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Abstract

We present in this note fully computable a posteriori error estimates allowing for accurate error control in the

conforming finite element discretization of pure diffusion problems. The derived estimates are based on the local

conservativity of the conforming finite element method on a dual grid associated with simplex vertices rather than

directly on the Galerkin orthogonality. To cite this article: M. Vohraĺık, C. R. Acad. Sci. Paris, Ser. I 340 (2007).

Résumé

Estimation d’erreur a posteriori dans la méthode des éléments finis conformes basée sur sa conser-

vativité locale et employant une minimisation locale. Nous présentons dans cette note des estimations a

posteriori entièrement calculables, permettant le contrôle d’erreur dans la discrétisation de problèmes à diffusion

pure par la méthode des éléments finis conformes. Ces estimations sont basées sur la conservativité locale de la

méthode des éléments finis conformes sur un maillage dual associé aux sommets des triangles où tétraèdres au lieu

de l’orthogonalité de Galerkine. Pour citer cet article : M. Vohraĺık, C. R. Acad. Sci. Paris, Ser. I 340 (2007).

1. Introduction

A posteriori error estimates for the conforming finite element approximation of the model problem

−△p= f in Ω, (1a)

p= 0 on ∂Ω, (1b)

where Ω ⊂ R
d, d = 2, 3, is a polygonal (polyhedral) domain, have been subject to a vast literature in

the last decades. Several branches of estimators have been developed, such as the averaging, residual, or
equilibrated residual ones. The majority of these estimators have been proved both reliable (yielding a
global upper bound) and locally efficient (giving a local lower bound), but not guaranteed in the sense
that the upper bound does not contain any unknown constant. We have recently in [9,8,5] introduced
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estimators for mixed finite element, finite volume, and discontinuous Galerkin methods which are fully
computable and give tight upper bounds. The purpose of this note is to present their extension to the
conforming finite element method, completing thus the few existing guaranteed estimates in this case, cf.
e.g. Destuynder and Métivet [4], Luce and Wohlmuth [6], or Repin and Sauter [7].

We first in Section 2 give an optimal abstract framework for the estimation of the energy error between
the weak solution of (1a)–(1b) and an arbitrary conforming function. Using this framework, we then in Sec-
tion 3 derive our a posteriori error estimates. Finally, in Section 4 we outline how the presented estimators
can still be improved using local minimization. Numerical experiments, details on the local minimization,
and comparisons with the standard residual-based estimators are given in [2]. Detailed proofs, extensions
to other methods giving approximations in conforming spaces (cell-centered finite volume, vertex-centered
finite volume, and finite difference ones), and extension to the problem −∇ · (a∇p) = f in Ω, where a is
a scalar, piecewise constant, and arbitrarily discontinuous diffusion coefficient and f ∈ L2(Ω), are then
given in [10]. In particular, the estimates presented in this reference are fully robust with respect to the
diffusion coefficient a without any condition on the monotonicity of its distribution. Finally, an extension
to the reaction–diffusion case, leading again to guaranteed and robust a posteriori error estimates, is given
in [3].

2. Optimal abstract framework for a posteriori error estimation

Let us define a bilinear form B by

B(p, ϕ) := (∇p,∇ϕ)Ω p, ϕ ∈ H1
0 (Ω)

and the corresponding energy norm by
|||ϕ|||2 := B(ϕ,ϕ). (2)

The weak formulation of problem (1a)–(1b) is then to find p ∈ H1
0 (Ω) such that

B(p, ϕ) = (f, ϕ)Ω ∀ϕ ∈ H1
0 (Ω). (3)

The following simple theorem gives an optimal abstract a posteriori error estimate:
Theorem 2.1 (Abstract a posteriori error estimate and its efficiency) Let p be the weak solu-

tion of problem (1a)–(1b) given by (3) and let ph ∈ H1
0 (Ω) be arbitrary. Then

|||p− ph||| = inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(f −∇ · t, ϕ)Ω − (∇ph + t,∇ϕ)Ω}. (4)

Proof. We first notice that |||p−ph||| = B(p−ph, p−ph)/|||p−ph||| by (2). Clearly, as ϕ := (p−ph)/|||p−
ph||| ∈ H1

0 (Ω), we immediately have B(p, ϕ) = (f, ϕ)Ω by (3). Using this we obtain, for an arbitrary
t ∈ H(div,Ω) and employing the Green theorem,

B(p− ph, ϕ) = (f, ϕ)Ω − (∇ph,∇ϕ)Ω = (f, ϕ)Ω − (∇ph + t,∇ϕ)Ω + (t,∇ϕ)Ω

= (f −∇ · t, ϕ)Ω − (∇ph + t,∇ϕ)Ω,

whence it immediately follows that (4) holds with the ≤ sign. For the converse, it suffices to put t = −∇p
and to use the Schwarz inequality and the fact that |||ϕ||| = 1. 2

