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Modélisation Mathématique et Analyse Numérique

EQUIVALENCE BETWEEN LOWEST-ORDER MIXED FINITE ELEMENT AND

MULTI-POINT FINITE VOLUME METHODS ON SIMPLICIAL MESHES ∗

Martin Vohraĺık1, 2

Abstract. We consider the lowest-order Raviart–Thomas mixed finite element method for second-

order elliptic problems on simplicial meshes in two and three space dimensions. This method produces

saddle-point problems for scalar and flux unknowns. We show how to easily and locally eliminate

the flux unknowns, which implies the equivalence between this method and a particular multi-point

finite volume scheme, without any approximate numerical integration. The matrix of the final linear

system is sparse, positive definite for a large class of problems, but in general nonsymmetric. We next

show that these ideas also apply to mixed and upwind-mixed finite element discretizations of nonlinear

parabolic convection–diffusion–reaction problems. Besides the theoretical relationship between the two

methods, the results allow for important computational savings in the mixed finite element method,

which we finally illustrate on a set of numerical experiments.

Résumé. Equivalence entre les méthodes des éléments finis mixtes de plus bas degré et des volumes

finis à plusieurs points sur des maillages de triangles et de tétraèdres. Nous considérons la méthode

des éléments finis mixtes de Raviart–Thomas de plus bas degré pour des problèmes elliptiques du

deuxième ordre sur des maillages composés de triangles en dimension deux d’espace et de tétraèdres en

dimension trois d’espace. Cette méthode aboutit à des problèmes de type point-selle pour les inconnues

scalaires et les flux. Nous montrons comment facilement et localement éliminer les flux, ce qui implique

l’équivalence entre cette méthode et une méthode de type volumes finis à plusieurs points et ceci sans

aucune intégration numérique approchée. La matrice finale est creuse, définie positive pour une grande

classe de problèmes, mais en général non symétrique. Nous montrons ensuite que ces idées s’appliquent

aussi à la discrétisation d’équations de convection–réaction–diffusion paraboliques non linéaires par les

méthodes des éléments finis mixtes et des éléments finis mixtes avec un décentrage amont. Outre la

relation théorique entre les deux méthodes, ces résultats permettent de réduire considérablement le

temps de calcul de la méthode des éléments finis mixtes, ce qui est finalement confirmé par les essais

numériques.
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1. Introduction

Let us consider the elliptic problem

u = −S∇p in Ω , (1.1a)

∇ · u = q in Ω , (1.1b)

p = pD on ΓD , u · n = uN on ΓN , (1.1c)

where Ω ⊂ Rd, d = 2, 3, is a polygonal (polyhedral) domain (open, bounded, and connected set), S is a

bounded, symmetric (this is however not necessary), and uniformly positive definite tensor, pD ∈ H
1

2 (ΓD),

uN ∈ H− 1

2 (ΓN ), q ∈ L2(Ω), ΓD ∩ ΓN = ∅, ΓD ∪ ΓN = ∂Ω, and |ΓD| 6= 0, where |ΓD| is the measure of the set
ΓD.

Let Th be a simplicial triangulation of Ω (consisting of triangles if d = 2 and of tetrahedra if d = 3) such that
each boundary side (edge if d = 2, face if d = 3) lies entirely either in ΓD or in ΓN . Let us denote by Eh the set
of all non-Neumann sides of Th. Let finally ũ ∈ H(div,Ω) be such that ũ · n = uN on ΓN in the appropriate
sense. The approximation of the problem (1.1a)–(1.1c) by means of the mixed finite element method consists
in finding uh = u0,h + ũ, u0,h ∈ V(Eh), and ph ∈ Φ(Th) such that (see [13, 34])

(S−1u0,h,vh)Ω − (∇ · vh, ph)Ω = −〈vh · n, pD〉∂Ω

−(S−1ũ,vh)Ω ∀vh ∈ V(Eh) , (1.2a)

−(∇ · u0,h, φh)Ω = −(q, φh)Ω + (∇ · ũ, φh)Ω ∀φh ∈ Φ(Th) , (1.2b)

where (uh,vh)Ω =
∫
Ω uh · vh dx, 〈vh · n, ϕ〉∂Ω =

∫
∂Ω vh · nϕ dγ(x), and V(Eh) and Φ(Th) are suitable finite-

dimensional spaces defined on Th. The associated matrix problem is of the saddle-point type and can be written
in the form (

A Bt

B 0

)(
U
P

)
=

(
F
G

)
. (1.3)

In the lowest-order Raviart–Thomas method [33] and its three-dimensional Nédélec variant [31] the scalar
unknowns P are associated with the elements of Th and U are the fluxes through the sides of Eh. Using the
hybridization technique, one can decrease the number of unknowns to the Lagrange multipliers associated with
non-Dirichlet sides and obtain a symmetric and positive definite matrix, cf. [9, 13]. In fact, the hybridization
is very close to the piecewise linear nonconforming finite element method, cf. [9, 15]. The fluxes can then be
recovered using the technique first proposed in [30]. Especially in three space dimensions, there are much
fewer elements than sides, and hence the long-standing interest in reducing the unknowns to only the scalar
unknowns P . This is indeed possible, using approximate numerical integration, see [35] for rectangles and
S diagonal and [4, 10] for rectangles and triangles and S diagonal and for a limited class of tetrahedra and
S = Id. Using the expanded mixed finite element method, these techniques can be extended also onto full-
matrix diffusion tensors S for rectangular parallelepipeds [7] and for “smooth” coefficients and meshes consisting
of triangles, quadrilaterals, and hexahedra [6]. To our knowledge, the only technique for reducing the number of
unknowns to the number of elements without any numerical integration is proposed and studied in [14, 40, 41].
In two space dimensions, it works on unstructured triangular meshes, but in three space dimensions, it only
works on a limited class of structured tetrahedral meshes. Here one associates a new unknown to each element.

We present in Section 2 of this paper a new method which permits to exactly and efficiently reduce the
system (1.3) to a system for the original scalar unknowns P only. We show that, under a condition of the
invertibility of some local matrices associated with vertices and only depending on the mesh and on the diffusion
tensor, one can express the flux through a given side using the scalar unknowns, sources, and possibly boundary
conditions associated with the elements sharing one of the vertices of this side. Recall that expressing the flux
through a given side using the scalar unknowns in neighboring elements is the principle of multi-point finite
volume schemes, cf. [1–3, 16, 20, 22, 27]. Hence the lowest-order Raviart–Thomas mixed finite element method
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σ

vσ

Figure 1. RTN basis function vσ associated with the edge σ

is in the given case equivalent to a particular multi-point finite volume scheme, and this without any numerical
integration. We call this scheme a condensed mixed finite element scheme. We then discuss the modifications
of the proposed scheme if the local matrices are not invertible, consisting namely in considering different sets
of elements for the expression of the flux through a given side.

The condensation of the lowest-order Raviart–Thomas method leads to linear systems with sparse but in
general nonsymmetric matrices, as we show in Section 3. The system matrix is positive definite under a condition
on the mesh and on the tensor S, which can be reduced to a shape criterion allowing for fairly general elements
if S is piecewise constant and scalar. For example, one can deform a square (0, 1)× (0, 1), discretized by regular
right-angled triangles, until the triangle elements contain angles greater than 130 degrees, see Example 3.8 below.
The fulfillment of this condition in particular implies the invertibility of the local matrices from the previous
paragraph. Finally, in Section 4, we apply the proposed condensation to mixed (cf. [8, 19]) and upwind-mixed
(cf. [17, 18, 26]) finite element discretizations of nonlinear parabolic convection–diffusion–reaction problems.

The essential idea of what we propose can be formulated as follows: given a second-order problem, first
decompose it into scalar and flux unknowns and guarantee the fulfillment of the inf–sup (Babuška–Brezzi)
condition. Then eliminate the added fluxes. One can in this way obtain the precision of the mixed finite
element method for the computational cost of the finite volume one. This is confirmed by numerical experiments
carried out in Section 5. Especially for nonlinear parabolic convection–diffusion–reaction problems, one can
considerably reduce the CPU time of standard mixed solution approaches. We refer to a more detailed discussion
in Section 5.4. Finally, the proposed condensation can easily be implemented in a new self-standing code or in
existing mixed finite element codes. This paper is a detailed description of the results previously announced
in [38] and [39]. Extension to higher-order schemes is an ongoing work.

2. The equivalence

We first define the spaces V(Eh) and Φ(Th) in this section. We then establish the equivalence between the
lowest-order mixed finite element and a particular multi-point finite volume method.

Let us consider simplices K,L ∈ Th sharing an interior side σ. Let VK be the vertex of K opposite to σ
and VL the vertex of L opposite to σ. Then the RTN (Raviart–Thomas–Nédélec) basis function vσ ∈ V(Eh)
associated with the side σ can be written in the form vσ(x) = 1

d|K|(x − VK), x ∈ K, vσ(x) = 1
d|L|(VL − x),

x ∈ L, vσ(x) = 0 otherwise. We refer to Figure 1 for a schematic visualization of a RTN basis function in two
space dimensions. We fix the orientation of vσ , i.e. the order of K and L. For a Dirichlet boundary side σ, the
support of vσ only consists of K ∈ Th such that σ ∈ EK , where EK stands for the sides of the element K. A
basis function φK ∈ Φ(Th) associated with an element K ∈ Th is equal to 1 on K and to 0 otherwise.

