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UNIFIED PRIMAL FORMULATION-BASED

A PRIORI AND A POSTERIORI ERROR ANALYSIS

OF MIXED FINITE ELEMENT METHODS

MARTIN VOHRALÍK

Abstract. We derive in this paper a unified framework for a priori and a
posteriori error analysis of mixed finite element discretizations of second-order
elliptic problems. It is based on the classical primal weak formulation, the
postprocessing of the potential proposed in [T. Arbogast and Z. Chen, On
the implementation of mixed methods as nonconforming methods for second-
order elliptic problems, Math. Comp. 64 (1995), 943–972], and the discrete
Friedrichs inequality. Our analysis in particular avoids any explicit use of the
uniform discrete inf–sup condition and in a straightforward manner and un-
der minimal necessary assumptions, known convergence and superconvergence
results are recovered. The same framework then turns out to lead to opti-
mal a posteriori energy error bounds. In particular, estimators for all families
and orders of mixed finite element methods on grids consisting of simplices or
rectangular parallelepipeds are derived. They give a guaranteed and fully com-
putable upper bound on the energy error, represent error local lower bounds,
and are robust under some conditions on the diffusion–dispersion tensor. They
are thus suitable for both overall error control and adaptive mesh refinement.
Moreover, the developed abstract framework and a posteriori error estimates
are quite general and apply to any locally conservative method. We finally
prove that in parallel and simultaneously in converse to Galerkin finite ele-
ment methods, under some circumstances, the weak solution is the orthogonal
projection of the postprocessed mixed finite element approximation onto the
H1

0 (Ω) space and also establish several links between mixed finite element
approximations and some generalized weak solutions.

1. Introduction

We consider in this paper the model problem

−∇ · (S∇p) = f in Ω,(1.1a)

p = 0 on ∂Ω,(1.1b)

where Ω ⊂ Rd, d = 2, 3, is a polygonal (polyhedral) domain (open, bounded, and
connected set), S is a symmetric, bounded, and uniformly positive definite tensor,
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and f ∈ L2(Ω). The classical primal weak formulation consists in finding p ∈ H1
0 (Ω)

such that

(1.2) (S∇p,∇ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω)

(see Section 2.1 below for the details on the notation). The problem (1.1a)–(1.1b)
can be equivalently written as the first-order system

u = −S∇p in Ω,(1.3a)

∇ · u = f in Ω,(1.3b)

p = 0 on ∂Ω,(1.3c)

which leads to the weak mixed formulation, consisting in finding u ∈ H(div,Ω) and
p ∈ L2(Ω) such that

(S−1u,v)− (p,∇ · v) = 0 ∀v ∈ H(div,Ω),(1.4a)

(∇ · u, φ) = (f, φ) ∀φ ∈ L2(Ω).(1.4b)

Note that this formulation is equivalent to (1.2) in the sense that p = p and u =
−S∇p, which is straightforward to show, cf. Quarteroni and Valli [52, Section 7.1].

We are interested in mixed finite element approximations to (1.4a)–(1.4b), which
consist in finding uh ∈ Vh and ph ∈ Φh such that

(S−1uh,vh)− (ph,∇ · vh) = 0 ∀vh ∈ Vh,(1.5a)

(∇ · uh, φh) = (f, φh) ∀φh ∈ Φh.(1.5b)

Here Φh ⊂ L2(Ω) and Vh ⊂ H(div,Ω) are some of the usual finite-dimensional
spaces defined on a mesh Th of simplices or rectangular parallelepipeds, see Sec-
tion 4.1 below and Brezzi and Fortin [20] or Roberts and Thomas [56]. The main
purposes of this paper are the following: i) present a unified framework for both
a priori and a posteriori error analysis of mixed finite element methods; ii) base
this framework entirely on the primal weak formulation (1.2) (and its above-cited
direct equivalence with (1.4a)–(1.4b)) on the continuous level and on postprocess-
ing and the discrete Friedrichs inequality on the discrete level; in particular, the
explicit use of the uniform-in-h discrete inf–sup condition is avoided; iii) arrive at
optimal a priori estimates (under minimal necessary assumptions); iv) present new
(and optimal) a posteriori error estimates; v) obtain these results with as simple
as possible proofs; vi) present some new (to the best of the author’s knowledge)
properties of the mixed finite element methods; vii) give a general framework for a
posteriori error estimation in locally conservative methods.

A priori error estimates for mixed finite element methods are usually obtained
by means of the saddle-point theory of Brezzi [17] and Babuška [10]. Traditionally,
the natural norms of the spaces H(div,Ω) and L2(Ω) are used, but mesh-dependent
norms can be employed instead, cf. Babuška et al. [12]. Postprocessing of ph into
a new approximation p̃h is then usually used for the double purpose of giving an
improved approximation to p and facilitating the implementation of mixed meth-
ods, cf. Arnold and Brezzi [9], Bramble and Xu [16], Stenberg [57], Chen [25],
and Arbogast and Chen [8]. In combination with mesh-dependent norms, it has
also previously been used in order to obtain error estimates in, e.g., Lovadina and
Stenberg [44], see also the references therein. Some complementary results are pre-
sented by Marini and Pietra [46] and in [25] and [8]. Links between the mixed finite
element and nonconforming finite element methods are then in particular given
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in [9, 25, 8], Marini [45], Chen [26], or [37, 65]. Recently, Cockburn and Gopalakr-
ishnan [28, 29] showed that analysis of mixed methods can be entirely based on
the hybridization (cf. Section 4.3 below) and lifting operators and demonstrated
interesting relations between the different mixed methods. Let us also mention that
very tight links between mixed finite element and finite volume methods exists, see
Younès et al. [68] and [60] and the references therein.

A posteriori error estimates for mixed finite element methods were started in
the works of Alonso [7], Braess and Verfürth [15], Carstensen [23], Hoppe and
Wohlmuth [39], Achchab et al. [2], Wohlmuth and Hoppe [67], Carstensen and Bar-
tels [24], Kirby [42], El Alaoui and Ern [34], Wheeler and Yotov [66], and Lovadina
and Stenberg [44]. For some discussion of these results, we refer to [62]. Recently,
new works appeared. Repin and Smolianski [55] are able to give a guaranteed up-
per bound, which may however not be sufficiently precise for inhomogeneous S and
general domains and boundary conditions. No local efficiency is shown. Nicaise
and Creusé [48] improve the results of [23] and extend them to the anisotropic case.
Kim [41] presents estimates applicable to any locally conservative method, as is
the case of the estimates presented here. Bounds up to an undetermined constant
are given in a mesh-dependent norm, which contains a weighted jump term for the
potential. The results of Repin et al. [54] are only valid under the hypothesis that
uh ∈ H(div,Ω) and ph ∈ H1

0 (Ω), which is not the case of (1.5a)–(1.5b) (see also
Section 6.4.2 below for further remarks on this point). Larson and Målqvist [43]
give energy norm error estimates for the flux. The upper bound again features an
unknown constant and no local efficiency is proved. Finally, guaranteed and locally
efficient a posteriori error estimates for the lowest-order Raviart–Thomas–Nédélec
case with effectivity indices close to the optimal value of one, of the type presented
in this paper, were derived in [62, 61] and in Ainsworth [6].

We first in Section 3 of this paper, after collecting some preliminaries in Section 2,
give an abstract estimate on the energy norm of the difference between two arbitrary
vector fields. This estimate will then be used in order to obtain both a priori and a
posteriori estimates on the error in the approximation of u in a straightforward way.
In section 4 we then recall some basic facts about mixed finite element methods and
in particular the postprocessing of [8] and, for the lowest-order Raviart–Thomas–
Nédélec case, that of [62]. This postprocessing is the basis for optimal a priori and
a posteriori error estimates on the error in the approximation of p.

We carry out the a priori error analysis in Section 5. We highlight here its
main ideas for the case S = I (I denotes the identity matrix). Typically, one has
Vh · n|Eh

= Pk(Eh) in mixed finite element methods, where Eh is the set of sides
(edges if d = 2 and faces if d = 3). Our main assumption is that there exists a space
Mh such thatMh is continuous enough in the sense that it is contained in the space
of functions such that the jumps of their traces are orthogonal to the polynomials
from Pk(Eh). We also suppose that one can construct a postprocessed potential
p̃h ∈ Mh such that the L2(Ω)-orthogonal projection of −∇p̃h onto ΠK∈Th

Vh(K)
is uh. This is the situation of the postprocessing of [8]. Recalling that moreover
the L2(Ω)-orthogonal projection of ∇ · uh onto Φh equals that of f by (1.5b), we
note that this fully mimics the continuous setting where u ∈ H(div,Ω), p ∈ H1

0 (Ω),
and (1.3a)–(1.3b) holds true. Now proving the equivalence between the energy
seminorms on Mh(K) and the L2(K)-orthogonal projection of −∇Mh(K) onto
Vh(K) for each element K enables us to relate the energy error in p − p̃h to the
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one in u−uh, easily obtained itself from the above-mentioned abstract estimate for
vector functions. L2(Ω) estimates then follow by the discrete Friedrichs inequality.
We also show that using the postprocessing of [62] in the lowest-order Raviart–
Thomas–Nédélec case, much of the above can be avoided and one obtains the
estimates for p − p̃h in an extremely simple way. Finally, by construction, ph
is the L2(Ω)-orthogonal projection of p̃h onto Φh, so that the estimates for the
error in p − ph are easily recovered. The analysis still relies on the appropriate
vector interpolation operator of each mixed finite element method, satisfying the
commuting diagram property, see [20, Section III.3]. On the other hand, the use
of the uniform-in-h discrete inf–sup condition is avoided by the postprocessing and
the discrete Friedrichs inequality; for some related comments on this last point, we
refer to [30, 31] and [8, Theorem 2].

In Section 6, we extend the a posteriori error estimates for the lowest-order
Raviart–Thomas–Nédélec case of [62] to other families of mixed finite elements, all
orders, and grids consisting of rectangular parallelepipeds, using only the techniques
that go back to the Prager–Synge equality [51]. Using the abstract framework for
the error between two arbitrary vector fields of Section 3, we first give estimates for
the energy error in the approximation of u. It consists of two parts. The first one
is generally given by infs∈H1

0
(Ω) |||uh +S∇s|||∗, expressing the measure of how close

uh is to the flux of a H1
0 (Ω)-potential in the vector energy norm ||| · |||∗. In practice,

the indicator of an element K is given by |||uh + S∇(Iav(p̃h))|||∗,K , where Iav is
an averaging operator. The second one is the residual term (sometimes considered

separately and call “data oscillation term”), given by C
1/2
P hKc

−1/2
S,K ‖f −PΦh

(f)‖K ,

where hK is the diameter ofK, cS,K is the smallest eigenvalue of S onK, CP = 1/π2

is the constant from the Poincaré inequality, PΦh
is the L2(Ω)-orthogonal projection

onto Φh, and ‖ · ‖ is the L2 norm. Such an estimator in particular improves on
estimators of the type hK‖uh + S∇ph‖K , found in many of the above-cited works.
Remark that this last estimator in particular reduces to hK‖uh‖K in low order
mixed finite element methods, i.e., the weighted L2(Ω)-norm of the approximate
flux, where no approximation is reflected. Next, using the framework introduced
in [62] and [41], we give estimates for the energy error in the approximation of p.