3. Guaranteed and fully computable a posteriori error estimates for the conforming finite
element method based on its local conservativity

Let now Th be a conforming simplicial mesh of Ω, Vh (V int
h , Vext

h ) the set of all (interior, exterior)
vertices of Th, and TV := {L ∈ Th; L ∩ V 6= ∅} for V ∈ Vh. We will use the discrete space given as

X0
h :=

{

ϕh ∈ H1
0 (Ω); ϕh|K ∈ P1(K) ∀K ∈ Th

}

,

where P1(K) denotes the space of linear polynomials on K. The basis of this space is spanned by the
classical pyramidal functions ψV , V ∈ V int

h , such that ψV (U) = δV U , U ∈ Vh. The conforming finite
element method for the problem (1a)–(1b) then consists in finding ph ∈ X0

h such that

B(ph, ϕh) = (f, ϕh)Ω ∀ϕh ∈ X0
h. (5)
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Figure 1. Original simplicial mesh Th, the associated dual mesh Dh, and the fine simplicial mesh Sh

In addition to Th, we shall here consider also dual partitions Dh of Ω. A dual volume D associated with
vertex VD is constructed by connecting the barycentres of simplices from TV through edge midpoints if
d = 2, see Figure 1. If d = 3, in each tetrahedron, face barycentres are first connected with face vertices
and face edges midpoints. Then small tetrahedra are formed by the resulting triangles in each face and
the tetrahedron barycentre. Finally, the union of all small tetrahedra sharing a given vertex VD is the
dual volume D. The obvious notations Dint

h ,Dext
h are used and hD stands for the diameter of D ∈ Dh.

Finally, we will need a second simplicial mesh Sh of Ω, constructed by dividing each D ∈ Dh into a mesh
SD as indicated in Figure 1 if d = 2 (by the “small” tetrahedra if d = 3). We will use the notation Gh for
all sides of Sh and Gint

h (Gext
h ) for all interior (exterior) sides of Sh. Next, n denotes an exterior normal

vector, whereas nσ a normal vector of a side σ, arbitrary but fixed. Finally, the average operator {·} is
defined by {ϕ} := 1

2 (ϕ|K)|σ + 1
2 (ϕ|L)|σ for σ ∈ Gint

h shared by K,L ∈ Sh; for σ ∈ Gext
h , {ϕ} := ϕ|σ.

In order to give our a posteriori error estimate, we now construct a particular th ∈ H(div,Ω). It will
be defined in the lowest-order Raviart–Thomas–Nédélec space RTN over the fine simplicial mesh Sh;
this is a space of vector functions having on each K ∈ Sh the form (aK + dKx, bK + dKy)

t if d = 2 and
(aK + dKx, bK + dKy, cK + dKz)

t if d = 3, with the normal trace across all σ ∈ Gint
h continuous. We also

recall that v · nσ is a constant for all σ ∈ Gh and that these side fluxes represent the degrees of freedom
of RTN(Sh). We now define th ∈ RTN(Sh) by

th · nσ = −{∇ph · nσ} ∀σ ∈ Gh. (6)

Note that th · nσ are given directly by −∇ph · nσ for all the sides σ ∈ Gh which are in the interior of
some K ∈ Th or at the boundary of Ω, whereas a simple average of the two normal gradient values is
used otherwise. In terms of th, the following local conservation property holds:
Lemma 3.1 (Local conservativity of the conforming finite element method on the dual grid)
Let f be piecewise constant on Th and let th by given by (6). Then

(∇ · th, 1)D = (f, 1)D ∀D ∈ Dint
h . (7)

Proof. Employing the Green theorem, the finite elements basis functions form, and the relation between
Th and Dh, see [1, Lemma 3] for d = 2, it is straightforward to prove that

(∇ph,∇ψVD
)TVD

= −〈∇ph · n, 1〉∂D ∀D ∈ Dint
h .

Next, under the assumption on f and using that |D ∩K| = |K|/(d+ 1) for D ∈ Dint
h and K ∈ TVD

,

(f, ψVD
)TVD

= (f, 1)D ∀D ∈ Dint
h .