Let us denote by Vh the set of all vertices and consider V ∈ Vh. We call the set of all elements of Th sharing
this vertex a cluster associated with V and denote it by CV . Let us denote by ECV

the set of all non-Neumann
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Figure 2. Example of a cluster CV in the interior of Ω

sides of CV , by FCV
the set of all non-Neumann sides sharing V , and by GCV

the set of other non-Neumann sides
of CV . Let finally Cel

V denote the set of elements from the cluster that contain exactly one side from GCV
. We

denote by δK the side from EK ∩GCV
for K ∈ Cel

V . We have ECV
= FCV

∪GCV
, FCV

∩GCV
= ∅, and |Cel

V | = |GCV
|,

where we denote by |A| the cardinality of a set A. An example of a cluster CV lying in the interior of the
domain Ω is given in Figure 2. In this case, FCV

are simply the sides sharing V , GCV
the other sides of CV ,

and Cel
V = CV . The situation is more delicate near the boundary, especially if there are Neumann boundary

conditions, cf. Figure 3 below. This is also the reason for the quite complex notation introduced. The basic
principle of the condensation will however be clear from Figure 2. Finally, we are not interested in the particular
and trivial cases where FCV

= ∅ or GCV
= ∅.

Our aim is to easily and locally express u0,h with the aid of ph, or, equivalently, the fluxes U with the aid of
the scalar unknowns P . For this purpose, we consider the equations (1.2a) for the basis functions vγ , γ ∈ FCV

.
We remark that the support of all vγ , γ ∈ FCV

, is included in CV and that u0,h|CV
=
∑

σ∈ECV
Uσvσ . This

yields, using also that ph|K = PK ,

∑

σ∈ECV

Uσ(vσ ,S
−1vγ)CV

−
∑

K∈CV

PK(∇ · vγ , 1)K = −〈vγ · n, pD〉∂Ω −

−(S−1ũ,vγ)CV
∀γ ∈ FCV

, (2.1)

i.e. |FCV
| equations for the |ECV

| unknown fluxes Uσ, σ ∈ ECV
, where we consider the scalar unknowns PK ,

K ∈ CV , as parameters. Note that in practice, pD|σ ≈ 〈pD, 1〉σ/|σ|, σ ⊂ ΓD , and ũ ≈
∑

σ⊂ΓN
〈uN , 1〉σvσ , so

that the above system is completely discrete. The remaining |GCV
| equations are given by (1.2b) for all φK ,

K ∈ Cel
V ,

−
∑

σ∈EK ,σ 6⊂ΓN

Uσ(∇ · vσ , 1)K = −(q, 1)K + (∇ · ũ, 1)K ∀K ∈ Cel
V . (2.2)

The matrix problem associated with the set of equations (2.1)–(2.2) can be written in the form

(
A1,V A2,V

B1,V B2,V

)(
UF

V

UG
V

)
=

(
FV − Bt

V PV

GV

)
, (2.3)

where UF
V = {Uσ}σ∈FCV

, UG
V = {Uσ}σ∈GCV

, and PV = {PK}K∈CV
.

We now notice that the matrix B2,V is square, diagonal, and its entries are equal to ±1 (this follows from
the fact that each K ∈ Cel

V contains exactly one side from GCV
and using that (∇ · vσ , 1)K = ±1 for σ ∈ EK).
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Hence we can eliminate the UG
V unknowns and come to

MV U
F
V = FV − B

t
V PV − A2,V B

−1
2,VGV (2.4)

for each vertex V ∈ Vh. Let us call the matrix

MV := A1,V − A2,V B
−1
2,V B1,V (2.5)

a local condensation matrix associated with the vertex V . We now summarize the obtained results in the
following theorem:

Theorem 2.1 (Equivalence between MFEM and a particular multi-point FVM). Let the matrices MV given
by (2.5) be invertible for all V ∈ Vh. Then the lowest-order Raviart–Thomas mixed finite element method on
simplicial meshes is equivalent to a multi-point finite volume scheme, where the flux through each side can be
expressed using the scalar unknowns, sources, and possibly boundary conditions associated with the elements
sharing one of the vertices of this side.

Remark 2.2 (Comparison with classical multi-point FVMs). In “classical” multi-point finite volume schemes,
cf. [1–3, 16, 20, 22, 27], one attempts to express the flux through a given side only using the scalar unknowns
associated with the neighboring elements. There are two essential differences between these classical multi-point
finite volume schemes and a particular multi-point finite volume scheme—the mixed finite element method.
First, in the mixed finite element method, not only the scalar unknowns, but also the sources and possibly
boundary conditions associated with the neighboring elements are used to express the flux through a given side.
Second, to obtain this expression, one has to solve a local linear problem. In this last feature, the condensed
mixed finite element scheme is similar to the “multi-point flux-approximation” scheme proposed and tested
in [1, 2] (cf. also [27]), see the next remark.

Remark 2.3 (Comparison with multi-point flux-approximation schemes). In the multi-point flux-approximation
schemes [1,2,27,28], one constructs a polygonal subdomain around each vertex (called an “interaction region”),
joining e.g. the edge midpoints through triangle barycentres in two space dimensions. Then a piecewise lin-
ear nonconforming approximation ph of p in the interaction region is supposed and a full flux continuity for
uh := −S∇ph across the semi-edges sharing the given vertex is imposed, which leads to a local linear system.
Solving this system gives the flux through a given semi-edge only using the scalar unknowns associated with
the elements sharing the given vertex.

A priori, there are several differences from the condensed mixed finite element scheme. First, the condensed
scheme works with the Raviart–Thomas uh, which is a piecewise linear vector function a priori independent of
the piecewise constant ph. Next, the local problems are associated with the whole cluster associated with the
given vertex and not only with the interaction region. The conceptual difference however seems to be that the
condensed scheme imposes the whole equilibrium (1.1a)–(1.1c), whence the boundary conditions and sources
in the flux expressions, whereas the multi-point flux-approximation scheme is only a way how to discretize the
relation (1.1a). This may lead to higher precision of the condensed scheme for problems with sources and sinks,
but it seems at the same time responsible for the oscillations in mixed finite element discretizations of parabolic
problems, see Section 4 for the extension of the condensed scheme to this case.

Some numerical comparisons of the “O” multi-point flux-approximation scheme, of the lowest-order Raviart–
Thomas mixed finite element method, and of the piecewise linear continuous Galerkin finite element method on
triangular meshes can be found in [28], see also [27]. Relations among several different schemes on quadrilateral
grids are also studied in [29].

Let V ∈ Vh. Let us define a mapping ΨV : R|FCV
| → R|Eh|, extending a vector UF

V = {Uσ}σ∈FCV
of values

associated with the sides from FCV
to a vector of values associated with all non-Neumann sides Eh by

[ΨV (UF
V )]σ :=

{
Uσ if σ ∈ FCV

0 if σ 6∈ FCV

.
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Since there is no possibility of confusion, we keep the same notation also for a mapping R|FCV
|×|FCV

| →
R|Eh|×|Eh|, extending a local matrix MV to a full-size one by zeros by

[ΨV (MV )]σ,γ :=

{
(MV )σ,γ if σ ∈ FCV

and γ ∈ FCV

0 if σ 6∈ FCV
or γ 6∈ FCV

.

We finally in the same fashion define a mapping ΘV : R|FCV
|×|Cel

V | → R|Eh|×|Th|, filling a full-size representation
of a matrix JV by zeros on the rows associated with the sides that are not from FCV

and on the columns
associated with the elements that are not from Cel

V ,

[ΘV (JV )]σ,K :=

{
(JV )σ,K if σ ∈ FCV

and K ∈ Cel
V

0 if σ 6∈ FCV
or K 6∈ Cel

V

.

Let the local condensation matrices MV be invertible for all V ∈ Vh. Let us define JV by JV := M
−1
V A2,V B

−1
2,V .

We then can rewrite (2.4) as

ΨV (UF
V ) = ΨV (M−1

V )(F − B
tP ) − ΘV (JV )G . (2.6)

We now notice that
∑

V ∈Vh

1

d
ΨV (UF

V ) = U , (2.7)

which expresses that if we go through all V ∈ Vh and observe the sides in the sets FCV
, each σ ∈ Eh appears

just d-times (each side has d vertices). Hence we can sum (2.6) over all vertices and divide it by d to find that

U = Ã
−1(F − B

tP ) − JG , (2.8)

where

Ã
−1 :=

1

d

∑

V ∈Vh

ΨV (M−1
V ) , J :=

1

d

∑

V ∈Vh

ΘV (JV ) . (2.9)

Finally, inserting this expression into the second equation of (1.3), we obtain a system for only the scalar
unknowns

−BÃ
−1

B
tP = G− BÃ

−1F + BJG . (2.10)

We now give two remarks.

Remark 2.4 (Comparison with the direct elimination of the fluxes). From (1.3), U = A−1(F − BtP ). There

are two essential differences in comparison with (2.8). First, the matrix Ã−1 is sparse, whereas A−1 tends to be

full. Second, Ã−1 is obtained for the computational cost of the inverse of |Vh| local matrices, whereas obtaining
A−1 is in general very expensive.

Remark 2.5 (Implementation into existing mixed finite element codes). The local problems (2.3) correspond
to the rows of (1.3) associated with the sides from FCV

and elements from Cel
V . Hence obtaining the final

problem (2.10) from (1.3) is immediate.

It appears that in some particular cases, the matrix MV is not invertible, cf. Example 3.10 below. We give
sufficient conditions on the mesh Th and on the diffusion tensor S ensuring that MV are invertible for all V ∈ Vh

below as byproducts of Lemmas 3.6 and 3.9. Finally, we discuss in Section 3.3 the approaches as to how to
modify the proposed technique in order to overcome this difficulty.
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3. Properties of the condensed mixed finite element scheme

We study in this section the properties of the system matrix of the condensed mixed finite element scheme
which are important from the computational point of view, namely its sparsity pattern, symmetry, and positive
definiteness. It shows that all these properties are closely related to the properties of the local condensation
matrices, which we shall study hereafter. We finally discuss variants and extensions of the proposed technique
and open questions.

