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Abstract

We derive in this paper guaranteed and fully computable a posteriori error estimates for vertex-
centered finite-volume-type discretizations of transient linear convection–diffusion–reaction equa-
tions. Our estimates enable actual control of the error measured either in the energy norm or
in the energy norm augmented by a dual norm of the skew-symmetric part of the differential
operator. Lower bounds, global-in-space but local-in-time, are also derived. These lower bounds
are fully robust with respect to convection or reaction dominance and the final simulation time
in the augmented norm setting. On the basis of the derived estimates, we propose an adaptive
algorithm which enables to automatically achieve a user-given relative precision. This algorithm
also leads to efficient calculations as it balances the time and space error contributions. As an
example, we apply our estimates to the combined finite volume–finite element scheme, including
such features as use of mass lumping for the time evolution or reaction terms, of upwind weighting
for the convection term, and discretization on nonmatching meshes possibly containing nonconvex
and non-star-shaped elements. A collection of numerical experiments illustrates the efficiency of
our estimates and the use of the space–time adaptive algorithm.
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1 Introduction

We consider in this paper the time-dependent linear convection–diffusion–reaction problem

ut −∇·(S∇u) +∇·(uv) + ru = f in Ω× (0, T ), (1.1a)

u(·, 0) = u0 in Ω, (1.1b)

u = 0 on ∂Ω× (0, T ), (1.1c)

where S is in general an inhomogeneous and anisotropic (nonconstant full-matrix) diffusion–
dispersion tensor, v is a (dominating) velocity field, r is a reaction function, f is a source term,
u0 prescribes the initial condition, Ω ⊂ R

d, d = 2, 3, is a polygonal (polyhedral for d = 3) domain
(open, bounded, and connected set), and (0, T ) is a time interval. Our purpose is to derive a pos-
teriori error estimates for conforming locally conservative discretizations of problem (1.1a)–(1.1c).
A particular attention will be paid to the combined finite volume–finite element scheme [13].

One of the first works on a posteriori error estimates for finite element discretizations of steady
convection–diffusion–reaction problems are those of Angermann [2] and of Eriksson and John-
son [9]. In these works, the overestimation factor depends unfavorably on the ratio between
convection and diffusion. Estimates with semi-robust lower bounds in the energy norm and esti-
mates with robust lower bounds in the energy norm augmented by the dual norm of the convective
derivative were then derived by Verfürth respectively in [23] and [26]. The robustness result has
been extended to the unsteady case by Verfürth in [25]. Recently, attention has also been paid to
vertex-centered finite volume methods. Let us mention, in the steady convection–diffusion–reaction
case and energy norm setting, Lazarov and Tomov [17], Carstensen et al. [6], Nicaise [18], [30],
and Ju et al. [16]. Fewer results are known in the unsteady case. L1-norm estimates for nonlinear
problems are derived by Ohlberger [19], whereas the energy norm setting has been pursued in,
e.g., Felcman and Kubera [15] or Amaziane et al. [1]. Typically, the estimate only gives the error
upper bound up to an undetermined constant, so that the actual error control is not possible, and
the lower bound proof is not given or states a non-robust result.

The present paper aims at enriching the known results for vertex-centered finite-volume-type
methods in several directions. Firstly, we derive estimates which are guaranteed (not featur-
ing any undetermined constants) and fully and easily computable. We achieve this by introduc-
ing H(div,Ω)-conforming locally conservative diffusive and convective flux reconstructions, fol-
lowing [29, 31, 10, 11]. Consequently, the estimates allow for actual error control in unsteady
convection–diffusion–reaction problems. Secondly, we propose a space–time adaptive algorithm
which equilibrates properly the time and space contributions in the sense that they are in actual
balance, not weighted by any undetermined quantities. Moreover, this algorithm is proposed to
guarantee a user-given relative precision in the simulation. Thirdly, following [25], we also prove
a lower error bound. Fourthly, our results are valid for a larger family of conforming locally
conservative discretizations, in the framework of the so-called combined finite volume–finite el-
ement method, cf. Feistauer et al. [14] and the references therein. Consequently, the analysis
includes such features as use of mass lumping for the time evolution or reaction terms or use of
upwind weighting for the convection term. Lastly, we also treat the case of very general non-
matching meshes possibly containing nonconvex and non-star-shaped elements; convergence anal-
ysis of the combined finite volume–finite element method on such meshes (for degenerate parabolic
convection–diffusion–reaction problems) was carried out in [13].

The paper is organized as follows: in Section 2, the continuous problem is described. Sec-
tion 3 collects the notation of the discrete setting and introduces the combined finite volume–finite
element scheme. In Sections 4 and 5, the a posteriori error estimate and its efficiency is respec-
tively stated and proved. Finally, an adaptive algorithm is presented in Section 6 and numerical
experiments in Section 7. Some conclusions are drawn in Section 8.
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2 The continuous setting

We state in this section our assumptions on the data and define a weak solution of problem (1.1a)–
(1.1c).

2.1 Assumptions on the data

Let the time interval (0, T ] be split such that 0 = t0 < . . . < tn < . . . < tN = T and define
τn := tn − tn−1, n ∈ {1, . . . , N}. On each time interval (tn−1, tn], n ∈ {1, . . . , N}, consider a
partition Dn

h of Ω into closed polygons such that Ω =
⋃
D∈Dn

h
D and such that the intersection of

the interiors of two different polygons is empty. Also set QT := Ω× (0, T ).
We suppose that the data of problem (1.1a)–(1.1c) satisfy:

Assumption (A) (Data)

(A1) Sij ∈ L∞(QT ), 1 ≤ i, j ≤ d, is a symmetric, bounded, and uniformly positive definite tensor
such that for all n ∈ {1, . . . , N} and for all D ∈ Dn

h ,

CnS,D u·u ≥ S(x, t)u·u ≥ cnS,D u·u, CnS,D > 0 , cnS,D > 0 ∀u ∈ R
d

for a.e. x ∈ D and a.e. t ∈ (tn−1, tn];

(A2) v ∈ L∞(QT ) such that ∇·v ∈ L∞(QT ) such that for all n ∈ {1, . . . , N} and for all D ∈ Dn
h ,

|v(x, t)| ≤ Cnv,D, C
n
v,D ≥ 0 for a.e. x ∈ D and a.e. t ∈ (tn−1, tn];

(A3) r ∈ L∞(QT );

(A4) For all n ∈ {1, . . . , N} and for all D ∈ Dn
h ,

1
2∇·v(x, t) + r(x, t) ≥ cnv,r,D, ∇·v(x, t) + r(x, t) ≤ Cnv,r,D,

r(x, t) ≤ Cnr,D, cnv,r,D ≥ 0, Cnv,r,D ≥ 0, Cnr,D ≥ 0

for a.e. x ∈ D and a.e. t ∈ (tn−1, tn];

(A5) f ∈ L2(QT );

(A6) u0 ∈ L∞(Ω);

(A7) if cn
v,r,D = 0, then Cn

v,r,D = 0.