The a posteriori error estimates developed in this paper are quite general and
apply directly to any locally conservative method, such as the finite volume one,
cf. Eymard et al. [36], Aavatsmark et al. [1], or Droniou and Eymard [32], mimetic
finite difference, cf. Brezzi et al. [21], covolume, cf. Chou et al. [27], and other.
For related results, we refer to [63]. They are given for a general diffusion tensor,
require no additional regularity of the weak solution, no saturation assumption,
and no use of the Helmholtz decomposition. They allow for grids consisting of rect-
angular parallelepipeds, which can be very useful in practice, where such grids are
extensively used. Combinations of simplices and rectangular parallelepipeds in one
grid and extensions to nonmatching grids, along with other extensions, are consid-
ered in [50]. Homogeneous Dirichlet boundary conditions are only considered for
the simplicity of the exposition; for inhomogeneous Dirichlet/Neumann boundary
conditions, we refer, e.g., to. [41, 63]. Numerical experiments in the lowest-order
case are presented in [62].

Finally, in Section 7, we give some complements on mixed finite element meth-
ods. In particular, we show that under certain conditions, the weak solution p is
the orthogonal projection of the postprocessed mixed finite element approximation
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p̃h onto the H1
0 (Ω) space. This stands in parallel and simultaneously in converse

to Galerkin finite element methods, where the approximate solution is the orthog-
onal projection of the weak solution onto the discrete space. We also show that
mixed finite element approximations have close relations to some generalized weak
solutions, independently of the smoothness of the tensor S.

2. Preliminaries

We set up in this section the notation for meshes and functional spaces used
throughout the paper, define scalar- and vector-valued bilinear forms and energy
(semi-)norms, and describe an averaging operator.

2.1. Notation. We shall work in this paper with triangulations Th which for all
h > 0 consist either of closed simplices or of closed rectangular parallelepipeds K
such that Ω =

⋃

K∈Th
K. We suppose that Th are conforming (matching), i.e., such

that if K,L ∈ Th, K 6= L, then K∩L is either an empty set or a common face, edge,
or vertex of K and L. Let hK denote the diameter of K and let h := maxK∈Th

hK .
We denote by Eh the set of all sides of Th, by E int

h the set of interior, by Eext
h the set

of boundary, and by EK the set of all the sides of an elementK ∈ Th; hσ then stands
for the diameter of σ ∈ Eh. We will also use the notation TK (ẼK , respectively) for
such L ∈ Th (σ ∈ Eh) which share at least a vertex with a K ∈ Th. Similarly, TV is
the set of such K ∈ Th that contain the node V . Later on, we will sometimes need
the assumption that Th are shape-regular in the sense that there exists a constant
κT > 0 such that maxK∈Th

κK ≤ κT for all h > 0, where κK := hK/̺K with ̺K
being the diameter of the largest ball inscribed in K.

Next, for K ∈ Th, n will always denote its exterior normal vector; we shall also
employ the notation nσ for a normal vector of a side σ ∈ Eh, whose orientation
is chosen arbitrarily but fixed for interior sides and coinciding with the exterior
normal of Ω for boundary sides. For σ ∈ E int

h shared by K,L ∈ Th such that nσ

points from K to L and a function ϕ ∈ H1(Th) (see below for the notation), we
shall define the jump operator [[·]] by

[[ϕ]] := (ϕ|K)|σ − (ϕ|L)|σ.

We put [[ϕ]]σ := ϕ|σ for any σ ∈ Eext
h .

For a given domain S ⊂ Rd, we shall hereafter employ the standard functional
notations L2(S), Hq(S), H1

0 (S), cf. [4]. In particular, we note by (·, ·)S the L2(S)
inner product, by ‖·‖S the associated norm (we omit the index S when S = Ω), and
by |S| the Lebesgue measure of S. Let next H(div, S) = {v ∈ L2(S); ∇·v ∈ L2(S)}
and let 〈·, ·〉∂S stand for the (d−1)-dimensional L2(∂S)-inner product on ∂S or the

appropriate duality pairing on ∂S. We will also need the space H̃(div, S) = {v ∈
Lq(S); ∇·v ∈ L2(S)}, q > 2 fixed, cf. [20, Section III.3.3]. For a given partition Th
of Ω, let H1(Th) := {ϕ ∈ L2(Ω); ϕ|K ∈ H1(K) ∀K ∈ Th} be the broken Sobolev
space. Also, we let W0(Th) and Wh(Th) be the spaces of functions with jumps of
traces across the sides orthogonal to, respectively, constants and polynomials of
Vh · n|σ for each σ ∈ Eh,

W0(Th) := {ϕ ∈ H1(Th); 〈[[ϕ]], 1〉σ = 0 ∀σ ∈ Eh},(2.1a)

Wh(Th) := {ϕ ∈ H1(Th); 〈[[ϕ]], ψh〉σ = 0 ∀ψh ∈ Vh · n|σ ∀σ ∈ Eh}.(2.1b)

Clearly, W0(Th),Wh(Th) 6⊂ H1
0 (Ω) but there is “less and less nonconformity” in

Wh(Th) with increasing order of the polynomials in Vh · n. Finally, the weak
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gradient on H1(Ω) and the piecewise weak gradient on H1(Th) are both denoted
by the ∇ sign and similarly for the weak divergence ∇·. To simplify the notation,
we systematically use the convention 0/0 = 0 throughout the text.

Finally, we denote by cS,Ω, CS,Ω the best constants such that cS,Ωv ·v ≤ Sv ·v ≤
CS,Ωv ·v, cS,Ω > 0, CS,Ω > 0, for all v ∈ Rd and a.e. in Ω. Similar notations cS,K ,
CS,K , and cS,TK

for K ∈ Th will also be employed.

2.2. Bilinear forms and energy (semi-)norms. Let the symmetric bilinear
form B acting on scalars be defined by

(2.2) B(p, ϕ) := (S∇p,∇ϕ), p, ϕ ∈ H1(Th),

whereas its vector counterpart A acting on vectors by

(2.3) A(u,v) := (u,S−1v), u,v ∈ L2(Ω).

Note that the primal weak formulation (1.2) can be rewritten equivalently using
the above forms B and A as: find p ∈ H1

0 (Ω) such that

(2.4) B(p, ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω)

or

(2.5) A(S∇p,S∇ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω),

as

(2.6) B(p, ϕ) = A(S∇p,S∇ϕ) ∀p, ϕ ∈ H1(Th),

which will turn out to be useful later. Let us define the energy seminorm on the
space H1(Th)

(2.7) |||ϕ|||2 := B(ϕ, ϕ) = ‖S
1

2∇ϕ‖2, ϕ ∈ H1(Th),

which becomes a norm on W0(Th) thanks to the discrete Friedrichs inequality

(2.8) ‖ϕ‖Ω ≤ C
1

2

DF‖∇ϕ‖ ∀ϕ ∈W0(Th), ∀h > 0,

where CDF only depends on κT and infb∈Rd{thickb(Ω)}, cf. [59, Theorem 5.4].
Similarly, let the energy norm for vectors be given by

(2.9) |||v|||2∗ := A(v,v) = ‖S− 1

2v‖2, v ∈ L2(Ω).

Note in particular that by (2.6),

(2.10) |||ϕ||| = |||S∇ϕ|||∗ ∀ϕ ∈ H1(Th).

By the Cauchy–Schwarz inequality, one also immediately has

B(p, ϕ) ≤ |||p||| |||ϕ||| ∀p, ϕ ∈ H1(Th),(2.11a)

A(u,v) ≤ |||u|||∗ |||v|||∗ ∀u,v ∈ L2(Ω).(2.11b)

We will also use the “div–energy” norm for vectors, defined as

(2.12) |||v|||2∗,div := |||v|||2∗ + ‖∇ · v‖2, v ∈ H(div,Ω).

Let us finally recall that, for K ∈ Th, the Poincaré inequality states that

(2.13) ‖ϕ− π0(ϕ)‖
2
K ≤ CPh

2
K‖∇ϕ‖2K ∀ϕ ∈ H1(K),

where πl denotes the L2(Ω)-orthogonal projection onto piecewise polynomials of
degree l. Thanks to the convexity of simplices and rectangular parallelepipeds,
CP = 1/π2, cf. [49, 13].
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2.3. An averaging operator. We shall work later with piecewise polynomial ap-
proximations p̃h to p, nonconforming in the sense that p̃h 6∈ H1

0 (Ω) but satisfying
p̃h ∈ Wh(Th) (p̃h ∈ H1(Th) in general). It will also turn out that we will need their
conforming (continuous, contained in H1

0 (Ω)) interpolant. We will use for this pur-
pose the averaging operator previously considered in, e.g., in [33, 3, 40, 5, 35] and
analyzed in detail in [40, 22]. This operator is sometimes called Oswald operator.
Note that the averaging procedure is applied here to the potential and not to its
gradient as in [69].

If Th consist of simplices, let Rn(Th) := Pn(Th) denote the space of piecewise
polynomials of total degree at most n on each simplex (without any continuity
requirement on the sides). Similarly, if Th consist of rectangular parallelepipeds,
let Rn(Th) := Qn(Th) denote the space of piecewise polynomials of degree at most
n in each variable. The averaging operator Iav : Rn(Th) → Rn(Th) ∩ H1

0 (Ω) is
defined as follows: given a function ϕh ∈ Rn(Th), the value of Iav(ϕh) is prescribed
at the Gauss–Lobatto nodes on rectangular parallelepipeds and Lagrangian nodes
on simplices of Rn(Th) ∩H

1
0 (Ω) by the average of the values of ϕh at this node,

Iav(ϕh)(V ) =
1

|TV |

∑

K∈TV

ϕh|K(V ),

where |TV | stands for the cardinality of TV . Note that the interpolant is in particular
equal to ϕh|K(V ) at a node V lying in the interior of some K ∈ Th. At boundary
nodes, the value of Iav(ϕh) is set to zero. The following results have been proved
in [22, Lemmas 3.2 and 5.3 and Remark 3.2] and [40, Theorem 2.2]:

Lemma 2.1 (Averaging operator). Let Th be shape-regular, let ϕh ∈ Rn(Th), and
let Iav(ϕh) be constructed as described above. Then

‖∇(ϕh − Iav(ϕh))‖
2
K ≤ C

∑

σ∈ẼK

h−1
σ ‖[[ϕh]]‖

2
σ

for all K ∈ Th, where the constant C depends only on the space dimension d, on
the maximal polynomial degree n, and on the shape regularity parameter κT .