3.1. Properties of the system matrix

Theorem 3.1 (Stencil of the system matrix). Let MV be invertible for all V ∈ Vh. Then on a row of the final

system matrix BÃ−1Bt corresponding to an element K ∈ Th, the only possible nonzero entries are on columns
corresponding to L ∈ Th such that K and L share a common vertex.

Proof. The assertion of this theorem follows from the fact that by (2.4), the flux through a side σ is expressed
only using the scalar unknowns of the elements K ∈ Th such that K and σ share a common vertex. �

Theorem 3.2 (Positive definiteness of the system matrix). Let MV be positive definite for all V ∈ Vh. Then

the final system matrix BÃ−1Bt is also positive definite.

Proof. Since B has a full row rank, BÃ−1Bt is positive definite as soon as Ã−1 is positive definite, i.e. when

Xt
Ã

−1X > 0 for all X ∈ R
|Th| , X 6= 0 .

Let V ∈ Vh. We define a mapping ΠV : R|Eh| → R|FCV
|, restricting a vector of values associated with all

non-Neumann sides to a vector of values associated with the sides from FCV
. Let X ∈ R|Eh|, X 6= 0. Then

Xt
Ã

−1X =
1

d

∑

V ∈Vh

XtΨV (M−1
V )X =

1

d

∑

V ∈Vh

[ΠV (X)]tM−1
V ΠV (X) > 0 ,

using the positive definiteness of the local condensation matrices MV and consequently of M
−1
V for all V ∈ Vh

and the fact that in the above sum, all the terms are non-negative and at least d of them are positive. �

Theorem 3.3 (Symmetry of the system matrix). Let MV be invertible and symmetric for all V ∈ Vh. Then

the final system matrix BÃ−1Bt is also symmetric.

Proof. If MV and consequently M
−1
V are symmetric for all V ∈ Vh, their extensions ΨV (M−1

V ) are symmetric as

well. Hence Ã−1, a sum of symmetric matrices by (2.9), is symmetric. Finally, if Ã−1 is symmetric, BÃ−1Bt is
symmetric as well. �

3.2. Properties of the local condensation matrices

The local condensation matrix MV (2.5) for V ∈ Vh is given by the equations (2.1)–(2.2). It does not depend
on the right-hand side, and hence it is connected with the following problem: find u ∈ V(ECV

) such that

(u,S−1v)CV
= 0 ∀v ∈ V(FCV

) , (3.1a)

(∇ · u, φK)K = 0 ∀K ∈ Cel
V . (3.1b)

Here, V(ECV
) is the space spanned by the RTN basis functions vσ associated with the non-Neumann sides ECV

of the cluster CV and V(FCV
) is its restriction with the basis functions vσ associated with the sides from FCV

.
The problem (3.1a)–(3.1b) is further equivalent to the following Petrov–Galerkin problem: find u ∈ V(div, ECV

)
such that

(u,S−1v)CV
= 0 ∀v ∈ V(FCV

) ,
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Figure 3. Example of a boundary cluster CV and schematic representation of the basis func-
tions of the spaces V(FCV

) and V(div, ECV
)

where V(div, ECV
) is the subspace of V(ECV

) of the functions whose divergence is equal to 0 on all elements
K ∈ Cel

V . The space V(div, ECV
) is spanned by basis functions pσ associated with the sides from FCV

, which have
the same support as the RTN basis functions vσ and whose fluxes through the associated sides equal to those of

vσ (this in particular fixes their orientation). Namely, forK ∈ Cel
V and σ ∈ EK∩FCV

, pσ |K = vσ−
(∇·vσ ,1)K

(∇·vδK
,1)K

vδK
.

Note that this is a constant function given by 1
d|K|qσ |K , where qσ |K is the vector of the edge of K that is not

included in the sides σ and δK . ForK ∈ CV \Cel
V , pσ |K = vσ |K . We refer to Figure 3 for a schematic visualization

for d = 2.

Lemma 3.4 (Form of the local condensation matrices). The local condensation matrix MV for V ∈ Vh can be
written in the form

(MV )γ,σ = (pσ ,S
−1vγ)CV

,

where pσ and vσ, σ ∈ FCV
, are the basis functions of the spaces V(div, ECV

) and V(FCV
), respectively, defined

above.

Proof. We can rewrite (3.1a)–(3.1b) as

∑

σ∈ECV

Uσ(vσ ,S
−1vγ)CV

= 0 ∀γ ∈ FCV
, (3.2a)

∑

σ∈EK ,σ 6⊂ΓN

Uσ(∇ · vσ , 1)K = 0 ∀K ∈ Cel
V , (3.2b)

where u =
∑

σ∈ECV

Uσvσ . Expressing UδK
from (3.2b) gives

UδK
=

−
∑

σ∈EK∩FCV

Uσ(∇ · vσ , 1)K

(∇ · vδK
, 1)K

.
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Figure 4. Triangle K for the simplified elementwise positive definiteness criterion

Inserting this into (3.2a), we have

∑

σ∈ECV

Uσ(vσ ,S
−1vγ)CV

=
∑

K∈supp(vγ)

{ ∑

σ∈EK∩FCV

Uσ(vσ ,S
−1vγ)K + UδK

(vδK
,S−1vγ)K

}

=
∑

K∈supp(vγ)

∑

σ∈EK∩FCV

Uσ

(
vσ −

(∇ · vσ , 1)K

(∇ · vδK
, 1)K

vδK
,S−1vγ

)
K
,

where we have defined for simplification vδK
= 0 if K ∈ CV \ Cel

V (i.e. if EK ∩ GCV
= ∅). Hence, using the

definition of the basis functions of the spaces V(div, ECV
) and V(FCV

), the assertion of the lemma follows. �

Remark 3.5 (Implementation). Let S be piecewise constant and let ΓN = ∅. Then

(MV )γ,σ =
∑

K∈CV ; σ,γ∈EK

(pσ ,S
−1vγ)K =

∑

K∈CV ; σ,γ∈EK

(∇ · vγ , 1)K

d2|K|2
(S−1qσ ,x− Vγ,K)K

=
∑

K∈CV ; σ,γ∈EK

1

d2|K|
S|−1

K qσ |K ·wγ |K ,

where σ, γ ∈ FCV
and wγ |K := (∇ · vγ , 1)K(xK −Vγ,K) with xK the barycentre of K and Vγ,K the vertex of K

opposite to the side γ, cf. Figure 4. We have used the facts that {K ∈ CV ; σ, γ ∈ EK} = supp(pσ) ∩ supp(vγ)
and that xK = (x, 1)K/|K|. Hence, to implement the condensed mixed finite element scheme when in addition
q = 0, everything we need are the edge and vertex–barycentre vectors in each simplex and its measure.

We now give two lemmas that guarantee the positive definiteness of the local condensation matrices, the
assumption of Theorem 3.2. Since positive definiteness implies invertibility, the local condensation matrices are
under the following conditions in particular invertible, which guarantees the feasibility of the condensation in the
proposed form. The given conditions are sufficient but not necessary to ensure the positive definiteness—they
can be used as a simple elementwise or sidewise criterion, in order to avoid the direct checking of the positive
definiteness of the local condensation matrices.

Lemma 3.6 (Positive definiteness of the local condensation matrices—elementwise criterion). Let the matrices

EV,K ∈ R|EK∩FCV
|×|EK∩FCV

| given by

(EV,K)γ,σ := (pσ ,S
−1vγ)K ,
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Figure 5. Theoretical (left) and experimental (right) limit mesh for the positive definiteness
of the system matrix for a deformed square and S = Id

where pσ and vσ, σ ∈ EK ∩ FCV
, are the basis functions of the spaces V(div, ECV

) and V(FCV
), respectively,

be positive definite for all K ∈ Th and for all vertices V of K. Then the local condensation matrices MV are
positive definite for all V ∈ Vh.

Proof. Let V ∈ Vh and let X ∈ R|FCV
|, X 6= 0. We then have, with p =

∑

σ∈FCV

Xσpσ , v =
∑

σ∈FCV

Xσvσ ,

Xt
MV X = (p,S−1v)CV

=
∑

K∈Cel

V

(p,S−1v)K +
∑

K∈CV \Cel

V

(p,S−1v)K

=
∑

K∈Cel

V

[ΠV,K(X)]tEV,KΠV,K(X) +
∑

K∈CV \Cel

V

(v,S−1v)K > 0 ,

where the mapping ΠV,K : R|FCV
| → R|EK∩FCV

| restricts a vector of values associated with the sides from FCV

to a vector of values associated with the sides from EK ∩ FCV
, and using the fact that the two last terms are

non-negative and at least one of them is positive. �

Remark 3.7 (Simple elementwise positive definiteness criterion in two space dimensions). Let d = 2 and let S

be piecewise constant. Let qσ ,qγ ,wσ,wγ be the constant edge and vertex–barycentre vectors of a triangle K
as in Figure 4. Then a simplified criterion for the positive definiteness of the local condensation matrices is

∣∣∣S|−1
K qσ ·wγ + S|−1

K qγ · wσ

∣∣∣
2

< 4(S|−1
K qσ · wσ)(S|−1

K qγ ·wγ) (3.3)

for all K ∈ Th and for all denotation σ, γ of two edges of K. Notice that qσ ·wγ = 0 for an equilateral triangle
and that this quantity grows in the absolute value while deforming the triangle. On the contrary, qσ · wσ

decreases with the angle between qσ and wσ and it is positive only if this angle is less than π/2. This criterion
is a consequence of Remark 3.5 and of Lemma 3.6 with a tighten up criterion for triangles with Neumann edges.