2.2 Continuous problem

Let us first define some functional spaces. Let X := L2(0, T ;H1
0 (Ω)), X

′ = L2(0, T ;H−1(Ω)), and
Z := {v ∈ X; vt ∈ X ′}. Let v ∈ Z. We define the functional B(v) ∈ X ′ by

〈B(v), ϕ〉 := 〈vt, ϕ〉 + (S∇v,∇ϕ) + (∇·(vv), ϕ) + (rv, ϕ) (2.1)

for all ϕ ∈ H1
0 (Ω) and a.e. t ∈ (0, T ). Here 〈·, ·〉 stands for the duality pairing between H−1(Ω)

and H1
0 (Ω) and (·, ·) for the L2(Ω) scalar product. We will also use (·, ·)R for the L2(R) scalar

product on a subdomain R ⊂ Ω, 〈·, ·〉R for the L2(R) scalar product on R ⊂ R
d−1, and |R| for the

d′-dimensional Lebesgue measure of R ⊂ R
d′ , d′ ≤ d; at the same time, for a set R, |R| stands for

its cardinality.
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We say that a function u is a weak solution of problem (1.1a)–(1.1c) if u ∈ Z, u(·, 0) = u0 in
H−1(Ω), and u satisfies the equality

〈B(u), ϕ〉 = (f, ϕ) (2.2)

for a.e. t ∈ (0, T ) and for all ϕ ∈ H1
0 (Ω). For a function v ∈ X, we introduce the space–time

energy norm

‖v‖2X :=

∫ T

0
|||v(·, t)|||2 dt,

|||v|||2 :=
∥∥S 1

2∇v
∥∥2 +

∥∥(12∇·v+ r)
1
2 v
∥∥2,

(2.3)

where ‖ · ‖ denotes the L2(Ω) norm. Assumption (A) then implies

1
2‖v(·, T )‖

2 + ‖v‖2X ≤
∫ T

0
〈B(v), v〉dt + 1

2‖v(·, 0)‖
2 ∀v ∈ Z. (2.4)

Under Assumptions (A), there in particular exists a unique solution of (2.2).
Define, for v ∈ Z, the skew-symmetric part of the differential operator

bA(v) := ∇·(vv) − 1
2 (∇·v)v, (2.5)

and, for all ϕ ∈ H1
0 (Ω) and a.e. t ∈ (0, T ), the symmetric and skew-symmetric parts of the

functional B, BS(v),BA(v) ∈ X ′ by

〈BS(v), ϕ〉 := (S∇v,∇ϕ) + ((12∇·v + r)v, ϕ),

〈BA(v), ϕ〉 := (bA(v), ϕ).
(2.6)

We will in the sequel also need a space Y , inspired by that of [25]: Y := {v ∈ X; ∂tv+bA(v) ∈ X ′}
that we equip with its graph norm

‖v‖2Y := ‖v‖2X + ‖∂tv + bA(v)‖2X′ . (2.7)

Recall that

‖∂tv + bA(v)‖X′ = sup
ϕ∈X; ‖ϕ‖X=1

∫ T

0
〈∂tv + bA(v), ϕ〉(t) dt.

We will also localize the ‖ · ‖X and ‖ · ‖Y norms on the time intervals (tn−1, tn], n ∈ {1, . . . , N}, as
follows:

‖v‖2X(tn−1 ,tn)
:=

∫ tn

tn−1

|||v(·, t)|||2 dt,

‖v‖2Y (tn−1,tn)
:= ‖v‖2X(tn−1 ,tn)

+ ‖∂tv + bA(v)‖2X′(tn−1,tn)
.

3 The combined finite volume–finite element method

We define in this section admissible grids and the combined finite volume–finite element scheme.
This section can be skipped if the reader is only interested in a posteriori error estimates for
conforming locally conservative methods and not in the details of the present scheme.
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Figure 1: Primal nonmatching grid Dn
h (dashed) and dual triangular grid T n

h (solid) with the

elements D,E ∈ Dn
h , points VD, VE ∈ Vn,inth and VF ∈ Vn,exth , and sides σD,E = ∂D ∩ ∂E ∈ Fn,int

h

and σE,F ∈ Fn,ext
h

3.1 Grids

We call the grid Dn
h introduced in Section 2.1 a primal grid of Ω. In particular we admit non-

matching grids, i.e., the case where there exist two different polygons D,E ∈ Dn
h such that their

intersection is not an empty set but it is not a common vertex, edge, or face of D and E. We
also allow for nonconvex elements and elements which are not star-shaped. An example of an
admissible primal grid is given in Figure 1 by the dashed line. We suppose that there exists a
family of points Vn,inth such that there is one point VD in the interior of D associated with each
D ∈ Dn

h . For D ∈ Dn
h , we denote by FD the set of sides, subsets σ of ∂D such that there exists

E ∈ Dn
h such that σ = σD,E := ∂D ∩ ∂E has a positive (d− 1)-dimensional Lebesgue measure. If

there is a part of ∂D with a positive (d−1)-dimensional Lebesgue measure lying on the boundary,
then FD contains in addition a union of σ = σD,E ⊂ ∂D ∩ ∂Ω covering ∂D ∩ ∂Ω and such that
each σD,E has a positive (d − 1)-dimensional Lebesgue measure and contains exactly one point
VE ∈ Vn,exth defined below. We remark that ∂D =

∑
σD,E∈FD

σD,E, that σD,E is not necessarily a

geometrical side of D, and that σD,E not necessarily lies in a hyperplane of Rd, see Figure 1. We

denote by Fn,int
h the union of all σD,E = ∂D ∩ ∂E for some D,E ∈ Dn

h , and by Fn,ext
h the union of

all σ ⊂ ∂Ω; all the sides of Dn
h are then denoted by Fn

h , Fn
h = Fn,int

h ∪ Fn,ext
h .

A dual grid of Ω is a partition T n
h of Ω into closed simplices which satisfies the following

properties: (i) The set of points Vn,inth is contained in the set of vertices of T n
h , denoted by Vnh ;

(ii) The vertices from Vn,exth := Vnh \ Vn,inth lie on the boundary of Ω; (iii) T n
h is conforming, i.e.

the intersection of two different simplices is either an empty set or their common vertex, edge,
or face; (iv) Ω =

⋃
K∈T n

h
K. This definition is not unique: we have a choice in connecting the

different points VD ∈ Vn,inth and also a choice in the definition of the vertices on the boundary. The
general intention is to find a triangulation T n

h such that the transmissibilities SnD,E defined below
by (3.4) were non-negative, since this implies the discrete maximum principle, see Remark 3.2
below. We do not impose any requirement on the relation between the meshes Dn

h and T n
h except

of the assumption that the intersection of the sides of Dn
h and T n

h has a zero (d − 2)-dimensional
Lebesgue measure (the sides of Dn

h and T n
h can intersect but not coincide). Example of a dual

grid T n
h to the primal nonmatching grid Dn

h is given in Figure 1 by the solid line. For a simplex
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K ∈ T n
h , we denote by hK its diameter. For a vertex VD ∈ Vn,inth , we denote by M(VD) the set

of all vertices VE ∈ Vnh such that there exists an edge of the dual grid T n
h connecting VD and VE .