3. Abstract framework

We develop in the first part of this section an abstract estimate on the energy
norm of the difference between two arbitrary vector fields which will enable us to
easily carry out both the a priori and a posteriori error analysis of mixed finite
element methods in a unified way. In the second part of this section, we give a
slightly improved version of the estimate, suitable for a posteriori error estimation.

3.1. A general abstract estimate. Following the approach introduced in [62,
Lemma 7.1], we have the following abstract result:

Theorem 3.1 (General abstract estimate). Let v,w, t ∈ L2(Ω) be arbitrary. Then

|||v −w|||∗ ≤ |||w − t|||∗ +

∣

∣

∣

∣

A

(

v −w,
v − t

|||v − t|||∗

)∣

∣

∣

∣

.

Proof. Let us first suppose that |||v −w|||∗ ≤ |||v − t|||∗. We then have

|||v − t|||2∗ = A(v − t,v − t) = A(v −w,v − t) +A(w − t,v − t)

≤ |||v − t|||∗A

(

v −w,
v − t

|||v − t|||∗

)

+ |||w − t|||∗|||v − t|||∗,
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using the bilinearity of A(·, ·), (2.9), and (2.11b). In view of the assumption, this
finishes the proof in the first case.

If |||v − t|||∗ ≤ |||v −w|||∗ holds, then

|||v −w|||2∗ = A(v −w,v −w) = A(v −w,v − t) +A(v −w, t−w)

≤ |||v − t|||∗A

(

v −w,
v − t

|||v − t|||∗

)

+ |||v −w|||∗|||w − t|||∗

≤ |||v −w|||∗

∣

∣

∣

∣

A

(

v −w,
v − t

|||v − t|||∗

)∣

∣

∣

∣

+ |||v −w|||∗|||w − t|||∗,

whence again the assertion follows. Thus the proof is complete. �

Remark 3.2 (General abstract estimate). Using the triangle inequality, the bilin-
earity of A(·, ·), and (2.11b), we immediately have

|||v −w|||∗ ≤ |||w − t|||∗ + |||v − t|||∗ = |||w − t|||∗ +A

(

v − t,
v − t

|||v − t|||∗

)

≤ |||w − t|||∗ +A

(

v −w,
v − t

|||v − t|||∗

)

+A

(

w − t,
v − t

|||v − t|||∗

)

≤ 2|||w − t|||∗ +A

(

v −w,
v − t

|||v − t|||∗

)

.

The estimate of Theorem 3.1 is superior to this simple bound by removing the factor
2 at the term |||w − t|||∗. In comparison to Theorem 3.3 below, the advantage of
Theorem 3.1 is that any triple of functions from L2(Ω) can be chosen. Moreover,
it turns out that it is extensible to the convection–diffusion–reaction framework,
where it in addition shows advantageous that t ∈ L2(Ω) in the second argument of
A(·, ·) can be chosen arbitrarily, cf. [62].

3.2. A Pythagorean estimate. Following the approach introduced in Kim [41,
Lemma 4.4], we have the following estimate:

Theorem 3.3 (Pythagorean abstract estimate). Let v be such that v = −S∇ϑ
for some ϑ ∈ H1

0 (Ω) and let w ∈ L2(Ω) be arbitrary. Let next ψ ∈ H1
0 (Ω) be the

solution of the problem

(3.1) B(ψ, ϕ) = A(−w,S∇ϕ) ∀ϕ ∈ H1
0 (Ω).

Then

(3.2) |||v −w|||2∗ = |||w + S∇ψ|||2∗ +A

(

v −w,
v + S∇ψ

|||v + S∇ψ|||∗

)2

.

Moreover,

(3.3) |||w + S∇ψ|||∗ = inf
s∈H1

0
(Ω)

|||w + S∇s|||∗.

Proof. Let us first note that there exists a unique solution to the problem (3.1)
by the Riesz representation theorem, as A(w,−S∇(·)) is a continuous linear form.
Note as well that (3.1) can be equivalently written, using (2.6), as

(3.4) A(S∇ψ +w,S∇ϕ) = 0 ∀ϕ ∈ H1
0 (Ω).
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Using this characterization for ϕ = ψ − ϑ, we have

|||v −w|||2∗ = A(v −w,v −w) = A(v −w,v + S∇ψ) +A(v −w,−S∇ψ −w)

= A(v + S∇ψ,v + S∇ψ)− 2A(S∇ψ +w,v + S∇ψ)

+A(w + S∇ψ,w + S∇ψ)

= |||v + S∇ψ|||2∗ + |||w + S∇ψ|||2∗,

employing also the definition and the symmetry of A(·, ·). The proof is finished by
noticing that, by (3.4),

|||v + S∇ψ|||∗ = A

(

v −w,
v + S∇ψ

|||v + S∇ψ|||∗

)

and

|||w + S∇ψ|||2∗ = A(w + S∇s,w + S∇ψ) ≤ |||w + S∇s|||∗|||w + S∇ψ|||∗

for an arbitrary s ∈ H1
0 (Ω), whence (3.3) follows. �

This Pythagorean estimate, as we will see later, gives a slightly more precise
upper bound in a posteriori error estimates.

4. The mixed finite element method

We recall here some known basic facts about the mixed finite element method,
namely the existence and uniqueness of discrete solutions, hybridization, and, most
importantly, the postprocessing of [8]. We start by giving the examples of the most
common mixed finite element spaces.

4.1. Examples of local mixed finite element spaces. Table 1 lists the most
common mixed finite element spaces Vh(K)× Φh(K) on an element K ∈ Th. The
notationRTN stands for the Raviart–Thomas [53] space on triangles and rectangles
and the Nédélec [47] space on tetrahedra and rectangular parallelepipeds if d = 3
andBDM for the Brezzi–Douglas–Marini [19] space on triangles and rectangles and
the Brezzi–Douglas–Durán–Fortin [18] space on tetrahedra and rectangular paral-
lelepipeds if d = 3. In the notation, “s” stands for simplices, “r” for rectangular par-

allelepipeds, P∗
2,k := r∇×(xk+1y)+s∇×(xyk+1), r, s ∈ R, and P∗

3,k :=
∑k

i=0{ri∇×

(0, 0, xyi+1zk−i)t + si∇ × (xk−iyzi+1, 0, 0)t + ti∇ × (0, xi+1yk−iz, 0)t}, ri, si ∈ R,
with∇× the curl operator. We have here denoted by k the biggest polynomial space
contained in Vh(K) and by l that in Φh(K). Then Vh := ΠK∈Th

Vh(K)∩H(div,Ω)
and Φh := ΠK∈Th

Φh(K). Note in particular that whereas Vh(K) are local uncon-
strained spaces, the fact that Vh ⊂ H(div,Ω) imposes the normal trace continuity
of all vh ∈ Vh, i.e., vh|K · nσK,L

= vh|L · nσK,L
for all σK,L ∈ E int

h shared by
elements K and L. For a general reference to mixed finite element methods, we
refer to Brezzi and Fortin [20] or Roberts and Thomas [56].

In the rest of the paper, we shall sometimes considered apart the following par-
ticular case:

Assumption (A) (Lowest-order Raviart–Thomas–Nédélec case)

The spaces Vh and Φh are formed by RTNs
0(K) or RTNr

0(K) from Table 1 and
the tensor S is piecewise constant on simplices and piecewise constant and diagonal
on rectangular parallelepipeds.
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Space d element Vh(K) Φh(K) Vh(K) · n|σ k l

RTNs
k(K) 2, 3 simplex Pd

k + Pkx Pk Pk ≥ 0 = k
RTNr

k(K) 2, 3 rect. par. Qd
k +Qkx Qk Pk (d = 2) ≥ 0 = k

Qk (d = 3)
BDMs

k(K) 2, 3 simplex Pd
k Pk−1 Pk ≥ 1 = k − 1

BDMr
k(K) 2, 3 rect. par. Pd

k ⊕P∗
d,k Pk−1 Pk ≥ 1 = k − 1

Table 1. Examples of local mixed finite element spaces

4.2. Existence and uniqueness of the discrete solutions. For the sake of
completeness and also to stress its simplicity, we recall here the proof of existence
and uniqueness of the discrete mixed finite element solution.

Corollary 4.1 (Existence and uniqueness of the discrete mixed finite element solu-
tion). Let ∇ ·Vh = Φh. Then there exists a unique solution to the problem (1.5a)–
(1.5b).

Proof. Problem (1.5a)–(1.5b) is a square linear finite-dimensional system. It thus
suffices to prove that f = 0 implies uh = 0 and ph = 0. Put φh = ph in (1.5b)
and vh = uh in (1.5a) and sum the equations. This gives (S−1uh,uh) = 0, whence
uh = 0 follows. Consequently, (ph,∇ · vh) = 0 for all vh ∈ Vh, whence ph = 0
follows by the assumption ∇ ·Vh = Φh. �

4.3. Hybridization. The hybridization technique allows to relax the normal trace
continuity constraint Vh ⊂ H(div,Ω) while imposing it instead with the aid of La-

grange multipliers. The unconstrained flux space is given by Ṽh := ΠK∈Th
Vh(K),

where Vh(K) are the local spaces on each element, and the Lagrange multipliers
space Λh is the space of (discontinuous) piecewise polynomials µh on E int

h such that
for all σ ∈ E int

h , µh|σ ∈ Vh · n|σ. With these notations, the hybridized version

of (1.5a)–(1.5b) consists in finding uh ∈ Ṽh, ph ∈ Φh, and λh ∈ Λh such that

(S−1uh,vh)− (ph,∇ · vh) +
∑

K∈Th

〈vh · n, λh〉∂K\∂Ω = 0 ∀vh ∈ Ṽh,

(4.1a)

(∇ · uh, φh) = (f, φh) ∀φh ∈ Φh,(4.1b)
∑

K∈Th

〈uh · n, µh〉∂K\∂Ω = 0 ∀µh ∈ Λh.(4.1c)

It is well known and easy to show that ph,uh from (1.5a)–(1.5b) and (4.1a)–(4.1c)
coincide; λh then provides an additional approximation to p. Let us also recall that
λh can be postprocessed locally from (1.5a)–(1.5b); on each σ ∈ E int

h , σ ∈ EK for
some K ∈ Th, it is given by

〈vh · n, λh〉σ =− (S−1uh,vh)K + (ph,∇ · vh)K

∀vh ∈ Vh(K) such that (vh · n)|γ = 0 ∀γ ∈ EK , γ 6= σ,

so that it is not necessary to implement (4.1a)–(4.1c) in order to obtain it.
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4.4. Postprocessing. Seemingly, there is no direct analogy of the link u = −S∇p
at the discrete level in the mixed finite element method. It is sometimes even
said that the distinctive feature of the mixed finite element method is that the
discrete flux uh has “more regularity” than the discrete potential ph, in a sense
that it is a polynomial of a higher degree. We shall see in this section that the link
uh ≈ −S∇ph can easily be recovered by postprocessing.