Example 3.8 (Positive definiteness for a triangulation of a deformed square). Let S = Id, let Ω be a square
(0, 1) × (0, 1), and let Th be its triangulation by regular right-angled triangles. Let us deform the domain and
the mesh by shifting horizontally the upper edge of the square. Criterion (3.3) gives that the local condensation
matrices (and consequently the system matrix) are positive definite up to the mesh given in Figure 5 on the
left-hand side. The experimental limit mesh is still a bit less restrictive and is given in Figure 5 on the right-hand
side.
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V 

Figure 6. A mesh where the local condensation matrix MV is singular

Lemma 3.9 (Positive definiteness of the local condensation matrices—sidewise criterion). Let S be piecewise
constant and let ΓN = ∅. Let for all γ ∈ Eh and for all vertices V of γ,

∑

K∈supp(vγ)

1

d2|K|
S|−1

K qγ |K ·wγ |K >
∑

K∈supp(vγ)

1

d2|K|

∑

σ∈EK∩FCV
, σ 6=γ

∣∣∣1
2
S|−1

K (qσ |K ·wγ |K + qγ |K ·wσ |K)
∣∣∣ ,

where the constant edge and vertex–barycentre vectors qσ |K , wσ |K , respectively, are derived from the basis
functions of the spaces V(div, ECV

) and V(FCV
) pσ and vσ as in Remark 3.5. Then the local condensation

matrices MV are positive definite for all V ∈ Vh.

Proof. The assumption of the lemma ensures that the matrices 1
2 (MV + Mt

V ) for all V ∈ Vh have positive
diagonal entries and are strictly diagonally dominant and hence they are positive definite. To conclude, it
suffices to note that the matrix MV is positive definite if and only if its symmetric part 1

2 (MV +Mt
V ) is positive

definite. �

Example 3.10 (Singular local condensation matrix). We give in Figure 6 an example of a mesh where the
local condensation matrix MV is singular for S = Id. All the triangles sharing the vertex V have exactly one
edge σ such that qσ ·wσ = 0 with the notation of Figure 4. Hence, in particular, the assumptions of Lemma 3.6
are not verified. This singularity is not local—it suffices to modify the coordinates of one point to make MV

invertible, cf. the detailed numerical study in Section 5.3.

We now state under which conditions the assumption of Theorem 3.3 is satisfied.

Lemma 3.11 (Symmetry of the local condensation matrices). Let Th consist of equilateral simplices and let S

be a piecewise constant scalar function. Then MV are symmetric for all V ∈ Vh.

Proof. We have

(MV )γ,σ =
(
vσ −

(∇ · vσ , 1)K

(∇ · vδK
, 1)K

vδK
,S−1vγ

)
K
,

where K ∈ supp(pσ) ∩ supp(vγ), σ, γ ∈ FCV
, σ 6= γ. If K ∈ CV \ Cel

V and thus vδK
= 0 by the definition,

(MV )γ,σ is clearly equal to (MV )σ,γ for a general S by its symmetry. If K ∈ Cel
V , (MV )γ,σ = (MV )σ,γ as soon as

(
S−1vδK

,vγ(∇ · vγ , 1)K

)
K

=
(
S−1vδK

,vσ(∇ · vσ , 1)K

)
K
,

which is the case of an equilateral simplex and S a piecewise constant scalar function. �
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Remark 3.12 (Equilateral simplices and a piecewise constant scalar diffusion tensor). Let Th consist of equi-
lateral simplices, let S be a piecewise constant scalar function, and let ΓN = ∅. Then it follows from Remark 3.5
that (MV )γ,σ = 0 if σ 6= γ (since the vectors qσ |K and wγ |K are orthogonal), and hence the local condensation
matrices are diagonal. Thus to express the flux though an interior side γ in this case, we only need the scalar
unknowns associated with the two elements that share this side. As a consequence, the final system matrix has
only a 4-point stencil in two space dimensions and a 5-point stencil in three space dimensions and is moreover
symmetric and positive definite. A simple computation shows that this matrix is equivalent to that of the
standard finite volume scheme [21] when S = Id. Note however that the right-hand side is generally different
in the presence of a source term!

3.3. Variants, extensions, and open problems

The essential idea of the proposed elimination, briefly said, consists in considering such sets of elements that
it is possible to eliminate the fluxes through the exterior sides of these sets by the divergence equations on the
exterior elements. The clusters defined by all elements sharing a given vertex represent just the most basic
possibility. We now precise on this point.

Let C be a set of elements of Th and let GC be the set of sides of C between an element K ∈ C and L 6∈ C.
Let each K ∈ C contain at most one σ ∈ GC and let us denote the subset of C of elements containing a σ ∈ GC

by Cel. Clearly, |Cel| = |GC |, and we denote by δK the side of K ∈ Cel such that δK ∈ GC . Finally, let EC stand
for all non-Neumann sides of C and FC for EC \ GC . A particular example is the cluster CV associated with a
vertex V . We have the spaces V(FCV

) and V(div, ECV
) as in Section 3.2 and the following generalization of

Lemma 3.6:

Lemma 3.13 (Positive definiteness of local condensation matrices on general clusters). Let the matrices EC,K ∈
R|EK∩FC|×|EK∩FC| given by

(EC,K)γ,σ := (pσ ,S
−1vγ)K ,

where pσ and vσ, σ ∈ EK ∩ FC, are the basis functions of the spaces V(div, EC) and V(FC), respectively,
be positive definite for all K ∈ Cel. Then the local condensation matrix MC associated with the cluster C,
(MC)γ,σ = (pσ ,S

−1vγ)C, is positive definite.

Proof. Let X ∈ R|FC|, X 6= 0. We then have, with p =
∑

σ∈FC

Xσpσ , v =
∑

σ∈FC

Xσvσ ,

Xt
MCX = (p,S−1v)C =

∑

K∈Cel

(p,S−1v)K +
∑

K∈C\Cel

(p,S−1v)K

=
∑

K∈Cel

[ΠC,K(X)]tEC,KΠC,K(X) +
∑

K∈C\Cel

(v,S−1v)K > 0 ,

where the mapping ΠC,K : R|FC| → R|EK∩FC | restricts a vector of values associated with the sides from FC

to a vector of values associated with the sides from EK ∩ FC , and using the fact that the two last terms are
non-negative and at least one of them is positive. �

The above lemma shows that the positive definiteness of local condensation matrices only depends on the
elements from Cel. Hence, in particular, should the local condensation matrix associated with a cluster of a
vertex V be singular, we can resort to a wider cluster. This namely functions in the case of Example 3.10,
cf. Section 5.3 below. Finally, to expose the problem in its full complexity, it appears that it is not necessary
to consider the divergence equations on the elements of C sharing a side with an element L 6∈ C. Let again
C be a set of elements of Th and let GC be the set of sides of C between an element K ∈ C and L 6∈ C. Let
EC stand for all non-Neumann sides of C and FC for EC \ GC . We notice that on the rows of the submatrix A

of (1.3) associated with the sides from FC and on the rows of the submatrix B associated with the elements
from C, the only nonzero entries are on the columns associated with the sides from EC . Hence, to carry out the
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condensation, it is sufficient if the submatrix consisting of the above rows has a rank equal to |EC |. The main
open problem, which resembles the existence of “singular triangles” in [14, 40], is whether there always has to
exist a system of clusters covering Th with the above property. Next, in the case of clusters associated with
vertices, we have the simple expression (2.7) for the fluxes through all non-Neumann sides. For general clusters,
however, we have to associate a weight αi

σ to each side σ ∈ Eh and i-th out of b clusters C where σ belongs to

FC , such that
∑b

i=1 α
i
σ = 1, in order to have

∑b
i=1 α

i
σU

i
σ = Uσ , where U i

σ is the expression of the flux through
σ from the i-th cluster. Another interesting open problem is whether one could influence the stencil, symmetry,
and positive definiteness of the system matrix by a suitable choice of these weights. For the moment, we have
only focused on the basic case. Throughout all the tests presented in Sections 5.1 and 5.2 below, which involve
general meshes and inhomogeneous and anisotropic (nonconstant full-matrix) diffusion tensors, we have used
the local condensation matrices associated with vertices. These were always invertible, although not always
positive definite.

In the lowest-order Raviart–Thomas mixed finite element method on rectangular meshes or in the lowest-
order Brezzi–Douglas–Marini mixed finite element method [11,12] on simplicial meshes, it is either not possible
to create subsets C of Th such that each element of C shares at most one side with an element L 6∈ C, or the
number of degrees of freedom of vector unknowns per side is greater than the number of degrees of freedom of
scalar unknowns per element. Hence the basic form of the condensation with clusters around vertices does not
apply. On the other hand, for both Raviart–Thomas and Brezzi–Douglas–Marini mixed finite elements of second
order on simplicial meshes, the two above properties are satisfied. The extension of the basic condensation to
this case, which may lead to an interesting relation between these second-order mixed finite element methods
and the discontinuous Galerkin method, is an ongoing work.

4. Application to nonlinear parabolic problems

We show in this section that the above ideas easily apply also to the discretization of nonlinear parabolic
convection–diffusion–reaction problems. We consider in particular the problem

∂β(p)

∂t
+ ∇ · u + F (p) = q in Ω × (0, T ) , (4.1a)

u = −S∇p+ ψ(p)w in Ω × (0, T ) , (4.1b)

p(·, 0) = p0 in Ω , (4.1c)

p = pD on ΓD × (0, T ) , (4.1d)

u · n = uN on ΓN × (0, T ) , (4.1e)

where β, ψ, and F are monotone nonlinear functions, S is again a bounded, symmetric, and uniformly positive
definite tensor, w is a velocity field, and q represents a source term.