Recall that each interior vertex from the set Vn,inth is associated with one volume D ∈ Dn
h and that

we use the notation VD for this vertex. For the ease of notation, we denote each boundary vertex
from the set Vn,exth by VE, even if there is no corresponding volume E ∈ Dn

h .

3.2 The combined scheme

The combined finite volume–finite element scheme is obtained, on each time level tn, by the
discretization of the diffusion term of (1.1a) by means of the piecewise affine conforming finite
element method on the simplicial mesh T n

h , the discretization of the other terms of (1.1a) by
means of the cell-centered finite volume method on the general polygonal/polyhedral partition
Dn
h , and using an implicit finite difference time stepping.
The scheme reads: find the values unD, n ∈ {1, . . . , N}, D ∈ Dn

h , such that

unD − un−1
D

τn
|D| −

∑

VE∈M(VD)

S
n
D,E(u

n
E − unD) +

∑

σD,E∈FD

〈vn·n, 1〉σD,E
unD,E + rnDu

n
D|D| = fnD|D|

∀n ∈ {1, . . . , N}, ∀D ∈ Dn
h .

(3.1)

We now detail the notation used in (3.1).
We have set unE = 0 for all n ∈ {1, . . . , N} and all boundary vertices VE ∈ Vn,exth ; this

corresponds to the discretization of the homogeneous Dirichlet boundary condition (1.1c). The
value u0D for D from the initial mesh D1

h is given by u0D := (u0, 1)D/|D| and it corresponds to the
discretization of the initial condition (1.1b). Let n ≥ 2. When the meshes Dn−1

h and Dn
h (and

T n−1
h and T n

h ) coincide, we set un−1
D = un−1

D , i.e., un−1
D is the approximate solution un−1

D from the
previous time step. In such a case the notation un−1

D would not be necessary. This notation is
introduced for the case where the meshes Dn−1

h and Dn
h (and T n−1

h and T n
h ) are different. We then

define un−1
D by the value that the function un−1

h , defined by (3.8) below, takes at the point VD
corresponding to the volume D ∈ Dn

h . In (3.1) and later on, n stands for the unit normal vector
of ∂D, outward to D.

Let the averages in time of the functions f , r, v, and S be respectively given by

fn(x) :=
1

τn

∫ tn

tn−1

f(x, t) dt for a.e. x ∈ Ω, n ∈ {1, . . . , N},

rn(x) :=
1

τn

∫ tn

tn−1

r(x, t) dt for a.e. x ∈ Ω, n ∈ {1, . . . , N},

vn(x) :=
1

τn

∫ tn

tn−1

v(x, t) dt for a.e. x ∈ Ω, n ∈ {1, . . . , N},

Sn(x) :=
1

τn

∫ tn

tn−1

S(x, t) dt for a.e. x ∈ Ω, n ∈ {1, . . . , N}.

In (3.1), we have also set

fnD :=
(fn, 1)

|D| n ∈ {1, . . . , N}, D ∈ Dn
h , (3.2)

rnD :=
(rn, 1)

|D| n ∈ {1, . . . , N}, D ∈ Dn
h . (3.3)
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The notation S in (3.1) stands for the finite element diffusion matrix; the elements S
n
D,E,

VD ∈ Vn,inth , VE ∈ Vnh are given by

S
n
D,E := −

∑

K∈T n
h

(Snh∇ψVE ,∇ψVD)K n ∈ {1, . . . , N}. (3.4)

Here ψVD is the finite element basis function associated with the vertex VD ∈ Vnh : it is the function
piecewise affine on the simplicial mesh T n

h , equal to 1 at the vertex VD, and equal to zero at all
other vertices VE ∈ Vnh . In (3.4), the notation Snh for the space–time discrete diffusion–dispersion
tensor appears. There are two basic choices for Snh: Firstly, we may set

Snh|K :=
1

|K|(S
n, 1)K n ∈ {1, . . . , N}, K ∈ T n

h . (3.5)

Note that since ∇ψVD , ∇ψVE in (3.4) are constant on all K ∈ T n
h , the definition (3.5) is equivalent

to directly using Snh = Sn in (3.4). An alternative choice is to define Snh by

Snh|K :=

(
1

|K|([S
n]−1, 1)K

)−1

n ∈ {1, . . . , N}, K ∈ T n
h . (3.6)

We refer to Remark 3.3 below for the discussion of these two choices.
We finally turn to the description of the discretization of the convection term in (3.1). We

define the value unD,E, used for the evaluation of the convective flux across a side σD,E ∈ Fn
h ,

n ∈ {1, . . . , N}, D ∈ Dn
h , by

unD,E :=

{
unD + αnD,E(u

n
E − unD) if 〈vn·n, 1〉σD,E

≥ 0

unE + αnD,E(u
n
D − unE) if 〈vn·n, 1〉σD,E

< 0
. (3.7)

Here αnD,E is the coefficient of the amount of upstream weighting which is defined by

αnD,E :=





max
{
min

{
S
n
D,E,

1
2 |〈vn·n, 1〉σD,E

|
}
, 0
}

|〈vn·n, 1〉σD,E
| if 〈vn·n, 1〉σD,E

6= 0 and σD,E ∈ Fn,int
h

or if σD,E ∈ Fn,ext
h and 〈vn·n, 1〉σD,E

> 0

0 if 〈vn·n, 1〉σD,E
= 0 or if σD,E ∈ Fn,ext

h

and 〈vn·n, 1〉σD,E
< 0

.

By such a definition, the value unD,E ranges between the upstream value and the centered one, in
function of the size and direction of the convective field v.

The scheme (3.1) yields the discrete values unD, n ∈ {0, . . . , N}, D ∈ Dn
h . These values define, for

each n ∈ {0, . . . , N}, the usual finite element approximation unh, piecewise affine on the simplicial
mesh T n

h , given by the formula

unh :=
∑

D∈Dn
h

unDψVD . (3.8)

By the approximate solution of problem (1.1a)–(1.1c) by means of the combined finite volume–finite
element scheme (3.1), we understand a function uh,τ such that

uh,τ (·, tn) := unh n ∈ {0, . . . , N},
uh,τ (x, ·) is affine in time on [tn−1, tn], n ∈ {1, . . . , N}, for all x ∈ Ω.

(3.9)
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3.3 Remarks

We end this section by several remarks.