Different postprocessing techniques for mixed finite elements have been intro-
duced in the past. Let us cite the works of Arnold and Brezzi [9], Bramble and
Xu [16], Stenberg [57], Chen [25], Arbogast and Chen [8], and, for the lowest-order
Raviart–Thomas–Nédélec case, the author [62]. It will turn out that for our pur-
poses, the postprocessing of [62] and [8] under Assumption (A) and that of [8] in
general will be optimal. We now recall it here.

4.4.1. Postprocessing in the lowest-order Raviart–Thomas–Nédélec case. Under As-
sumption (A), the following postprocessing has been proposed in [62, Section 4.1]
on simplicial meshes and in [8, Sections 6 and 9] (cf. also [63, Section 3.2]) on
meshes consisting of rectangular parallelepipeds: construct p̃h ∈ P2(Th) such that

−SK∇p̃h|K = uh|K ∀K ∈ Th,(4.2a)

π0(p̃h|K) = ph|K ∀K ∈ Th.(4.2b)

Note that p̃h is in general not a full second-order polynomial and that it is only
built on each K ∈ Th from the given degrees of freedom, so that its construction
cost is negligible.

In general, p̃h is nonconforming in the sense that p̃h 6∈ H1
0 (Ω) but it is shown

in [62, Lemma 6.1] that p̃h ∈ W0(Th) on simplicial meshes; for meshes of rectangular
parallelepipeds, see [8]. Hence, at least the mean values of p̃h on the sides of Th are
continuous (and equal to zero on ∂Ω). Moreover, these means of traces coincide with
the Lagrange multiplies λh of the hybridized version (4.1a)–(4.1c) of (1.5a)–(1.5b),
see [62, Lemma 6.4] and [8].

4.4.2. Postprocessing in the general case. It turns out that in the general case, there
does not exist p̃h such that (4.2a) is true. Then the postprocessing by Arbogast
and Chen [8] proposes a weak form of this relation. This postprocessing is a gen-
eralization of the postprocessing proposed originally by Arnold and Brezzi [9] and
Chen [25] and it is defined as follows. Let PΦh

be the L2(Ω)-orthogonal projection

onto Φh, PṼh
the L2(Ω)-orthogonal projection onto Ṽh with respect to the scalar

product (S−1·, ·), and PΛh
the L2(E int

h )-orthogonal projection onto Λh, i.e.,

PΦh
: L2(Ω) → Φh for φ ∈ L2(Ω), (φ− PΦh

(φ), φh) = 0 ∀φh ∈ Φh,

(4.3a)

P
Ṽh

: L2(Ω) → Ṽh for v ∈ L2(Ω), (S−1(v − P
Ṽh

(v)),vh) = 0 ∀vh ∈ Ṽh,

(4.3b)

PΛh
: L2(E int

h ) → Λh for µ ∈ L2(E int
h ), (µ− PΛh

(µ), µh)E int

h
= 0 ∀µh ∈ Λh.

(4.3c)

Note that these projections are defined locally, as the spaces Φh, Ṽh, and Λh do
not have any global coupling. The postprocessed potential p̃h ∈Mh (the space Mh
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is described below) is then defined by

PΦh
(p̃h) = ph,(4.4a)

PΛh
(p̃h) = λh.(4.4b)

Note that employing (4.4a)–(4.4b) in (4.1a) and using ∇ · Vh(K) = Φh(K) and
Vh(K) · n|∂K\∂Ω = Λh(K) gives, for all K ∈ Th,

(S−1uh,vh)K − (p̃h,∇ · vh)K + 〈vh · n, p̃h〉∂K\∂Ω = 0 ∀vh ∈ Vh(K).

Employing the Green theorem for the two last terms of the above expression then
leads to

(S−1(uh + S∇p̃h),vh)K = 0 ∀vh ∈ Vh(K) ∀K ∈ Th,

which is nothing but

(4.5) P
Ṽh

(−S∇p̃h) = uh.

The finite-dimensional spaces Mh for the individual families and types of elements
are detailed in [8] (cf. also [9, 25]); principally, they consist of piecewise polynomial
spaces augmented with bubble functions. They are usually nonconforming in the
sense that Mh 6⊂ H1

0 (Ω). We also remark that whereas for a given space Mh,
p̃h ∈ Mh satisfying (4.4a)–(4.4b) is prescribed uniquely, the space Mh itself for
a given method is not defined in a unique way; there in particular exist several
different spaces for the lowest-order Raviart–Thomas elements on triangles.

For the analysis of this paper, along with (4.4a)–(4.4b), we will only need the
three following characterizing properties of the spaces Mh:

Mh ⊂Wh(Th),(4.6a)

inf
sh∈Mh

|||s− sh||| ≤ Chk+1 ∀s ∈ Hk+2(Ω) ∩H1
0 (Ω),(4.6b)

(∇ξh,vh)K = 0 ∀vh ∈ Vh(K) ⇒ ∇ξh = 0 ∀ξh ∈Mh(K), ∀K ∈ Th.(4.6c)

The first property simply ensures that there is “enough continuity” in Mh, the sec-
ond one guarantees that Mh is “large enough”, and the last one ensures the “com-
patibility” of ∇Mh with Vh. Note that (4.6c) in particular implies dim(Mh(K)) ≤
dim(Vh(K)) + 1. Conditions (4.6a) and (4.6c) for the spaces Mh from [8] are sat-
isfied for all the elements from Table 1. Some of the spaces Mh from [8] satisfy
H1

0 (Ω) ∩ Pk+1(Th) ⊂Mh, whence (4.6b) easily follows.

5. A priori error analysis

We show in this section that with the abstract result of Theorem 3.1, it is
immediate to get the a priori error estimates for the flux in the form |||u−uh|||∗ ≤
|||u− IVh

(u)|||∗, where IVh
is the vector interpolation operator of each mixed finite

element method. Consequently, we easily recover the known a priori error estimates
for the flux. Then, using the postprocessing of Sections 4.4.1–4.4.2, we establish
analogous results for the potential; here some of the estimates seem to be new.
Finally, we show that the uniform discrete inf–sup condition easily follows by the
postprocessing of Section 4.4 and the discrete Friedrichs inequality.

Throughout this section, we shall suppose that Th is shape-regular with a con-
stant κT . We always give a detailed form of the estimates up to the form with the
error between the exact solution and its interpolate. Obtaining the final error esti-
mates is then a question of application of interpolation estimates, presented, e.g.,
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in [20, 52, 56]. For the sake of completeness, we include these final results, suppos-
ing the full necessary regularity; here C denotes a generic constant independent of
h.

5.1. Estimates for the flux. A straightforward application of Theorem 3.1 gives
the following result:

Theorem 5.1 (Abstract a priori estimate for the flux). Let u given by (1.4a)–

(1.4b) belong to the space H̃(div,Ω) and let uh be given by (1.5a)–(1.5b). Let next
IVh

be the mixed interpolation operator, satisfying the commuting diagram property,
see [20, Section III.3]. Then

(5.1) |||u − uh|||∗ ≤ |||u − IVh
(u)|||∗.

Proof. Put v = uh, w = u, and t = IVh
(u) in Theorem 3.1. This gives

|||uh − u|||∗ ≤ |||u− IVh
(u)|||∗ +

∣

∣

∣

∣

A

(

uh − u,
uh − IVh

(u)

|||uh − IVh
(u)|||∗

)∣

∣

∣

∣

.

Notice that the properties of the interpolation operator IVh
imply

(5.2) A(uh − u,uh − IVh
(u)) = 0.

Indeed, it follows by subtracting (1.4a) from (1.5a) and using (2.3) that

A(uh − u,vh) = (ph − p,∇ · vh)

for all vh ∈ Vh. It suffices to put vh = uh − IVh
(u) and to notice that ∇ ·

(uh − IVh
(u)) = 0, which follows from (1.5b) and from the commuting diagram

property [20, Proposition III.3.7], to see (5.2). Hence the result follows. �

Noting that ∇ · uh = PΦh
(f) by (1.5b) and using the interpolation estimates,

see, e.g., [20, 52, 56] we infer from the previous results the following corollary:

Corollary 5.2 (A priori estimates for the flux). Let u be given by (1.4a)–(1.4b)
and uh by (1.5a)–(1.5b). Then

|||u − uh|||∗ ≤ Chk+1,

|||u− uh|||∗,div ≤ Chl+1.

5.2. Estimates for the postprocessed potential in the lowest-order Ra-
viart–Thomas–Nédélec case. As the proof of the following theorem shows, a
priori error estimates for the postprocessed potential p̃h under Assumption (A) are
straightforward.

Theorem 5.3 (A priori estimates for the postprocessed potential p̃h in the lowest-
order Raviart–Thomas–Nédélec case). Let Assumption (A) hold, let u, p be given
by (1.4a)–(1.4b), uh, ph by (1.5a)–(1.5b), and p̃h by (4.2a)–(4.2b). Then

|||p− p̃h||| = |||u− uh|||∗ ≤ Ch,

‖p− p̃h‖1 ≤ C|||p− p̃h||| ≤ Ch.

Proof. For the first estimate, it is sufficient to note that (2.10) in combination
with (4.2a) gives |||p− p̃h||| = |||u − uh|||∗ and use the result of Corollary 5.2. The
second estimate is then directly implied by the fact that p̃h ∈ W0(Th) and the
discrete Friedrichs inequality (2.8). �
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5.3. Estimates for the postprocessed potential in the general case. In
the general case, one no longer has (4.2a), whence |||p − p̃h||| = |||u − uh|||∗ and
|||p̃h||| = |||uh|||∗ no longer holds true. As, however, the following lemma shows,
there is still a strong particular connection between |||p̃h||| and |||uh|||∗.

Lemma 5.4 (Equivalence between the energy seminorms on Mh(K) and P
Ṽh

(−S

∇Mh(K))). There holds

|||P
Ṽh

(−S∇ξh)|||∗,K ≤ |||ξh|||K ≤Ceq|||PṼh
(−S∇ξh)|||∗,K

∀K ∈ Th, ∀ξh ∈Mh(K)
(5.3)

and thus, in particular,

|||uh|||∗ ≤ |||p̃h||| ≤ Ceq|||uh|||∗.

More generally,

(5.4) ‖∇ξh‖K ≤ CK sup
vh∈Vh(K)

(∇ξh,vh)K
‖vh‖K

∀K ∈ Th, ∀ξh ∈Mh(K).

Proof. We have

|||P
Ṽh

(−S∇ξh)|||∗,K ≤ ||| − S∇ξh|||∗,K = |||ξh|||K

by the fact that P
Ṽh

is the L2(K)-orthogonal projection onto Vh(K) with respect

to the scalar product (S−1·, ·)K , whose norm is ||| · |||∗,K , and by (2.10). Supposing
for the moment the validity of (5.4), we now prove that the other inequality in (5.3)
holds true. Let K ∈ Th and ξh ∈ Mh(K) be given. First note that by (5.4), the
definition (4.3b) of P

Ṽh
, the Cauchy–Schwarz inequality, the assumption on S,

and (2.9),

‖∇ξh‖K ≤ CK sup
vh∈Vh(K)

(S−1S∇ξh,vh)K
‖vh‖K

= CK sup
vh∈Vh(K)

(S−1P
Ṽh

(S∇ξh),vh)K

‖vh‖K

≤ CK‖S−1P
Ṽh

(S∇ξh)‖K ≤
CK

c
1/2
S,K

|||P
Ṽh

(S∇ξh)|||∗,K .