Let again ũ be such that ũ · n = uN on ΓN in the appropriate sense. We split up the time interval (0, T )
such that 0 = t0 < . . . < tn < . . . < tN = T and define 4tn := tn − tn−1, n ∈ {1, 2, . . . , N}, and p0

h|K by
(p0, 1)K/|K| for allK ∈ Th. The fully implicit lowest-order Raviart–Thomas mixed finite element approximation
of the problem (4.1a)–(4.1e), cf. [8], consists in finding on each time level tn, n ∈ {1, 2, . . . , N}, the functions
un

h = un
0,h + ũn, un

0,h ∈ V(Eh), and pn
h ∈ Φ(Th) such that

(S−nun
0,h,vh)Ω − (∇ · vh, p

n
h)Ω − (ψ(pn

h)wn,S−nvh)Ω = −〈vh · n, pn
D〉∂Ω

−(S−nũn,vh)Ω ∀vh ∈ V(Eh) , (4.2a)
(β(pn

h) − β(pn−1
h )

4tn
, φh

)
Ω

+ (∇ · un
0,h, φh)Ω + (F (pn

h), φh)Ω = (q, φh)Ω

−(∇ · ũn, φh)Ω ∀φh ∈ Φ(Th) , (4.2b)
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where

S−n :=
1

4tn

∫ tn

tn−1

S−1(·, t) dt , wn :=
1

4tn

∫ tn

tn−1

w(·, t) dt ,

pn
D :=

1

4tn

∫ tn

tn−1

pD(·, t) dt , ũn :=
1

4tn

∫ tn

tn−1

ũ(·, t) dt n ∈ {1, 2, . . . , N} .

Note that if β = F = ψ = 0, the matrix form of the problem (4.2a)–(4.2b) is given by (1.3), where the second
equation is multiplied by −1. Such system matrix is not symmetric, but is positive definite, which is a favorable
starting form for (4.2a)–(4.2b).

Everything we have to say about the application of the proposed condensation to the system (4.2a)–(4.2b) is
that the terms where the unknown discrete velocity function un

0,h appears are exactly the same as in the linear

elliptic case, see (1.2a)–(1.2b). Hence one can eliminate un
0,h on each discrete time level as in Section 2. This

time, the flux unknowns are nonlinear functions of the scalar unknowns, convection velocity field, sources, and
boundary conditions. The system (4.2a)–(4.2b), linearized by e.g. the Newton method, can be written in the
matrix form as (

A C

B D

)(
U
P

)
=

(
F
G

)
. (4.3)

Let V ∈ Vh be a vertex and CV the associated cluster and let us consider the linearized equations (4.2a) for the
basis functions vγ , γ ∈ FCV

, and the linearized equations (4.2b) for all φK , K ∈ Cel
V . This gives

(
A1,V A2,V

B1,V B2,V

)(
UF

V

UG
V

)
=

(
FV − CV P1,V

GV − DV P2,V

)
. (4.4)

In fact, in the present case, P1,V = P2,V = {PK}K∈CV
. We shall need the form (4.4) below for the upwind-mixed

method. The matrix B2,V is still diagonal, and hence we easily have

MV U
F
V = FV − CV P1,V − A2,V B

−1
2,V (GV − DV P2,V ) , (4.5)

where the local condensation matrix associated with the vertex V , MV = A1,V −A2,V B
−1
2,V B1,V , is the same as in

the linear elliptic case. Hence its invertibility and the feasibility of the condensation in this form is determined
by the rules studied in Section 3. Should MV be invertible for all V ∈ Vh, we have

U = Ã
−1(F − CP ) − J(G− DP ) ,

using (2.7). Here Ã−1 and J are given by (2.9). It now suffices to insert this expression for U into the second
equation of (4.3) to obtain the final system for the scalar unknowns P only,

(−BÃ
−1

C + BJD + D)P = G− BÃ
−1F + BJG . (4.6)

This transcription enables in particular a straightforward implementation of the proposed condensation in
existing mixed finite element codes.

Remark 4.1 (Assemblage of Ã−1 and J). We note that the matrices Ã−1 and J only depend on the matrices
A,B of (4.3). Hence, if these matrices do not change (i.e. when the diffusion tensor S is constant with respect

to time), the assemblage of Ã−1 and J can be done only once before the start of the calculation. On each time
and linearization step, one then needs only C, D, F , and G from (4.3) to assemble the final linear system (4.6).
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We now finally turn to the upwind-mixed lowest-order Raviart–Thomas method, cf. [17, 18, 26]. For this
purpose, we first rewrite (4.1a)–(4.1b) as

∂β(p)

∂t
+ ∇ · r + ∇ · (ψ(p)w) + F (p) = q in Ω × (0, T ) ,

r = −S∇p in Ω × (0, T ) .

Whereas the initial and Dirichlet boundary conditions (4.1c) and (4.1d) stay the same, we rewrite the Robin
boundary condition (4.1e) as a Neumann one,

r · n = vN on ΓN × (0, T ) .

Let again r̃ be such that r̃ · n = vN on ΓN in the appropriate sense and define r̃n := 1
4tn

∫ tn

tn−1

r̃(·, t) dt,

n ∈ {1, 2, . . . , N}. The fully implicit upwind-mixed finite element method then reads: on each time level tn,
n ∈ {1, 2, . . . , N}, find the functions rn

h = rn
0,h + r̃n, rn

0,h ∈ V(Eh), and pn
h ∈ Φ(Th) such that

(S−nrn
0,h,vh)Ω − (∇ · vh, p

n
h)Ω = −〈vh · n, pn

D〉∂Ω

−(S−nr̃n,vh)Ω ∀vh ∈ V(Eh) , (4.8a)
(β(Pn

K) − β(Pn−1
K )

4tn
, φK

)
K

+ (∇ · rn
0,h, φK)K +

∑

σ∈EK

ψ(p̂n
σ)wn

K,σ + (F (Pn
K), φK)K

= (q, φK)K − (∇ · r̃n, φK)K ∀K ∈ Th , (4.8b)

where wn
K,σ = 〈wn · n, 1〉σ and p̂n

σ is the upwind value defined respectively by

p̂n
σ :=

{
Pn

K if wn
K,σ ≥ 0

Pn
L if wn

K,σ < 0
, p̂n

σ :=

{
Pn

K if wn
K,σ ≥ 0

〈pn
D, 1〉σ/|σ| if wn

K,σ < 0
, p̂n

σ := Pn
K

for σ an interior side between the elements K and L, for σ a Dirichlet boundary side, and for σ a Neumann
boundary side. The linearization of the system (4.8a)–(4.8b) has again the form (4.3), with this time C = −Bt.
The condensation applies again directly and in particular the final system has the form (4.6). The only difference
is that because of the upstream weighting, P1,V 6= P2,V in (4.4). In the expression for the fluxes through the
FCV

sides, all the scalar unknowns associated with the elements sharing a side with an element from the cluster
CV may appear. Hence also the stencil of the final matrix is in this case wider: on a row of the final matrix
corresponding to an element K ∈ Th, the only possible nonzero entries are on columns corresponding to L ∈ Th

such that L shares a common side with an element M ∈ Th such that M and K share a common vertex. Finally,
a similar observation to Remark 4.1 holds also in this case. Should A and B be constant, we only need to upload
D, F , and G on each time and linearization step, as in the finite volume method.

5. Numerical experiments

We give the results of several numerical experiments in two space dimensions in this section. We first compare
the arising linear systems properties and the computational cost of the proposed condensation of the lowest-
order Raviart–Thomas mixed finite element method with the hybridization approach for elliptic problems. We
next compare the condensation with standard mixed solution approaches for nonlinear parabolic convection–
diffusion–reaction problems. In all these tests, we employ the local condensation matrices associated with
vertices. We finally numerically study the stability of this basic form of the condensation with respect to nearly
singular cases and show that resorting to the clusters defined by all elements sharing a vertex with a given
element (cf. Section 3.3) can eliminate this problem.
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Figure 7. Initial meshes A (left) and B (right)

We employ two iterative methods for the solution of the arising sparse linear systems. If the matrix is
symmetric and positive definite, we use the conjugate gradients (CG) method [24, 32]. For nonsymmetric
matrices, we employ the bi-conjugate gradients stabilized (Bi-CGStab) method [32, 37]. To accelerate the
convergence of these methods, we use incomplete Cholesky (IC) and incomplete LU (ILU) factorizations with
a specified drop tolerance, cf. [36]. The drop tolerance is always chosen in such way that the sum of CPU
times of the preconditioning and of the solution of the preconditioned system was minimal. We denote the
preconditioned methods by PCG and PBi-CGStab, respectively. We always use a zero start vector and stop
the iterative process as soon as the relative residual ‖Y −MX̃‖2/‖Y ‖2, where X̃ is the approximate solution to
the system MX = Y , decreases below 1e-8. We focus on iterative solvers since they have reasonable memory
requirements and, combined with e.g. the Newton method and a suitable preconditioning, allow for an efficient
solution of nonlinear problems. Next, in the tables with results, we shall use the abbreviation SPD for a
symmetric positive definite matrix, NPD for a nonsymmetric but positive definite matrix (recall that a real
matrix M ∈ RM×M is positive definite if X tMX > 0 for all X ∈ RM , X 6= 0), NNS for a nonsymmetric
negative-stable matrix (a matrix whose all eigenvalues have positive real parts, which is in particular the case
for positive definite matrices), and NID for a general nonsymmetric indefinite matrix. We further use st. for the
stencil, i.e. for the maximum number of nonzero entries on each matrix row, and cond. for the 2-norm condition
number (defined for a matrix M by ‖M‖2‖M−1‖2, or equivalently by the ratio of its largest and smallest singular
value).