Remark 3.1 (Convergence). The convergence of uh,τ towards the weak solution of problem (1.1a)–
(1.1c) given by (2.2) has been proved in [13]. Herein, a more general nonlinear degenerate case
has been considered, under the assumption that the meshes Dn

h , T n
h do not change in time.

Remark 3.2 (Discrete maximum principle). If the finite element diffusion matrix entries S
n
D,E

satisfy S
n
D,E ≥ 0 for all n ∈ {1, . . . , N}, D ∈ Dn

h , and VE ∈ M(VD), and under suitable conditions
on the data, the discrete maximum principle for the combined scheme holds, see [13, Theorem 4.11].

Remark 3.3 (Arithmetic versus harmonic averaging). We remark that the choice (3.5) for space–
time discrete diffusion–dispersion tensor Snh corresponds to the arithmetic average of the diffusion–
dispersion tensor Sn in space, whereas the choice (3.6) corresponds to the harmonic average in
space.

Remark 3.4 (Relation to the vertex-centered finite volume method). Let the meshes T n
h be given

first and let the meshes Dn
h be constructed consequently from T n

h using the face, edge, and element
barycentres of T n

h , cf., e.g, [19, 31]. Then the combined finite volume–finite element scheme (3.1)
is equivalent to the classical vertex-centered finite volume method (cf., e.g., [19] and the references
therein), where mass lumping has been used in the time evolution and reaction terms. Hence, all
the results of the present paper apply to the vertex-centered finite volume method as a special case
with specific construction of Dn

h from T n
h .

4 A posteriori error estimate and its efficiency

We summarize in this section our a posteriori estimate on the error between the weak solution
u and the approximate solution uh,τ and the efficiency of this estimate. The developments of
this section are done generally, without specification of the underlying numerical scheme. We
merely suppose that Assumption (B) below holds for the upper bounds of Section 4.4 and that
Assumption (C) below holds for the lower bound of Section 4.6.

4.1 Some useful inequalities

We summarize here some inequalities that will be used later.
Let D ⊂ R

d be a polygon. The Poincaré inequality states that

‖ϕ− ϕD‖2D ≤ CP,Dh
2
D‖∇ϕ‖2D ∀ϕ ∈ H1(D), (4.1)

where ϕD is the mean of the function ϕ over the polygon D given by ϕD := (ϕ, 1)D/|D| and where
hD is the diameter of D. The constant CP,D can be evaluated as 1/π2 if D is convex, cf. [20, 3],
and only depends on the geometry of D if D is nonconvex, cf. [12, Lemma 10.4].

Let D ⊂ R
d be a polygon near the boundary of Ω, such that |∂Ω∩∂D| 6= 0. Then the Friedrichs

inequality states that

‖ϕ‖2D ≤ CF,D,∂Ωh
2
D‖∇ϕ‖2D ∀ϕ ∈ H1(D) such that ϕ = 0 on ∂Ω ∩ ∂D. (4.2)

As long as D and ∂Ω are such that there exists a vector b ∈ R
d such that for almost all x ∈ D, the

first intersection of Bx and ∂D lies in ∂Ω, where Bx is the straight semi-line defined by the origin
x and the vector b, the constant CF,D,∂Ω can be evaluated as 1, cf. [28, Remark 5.8]. To evaluate
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CF,D,∂Ω in the general case is more complicated but it still can be done, cf. [28, Remark 5.9] or [5,
Section 3]. As a special case, when D = Ω, the Friedrichs inequality reads

‖ϕ‖2 ≤ CFh
2
Ω‖∇ϕ‖2 ∀ϕ ∈ H1

0 (Ω), (4.3)

and CF = 1.
Finally, for a simplex K ⊂ R

d, the trace inequality states that

‖ϕ‖2σ ≤ Ct,K,σ(h
−1
K ‖ϕ‖2K + ‖ϕ‖K‖∇ϕ‖K) ∀ϕ ∈ H1(K). (4.4)

It follows from [22, Lemma 3.12] that the constant Ct,K,σ can be evaluated as |σ|hK/|K|.

4.2 Some additional notation

Let, for n ∈ {1, . . . , N}, Dn
h and T n

h be the primal and dual meshes as introduced in Section 3.1.

For n ∈ {2, . . . , N}, let Sn−1,n
h be an additional tertial simplicial mesh, a conforming refinement

of all Dn−1
h , Dn

h , T n−1
h , and T n

h . Let, for n = 1, S0,1
h be a simplicial conforming refinement of both

D1
h and T 1

h . An example of the three types of meshes Dn
h , T n

h , and Sn−1,n
h is given in Figure 2

below. We denote by SD the partition of D ∈ Dn
h by the elements of Sn−1,n

h . Let K ∈ Sn−1,n
h be a

generic element of Sn−1,n
h . We denote by GK its sides and by Gint

K its sides not contained in ∂Ω. By
GD, we denote all the sides of the partition SD for a given volume D, except those sides included
in the boundary ∂Ω. We will also use the notation Sn−1,n,int

h and Sn−1,n,ext
h for the simplices of

Sn−1,n
h in the interior of Ω and having a side on the boundary of Ω, respectively.
Let Xh denote the space of scalar functions continuous in space and piecewise affine on the

meshes Sn−1,n
h and piecewise affine and continuous in time. A function vh ∈ Xh is, as in (3.9),

uniquely prescribed by the functions vnh defined on the meshes Sn−1,n
h and by the function v0h defined

on S0,1
h . Recall that vnh stands for the value of the function vh at the times tn, n ∈ {0, . . . , N}.

Typically, the values unD, D ∈ Dn
h , n ∈ {0, . . . , N}, define through (3.8)–(3.9) the function uh,τ ∈

Xh.
We finally denote by Vh the space of vector functions which are such that they belong to the

Raviart–Thomas–Nédélec spaces of lowest order (cf. [4]) on the meshes Sn−1,n
h in space and which

are piecewise constant in time. A function uh ∈ Vh is uniquely prescribed by the functions unh
defined on the meshes Sn−1,n

h , the values of uh on the time intervals (tn−1, tn], n ∈ {1, . . . , N}.
Recall that the normal components of the functions uh from the space Vh are continuous ([4]);
the values unh·n|σ| = 〈unh·n, 1〉σ on the sides σ of the meshes Sn−1,n

h , n ∈ {1, . . . , N}, represent the
degrees of freedom in the space Vh.

4.3 Diffusive and convective flux reconstructions

Following [29, 31, 11], our a posteriori error estimates rely on the concept of the diffusive flux
reconstruction θh ∈ Vh. Following [10], we also introduce a convective flux reconstruction wh ∈ Vh.
In order to proceed generally for the upper bounds of Section 4.4 below, without the specification
of a particular numerical scheme, we now make the following assumption:

Assumption (B) (Local conservativity of the numerical scheme)

We suppose that there exist values unD, n ∈ {0, . . . , N}, D ∈ Dn
h , values un−1

D n ∈ {1, . . . , N},
D ∈ Dn

h , and functions θh,wh ∈ Vh such that

unD − un−1
D

τn
|D|+ 〈θnh ·n, 1〉∂D + 〈wn

h·n, 1〉∂D + rnDu
n
D|D|+ qnD|D| = fnD|D|

∀n ∈ {1, . . . , N}, ∀D ∈ Dn
h .

