|, i.e.

min

{

1,

√
5 + 1

2
,

√
5− 1

2

}

=

√
5− 1

2
.

This completes the proof. ⊓⊔
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Fig. B.1 Equilibration of the correction terms inside each triangle

B Equilibration for higher-order conforming and conforming
stabilized finite element methods on dual meshes

This appendix concerns conforming and conforming stabilized finite element
methods of Section 7.2. More precisely, for higher-order continuous pressure el-
ements of Section 7.2.2, we show how to, from (7.29), obtain new normal flux
functions ΥF (uh, ph) for which (7.30) holds. This can be seen as an equivalent of
the equilibration procedure of [4] on dual meshes.

Let D ∈ Dint
h , V be the associated vertex, T ∈ TV , and i = 1, . . . , d. Denote

the contribution to the correction terms of the right-hand side of (7.29) by

mV,T,i

:= − (f +∆uh −∇ph, ei)T∩D + (f +∆uh −∇ph,ψV,i)T

− 1

2

∑

F∈F int
T

〈[[∇uhnF ]],ψV,i〉F +
1

2

∑

F∈F int
T

〈[[∇uhnF ]], ei〉F∩D.
(B1)

We will speak about these quantities as of “normal fluxes” mV,T,i. Remark that
[[∇uhnF ]] = 0 on such sides F ∈ ∂S int

D which are not contained in ∂Th, cf. Figure 7.1.
Thus, from (7.29) and the above formula, we have

∑

F∈FD

〈ΥF (uh)nD·nF , ei〉F − (∇ph, ei)D + (f , ei)D +
∑

T∈TV

mV,T,i = 0,

i = 1, . . . , d, ∀D ∈ Dint
h .

(B2)

For the sake of simplicity, let us define mV,T,i in the same way also for D ∈ Dext
h

and the associated vertex V .
Consider a fixed T ∈ Th and i = 1, . . . , d. We have associated the normal flux

mVj ,T,i to each of the vertices Vj of T , j = 1, . . . , d+1, cf. Figure B.1. We now want
to equilibrate the normal fluxes mVj ,T,i: the purpose is to associate to each of the

sides Fm ⊂ T , m = 1, . . . , d + 1, Fm ∈ ∂S int
h such that F ⊂ ∂D for some D ∈ Dh,

a correction normal flux υFm,i (in the direction of the fixed normal nF ) such that
the following holds (we give an example for d = 2, corresponding to Figure B.1):

(

1 1 0
0 −1 1

−1 0 −1

)(

υF1,i

υF2,i

υF3,i

)

=

(

mV1,T,i

mV2,T,i

mV3,T,i

)

. (B3)

The value mV1,T,i represents the total normal flux from the element T ∩D1 to the
elements T ∩ D2 and T ∩ D3 (where Di are the dual volumes associated with the
vertices Vi). We clearly want to keep this total normal flux but to split it into the
side normal fluxes υF1,i and υF2,i; we proceed similarly for mV2,T,i and mV3,T,i. The
essential feature is that the corrections normal fluxes υFm,i are univocally defined
for each side Fm, m = 1, . . . , d+ 1, cf. once again Figure B.1.

It turns out that the system matrix in (B3) is singular, as the sum of all the
row vectors equals zero. It is, however, easy to check that its rank is equal to d.
Fortunately, the right-hand side in (B3) is compatible: by the fact that the basis
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functions ψVj ,i form a partition of unity on the chosen element T ∈ Th,

d+1
∑

j=1

ψVj ,i|T = ei|T ,

we easily get
d+1
∑

j=1

mVj ,T,i = 0,

i = 1, . . . , d. Thus, there exists a solution to (B3). Note that (B3) is always a system
of a fixed small size (d+ 1)× (d+ 1) on each T ∈ Th, for approximations (7.11a)–
(7.11b) or (7.12a)–(7.12b) of any order k.

Using υFm,i for each T ∈ Th, we can now define new normal flux functions
ΥF (uh, ph) for sides F ∈ ∂S int

h such that F ⊂ ∂D for some D ∈ Dh, in a way
that (7.30) holds. More precisely, let

(υF (uh, ph))
i := |F |−1

υF,i, i = 1, . . . , d. (B4)

Note that, consequently, (B3) gives

∑

T∈TV

mV,T,i =
∑

F∈FD

υF,inD·nF =
∑

F∈FD

〈υF (uh, ph)nD·nF , ei〉F (B5)

for every D ∈ Dint
h and the associated vertex V , i = 1, . . . , d. Let F ∈ ∂S int

h such
that F ⊂ ∂D for some D ∈ Dh and set

ΥF (uh, ph) := (∇uhnF )|F + υF (uh, ph). (B6)

We then see that (B2) together with (B5) and (B6) implies (7.30).

Acknowledgements We are indebted to Prof. Jean-François Mâıtre (Ecole Cen-
trale de Lyon) for showing us Lemma 3.1.
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58. Vohraĺık, M. A posteriori error estimates for lowest-order mixed finite ele-
ment discretizations of convection-diffusion-reaction equations. SIAM J. Nu-
mer. Anal. 45, 4 (2007), 1570–1599.
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