Hence

|||ξh|||K ≤ C
1/2
S,K‖∇ξh‖K ≤ CK

C
1/2
S,K

c
1/2
S,K

|||P
Ṽh

(S∇ξh)|||∗,K

by (2.7), the assumption on S, and the previous estimate, which gives the right

inequality in (5.3) with Ceq := maxK∈Th

{

CKC
1/2
S,K/c

1/2
S,K

}

. Finally, the validity

of (5.4) on a reference element K̂ with a constant only dependent on the maximal

polynomial degree of Mh(K̂) follows from (4.6c). Thus (5.4), with CK only depen-
dent on the maximal polynomial degree of Mh(K) and on κK follows by the Piola
transformation and scaling arguments. �
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Theorem 5.5 (A priori estimates for the postprocessed potential p̃h in the general
case). Let u, p be given by (1.4a)–(1.4b), uh, ph by (1.5a)–(1.5b), and p̃h by (4.4a)–
(4.4b). Then

|||p− p̃h||| ≤ C
(

inf
sh∈Mh

|||p− sh|||+ |||u− uh|||∗ + |||u − P
Ṽh

(u)|||∗

)

≤ Chk+1,
(5.5)

‖p− p̃h‖1 ≤ C|||p− p̃h||| ≤ Chk+1.(5.6)

Proof. Let sh ∈Mh be arbitrary. Using (5.3), (4.5), adding and subtracting u and
P
Ṽh

(u), using that u = −S∇p, and finally employing the triangle inequality, the

fact that P
Ṽh

is the L2(Ω)-orthogonal projection onto Ṽh with respect to the scalar

product (S−1·, ·), and (2.10), we have

|||p̃h − sh||| ≤ Ceq|||PṼh
(S∇(p̃h − sh))|||∗ = Ceq||| − uh − P

Ṽh
(S∇sh)|||∗

= Ceq||| − uh + u− u+ P
Ṽh

(u) + P
Ṽh

(S∇(p− sh))|||∗

≤ Ceq(|||u − uh|||∗ + |||u − P
Ṽh

(u)|||∗ + |||p− sh|||).

Thus (5.5) follows by the triangle inequality |||p − p̃h||| ≤ |||p − sh||| + |||p̃h − sh|||,
(4.6b), Corollary 5.2, and the approximation properties of P

Ṽh
. Estimate (5.6)

then again follows immediately by the discrete Friedrichs inequality (2.8). �

5.4. Estimates for the original potential. In this section, we easily recover the
estimates for the original potential ph from the previous results.

Theorem 5.6 (A priori estimates for the original potential ph). Let u, p be given
by (1.4a)–(1.4b), uh, ph by (1.5a)–(1.5b), and p̃h by (4.2a)–(4.2b) or (4.4a)–(4.4b).
Then

‖p− ph‖ ≤ ‖p− PΦh
(p)‖+ ‖p− p̃h‖ ≤ Chl+1.

Proof. Using (4.4a), adding and subtracting PΦh
(p), employing the triangle in-

equality, and finally the fact that PΦh
is the L2(Ω)-orthogonal projection onto Φh,

we have

‖p− ph‖ = ‖p− PΦh
(p̃h)‖ = ‖p− PΦh

(p) + PΦh
(p− p̃h)‖

≤ ‖p− PΦh
(p)‖+ ‖PΦh

(p− p̃h)‖ ≤ ‖p− PΦh
(p)‖+ ‖p− p̃h‖.

The final estimate then follows by Theorem 5.5 and the approximation properties
of PΦh

. �

5.5. Superconvergence estimates for the original potential. For the sake
of completeness, we show in this section the superconvergence estimates for the
original potential ph, following essentially [30], [20, Section V.3], and [29]. Let

ei ∈ Rd be such that eii = 1 and eji = 0 for i 6= j.

Assumption (B) (Elliptic regularity)

For each gh ∈ Φh, the weak solution of the problem

r = −S∇q in Ω,(5.7a)

∇ · r = gh in Ω,(5.7b)

q = 0 on ∂Ω(5.7c)
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satisfies

(5.8) ‖q‖2 + |r|1 ≤ CER‖gh‖.

Theorem 5.7 (Superconvergence estimates for the original potential ph). Let u,
p be given by (1.4a)–(1.4b) and uh, ph by (1.5a)–(1.5b). Let next Assumption (B)
hold. Then if l = k,

‖PΦh
(p)− ph‖ ≤ Ch(|||u− IVh

(u)|||∗ + ‖∇ · (u− IVh
(u))‖) ≤ Chk+2,

and if k ≥ 1 and (u− IVh
u, ei)K = 0 for each i = 1, . . . , d and K ∈ Th,

‖PΦh
(p)− ph‖ ≤ Ch(|||u− IVh

(u)|||∗) ≤ Chk+2.

Proof. We use the characterization

‖PΦh
(p)− ph‖ = sup

gh∈Φh

(PΦh
(p)− ph, gh)

‖gh‖
.

We next develop, using the definition (4.3a) of the orthogonal projection PΦh
, the

fact that ∇ · IVh
(r) = gh, and subtracting (1.5a) from (1.4a)

(PΦh
(p)− ph, gh) = (p− ph, gh) = (p− ph,∇ · IVh

(r)) = (S−1(u− uh), IVh
(r))

= (S−1(u− IVh
(u)), IVh

(r)) + (S−1(IVh
(u)− uh), IVh

(r))

= (S−1(u− IVh
(u)), IVh

(r)− r) + (S−1(u− IVh
(u)), r)

+ (S−1(IVh
(u)− uh), IVh

(r) − r) + (S−1(IVh
(u)− uh), r).

We now first note that for the last term, we have

(S−1(IVh
(u)− uh), r) = −(IVh

(u)− uh,∇q) = (∇ · (IVh
(u)− uh), q) = 0,

employing (5.7a), the Green theorem, and the fact that ∇ · (IVh
(u) − uh) = 0.

Next, the first term can be estimated by, employing (5.8),

(S−1(u− IVh
(u)), IVh

(r)− r) ≤ |||u− IVh
(u)|||∗|||IVh

(r)− r|||∗

≤ Ch|||u− IVh
(u)|||∗|r|1

≤ CCERh|||u− IVh
(u)|||∗‖gh‖.

The third term can be estimated similarly, using in addition the triangle inequality
and (5.1). Finally, there are two ways to estimate the second term. Firstly,

(S−1(u− IVh
(u)), r) = − (u− IVh

(u),∇q) = (∇ · (u− IVh
(u)), q)

= (∇ · (u− IVh
(u)), q − π0(q))

≤ C
1

2

P h‖∇ · (u− IVh
(u))‖|q|1

≤ C
1

2

PCERh‖∇ · (u− IVh
(u))‖‖gh‖

employing (5.7a), the Green theorem, the fact that (∇ · (u − IVh
(u)), 1)K = 0 for

all K ∈ Th, the Poincaré inequality (2.13), and (5.8). Alternatively, if k ≥ 1 and
(u− IVh

u, ei)K = 0 for each i = 1, . . . , d and K ∈ Th, then

(S−1(u− IVh
(u)), r) = (IVh

(u)− u,∇q) = (IVh
(u)− u,∇q − π0(∇q))

≤ C
1

2

P h‖IVh
(u)− u‖|q|2 ≤ C

1

2

PCERC
1

2

S,Ωh|||u− IVh
(u)|||∗‖gh‖,
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employing also the Poincaré inequality (2.13), the assumption on S, and the defini-
tion of the energy norm (2.9). Combining the above estimates proves the assertions
of the theorem. �

5.6. Superconvergence estimates for the postprocessed potential. Using
the results of the previous section, we establish here in a straightforward way su-
perconvergence estimates for the postprocessed potential p̃h.

Theorem 5.8 (Superconvergence estimates for the postprocessed potential p̃h). Let
u, p be given by (1.4a)–(1.4b), uh, ph by (1.5a)–(1.5b), and p̃h by (4.2a)–(4.2b)
or (4.4a)–(4.4b). Then

‖p− p̃h‖ ≤ Ch|||p− p̃h|||+ ‖PΦh
(p)− ph‖.

If in particular Assumption (B) holds and if either l = k or k ≥ 1 and (u −
IVh

u, ei)K = 0 for each i = 1, . . . , d and K ∈ Th, then

‖p− p̃h‖ ≤ Chk+2.

Proof. We have, using the triangle inequality, the fact that PΦh
is the L2(Ω)-

orthogonal projection onto Φh, (4.4a), and the Poincaré inequality (2.13),

‖p− p̃h‖ = ‖p− p̃h − PΦh
(p− p̃h) + PΦh

(p− p̃h)‖

≤ ‖p− p̃h − π0(p− p̃h)‖+ ‖PΦh
(p)− ph‖

≤ C
1

2

Ph|p− p̃h|1 + ‖PΦh
(p)− ph‖

≤
C

1/2
P h

c
1/2
S,Ω

|||p− p̃h|||+ ‖PΦh
(p)− ph‖.

�

5.7. Uniform discrete inf–sup condition. As complement, we show here that
the postprocessing of Section 4.4, Lemma 5.4, and the discrete Friedrichs inequal-
ity (2.8) imply:

Theorem 5.9 (Uniform discrete inf–sup condition). There holds

(5.9) inf
φh∈Φh

sup
vh∈Vh

(φh,∇ · vh)

‖φh‖‖vh‖
≥

1

C
1

2

DFCeq

,

where CDF is the constant from (2.8) and Ceq is the constant from (5.3) for S = I.

Proof. We have to show that for all φh ∈ Φh, there exists vh ∈ Vh such that

(φh,∇ · vh) ≥ ‖φh‖‖vh‖/C
1

2

DF/Ceq. Consider vh ∈ Vh and qh ∈ Φh the solution to

(vh,wh)− (qh,∇ ·wh) = 0 ∀wh ∈ Vh,(5.10a)

(∇ · vh, ψh) = (φh, ψh) ∀ψh ∈ Φh.(5.10b)

Let q̃h be the postprocessing of vh, qh of Section 4.4.1 or 4.4.2 (with S = I). Then

‖vh‖
2 = (vh,vh) = (qh,∇ · vh) = (q̃h,∇ · vh) = (q̃h, φh)

≤ ‖q̃h‖‖φh‖ ≤ C
1

2

DF‖∇q̃h‖‖φh‖ ≤ C
1

2

DFCeq‖vh‖‖φh‖

by (5.10a) with wh = vh, the properties of the postprocessing, (5.10b) which gives
∇ · vh = φh, the Cauchy–Schwarz inequality, (2.8), and (5.3), whence

‖vh‖ ≤ C
1

2

DFCeq‖φh‖.
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The desired result follows by employing this last inequality in

(φh,∇ · vh) = ‖φh‖
2 ≥

‖φh‖‖vh‖

C
1

2

DFCeq

.