(4.5)
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In Assumption (B), rnD and fnD are given by (3.2)–(3.3). Relation (4.5) is a local conserva-
tion property: the term (unD − un−1

D )|D|/τn represents the time accumulation in the volume D,
〈θnh ·n, 1〉∂D the diffusive flux over the boundary ∂D, 〈wn

h·n, 1〉∂D the convective flux over ∂D,
and rnDu

n
D|D| and fnD|D|, respectively, the reaction and sources accumulation in the volume D.

Finally, the term qnD|D| represents a quadrature error term. This term may not be present at all
(this is a typical situation for vertex-centered finite volume schemes). It appears when the local
conservation is not satisfied exactly for the numerical scheme in question.

A vast class of locally conservative methods enters the framework of Assumption (B). In par-
ticular, the combined finite volume–finite element scheme (3.1) can be written in the form (4.5)
with

〈θnh ·n, 1〉σ := −〈Snh∇unh·n, 1〉σ σ ⊂ ∂D,D ∈ Dn
h , (4.6)

where σ stands for a side of a simplex K from the partition SD of the volume D which is such
that σ ⊂ ∂D, and

〈wn
h·n, 1〉σD,E

:= 〈vn·n, 1〉σD,E
unD,E σD,E ∈ FD,D ∈ Dn

h , (4.7)

where, recall from Section 3.1, σD,E stands for a side of the volume D. The diffusive fluxes
〈θh·n, 1〉σ given by (4.6) do not necessarily coincide completely with those stemming from the
combined scheme (3.1) on general meshes Dn

h . Then, the quadrature factor qnD|D| is nonzero
and fixes the balance. In numerical experiments in Section 7 below, the values qnD|D| defined
in this way were completely negligible. We finally remark that equations (4.6) and (4.7) do not
prescribe the diffusive and convective fluxes θh and wh uniquely; they are sufficient, altogether
with Assumption (C) below, for the present theoretical analysis. For a practical implementation,
there exist several possibilities for fixing the remaining degrees of freedom of θh and wh. We refer
to [31, Section 4.3] for the details and examples of these possibilities.

4.4 A posteriori error estimate

In this section, we derive our a posteriori error estimate. We suppose that the approximate solution
uh,τ belongs to the space Xh and that there are diffusive and convective flux reconstructions θh

and wh belonging to the space Vh, arbitrary but such that Assumption (B) holds. A particular
example entering such a framework is the combined finite volume–finite element scheme (3.1) with
the construction of θh and wh by (4.6)–(4.7).

Let n ∈ {1, . . . , N} and let D be a volume of the mesh Dn
h . We first define a multiplicative

cutoff factor

mn
D := min

{
C

1
2
P,DhD(c

n
S,D)

− 1
2 , (cnv,r,D)

− 1
2

}
,

where the constants cn
S,D and cn

v,r,D are specified in Assumption (A), CP,D is the constant from the
Poincaré inequality (4.1), and hD is the diameter of the volume D. We then define the residual
estimator ηnR,D by

ηnR,D := mn
D

∥∥∥∥f
n
D − unD − un−1

D

τn
−∇·θnh −∇·wn

h − rnDu
n
D − qnD

∥∥∥∥
D

. (4.8)

The diffusive and convective flux estimator ηnDCF,D is given by

ηnDCF,D(t) :=
∥∥S 1

2∇uh,τ + S− 1
2θ

n
h − S− 1

2uh,τv + S− 1
2wn

h

∥∥
D
(t). (4.9)
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Let K be a simplex from the tertial mesh Sn−1,n
h . We then define the multiplicative cutoff factors

mn
K := min

{
C

1
2
P,F,KhK(cnS,K)−

1
2 , (cnv,r,K)

− 1
2

}
, (4.10a)

m̃n
K := min

{
(CP,F,K + C

1
2
P,F,K)hK(cnS,K)

−1, h−1
K (cnv,r,K)

−1 + 1
2(c

n
v,r,K)−

1
2 (cnS,K)−

1
2

}
, (4.10b)

where CP,F,K := CP,K for K ∈ Sn−1,n,int
h and CP,F,K := CF,K,∂Ω for K ∈ Sn−1,n,ext

h are the
constants from the Poincaré/Friedrichs inequalities (4.1) or (4.2), the constants cn

S,K and cn
v,r,K

are specified in Assumption (A), and hK is the diameter of K. We will need below also the diffusive
flux estimator ηnDF,D

ηnDF,D(t) :=

{
∑

K∈SD

(
mn
K‖∇·(S∇uh,τ + θ

n
h)‖K

+ (m̃n
K)

1
2

∑

σ∈Gint
K

(Ct,K,σ)
1
2‖(S∇uh,τ + θ

n
h)·n‖σ

)2} 1
2

(t).

(4.11)

Next, define the multiplicative cutoff factor

mn := min
{
C

1
2
FhΩ(c

n
S,Ω)

− 1
2 , (cnv,r,Ω)

− 1
2

}
,

where CF = 1 is the constant from the Friedrichs inequality (4.3), cn
S,Ω and cn

v,r,Ω are specified
in Assumption (A), and hΩ is the diameter of Ω. Then the data oscillation–quadrature estimator
ηnDOQ,D is given by

ηnDOQ,D(t) := mn

∥∥∥∥f − fnD − (uh,τ )t +
unD − un−1

D

τn
− ruh,τ + rnDu

n
D + qnD

∥∥∥∥
D

(t). (4.12)

We finally denote

(
η(1),n

)2
:=

∫ tn

tn−1

({
∑

D∈Dn
h

(
ηnR,D + ηnDCF,D(t)

)2
} 1

2

+

{
∑

D∈Dn
h

(
ηnDOQ,D(t)

)2
} 1

2
)2

dt,

(
η(2),n

)2
:=

∫ tn

tn−1

({
∑

D∈Dn
h

(
ηnR,D

)2
} 1

2

+

{
∑

D∈Dn
h

(
ηnDF,D(t)

)2
} 1

2

+ sup
ϕ∈H1

0 (Ω); |||ϕ|||=1

(∇·(uh,τv −wn
h), ϕ) +

{
∑

D∈Dn
h

(
ηnDOQ,D(t)

)2
} 1

2
)2

dt

and

ηn :=min
{
η(1),n, η(2),n

}
, (4.13a)

η :=

{
N∑

n=1

(ηn)2

} 1
2

. (4.13b)

Using these definitions, we will prove in Section 5.1 below the following a posteriori error estimate:
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Theorem 4.1 (Energy norm a posteriori error estimate). Let u be the weak solution of prob-
lem (1.1a)–(1.1c) given by (2.2) and let uh,τ ∈ Xh and θh,wh ∈ Vh be arbitrary but such that
Assumption (B) holds. Then

‖(u− uh,τ )(·, T )‖2 + ‖u− uh,τ‖2X ≤ η2 + ‖u0 − uh,τ (·, 0)‖2.