All the computations presented in this section were performed in double precision on a notebook with Intel
Pentium 4-M 1.8 GHz processor and MS Windows XP operating system. Machine precision was in the power
of 1e-16. All the matrix operations were done with the help of MATLAB 6.1.

5.1. Condensed mixed finite element method for elliptic problems

We consider in this section the problem (1.1a)–(1.1c) on Ω = (0, 1) × (0, 1), where on the left edge,
homogeneous Neumann boundary condition is prescribed and on the rest of the boundary, p is given by
p(x, y) = 0.1y + 0.9. We perform the calculations on one to five regular refinements (each triangle is re-
fined into four triangles by joining its edges midpoints) of the meshes viewed in Figure 7. In the mesh A, the
minimal and maximal angles are equal to 35.4 and 88.7 degrees, and in the mesh B to 9.24 and 139 degrees,
respectively. Note in particular that the mesh B is not Delaunay. A sink term q = −0.001 is prescribed on two
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elements of the initial mesh. Finally, the tensor S is given by

S|K =

(
cos(θK) − sin(θK)
sin(θK) cos(θK)

)(
sK 0
0 νsK

)(
cos(θK) sin(θK)
− sin(θK) cos(θK)

)
for K ∈ Th ,

where we distinguish its following five different forms:

sK = 1 ∀K ∈ Th , ν = 1 , (5.1)

i.e. the homogeneous isotropic case (S = Id), or

sK = 1 ∀K ∈ Th , θK ∈

{
π

5
,
3π

4
,
π

2
,
3π

5
,
π

3

}
, ν = 0.2 , (5.2)

i.e. the (homogeneous with respect to sK) anisotropic case (S is a full-matrix tensor), or

sK ∈ {10, 1, 0.1, 0.01, 0.001} , ν = 1 , (5.3)

i.e. the inhomogeneous isotropic case (S is a varying scalar), or

sK ∈ {10, 5, 1, 0.5, 0.1} , θK ∈

{
π

5
,
3π

4
,
π

2
,
3π

5
,
π

3

}
, ν = 0.2 , (5.4)

sK ∈ {10, 5, 1, 0.5, 0.1} , θK ∈

{
π

5
,
3π

4
,
π

2
,
3π

5
,
π

3

}
, ν = 0.05 , (5.5)

i.e. the inhomogeneous anisotropic cases (S is a varying full matrix). The corresponding distributions of sK

and θK are viewed in Figure 7.
In Table 1, we compare different properties of the hybridization (implemented as the nonconforming finite

element method, cf. [15]) with the condensed scheme (2.10). The number of unknowns in the hybridization is
given by the number of non-Dirichlet edges. In the condensed scheme, this number is decreased by approximately
1/3 and is equal to the number of triangles. The stencil in the hybridization is equal to 5 and it was equal to
14 for the matrices issued from the condensation. The system matrix of the mixed-hybrid method is always
symmetric and positive definite. In the condensation, the system matrix is nonsymmetric and its positive
definiteness is only guaranteed if all the local condensation matrices MV given by (2.5) are positive definite,
which is in particular the case under condition (3.3). In the first three tested cases, this condition was verified by
all K ∈ Th. Note in particular that this is true even for the quite strong anisotropy ratio ν = 0.2 prescribed in
the second case. In the fourth case (deformed mesh B, S = Id), this criterion was violated by 11% of elements,
but the system matrix still was positive definite. Positive definiteness was lost under subsequent increase of
the anisotropy (mesh B, coefficients (5.4), 20% of elements violating condition (3.3)), but the matrix still was
negative-stable. It is interesting that for the first refinement of the initial mesh, the system matrix was in
fact even positive definite. Still increasing the anisotropy ratio (ν = 0.05) in the last case, there were 72% of
elements violating condition (3.3) and the condensed mixed finite element matrix was no more negative-stable.
Nevertheless, the local condensation matrices associated with vertices were in all cases invertible and hence the
condensation approach in its simplest form was feasible. The maximums of condition numbers of the matrices
MV over all V ∈ Vh were, respectively, 12, 48, 30560, 108, 1372, and 125825 in the six tested cases. Finally, the
system matrices condition numbers are indicated in Table 1. It appears that in first five considered cases, the
conditioning was 2 to 3-times better for the condensation, whereas in the last case, the conditioning was much
worse for the condensation.

The above-discussed properties of the system matrices fundamentally influence the solution of the associated
systems of linear equations. We first give the CPU time in seconds and the number of iterations necessary for the
CG and BiCGStab methods, respectively. In rather homogeneous but possibly quite anisotropic cases (meshes A
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MHFE Condensed MFE

CG PCG Bi-CGStab PBi-CGStab

Case Unkn. Cond. CPU Iter. CPU IC Iter. Unkn. Matr. Cond. CPU Iter. CPU ILU Iter.

mesh A 316 314 0.03 82 0.02 0.01 5 216 NPD 183 0.03 55.0 0.02 0.01 1.5
cfs. (5.1) 1280 1352 0.21 171 0.05 0.02 8 864 NPD 725 0.16 87.0 0.04 0.02 2.5

5152 5527 1.35 348 0.40 0.18 13 3456 NPD 2910 1.16 162.5 0.28 0.16 4.5
20672 22260 12.35 691 3.02 1.48 18 13824 NPD 11673 8.86 295.5 1.99 1.03 8.5
82816 89165 135.83 1358 22.48 11.90 27 55296 NPD 46762 89.17 615.0 16.82 9.31 14.5

mesh A 316 517 0.05 114 0.02 0.01 5 216 NPD 213 0.03 47.5 0.02 0.01 1.5
cfs. (5.2) 1280 2134 0.27 231 0.06 0.02 7 864 NPD 813 0.16 86.0 0.04 0.02 2.5

5152 8676 1.75 466 0.40 0.20 12 3456 NPD 3195 1.32 181.5 0.29 0.15 5.0
20672 34856 16.62 926 3.35 1.69 17 13824 NPD 12698 10.80 335.0 2.10 0.97 10.0
82816 139477 192.23 1824 36.02 26.30 20 55296 NPD 50685 102.78 755.5 22.12 6.65 34.5

mesh A 316 165877 0.47 1123 0.02 0.01 5 216 NPD 86082 0.46 677.5 0.02 0.01 1.5
cfs. (5.3) 1280 606930 2.95 3327 0.05 0.02 9 864 NPD 302639 2.79 1579.5 0.04 0.02 2.5

5152 2.25e+6 27.91 7066 0.41 0.18 12 3456 NPD 1.15e+6 29.62 4028.5 0.28 0.13 5.0
20672 8.49e+6 268.41 14009 3.11 1.54 17 13824 NPD 4.38e+6 279.78 9203.5 2.25 1.00 10.0
82816 3.23e+7 2514.15 26728 24.57 10.90 33 55296 NPD 1.68e+7 2662.26 20148.5 20.37 13.23 12.0

mesh B 316 1204 0.05 129 0.02 0.01 5 216 NPD 278 0.04 48.5 0.02 0.01 1.5
cfs. (5.1) 1280 5236 0.33 300 0.06 0.02 9 864 NPD 1424 0.23 116.5 0.04 0.02 2.5

5152 21382 2.55 660 0.40 0.17 14 3456 NPD 6495 2.01 268.5 0.28 0.16 4.5
20672 86007 25.88 1370 3.05 1.36 21 13824 NPD 27151 17.55 558.5 2.13 1.23 7.5
82816 344380 261.47 2740 27.81 12.99 34 55296 NPD 110002 173.92 1146.5 21.08 13.54 12.5

mesh B 316 10398 0.14 402 0.02 0.01 5 216 NPD 2479 0.10 148.5 0.02 0.01 2.5
cfs. (5.4) 1280 38970 0.87 885 0.06 0.02 10 864 NNS 10699 0.66 346.5 0.04 0.02 3.5

5152 146249 7.80 1881 0.41 0.15 14 3456 NNS 45264 5.60 741.5 0.29 0.17 4.5
20672 561083 69.92 3796 3.44 1.60 19 13824 NNS 183063 49.39 1635.0 2.28 1.33 7.0
82816 2.18e+6 708.13 7410 33.40 22.86 22 55296 NNS 723345 539.41 4056.5 21.39 15.05 8.5

mesh B 316 21846 0.21 591 0.02 0.01 5 216 NID 238294 0.32 282.5 0.02 0.01 2.0
cfs. (5.5) 1280 68078 1.28 1284 0.07 0.02 11 864 NID 861441 1.92 1053.5 0.04 0.02 3.0

5152 241229 9.80 2616 0.44 0.15 15 3456 NID 2.60e+6 410.13 54541.5 0.29 0.17 4.0
20672 906060 91.60 5141 3.60 2.09 18 13824 NID 9.68e+6 – – 2.42 1.61 5.5
82816 3.50e+6 981.17 10052 33.75 22.36 24 55296 NID 3.74e+7 – – 22.41 17.55 6.5

Table 1. Comparison of matrix properties and of the computational cost of the hybridized and condensed mixed finite
element methods, elliptic problem (1.1a)–(1.1c)
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Figure 8. Initial meshes C (left) and D (right)

or B with S = Id or mesh A with S given by (5.2)), the CPU times of the condensation were from 1.5 to 1.85-
times lower than those of the hybridization. For the strongly inhomogeneous case (5.3), the CPU times of the
two methods were comparable. Finally, for the mesh B and S given by (5.5), BiCGStab converged very slowly
for the condensation, since the system matrix was in this case not negative-stable. IC or ILU preconditioning of
the above methods (whose time in seconds we report as well) enabled a considerable reduction in the necessary
CPU times (but increased the memory requirements). It in particular also worked in the case where BiCGStab
converged very slowly. Hence, in all considered cases, using this type of preconditioning, the condensation
enabled a reduction in the CPU time necessary to solve the linear systems arising from the lowest-order mixed
finite element method in comparison with the hybridization by a factor comprised between 1.2 and 1.6.