Note that using the fact that ∇ · vh = φh, uniform discrete inf–sup condition with
‖vh‖ replaced by |||vh|||∗,div (with S = I) easily follows. �

6. A posteriori error analysis

We show in this section that with the abstract results of Theorems 3.1 or 3.3, it
is also immediate to get an optimal framework for a posteriori error estimates for
the flux in mixed finite element methods. For the potential, a similar framework
developed in [62, 41, 35] is adopted. We finally give fully computable versions of
all the estimates, prove their local efficiency, discuss their robustness, and present
some extensions.

6.1. Estimates for the flux. We state and prove here our a posteriori error esti-
mates for the flux, first in an abstract and then in a fully computable form.

6.1.1. Abstract estimates. An application of Theorem 3.1 gives the following result,
which we state as generally as possible (without any notion of a numerical scheme);
in practice, uh is given by (1.5a)–(1.5b).

Theorem 6.1 (Abstract a posteriori estimate for the flux and its efficiency). Let
u be given by (1.4a)–(1.4b) and let uh ∈ H(div,Ω) such that ∇ · uh = PΦh

(f) be
arbitrary. Then

(6.1) |||u− uh|||∗ ≤ inf
s∈H1

0
(Ω)

|||uh + S∇s|||∗ + ηR ≤ |||u− uh|||∗ + ηR,

where

(6.2) ηR :=

{

∑

K∈Th

CPh
2
K

cS,K
‖f − PΦh

(f)‖2K

}
1

2

.

Proof. The right inequality in (6.1) is straightforward by putting s = p and noticing
that u = −S∇p by the equivalence of (1.2) and (1.4a)–(1.4b). For the left one, put
v = u, w = uh, and t = −S∇s, with s ∈ H1

0 (Ω) arbitrary, in Theorem 3.1. This
gives

|||u− uh|||∗ ≤ |||uh + S∇s|||∗ +

∣

∣

∣

∣

A

(

u− uh,
u+ S∇s

|||u+ S∇s|||∗

)∣

∣

∣

∣

.

Next put ϕ := (p− s)/|||p− s||| ∈ H1
0 (Ω) and rewrite the second term of the above

expression as |A(u − uh,−S∇ϕ)|, employing u = −S∇p and (2.10). Next, by the
equivalent definition of the weak solution (2.5),

A(u,−S∇ϕ) = (f, ϕ),

whereas

A(uh,−S∇ϕ) = −(uh,∇ϕ) = (PΦh
(f), ϕ)

by (2.3), the Green theorem, and the assumption on uh. Hence

A(u− uh,−S∇ϕ) = (f − PΦh
(f), ϕ).
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This last expression can easily be estimated by

(f − PΦh
(f), ϕ) =

∑

K∈Th

(f − PΦh
(f), ϕ)K

=
∑

K∈Th

(f − PΦh
(f), ϕ− π0(ϕ))K

≤
∑

K∈Th

‖f − PΦh
(f)‖K‖ϕ− π0(ϕ)‖K

≤
∑

K∈Th

‖f − PΦh
(f)‖KC

1

2

P hK‖∇ϕ‖K

≤
∑

K∈Th

‖f − PΦh
(f)‖K

C
1/2
P

c
1/2
S,K

hK |||ϕ|||K ≤ ηR|||ϕ|||,

employing the fact that zero-order polynomials are always in Φh, which implies
(f −PΦh

(f), ϕ)K = (f −PΦh
(f), ϕ− π0(ϕ))K , the Cauchy–Schwarz inequality, the

Poincaré inequality (2.13), (2.7), and once again the Cauchy–Schwarz inequality.
The assertion of the theorem follows by the fact that |||ϕ||| = 1. �

Remark 6.2 (Nature of the estimate of Theorem 6.1). Theorem 6.1 shows that the
error in a vector field uh ∈ H(div,Ω) such that ∇ · uh = PΦh

(f) is measured by
how close uh is to a flux of a H1

0 (Ω)-potential plus the residual term ηR.

Remark 6.3 (General form of the residual term). Note that the condition ∇ · uh =
PΦh

(f) in Theorem 6.1 (and below) may easily be replaced by (∇·uh, 1)K = (f, 1)K
for all K ∈ Th, which is completely sufficient. The residual term then changes

correspondingly to ηR := {
∑

K∈Th
CPh

2
K/cS,K‖f −∇ · uh‖

2
K}

1

2 .

Remark 6.4 (Residual term in mixed finite element methods). The term ηR (6.2)
is sometimes referred to as the “data oscillation term”, because it only depends on
the variation of the source function f , and considered separately from the actual
a posteriori error estimate. If f ∈ H l+1(Th), this term is clearly of order O(hl+2).
Thus it is superconvergent for those mixed finite elements methods where |||u−uh|||∗
is of order O(hl+1), namely the Raviart–Thomas–Nédélec ones. This is, however,
not always the case, namely for the Brezzi–Douglas–Marini family, where |||u−uh|||∗
is of order O(hl+2). In this second case in particular, it is important not to omit
ηR from the estimate and use hK‖f − PΦh

(f)‖K with the correct weight given by
the Poincaré constant CP and the material constant cS,K .

Remark 6.5 (Efficiency of the abstract estimate of Theorem 6.1). When the term
ηR is superconvergent (see Remark 6.4), the estimate of Theorem 6.1 is optimal,
i.e., it also represents a lower bound for the error, up to ηR. We will in Theorem 6.8
below see that (local) efficiency also holds for ηR in any case. Another possibility
to work with the term ηR is to derive estimates in the ||| · |||∗,div-norm, as it is done
below.

Employing Theorem 3.3 instead of Theorem 3.1, we can easily get the following
slightly improved version of Theorem 6.1:

Corollary 6.6 (Improved abstract a posteriori estimate for the flux and its effi-
ciency). Let u be given by (1.4a)–(1.4b) and let uh ∈ H(div,Ω) such that ∇ · uh =
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PΦh
(f) be arbitrary. Then

|||u− uh|||
2
∗ ≤ inf

s∈H1

0
(Ω)

|||uh + S∇s|||2∗ + η2R ≤ |||u− uh|||
2
∗ + η2R.

This version is particularly suitable to derive in a straightforward way an esti-
mate in the ||| · |||∗,div-norm:

Theorem 6.7 (Abstract ||| · |||∗,div-norm a posteriori estimate for the flux and
its efficiency). Let u be given by (1.4a)–(1.4b) and let uh ∈ H(div,Ω) such that
∇ · uh = PΦh

(f) be arbitrary. Then

|||u−uh|||
2
∗,div ≤ inf

s∈H1

0
(Ω)

|||uh+S∇s|||2∗+‖f−PΦh
(f)‖2+η2R ≤ |||u−uh|||

2
∗,div+η

2
R.

Note that now the term ηR, by its definition, converges by one order faster
than ‖f − PΦh

(f)‖. Hence, in contrast to Theorem 6.1 (see also Remark 6.5), the
||| · |||∗,div-norm setting gives an optimal global abstract efficiency, up to the term
ηR, which is now always superconvergent (also in the Brezzi–Douglas–Marini-like
cases). On the other hand, however, the term ‖f − PΦh

(f)‖ is generally of order
O(hl+1), which may dominate the error in the Brezzi–Douglas–Marini-like cases,
where |||u − uh|||∗ is of order O(hl+2). As this term is entirely data-dependent,
we believe that, although Theorem 6.7 gives an optimal abstract estimate and
efficiency, ||| · |||∗,div-norm estimate is not suitable for a posteriori error estimation,
as previously noted in, e.g., [44, Remark 3.4].

6.1.2. Fully computable estimates. Employing Corollary 6.6 and Theorem 6.7, we
see that in order to give a fully computable a posteriori error estimate, we only
need to specify a function s ∈ H1

0 (Ω). This choice is of course particularly impor-
tant for the precision of the estimate and it is also crucial in order to prove the
local efficiency. Clearly, −S∇s has to be as close as possible to uh. In view of
this fact, we are led to first consider p̃h given by (4.2a)–(4.2b) in the lowest-order
Raviart–Thomas–Nédélec case and by (4.4a)–(4.4b) otherwise, for uh the mixed fi-
nite element solution given by (1.5a)–(1.5b). Recall that uh directly equals −S∇p̃h
under Assumption (A) and that uh is very close to −S∇p̃h in general by (4.5). The
last step is then to “smooth” p̃h into a conforming function and for exactly this
reason, we have in Section 2.3 introduced the averaging operator. Hence (a general
version of) our fully computable a posteriori error estimate is as follows:

Theorem 6.8 (Fully computable a posteriori estimates for the flux). Let u be given
by (1.4a)–(1.4b) and let uh ∈ H(div,Ω) such that ∇·uh = PΦh

(f) and p̃h ∈ Rn(Th)
for some n ≥ 1 be arbitrary. Let the potential estimator be given by

(6.3) ηP,K := |||uh + S∇(Iav(p̃h))|||∗,K ,

the residual estimator by

(6.4) ηR,K :=
C

1/2
P hK

c
1/2
S,K

‖f − PΦh
(f)‖K ,

and the divergence estimator by

(6.5) ηD,K := ‖f − PΦh
(f)‖K .
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Then

|||u− uh|||
2
∗ ≤

∑

K∈Th

(

η2P,K + η2R,K

)

,

|||u− uh|||
2
∗,div ≤

∑

K∈Th

(

η2P,K + η2R,K + η2D,K

)

.

Remark 6.9 (Constants in Theorem 6.8). Remark that there are no undetermined
constants in the estimates of Theorem 6.8. Moreover, the leading estimators ηP,K

and ηD,K are completely constant-free and the only constant (recall from (2.13)
that CP = 1/π2) appears in the residual estimator ηR,K , which is likely to be
superconvergent, see Remark 6.4.

6.2. Estimates for the potential. We state and prove here our a posteriori error
estimates for the potential, first in an abstract and then in a fully computable form.

6.2.1. Abstract estimates. Building on the approaches of [62, Lemma 7.1] and [41,
Lemma 4.4], the following can be shown, cf. [35, Lemma 4.1]:

Theorem 6.10 (Abstract a posteriori estimate for the potential and its efficiency).
Let p be the weak potential given by (1.2) and let p̃h ∈ H1(Th) be arbitrary. Then

|||p− p̃h|||
2 ≤ inf

s∈H1

0
(Ω)

|||p̃h − s|||2

+ inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

((f −∇ · t, ϕ)− (S∇p̃h + t,∇ϕ))2(6.6)

≤ 2|||p− p̃h|||
2.