Theorem 4.2 (Augmented norm a posteriori error estimate). Let the assumptions of Theorem 4.1
hold. Then

3‖(u − uh,τ )(·, T )‖2 + ‖u− uh,τ‖2Y ≤ 5η2 + 3‖u0 − uh,τ (·, 0)‖2.

Remark 4.3 (Estimators η(1),n). We remark that the estimators η(1),n give a guaranteed upper
bound. They are also fully and locally computable in the sense that they are based on an evaluation
of certain quantities accessible locally in the mesh cells. Remark also that their principal parts (cf.
the numerical experiments of Section 7 below) are given by the constant-free estimators (4.9).

Remark 4.4 (Estimators η(2),n). The estimators η(1),n themselves would not be robust with respect
to the convection or reaction dominance, cf. [7, 27]. This is the reason for also introducing the
estimators η(2),n. Using these estimators, robust lower bound will be proven in Theorem 4.7 below,
following [25]. The disadvantage of the estimators η(2),n is, however, that they are not computable,
as they feature the supremum over all function ϕ ∈ H1

0 (Ω) with |||ϕ||| = 1. Computable upper
bounds on η(2),n, still ensuring robustness, can be established following [25, Section 8]. The price
to pay is a solution of an auxiliary stationary reaction–diffusion problem on each time step. Such
an approach is not computationally pursued here in view of its complexity.

Remark 4.5 (Data oscillation–quadrature estimators). In a posteriori estimates for finite ele-
ment, vertex-centered finite volume, or mixed finite element methods, cf. [25, 11], data oscillation
estimators of the form mn‖f−fnD‖ appear. The other terms of the present estimators ηnDOQ,D (4.12)
are related to the non-variational general nature of (4.5) (or of (3.1)). They correspond to a nu-
merical quadrature error; this is illustrated in Section 7 below on numerical experiments. If the
vertex-centered finite volume method, cf., e.g. [19], was used instead of (4.5), then the estimators
ηnDOQ,D would reduce to the usual data oscillation estimators mn‖f − fnD‖.

4.5 Distinguishing the space and time error contributions

The estimate η(1),n of (4.13a) is fully computable and allows to control the overall error. There is,
however, no distinction between the space and time errors. Using the triangle inequality, we have,
as in [11], for the example of ηnDCF,D(t),

ηnDCF,D(t) ≤
∥∥S 1

2∇unh + S− 1
2θ

n
h − S− 1

2unhv
n + S− 1

2wn
h

∥∥
D
(t)

+
∥∥S 1

2∇uh,τ − S
1
2∇unh − S− 1

2uh,τv + S− 1
2unhv

n
∥∥
D
(t).

Note that whenever S is constant in time on (tn−1, tn], the first of the above terms gets independent
of time; it clearly corresponds to the spatial part of the error. The second of the above terms then
corresponds to the temporal part of the error, so that we have the usual space–time contributions
division as in [21, 25]. Note as well that when both S and v are constant in time on (tn−1, tn], we
get, using the definition of uh,τ by (3.9) as in [24, Equation (6.5)], the following easily computable
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upper bound on
{∫ tn

tn−1

(
ηnDCF,D(t)

)2
dt
} 1

2 :

{∫ tn

tn−1

(
ηnDCF,D(t)

)2
dt

}1
2

≤ τ
1
2
n

∥∥(Sn) 1
2∇unh + (Sn)−

1
2θ

n
h − (Sn)−

1
2unhv

n + (Sn)−
1
2wn

h

∥∥
D

+
(τn
3

) 1
2
∥∥(Sn) 1

2∇(un−1
h − unh)− (Sn)−

1
2vn(un−1

h − unh)
∥∥
D
.

We now proceed similarly for the other estimators, for general S and v. We obtain

ηn ≤ ηnsp + ηntm

with

ηnsp :=

{
τn
∑

D∈Dn
h

(ηnR,D)
2

} 1
2

+

{∫ tn

tn−1

∑

D∈Dn
h

∥∥S 1
2∇unh + S− 1

2θ
n
h − S− 1

2unhv
n + S− 1

2wn
h

∥∥2
D
(t) dt

} 1
2

+

{∫ tn

tn−1

∑

D∈Dn
h

(mn)2
∥∥∥∥f − fh − (uh,τ )t +

unD − un−1
D

τn
− rnunh + rnDu

n
D + qnD

∥∥∥∥
2

D

(t) dt

} 1
2

(4.14)

and

ηntm :=

{∫ tn

tn−1

∑

D∈Dn
h

∥∥S 1
2∇uh,τ − S

1
2∇unh − S− 1

2uh,τv + S− 1
2unhv

n
∥∥2
D
(t) dt

} 1
2

+

{∫ tn

tn−1

∑

D∈Dn
h

(mn)2
∥∥fh − fnD − ruh,τ + rnunh

∥∥2
D
(t) dt

} 1
2

.

(4.15)

Consequently, we have the following corollary:

Corollary 4.6 (Energy norm a posteriori error estimate distinguishing the space and time errors).
Let the assumptions of Theorem 4.1 hold. Then

‖(u− uh,τ )(·, T )‖2 + ‖u− uh,τ‖2X ≤
N∑

n=1

(ηnsp + ηntm)
2 + ‖(u− uh,τ )(·, 0)‖2.

4.6 Efficiency of the estimate

For the sake of simplicity, we make in this section an additional assumption that ∇·v = 0. In this
case, the augmented norm (2.7) is closely related to that of [25], so that we can use the results
of [25] for the lower bound proof.

Henceforth, let a . b denote a ≤ Cb for a generic positive constant C, not necessarily the same
at each occurrence, dependent on the shape regularity of the meshes Sn−1,n

h and d but independent
of the space domain Ω, final time T , and the parameters S, v, r, f , and u0; C can only depend
on the local oscillation of these parameters. Similarly, the notation a ≈ b will be employed when
simultaneously a . b and b . a. From now on, we also omit denoting explicitly by (t) the
dependence of the estimators on the time. In order to proceed as generally as possible, we will
need below the following approximation property of the diffusive flux reconstruction θh:
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Assumption (C) (Approximation property of the diffusive flux reconstruction)

We suppose that

‖Snh∇unh + θ
n
h‖D .

{
∑

σ∈GD

hσ‖[[Snh∇unh·n]]‖2σ

} 1
2

∀n ∈ {1, . . . , N}, ∀D ∈ Dn
h . (4.16)

In (4.16), [[·]] denotes the jump across a side. Assumption (C) can be shown, in dependence on
the construction of θnh from ∇unh, as in [31].