Thus (5) implies −〈∇ph ·n, 1〉∂D = (f, 1)D for all D ∈ Dint
h , whence 〈th ·n, 1〉∂D = (f, 1)D for all D ∈ Dint

h ,
using the definition (6) and the fact that all the sides of D ∈ Dint

h lie in the interior of some K ∈ Th. The
assertion of the lemma now follows by the Green theorem. 2

Before stating our estimate, let us recall two basic inequalities. For D ∈ Dint
h , the Poincaré inequality

states that, with ϕD := (ϕ, 1)D/|D|,

‖ϕ− ϕD‖2
D ≤ CP,Dh

2
D‖∇ϕ‖2

D ∀ϕ ∈ H1(D). (8)

For convex D, CP,D = 1/π2. For D ∈ Dext
h , the Friedrichs inequality states that

‖ϕ‖2
D ≤ CF,D,∂Ωh

2
D‖∇ϕ‖2

D ∀ϕ ∈ H1(D) such that ϕ = 0 on ∂Ω ∩ ∂D (9)

and under fairly general conditions, CF,D,∂Ω = 1. We refer to [10] for more details.
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Theorem 3.2 (Guaranteed and fully computable a posteriori error estimate) Let f be piece-

wise constant on Th, let p be the weak solution of problem (1a)–(1b) given by (3), and let ph be its

conforming finite element approximation given by (5). Let next th be given by (6). Then

|||p− ph||| ≤

{

∑

D∈Dh

(ηR,D + ηDF,D)2

}
1

2

,

where the diffusive flux estimator ηDF,D is given by

ηDF,D := ‖∇ph + th‖D D ∈ Dh,

and the residual estimator ηR,D is given by

ηR,D := mD‖f −∇ · th‖D D ∈ Dh,

where

m2
D := CP,Dh

2
D D ∈ Dint

h , m2
D := CF,D,∂Ωh

2
D D ∈ Dext

h ,

with CP,D and CF,D,∂Ω respectively the constants from the Poincaré (8) and Friedrichs (9) inequalities.

Proof. Put t = th in Theorem 2.1. Note that, for each D ∈ Dint
h ,

(f −∇ · th, ϕ)D = (f −∇ · th, ϕ− ϕD)D ≤ ηR,D|||ϕ|||D ,

using Lemma 3.1, the Poincaré inequality (8), the Schwarz inequality, and (2). For D ∈ Dext
h , likewise,

(f −∇ · th, ϕ)D ≤ ηR,D|||ϕ|||D ,

using the Friedrichs inequality (9), the Schwarz inequality, and (2). Finally, using the Schwarz inequal-
ity, −(∇ph + th,∇ϕ)D ≤ ηDF,D|||ϕ|||D is immediate. Hence it now suffices to use the Cauchy–Schwarz
inequality and to notice that |||ϕ||| = 1 in order to conclude the proof. 2

Finally, the proof of the following theorem can be found in [10]:
Theorem 3.3 (Local efficiency of the a posteriori error estimate) Let the assumptions of Theo-

rem 3.2 be verified and let in addition Th be shape-regular. Then, for each D ∈ Dh, there holds

ηDF,D ≤ C|||p− ph|||TVD
, ηR,D ≤ C̃|||p− ph|||TVD

,

where the constant C depends only on the space dimension d and on the shape regularity of the mesh

and the constant C̃ in addition depends on CP,D from the Poincaré inequality (8) if D ∈ Dint
h or on the

constant CF,D,∂Ω from the Friedrichs inequality (9) if D ∈ Dext
h .

4. Improvements using local minimization

The numerical experiments presented in [2,10] confirm the above theoretical results but show that the
effectivity index (ratio of the estimated and actual error) of the estimate of Theorem 3.2 does not approach
the optimal value of one as it is the case in [9,8]. By closer investigation, it turns out that whereas in
mixed finite element or finite volume (discontinuous Galerkin) methods, the residual estimator represents
a higher-order term, it is not the case here, as (7) is only true on a set of elements SD of D ∈ Dint

h

and not on each element K ∈ SD. However, the estimate of Theorem 3.2 obviously holds true for any
th ∈ H(div,Ω) such that (7) is verified, and in particular for any th ∈ RTN(Sh) such that (6) only holds
for such σ ∈ Gh which are at the boundary of some D ∈ Dint

h .
We thus in [2] investigate an approach where th ·nσ for σ ∈ Gh which are not at the boundary of some

D ∈ Dint
h are given by local minimization of η2

R,D + η2
DF,D for each D ∈ Dh. This leads to a solution

of a small linear system for each D ∈ Dh and helps the improve the effectivity index to a value close
to one. Another approach is pursued in [10], where th used in the estimate of Theorem 3.2 is given by
αt1,h + (1 − α)t2,h, with t1,h given by (6) and t2,h given by (6) only for such σ ∈ Gh which are at the
boundary of some D ∈ Dint

h and such that (∇ · t2,h, 1)K = (f, 1)K for all K ∈ SD and all D ∈ Dh.
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