Remark 6.11 (Nature of the estimate of Theorem 6.10). Theorem 6.10 shows that
the error in a potential p̃h ∈ H1(Th) is measured by how close p̃h is to the space
H1

0 (Ω), how close the approximate diffusive flux −S∇p̃h is to the space H(div,Ω),
and how small the residual f −∇ · t can be.

6.2.2. Fully computable estimates in the energy norm. Analogously to the proof of
Theorem 6.1, we have the following result. We again state it generally; in practice,
it will be used for the postprocessed approximation p̃h of Section 4.4 and the mixed
finite element approximate flux uh given by (1.5a)–(1.5b). Recall in this respect
that the postprocessed potential p̃h belongs to W0(Th) and that ||| · ||| is a norm on
W0(Th) thanks to the discrete Friedrichs inequality (2.8), whence the justification
of the “energy norm” (and not just seminorm) in the title of this section.

Theorem 6.12 (Fully computable energy a posteriori estimate for the potential).
Let p be given by (1.2) and let p̃h ∈ Rn(Th) for some n ≥ 1 and uh ∈ H(div,Ω)
such that ∇ · uh = PΦh

(f) be arbitrary. Let the nonconformity estimator be given
by

(6.7) ηNC,K := |||p̃h − Iav(p̃h)|||K ,

the diffusive flux estimator by

(6.8) ηDF,K := |||uh + S∇p̃h|||∗,K ,

and the residual estimator by (6.4). Then

|||p− p̃h|||
2 ≤

∑

K∈Th

{

η2NC,K + (ηDF,K + ηR,K)2
}

.
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Remark 6.13 (Constants in Theorem 6.12). We note that similar observation to
that of Remark 6.9 holds here true as well.

6.2.3. Fully computable estimates in the L2(Ω)-norm. The energy norm estimate
of the previous section is designed to be used for the postprocessed approximation
p̃h of Section 4.4. Using this result, we now derive L2(Ω)-norm estimates, first for
p̃h and then for the original approximate potential ph. As it will however appear,
these estimates are somewhat “less nice” than those of the previous section, as they
in particular feature several, albeit known, constants in the leading terms; we do
not find them optimal.

We first give an L2(Ω)-norm estimate for p̃h, again in the most general setting
possible:

Corollary 6.14 (A posteriori estimate for p̃h in the L2(Ω)-norm). Let p be given
by (1.2) and let p̃h ∈ W0(Th) and uh ∈ H(div,Ω) such that ∇ · uh = PΦh

(f) be
arbitrary. Then

‖p− p̃h‖
2 ≤

CDF

cS,Ω

∑

K∈Th

{

η2NC,K + (ηDF,K + ηR,K)2
}

,

where ηNC,K, ηDF,K, and ηR,K are given respectively by (6.7), (6.8), and (6.4).

Proof. Immediate from Theorem 6.12, using the fact that (p − p̃h) ∈ W0(Th), the
discrete Friedrichs inequality (2.8), and (2.7). �

We conclude this section by an L2(Ω)-norm estimate for ph, following trivially
from Corollary 6.14 by the triangle inequality; in practice, again ph and uh are
given by (1.5a)–(1.5b) and p̃h by (4.2a)–(4.2b) or (4.4a)–(4.4b):

Corollary 6.15 (A posteriori estimate for ph in the L2(Ω)-norm). Let p be given
by (1.2) and let ph ∈ Φh, p̃h ∈ W0(Th), and uh ∈ H(div,Ω) such that ∇ · uh =
PΦh

(f) be arbitrary. Then

‖p− ph‖ ≤

{

CDF

cS,Ω

∑

K∈Th

{

η2NC,K + (ηDF,K + ηR,K)2
}

}
1

2

+ ‖p̃h − ph‖,

where ηNC,K, ηDF,K, and ηR,K are given respectively by (6.7), (6.8), and (6.4).

6.3. Local efficiency. We prove here local efficiency of the a posteriori error esti-
mators of Theorems 6.8 and 6.12.

Theorem 6.16 (Local efficiency of estimators of Theorems 6.8 and 6.12). Let
f be piecewise polynomial of order m and let u, p be given by (1.4a)–(1.4b). Let
next Th be shape-regular, let uh ∈ H(div,Ω) be such that ∇ · uh = PΦh

(f), and
p̃h ∈ Rn(Th)∩W0(Th) for some n ≥ 1. Let finally the a posteriori error estimators
ηP,K, ηR,K , ηNC,K , and ηDF,K be given respectively by (6.3), (6.4), (6.7), and (6.8).
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Then

ηP,K ≤ ηDF,K + ηNC,K ,

ηDF,K ≤ |||u− uh|||∗,K + |||p− p̃h|||K ,

ηNC,K ≤ C

√

CS,K

cS,TK

|||p− p̃h|||TK
,

ηR,K ≤ C̃

√

CS,K

cS,K
|||u− uh|||∗,K ,

where the constant C depends only on the space dimension d, the maximal polyno-
mial degree n of p̃h, and the shape regularity parameter κT and C̃ depends only on
d, the polynomial degree m of f , and κT .

Proof. We have for ηP,K

ηP,K ≤ |||uh + S∇p̃h|||∗,K + |||S∇p̃h − S∇(Iav(p̃h))|||∗,K = ηDF,K + ηNC,K

by the triangle inequality. Similarly,

ηDF,K ≤ |||uh + S∇p|||∗,K + |||S∇p− S∇p̃h|||∗,K = |||u− uh|||∗,K + |||p− p̃h|||K

by the triangle inequality and (2.10). Next, the inequality

h
− 1

2

σ ‖[[p̃h]]‖σ ≤ C
∑

L;σ∈EL

‖∇(p̃h − ϕ)‖L

was established in [3, Theorem 10] for p̃h ∈ W0(Th), simplicial meshes, σ ∈ E int
h ,

and an arbitrary ϕ ∈ H1(Ω). It generalizes easily to rectangular parallelepipeds
and to the case σ ∈ Eext

h and ϕ ∈ H1
0 (Ω); here C depends only on d and κT . Thus

we have for the nonconformity estimator

η2NC,K = |||p̃h − Iav(p̃h)|||
2
K ≤ CCS,K

∑

σ∈ẼK

h−1
σ ‖[[p̃h]]‖

2
σ

≤ CCS,K

∑

L∈TK

‖∇(p− p̃h)‖
2
L ≤ C

CS,K

cS,TK

∑

L∈TK

|||p− p̃h|||
2
L,

using Lemma 2.1 and the above estimate, with C depending only on d, n, and κT .
Finally,

‖f − PΦh
(f)‖K = ‖f −∇ · uh‖K ≤ CC

1/2
S,Kh

−1
K |||u− uh|||∗,K

with C depending only on d, κT , and m follows standardly by using the element
bubble function, the equivalence of norms on finite-dimensional spaces, the defini-
tion (1.2) of the weak solution, the Green theorem, the Cauchy–Schwarz inequal-
ity, the definition (2.9) of the energy norm, and the inverse inequality, cf. [58]
or [62, Lemma 7.6]. Note that we do not need uh to be a polynomial and that
∇ · uh = PΦh

(f) is a polynomial of maximal degree m by the assumption on f .
Hence the estimate for ηR,K follows. �
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6.4. Extensions. We present here two extensions of the previous results. First
of all, following Bernardi and Verfürth [14] and Ainsworth [5] and using the aver-
aging operator with diffusion tensor-dependent weights, one can obtain estimates
robust with respect to inhomogeneities under the “monotonicity” assumption. Sec-
ondly, we show that our estimates are robust with respect to all inhomogeneities,
anisotropies, polynomial degree, and mesh regularity for the error in the pair uh,
Iav(p̃h) considered as an approximate solution.

6.4.1. Estimates robust with respect to inhomogeneities under the “monotonicity”
assumption. With the notation of Section 2.3, let

Iav,S(ϕh)(V ) =
1

∑

K∈TV
C

1/2
S,K

∑

K∈TV

C
1

2

S,Kϕh|K(V ).

Then all the estimates of Sections 6.1 and 6.2 hold true with Iav replaced by Iav,S.
Clearly, the difference between Iav and Iav,S is the use of the diffusion tensor-
dependent weights in the latter. We first make the following assumption (cf. [14,
Hypothesis 2.7]):

Assumption (C) (Monotonicity of the distribution of CS,K)

For any two elements L,M ∈ Th which share at least one point, there exists a
connected path passing from L to M through element sides such that the function
CS,K is monotone along this path.

We then have the following result:

Theorem 6.17 (Local efficiency robust with respect to inhomogeneities under
Assumption (C)). Let all the assumptions of Theorem 6.16 hold, with Iav replaced
by Iav,S. Let next Assumption (C) hold. Then

ηP,K ≤ ηDF,K + ηNC,K ,

ηDF,K ≤ |||u− uh|||∗,K + |||p− p̃h|||K ,

ηNC,K ≤ C max
K∈TK

√

CS,K

cS,K
|||p− p̃h|||TK

,

ηR,K ≤ C̃

√

CS,K

cS,K
|||u− uh|||∗,K ,

where the constant C depends only on the space dimension d, the maximal polyno-
mial degree n of p̃h, and the shape regularity parameter κT and C̃ depends only on
d, the polynomial degree m of f , and κT .

Unfortunately, for the above robustness result, the “monotonicity” assumption is
crucial. Consequently, some of the most interesting cases with a checkerboard dis-
tribution of values of the diffusion coefficient, inducing a singularity, are excluded.
For conforming discretizations, estimates robust in all cases are presented in [64].
The generalization to the nonconforming case represents an ongoing work.

6.4.2. Estimates robust with respect to inhomogeneities, anisotropies, polynomial
degree, and mesh regularity for flux- and potential-conforming approximations. Com-
bining Theorems 6.8 and 6.12 for the upper bound and the triangle inequality and
the estimate for ηR,K from Theorem 6.16 for the local efficiency, we can state the
following result:
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Theorem 6.18 (Optimal a posteriori error estimate for flux- and potential-con-
forming approximations). Let u, p be given by (1.4a)–(1.4b) and let uh ∈ H(div,Ω)
such that ∇·uh = PΦh

(f), p̃h ∈ H1(Th), and sh ∈ H1
0 (Ω) be arbitrary. Let next the

a posteriori error estimators ηP,K , ηR,K , ηNC,K , and ηDF,K be given respectively
by (6.3), (6.4), (6.7), and (6.8), with Iav(p̃h) replaced by sh. Then

|||u− uh|||
2
∗ + |||p− sh|||

2 ≤
∑

K∈Th

{

η2P,K + η2R,K + (ηP,K + ηR,K)2
}

and

ηP,K ≤ |||u− uh|||∗,K + |||p− sh|||K .

Similarly,

|||u− uh|||
2
∗ + |||p− p̃h|||

2 + |||p− sh|||
2 ≤

∑

K∈Th

{

η2P,K + η2R,K + (ηP,K + ηR,K)2

+ η2NC,K + (ηDF,K + ηR,K)2
}

and

ηP,K ≤ |||u− uh|||∗,K + |||p− sh|||K ,

ηDF,K ≤ |||u− uh|||∗,K + |||p− p̃h|||K ,

ηNC,K ≤ |||p− p̃h|||K + |||p− sh|||K .