We also introduce some additional notation. Let fh, rh ∈ Xh and vh ∈ Vh be space–time
discrete approximations of the source term, of the reaction function, and of the velocity field v,
respectively. Let n ∈ {1, . . . , N} and D ∈ Dn

h . We define the data oscillation estimator ηnDO,D by

ηnDO,D := mn
D‖fnD − fnh ‖D +mn

D‖unh(rnh − rnD)‖D

+

{
∑

K∈SD

(
(mn

K)2‖∇·(S− Snh)∇uh,τ‖2K + m̃n
K

∑

σ∈Gint
K

‖(S− Snh)∇uh,τ ·n‖2σ

)} 1
2

+

{
∑

K∈SD

(
(mn

K)2‖∇·((v − vnh)uh,τ )‖2K + m̃n
K

∑

σ∈Gint
K

‖(v − vnh)uh,τ ·n‖2σ

)} 1
2

and the quadrature estimator ηnQ,D by

ηnQ,D := mn
D

∥∥∥∥
unh − un−1

h

τn
− unD − un−1

D

τn
+ rnD(u

n
h − unD)− qnD

∥∥∥∥
D

+

{
∑

K∈SD

(
(mn

K)
2‖∇·(vnhunh −wn

h)‖2K + m̃n
K

∑

σ∈Gint
K

‖(vnhunh −wn
h)·n‖2σ

)} 1
2

.

We then have the following theorem:

Theorem 4.7 (Efficiency of the a posteriori error estimators in the augmented norm). Let ∇·v = 0,
let u be the weak solution of problem (1.1a)–(1.1c) given by (2.2) and let uh,τ ∈ Xh and θh,wh ∈ Vh

be arbitrary but such that Assumption (C) holds. Let n ∈ {1, . . . , N}, let Sn−1,n
h be shape-regular,

and let, for all D ∈ Dn
h , hD ≈ hK for all K ∈ SD. Then

(ηn)2 . ‖u− uh,τ‖2Y (tn−1,tn)
+

∫ tn

tn−1

∑

D∈Dn
h

{(ηnDOQ,D)
2 + (ηnDO,D)

2 + (ηnQ,D)
2}dt

+ ‖f − fn − (r − rn)uh,τ‖2X′(tn−1,tn)
.

5 Proof of the a posteriori error estimate and of its efficiency

We shall prove in this section the a posteriori error estimates stated in Theorems 4.1 and 4.2, as
well as their efficiency discussed in Theorem 4.7.
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5.1 Proof of the a posteriori error estimate

We prove here Theorems 4.1 and 4.2. Let the assumptions of Theorem 4.1 hold.
We start by bounding the error measured in the energy norm (2.3) (and the L2(Ω) norm at the

end of the simulation) by the residual (and the L2(Ω) norm at the beginning of the simulation).

Lemma 5.1 (Bound by the residual). There holds

‖(u− uh,τ )(·, T )‖2 + ‖u− uh,τ‖2X ≤
(

sup
ϕ∈X, ‖ϕ‖X=1

∫ T

0
〈B(u− uh,τ ), ϕ〉dt

)2

+ ‖(u− uh,τ )(·, 0)‖2.

Proof. Using the obvious relation

∫ T

0
〈B(v), v〉dt ≤ sup

ϕ∈X, ‖ϕ‖X=1

∫ T

0
〈B(v), ϕ〉dt‖v‖X ≤ 1

2

(
sup

ϕ∈X, ‖ϕ‖X=1

∫ T

0
〈B(v), ϕ〉dt

)2

+
1

2
‖v‖2X ,

valid for any v ∈ Z, the assertion follows from (2.4) and the fact that (u− uh,τ ) ∈ Z.

Let from now on, ϕ ∈ X with ‖ϕ‖X = 1 be fixed. Then, on the time interval (tn−1, tn],
n ∈ {1, . . . , N}, we have the following results.

We first rewrite the residual 〈B(u− uh,τ ), ϕ〉 in a form of a summation whose individual terms
will be easy to bound.

Lemma 5.2 (Equivalent form of the residual). There holds

〈B(u− uh,τ ), ϕ〉 = TR(ϕ) + TDCF(ϕ) + TQ(ϕ)

with

TR(ϕ) :=
∑

D∈Dn
h

(
fnD − unD − un−1

D

τn
−∇·θnh −∇·wn

h − rnDu
n
D − qnD, ϕ− ϕD

)

D

,

TDCF(ϕ) := −(S∇uh,τ + θ
n
h − uh,τv +wn

h,∇ϕ),

TQ(ϕ) :=
∑

D∈Dn
h

(
f − fnD − (uh,τ )t +

unD − un−1
D

τn
− ruh,τ + rnDu

n
D + qnD, ϕ

)

D

,

where ϕD := (ϕ, 1)D/|D|, D ∈ Dn
h .

Proof. We first use the definition of the weak solution (2.2) and that of B (2.1) to infer that

〈B(u− uh,τ ), ϕ〉 = (f, ϕ)− ((uh,τ )t, ϕ)− (S∇uh,τ ,∇ϕ)− (∇·(uh,τv), ϕ) − (ruh,τ , ϕ).

We then add and subtract (∇·θnh , ϕ) and (∇·wn
h, ϕ) and use the Green theorem to see that

〈B(u− uh,τ ), ϕ〉 = (f, ϕ)− ((uh,τ )t, ϕ)− (∇·θnh , ϕ)− (∇·wn
h, ϕ)

− (S∇uh,τ + θ
n
h − uh,τv +wn

h,∇ϕ)− (ruh,τ , ϕ)

= T ∗
R(ϕ) + TDCF(ϕ) + TQ(ϕ),

where T ∗
R(ϕ) is as TR(ϕ) with, however, the second argument replaced by ϕ. Finally, it suffices to

multiply (4.5) by ϕD, to use therein the Green theorem for the terms involving θ
n
h and wn

h, and
add it to T ∗

R(ϕ) for each D ∈ Dn
h to arrive at the assertion of the lemma.
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We now bound separately the three terms of Lemma 5.2.

Lemma 5.3 (Residual estimate). There holds

TR(ϕ) ≤
∑

D∈Dn
h

ηnR,D|||ϕ|||D .

Proof. The assertion follows immediately from an application of the Cauchy–Schwarz inequality,
the Poincaré inequality (4.1), and the definition (2.3) of the energy norm ||| · |||, cf. [30, Lemmas 4.3
and 7.1].