5.2. Condensed mixed finite element method for nonlinear parabolic problems

We compare in this section the condensed and standard mixed finite element methods for two nonlinear
parabolic problems. We perform the simulations on one to five-times refined initial meshes from Figure 8. In
the mesh C, the minimal and maximal angles are equal to 29.1 and 84.8 degrees, and in the mesh D to 15.3
and 135 degrees, respectively; the mesh D is again not Delaunay. The initial time step is equal to T/2 and is
divided by two each time the space mesh is refined.

5.2.1. A reaction–diffusion problem

For Ω = (0, 2) × (0, 1) and T = 1, we consider the nonlinear reaction–diffusion problem

∂(p+ pα)

∂t
−∇ · (S∇p) + 3p+ αpα = 0 (5.6)

with α = 0.5 and either

S =

(
1 0
0 1

)
in Ω (5.7)

or

S =

(
1 0
0 1

)
for x < 1 , S =

(
2 −1

−1 2

)
for x > 1 . (5.8)

Initial and Dirichlet boundary conditions are given by the exact solution p(x, y, t) = exeye−t/e3. Notice that
the flux of the solution given by −S∇p has a continuous normal trace across the discontinuity line x = 1 for
the diffusion tensor (5.8). The derivative of the function pα, α = 0.5, blows up in 0 but the problem is not
really degenerate parabolic, since the exact solution does not take the value of 0. We consider the condensation
of the mixed finite element method (4.6) and the mixed finite element method (4.2a)–(4.2b). We notice that
the system of equations of the mixed method has on each time and linearization step the form (4.3), where
D is a diagonal matrix. Hence a standard solution approach is to inverse D, then solve for U the system
(A − CD−1B)U = F − CD−1G, and finally recover P from P = D−1(G − BU). In fact, in the present case,
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C = Bt, and thus the final system matrix is symmetric. It is noted in [25] that this approach is not suitable
when the term occurring in the time derivative and the reaction term are too small in comparison with the
other terms, which is however not the present case. On the contrary, according to [25], such solution approach
is more reliable than the hybridization of the mixed finite element method for parabolic problems with general
diffusion tensors.

We compare the properties of the system matrices and the computational cost for the first time and Newton
linearization steps in Table 2. The CPU time of the condensed mixed finite element method is about 2-times
shorter than the CPU time of the standard approach in the case of the tensor (5.7) and the initial mesh C. When
full-matrix and discontinuous diffusion tensor (5.8) and a less regular mesh D are used, then the CPU time
of the condensed version is more than 4-times shorter when no preconditioning is used and more than 2-times
shorter with preconditioning. Note the important increase of the condition number of the system matrix of the
standard mixed finite element method for the tensor (5.8).

5.2.2. A convection–diffusion–reaction problem

For Ω = (0, 2) × (0, 1) and T = 1, we consider the nonlinear convection–diffusion–reaction problem

∂(p+ pα)

∂t
−∇ · (S∇p) + ∇ · (pw) + αpα = 0 (5.9)

with α = 0.5 and either

S =

(
1 0
0 1

)
in Ω , w = (3, 0) in Ω (5.10)

or

S =

(
1 0
0 1

)
for x < 1 , S =

(
8 −7

−7 20

)
for x > 1 ,

w = (3, 0) for x < 1 , w = (3, 12) for x > 1 . (5.11)

Initial and Dirichlet boundary conditions are again given by the exact solution p(x, y, t) = exeye−t/e3. Notice
that in the case of the coefficients given by (5.11), the velocity field w as well as the flux of the solution given
by −S∇p + (pw) have a continuous normal trace across the discontinuity line x = 1. The problem is not
convection-dominated, and hence we can use the mixed finite element method (4.2a)–(4.2b). Notice that the
associated linear system on each time and linearization step has again the form (4.3) with D a diagonal matrix.
Hence the same solution approach as in the previous section can be used. In this case however C 6= Bt, and
thus the final system for U is nonsymmetric.

We compare the properties of the linear systems and the computational cost for the first time and Newton
linearization steps in Table 3. The settings are the same as in the previous section, except for the fact that we
have to use the Bi-CGStab method and the LU incomplete factorization also for the standard mixed approach in
view of the nonsymmetry of its system matrices. One can observe that the increase of the condition number of the
system matrix of the condensed mixed finite element method with less regular coefficients and mesh is much less
important than that of the standard mixed finite element method. Hence the CPU time of the unpreconditioned
Bi-CGStab method for the condensed version is about 3-times shorter for the coefficients (5.10) and mesh C, but
about 10-times shorter for the coefficients (5.11) and mesh D. Using the preconditioning considerably smears
the difference. The CPU time of the condensed version is then about 2-times shorter.

5.2.3. A convection–diffusion–reaction problem and the upwind-mixed method

We consider here once more the problem (5.9) with coefficients (5.10) and mesh C. This time, we employ the
upwind-mixed finite element method (4.8a)–(4.8b) and the corresponding condensed version.

We compare the properties of the linear systems on the first time and Newton linearization steps in Table 4.
Although there is an increase in the stencil of the condensed upwind-mixed finite element method, the system
matrix condition number and CPU times are very similar to the condensed mixed finite element method, cf.
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MFE Condensed MFE

CG PCG Bi-CGStab PBi-CGStab

Case Unkn. Matr. Cond. CPU Iter. CPU IC Iter. Unkn. Matr. Cond. CPU Iter. CPU ILU Iter.

mesh C 204 SPD 290 0.05 110 0.02 0.01 5 128 NPD 37 0.02 29.5 0.02 0.01 2.0
cfs. (5.7) 792 SPD 764 0.14 206 0.04 0.02 7 512 NPD 109 0.06 50.0 0.02 0.01 2.5

3120 SPD 1770 0.95 333 0.18 0.08 11 2048 NPD 298 0.37 80.5 0.10 0.06 3.0
12384 SPD 3820 5.36 508 1.21 0.58 14 8192 NPD 747 2.45 122.5 0.68 0.38 5.0
49344 SPD 7974 34.45 743 8.17 3.83 18 32768 NPD 1753 14.24 175.0 4.75 2.95 7.0

mesh D 204 SPD 1358 0.07 170 0.02 0.01 6 128 NPD 61 0.02 31.0 0.02 0.01 2.0
cfs. (5.8) 792 SPD 4314 0.36 409 0.04 0.02 10 512 NPD 225 0.07 62.0 0.02 0.01 2.5

3120 SPD 11506 2.23 836 0.28 0.12 16 2048 NPD 676 0.49 119.0 0.12 0.07 3.5
12384 SPD 28188 15.93 1456 1.61 0.68 20 8192 NPD 1814 3.76 212.0 0.75 0.39 6.0
49344 SPD 65024 108.51 2279 11.75 5.76 27 32768 NPD 4603 26.62 335.5 5.31 3.02 8.0

Table 2. Comparison of matrix properties and of the computational cost of the standard and condensed mixed finite
element methods, first time and linearization step, parabolic reaction–diffusion problem (5.6)

MFE Condensed MFE

Bi-CGStab PBi-CGStab Bi-CGStab PBi-CGStab

Case Unkn. Matr. Cond. CPU Iter. CPU ILU Iter. Unkn. Matr. Cond. CPU Iter. CPU ILU Iter.

mesh C 204 NPD 405 0.06 95.5 0.02 0.01 2.0 128 NPD 39 0.02 27.0 0.02 0.01 2.0
cfs. (5.10) 792 NPD 917 0.22 153.0 0.04 0.03 3.0 512 NPD 116 0.07 56.5 0.02 0.01 2.5

3120 NPD 1949 1.36 282.0 0.22 0.14 4.0 2048 NPD 311 0.38 82.5 0.11 0.06 3.5
12384 NPD 4016 8.47 406.5 1.51 0.94 5.0 8192 NPD 768 2.65 139.0 0.75 0.41 5.5
49344 NPD 8181 51.18 553.0 10.26 6.94 6.0 32768 NPD 1782 17.14 191.5 4.85 2.95 7.0

mesh D 204 NPD 13849 0.23 412.5 0.02 0.01 2.0 128 NPD 470 0.04 70.0 0.02 0.01 2.0
cfs. (5.11) 792 NPD 39935 1.38 1105.5 0.03 0.02 2.5 512 NPD 1665 0.21 149.5 0.03 0.01 2.5

3120 NPD 103342 12.12 2419.5 0.22 0.18 3.0 2048 NPD 4824 1.47 322.5 0.12 0.07 3.5
12384 NPD 250923 103.42 5390.5 1.84 1.32 4.0 8192 NPD 12523 8.66 474.5 0.88 0.56 5.0
49344 NPD 586375 617.26 7145.5 16.04 11.04 7.0 32768 NPD 31368 61.53 787.5 7.47 5.46 5.5

Table 3. Comparison of matrix properties and of the computational cost of the standard and condensed mixed finite
element methods, first time and linearization step, parabolic convection–diffusion–reaction problem (5.9)
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Upwind-MFE

Bi-CGStab PBi-CGStab

Unkn. Matr. St. Cond. CPU Iter. CPU Per. ILU Iter.