Finally, the residual estimators ηR,K may represent a higher-order term, see Re-
mark 6.4. In any case, when f is piecewise polynomial of order m and Th shape-
regular, then

ηR,K ≤ C̃

√

CS,K

cS,K
|||u− uh|||∗,K ,

where C̃ depends only on d, the polynomial degree m of f , and κT .

Remark 6.19 (Theorem 6.18). Theorem 6.18 shows that, possibly up to the residual
term, a posteriori error estimates robust with respect to all the diffusion tensor S,
the space dimension d, the maximal polynomial degree of uh, sh, and p̃h, and the
mesh shape regularity can easily be given when the pair uh, Iav(p̃h) (and not the
pair uh, p̃h) or the triple uh, Iav(p̃h), p̃h is considered as an approximate solu-
tion. Moreover, a maximal overestimation factor (effectivity index) is guaranteed.
Concerning the residual term, the estimates can be given for |||u − uh|||∗,div as in
Theorem 6.8. This is in agreement with the results of Repin et al. [54]. Basically,
giving optimal a posteriori error estimates for approximations which are both flux-
and potential-conforming is trivial.

7. Complements on mixed finite element methods

We give here some complements on mixed finite element methods which seem to
be new. We start by showing that under the assumption that the source function
f belongs to the space Φh, some orthogonal projection relations are valid in the
mixed finite element method, parallel and complementary to the conforming finite
element method. We next show that mixed finite element approximate solutions
are directly equal to or very close to some generalized weak solutions.
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7.1. Orthogonal projection properties. We first give the following characteri-
zation, valid for any mixed finite element scheme.

Theorem 7.1 (Vector orthogonal projection property). Let f ∈ Φh, let p be given
by (1.4a)–(1.4b), and let uh ∈ H(div,Ω) such that ∇ · uh = f be arbitrary. Then

(7.1) |||uh + S∇p|||∗ = inf
s∈H1

0
(Ω)

|||uh + S∇s|||∗,

or, equivalently,

(7.2) A(S∇p+ uh,S∇ϕ) = 0 ∀ϕ ∈ H1
0 (Ω).

Proof. Property (7.1) follows immediately from (6.1) under the assumption f ∈ Φh.
To see (7.2) is then standard; alternatively, let ϕ ∈ H1

0 (Ω) and notice that

A(−uh,S∇ϕ) = (−uh,∇ϕ) = (f, ϕ)

by (2.3), the Green theorem, and the assumption ∇ · uh = f . Now put w =
uh in Theorem 3.3 and notice that the function ψ from (3.1) coincides with p.
Consequently, (7.2) follows from (3.4). �

Remark 7.2 (Vector orthogonal projection property). In the conforming finite el-
ement method for (1.1a)–(1.1b), the approximate solution qh ∈ Xh with Xh :=
Rk(Th) ∩H

1
0 (Ω) is characterized by

B(qh, ϕh) = (f, ϕh) ∀ϕh ∈ Xh

and satisfies

|||p− qh||| = inf
sh∈Xh

|||p− sh|||,

B(p− qh, ϕh) = 0 ∀ϕh ∈ Xh.

This means that it is the H1
0 (Ω)-orthogonal projection of the exact potential p

onto Xh with respect to the scalar product B(·, ·) (and the associated scalar energy
norm (2.7)). We denote this projection by PXh

. Theorem 7.1 says that in the
mixed finite element method, under the condition that f ∈ Φh, the exact flux
u = −S∇p is the L2(Ω)-orthogonal projection of the approximate flux uh onto
S∇H1

0 (Ω) with respect to the scalar product A(·, ·) (and the associated vector
energy norm (2.9)). Note the parallel but also the exchange of the roles between
the exact and approximate solutions: in the conforming finite element method, the
approximate solution is the orthogonal projection of the exact one, whereas in the
mixed finite element case, the exact solution is the orthogonal projection of the
approximate one.

The following characterization is only valid in the lowest-order Raviart–Thomas–
Nédélec case:

Theorem 7.3 (Scalar orthogonal projection property). Let Assumption (A) hold,
let f ∈ Φh, and let p be given by (1.4a)–(1.4b), uh, ph by (1.5a)–(1.5b), and p̃h
by (4.2a)–(4.2b). Then

|||p− p̃h||| = inf
s∈H1

0
(Ω)

|||p̃h − s|||,

or, equivalently,
B(p− p̃h, ϕ) = 0 ∀ϕ ∈ H1

0 (Ω).

Proof. Immediate from (7.1) and (7.2) using (1.3a), (4.2a), and (2.10). �
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•

•

•

Xh

qh = PXh
(p)

H1

0
(Ω)

p = PH1
0
(p̃h)

W0(Th)

p̃h

Figure 1. Graphical visualization of the relations between the
postprocessed lowest-order mixed finite solution p̃h, the weak so-
lution p, and the conforming finite element solution qh when f ∈
Φh.

Remark 7.4 (Scalar orthogonal projection property). Under assumptions of Theo-
rem 7.3, the exact potential p is the W0(Th)-orthogonal projection of the approx-
imate postprocessed potential p̃h onto H1

0 (Ω) with respect to the scalar product
B(·, ·) (and the associated scalar energy norm (2.7)). We denote this projection by
PH1

0
. Here, the parallel to the conforming finite element method is even stronger,

compare it with Remark 7.2. The situation is graphically illustrated in Figure 1.

7.2. Generalized weak solutions and mixed finite elements. We develop
here the ideas of [62, Section 5.4] on the relation between mixed finite element
approximate solutions and certain generalized weak solutions. For some results
comparing the mixed and (generalized) finite element approximate solutions, we
refer to Babuška and Osborn [11] and Falk and Osborn [38].

By a generalized weak solution, we understand a function p̃ ∈ Wh(Th) such that

(7.3) (S∇p̃,∇ϕ) = (f, ϕ) ∀ϕ ∈ Wh(Th).

Note that (2.7), (2.11a), and the discrete Friedrichs inequality (2.8) ensure the
existence and uniqueness of the solution of (7.3). This generalized weak solution is
dependent on the given mesh Th and also on the normal components of the space
Vh by the definition (2.1b) of the space Wh(Th). Note also that H1

0 (Ω) ⊂Wh(Th),
whence the term “generalized”.

Theorem 7.5 (A posteriori estimates for the generalized weak solutions). Let p̃ be
given by (7.3), ũ by ũ := −S∇p̃, uh, ph by (1.5a)–(1.5b), and p̃h by (4.2a)–(4.2b)
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or (4.4a)–(4.4b). Then

|||ũ− uh|||
2
∗ ≤

∑

K∈Th

(η2DF,K + η2R,K),

|||p̃− p̃h|||
2 ≤

∑

K∈Th

(ηDF,K + ηR,K)2.

where the diffusive flux estimator ηDF,K is given by (6.8) and the residual estimator
ηR,K by (6.4).

Proof. By replacing H1
0 (Ω) by Wh(Th) in Theorem 3.3, putting v = ũ, w = uh,

and using (3.3), one comes to the equivalent of (3.2)–(3.3) in the form

|||ũ− uh|||
2
∗ = inf

s∈Wh(Th)
|||uh + S∇s|||2∗ +A

(

ũ− uh,
ũ+ S∇ψ

|||ũ+ S∇ψ|||∗

)2

.

We next put ϕ := (p̃ − ψ)/|||p̃− ψ||| ∈ Wh(Th) and rewrite the second term of the
above expression as A(ũ − uh,−S∇ϕ), employing ũ = −S∇p̃ and (2.10). Next,
by (2.3) and the definition of the generalized weak solution (7.3),

A(ũ,−S∇ϕ) = (f, ϕ),

whereas

A(uh,−S∇ϕ) = − (uh,∇ϕ) =
∑

K∈Th

{(∇ · uh, ϕ)K − 〈uh · n, ϕ〉∂K}(7.4)

= (PΦh
(f), ϕ)

by (2.3), the Green theorem, the fact that uh ∈ Vh and ϕ ∈ Wh(Th), and (1.5b).
Note the importance of the definition (2.1b) of the space Wh(Th), by which the
term

∑

K∈Th
〈uh · n, ϕ〉∂K =

∑

σ∈Eh
〈uh · n, [[ϕ]]〉σ disappears. Hence

A(ũ− uh,−S∇ϕ) = (f − PΦh
(f), ϕ).

Estimating this term exactly as in the proof of Theorem 6.1 and putting s = p̃h,
the estimate for ũ− uh follows.

Similarly to the vector case, instead of (6.6), one in the present setting gets

|||p̃−p̃h|||
2 ≤ inf

s∈Wh(Th)
|||p̃h−s|||

2+ sup
ϕ∈Wh(Th), |||ϕ|||=1

((f−∇·uh, ϕ)−(S∇p̃h+uh,∇ϕ))
2.

As the first term disappears since p̃h ∈ Wh(Th), the estimate for p̃− p̃h follows by
the Cauchy–Schwarz inequality. �

Remark 7.6 (A posteriori estimates for the generalized weak solutions). Note that
the essential difference of the estimates of Theorem 7.5 and of those of Theorems 6.8
and 6.12 are that the nonconformity estimator ηNC,K given by (6.7) and the poten-
tial estimator ηP,K given by (6.3), the two estimators penalizing the nonconformity
in p̃h through the introduction of the averaging Iav(p̃h), are not present, since the
generalized solution p̃ is itself in the space Wh(Th) as p̃h. Note also that under
Assumption (A), the diffusive flux estimators ηDF,K vanish, whereas for f ∈ Φh,
the residual estimators ηR,K vanish. Thus in the lowest-order Raviart–Thomas–
Nédélec case and for elementwise constant f , p̃ = p̃h (and ũ = uh). We refer to [62,
Sections 5.4 and 5.6] for a more detailed discussion of this special case.

The proof of the following theorem is straightforward, using the same techniques
as those in the proof of Theorem 6.16.
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Theorem 7.7 (Local efficiency of estimators of Theorem 7.5). Let the assumptions
of Theorem 7.5 be verified. Then

ηDF,K ≤ |||ũ − uh|||∗,K + |||p̃− p̃h|||K .

Moreover, the residual estimators ηR,K may represent a higher-order term, see Re-
mark 6.4. In any case, when f is piecewise polynomial of order m and Th shape-
regular, then

ηR,K ≤ C̃

√

CS,K

cS,K
|||ũ− uh|||∗,K ,

where C̃ depends only on d, the polynomial degree m of f , and κT .

Remark 7.8 (Local efficiency of estimators of Theorem 7.5). Note that, possibly up
to the residual term, the a posteriori error estimate of Theorem 7.5 is according to
Theorem 7.7 robust with respect to all the diffusion tensor S, the space dimension
d, the maximal polynomial degree n of p̃h, and the mesh shape regularity.
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