332 NPD 7 17 0.18 235.5 0.03 0.01 0.01 2.0
1304 NPD 7 29 1.17 549.5 0.06 0.01 0.03 2.5
5168 NPD 7 67 13.01 1540.5 0.31 0.03 0.15 3.5

20576 NPD 7 168 124.06 3561.5 1.98 0.32 0.98 4.0
82112 NPD 7 393 3233.05 16763.5 10.58 1.35 4.92 6.0

Condensed upwind-MFE

128 NPD 19 42 0.02 25.5 0.02 0.01 2.0
512 NPD 19 120 0.09 57.0 0.02 0.01 2.5

2048 NPD 19 318 0.46 88.0 0.11 0.06 3.0
8192 NPD 19 777 2.99 138.5 0.68 0.36 5.0

32768 NPD 19 1792 18.86 210.5 4.89 2.87 7.5

Table 4. Comparison of the computational cost of the standard and condensed upwind-mixed
finite element methods, first time and linearization step, parabolic convection–diffusion–reaction
problem (5.9), coefficients (5.10), mesh C

Table 3. The system for the upwind-mixed finite element method on each time and linearization step has again
the form (4.3). The matrix D is however in this case not diagonal, and hence we cannot easily eliminate the
scalar unknowns P . We thus consider the whole matrix for the unknowns U and P . This matrix is very well
conditioned, nonsymmetric, and positive definite, but the direct application of the Bi-CGStab method does not
lead to satisfactory results, cf. Table 4. Also the direct LU incomplete factorization is almost impossible, since
the LU factors tend to considerably increase the fill-in. A suitable solution approach however seems to be to first
perform the column minimum degree permutation [23]. The matrix with permuted columns then has sparser
LU incomplete factors, which can in turn be successfully used as preconditioners. The memory requirements
of such approach are however still considerably higher than those of the condensation, which may limit its use
for large problems. We report in Table 4 the CPU times necessary for finding the column minimum degree
permutation and LU incomplete factorization of the matrix with permuted columns, in addition to the total
CPU time. In the present case, the condensation reduces the CPU time again by a factor better than 2.

5.3. Stability with respect to nearly singular local condensation matrices, practical reme-

dies of this problem

We have shown in Example 3.10 that the local condensation matrices associated with vertices given by (2.5)
may become singular for a deformed mesh when S = Id. This may likewise happen for a “nice” mesh but
a general tensor S. We have next discussed in Section 3.3 the variants of the basic form of the condensation
aiming to overcome this possible difficulty. We now illustrate these affairs practically.

We report in Table 5 the stability of the basic form of the condensation while approaching the singular case
of Example 3.10. We suppose that Figure 6 represents a mesh of a domain Ω = (0, 1)× (0, 1) and vary by 1e-1
to 1e-8 the x coordinate of the point lying in the middle of the bottom edge. Hence the local condensation
matrices associated with the vertex V are no more singular, but they are increasingly close to. We consider
three-times refined original mesh from Figure 6 and indicate for this case the condition numbers of the local
condensation matrices associated with V , as well as the condition numbers of the system matrices. We next give
L∞ and L2 errors between the approximate solution vectors P arising from the condensation in this form and
from the standard formulation (1.3), while using the exact solver of MATLAB 6.1 based on LU factorization.
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Condensation around vertices Condensation around elements

Shift Cond. loc. Cond. L∞ error L2 error Cond. loc. Cond. Error

1e-1 1.07e+3 2.30e+4 5.64e-14 4.71e-13 177 2318 machine precision
1e-2 9.09e+4 2.34e+6 1.19e-11 8.71e-11 118 2270 machine precision
1e-4 9.00e+8 2.34e+10 2.71e-7 2.11e-6 115 2269 machine precision
1e-6 9.00e+12 2.34e+14 1.69e-3 1.28e-2 115 2269 machine precision
1e-8 9.12e+16 2.36e+18 4.82e-1 1.95e+0 115 2269 machine precision

Table 5. Condensation with local condensation matrices associated with vertices versus con-
densation with local condensation matrices associated with elements for perturbations of the
mesh from Figure 6

We can see that the important increase in the conditioning destroys the precision of the results. However, using
the clusters defined by all elements sharing a vertex with a given element (cf. Section 3.3), the condensation is
easily feasible, the condition numbers of local condensation matrices as well as those of the system matrices are
bounded, and we again end up with the right solution up to the machine precision. Hence, resorting to such
clusters eliminates the problem in the given case.

5.4. Conclusions

We have studied in this section the computational cost of the proposed condensation of the mixed finite
element method for elliptic and (nonlinear) parabolic problems.

For elliptic problems in two space dimensions, the standard hybridization leads to systems for the number of
unknowns equal to the number of edges with symmetric positive definite matrices with a 5-point stencil. In the
proposed condensation, the number of unknowns is reduced to the number of elements (which is approximately
2/3 of the number of edges), but the system matrices are in general nonsymmetric, have a wider (about 14-point)
stencil, and are positive definite only under a condition on the mesh and the diffusion tensor. This condition
however allows for quite deformed triangles in the case of a piecewise constant scalar diffusion tensor. The CPU
time speed-ups for the test cases were comprised between 1.2 and 1.85. The finite volume reformulation of the
mixed finite element method proposed and studied in [14,40,41] leads to symmetric matrices with the number of
unknowns equal to the number of elements and a 4-point stencil. The matrices are positive definite for Delaunay
triangulations and constant scalar diffusion tensors but generally indefinite otherwise. Hence the computational
savings of the reformulation will be very probably more important than those of the condensation for Delaunay
triangulations and constant scalar diffusion tensors. The situation should be much more favorable for the
condensation when the mesh is not Delaunay or when the diffusion tensor is inhomogeneous and anisotropic.
The performed tests in particular show that the matrix problems arising from the condensation in such cases
may easily be solved by the usual iterative solvers, which is far from being the case in the method proposed
in [14, 40, 41], cf. the numerical experiments carried out in these references. In three space dimensions, the
finite volume reformulation is in general not possible, see [40]. In contrast, the condensation applies directly
as in two space dimensions. Moreover, the number of unknowns is in this case only about 1/2 of that of the
hybridization. Hence one can expect even more important computational savings than in the two-dimensional
case.

Next, the proposed condensation applies as well to mixed finite element discretizations of (nonlinear) parabolic
convection–diffusion–reaction problems. The resulting matrices are still sparse, positive definite for a large class
of meshes and diffusion tensors, nonsymmetric, and seem to be very well conditioned. Moreover, if the diffusion
tensor is constant with respect to time, one can assemble and invert the local condensation matrices only
once before the start of the calculation and then only work with the scalar unknowns as in the finite volume
method, which still reduces the computational complexity. In two space dimensions, the number of unknowns
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is equal to approximately 2/3 of that of standard solution approaches in the mixed finite element method
and to approximately 2/5 of that of the upwind-mixed method. The CPU times necessary for the solution
of the associated linear systems in the presented test cases were reduced by a factor 2 for parabolic reaction–
diffusion problems. When convection is present, nonsymmetric matrices arise naturally also in the mixed and
upwind-mixed schemes, which can further increase the speed-up. The finite volume reformulation of the mixed
finite element method is possible for parabolic reaction–diffusion problems, but leads in general to indefinite
nonsymmetric systems with a limited gain in the terms of the computational cost, cf. [14, 41]. Hence the
condensation seems to be much more attractive in this case. This is still emphasized by the fact that it can be
very easily implemented into existing mixed finite element codes. Finally, the speed-up should be even more
important in three space dimensions, where the number of unknowns of the condensation is about 1/2 of that
of the mixed and 1/3 of that of the upwind-mixed schemes.

The author would like to thank his Ph.D. advisor Danielle Hilhorst from the University of Paris-South and Professor

Robert Eymard from the University of Marne-la-Vallée for their valuable advice and hints.
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[10] Baranger J., Mâıtre J.-F., Oudin F., Connection between finite volume and mixed finite element methods, M2AN Math.

Model. Numer. Anal. 30 (1996), 445–465.
[11] Brezzi F., Douglas J. Jr., Duran R., Fortin M., Mixed finite elements for second order elliptic problems in three variables,

Numer. Math. 51 (1987), 237–250.
[12] Brezzi F., Douglas J. Jr., Marini L.D., Two families of mixed finite elements for second order elliptic problems, Numer.

Math. 47 (1985), 217–235.
[13] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.
[14] Chavent G., Younès A., Ackerer Ph., On the finite volume reformulation of the mixed finite element method for elliptic

and parabolic PDE on triangles, Comput. Methods Appl. Mech. Engrg. 192 (2003), 655–682.
[15] Chen Z., Equivalence between and multigrid algorithms for nonconforming and mixed methods for second-order elliptic

problems, East-West J. Numer. Math. 4 (1996), 1–33.
[16] Coudière Y., Vila J.-P., Villedieu Ph., Convergence rate of a finite volume scheme for a two dimensional convection–

diffusion problem, M2AN Math. Model. Numer. Anal. 33 (1999), 493–516.
[17] Dawson C., Analysis of an upwind-mixed finite element method for nonlinear contaminnat transport equations, SIAM J.

Numer. Anal. 35 (1998), 1709–1724.
[18] Dawson C., Aizinger V., Upwind-mixed methods for transport equations, Comput. Geosci. 3 (1999), 93–110.
[19] Douglas J. Jr., Roberts J.E., Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44

(1985), 39–52.
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[26] Jaffré J., Eléments finis mixtes et décentrage pour les équations de diffusion–convection, Calcolo 23 (1984), 171–197.
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