Lemma 5.4 (Diffusive and convective flux estimates). There holds

TDCF(ϕ) ≤
∑

D∈Dn
h

ηnDCF,D|||ϕ|||D , (5.1a)

TDCF(ϕ) ≤
{
∑

D∈Dn
h

(
ηnDF,D

)2
} 1

2

|||ϕ||| + sup
ψ∈H1

0 (Ω); |||ψ|||=1

(∇·(uh,τv −wn
h), ψ)|||ϕ|||. (5.1b)

Proof. Estimate (5.1a) follows easily by the Cauchy–Schwarz inequality and (2.3). The first part
of estimate (5.1b), bounding the term −(S∇uh,τ + θ

n
h ,∇ϕ), is established as in [7, proof of Theo-

rem 4.4]. Two following simple modifications are necessary: firstly, the Friedrichs inequality (4.2)
has to be used for K ∈ Sn−1,n,ext

h instead of the Poincaré inequality (4.1) in [7, proof of Theo-
rem 4.4]; consequently, only a sum over the sides of the elements K not contained in ∂Ω, σ ∈ Gint

K ,
and not a sum over all sides of the elements K, σ ∈ GK , appears in the definition (4.11) of ηnDF,D.
Secondly, the scaling by S has to be added, leading to the factors cn

S,K in the definitions (4.10a)–
(4.10b) of mn

K and m̃n
K . Finally, by the Green theorem, we easily have

(uh,τv −wn
h,∇ϕ) = −(∇·(uh,τv−wn

h), ϕ) ≤ sup
ψ∈H1

0 (Ω); |||ψ|||=1

(∇·(uh,τv −wn
h), ψ)|||ϕ|||.

Lemma 5.5 (Data oscillation–quadrature estimate). There holds

TQ(ϕ) ≤
{
∑

D∈Dn
h

(ηnDOQ,D)
2

} 1
2

|||ϕ|||.

Proof. Denote by vD the argument in the left part of (·, ·)D in TQ(ϕ) in Lemma 5.2. Then, on the
one hand,

TQ(ϕ) ≤
∑

D∈Dn
h

‖vD‖D‖ϕ‖D ≤
∑

D∈Dn
h

(cnv,r,D)
− 1

2‖vD‖D|||ϕ|||D ≤ (cnv,r,Ω)
− 1

2

{
∑

D∈Dn
h

‖vD‖2D

} 1
2

|||ϕ|||

by the Cauchy–Schwarz inequality and definition (2.3) of the energy norm. On the other hand,

TQ(ϕ) ≤
{
∑

D∈Dn
h

‖vD‖2D

} 1
2

‖ϕ‖ ≤ C
1
2
FhΩ(c

n
S,Ω)

− 1
2

{
∑

D∈Dn
h

‖vD‖2D

} 1
2

|||ϕ|||

by the Cauchy–Schwarz inequality, the Friedrichs inequality (4.3), and definition (2.3) of the energy
norm.
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We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let ϕ ∈ X, ‖ϕ‖X = 1, be fixed. Lemmas 5.2–5.5 and the Cauchy–Schwarz
inequality imply

〈B(u− uh,τ ), ϕ〉dt ≤
({

∑

D∈Dn
h

(ηnR,D + ηnDCF,D)
2

} 1
2

+

{
∑

D∈Dn
h

(ηnDOQ,D)
2

} 1
2
)
|||ϕ|||,

using the bound (5.1a) on TDCF(ϕ). Similarly, using the bound (5.1b) on TDCF(ϕ), we arrive at

〈B(u− uh,τ ), ϕ〉dt ≤
({

∑

D∈Dn
h

(ηnR,D)
2

} 1
2

+

{
∑

D∈Dn
h

(ηnDF,D)
2

} 1
2

+ sup
ψ∈H1

0 (Ω); |||ψ|||=1

(∇·(uh,τv −wn
h), ψ) +

{
∑

D∈Dn
h

(ηnDOQ,D)
2

} 1
2
)
|||ϕ|||.

Another use of the Cauchy–Schwarz inequality gives

∫ T

0
〈B(u− uh,τ ), ϕ〉dt ≤

N∑

n=1

(
min

{
η(1),n, η(2),n

}
{∫ tn

tn−1

|||ϕ|||2 dt
}1

2
)

≤ η‖ϕ‖X = η (5.2)

and using Lemma 5.1 concludes the proof.

Along the same rules as above, we now also prove Theorem 4.2.

Proof of Theorem 4.2. Let us first bound the term ‖∂t(u−uh,τ )+ bA(u−uh,τ )‖2X′ , stemming from
the definition (2.7) of the augmented norm. Following [10, 11], using definitions (2.1) and (2.6),
estimate (5.2), and the Cauchy–Schwarz inequality, we readily have

sup
ϕ∈X; ‖ϕ‖X=1

∫ T

0
〈∂t(u− uh,τ ) + bA(u− uh,τ ), ϕ〉(t) dt

= sup
ϕ∈X; ‖ϕ‖X=1

∫ T

0
{〈B(u− uh,τ ), ϕ〉 − 〈BS(u− uh,τ ), ϕ〉}(t) dt

≤ η + ‖u− uh,τ‖X .

Consequently, using Theorem 4.1,

‖∂t(u− uh,τ ) + bA(u− uh,τ )‖2X′ ≤ 4η2 + 2‖(u− uh,τ )(·, 0)‖2 − 2‖(u− uh,τ )(·, T )‖2.

The assertion of the theorem follows from definition (2.7) of the augmented norm.

5.2 Proof of the efficiency of the estimate

We prove here Theorem 4.7. Let its assumptions hold. Let first n ∈ {1, . . . , N} and K ∈ Sn−1,n
h

be fixed. We denote by

ηnR,K := mn
K

∥∥∥∥f
n
h − unh − un−1

h

τn
+∇·(Snh∇unh)−∇·(vnhunh)− rnhu

n
h

∥∥∥∥
K

,

ηnJ,K := (mn
K)

1
2 (cnS,K)−

1
4

∑

σ∈Gint
K

‖[[Snh∇unh·n]]‖σ ,
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respectively, the usual element and face residual estimators, cf. [25]. In order to prove Theorem 4.7,
we show in the following lemmas that our a posteriori error estimate represents a lower bound for
the residual a posteriori error estimate of [25, Lemma 7.1]. Consequently, we will be able to
establish the lower bound by estimate (7.2) of this reference.

Let n ∈ {1, . . . , N} and D ∈ Dn
h be fixed. We then have the following results:

Lemma 5.6 (Upper bound on ηnR,D). There holds

ηnR,D .

{
∑

K∈SD

(ηnR,K)
2

} 1
2

+

{
∑

K∈SD

(ηnJ,K)
2

} 1
2

+ ηnDO,D + ηnQ,D.

Proof. The triangle inequality yields

ηnR,D ≤ mn
D

∥∥∥∥f
n
h − unh − un−1

h

τn
+∇·(Snh∇unh)−∇·(vnhunh)− rnhu

n
h

∥∥∥∥
D

+mn
D‖fnD − fnh ‖D

+mn
D

∥∥∥∥
unh − un−1

h

τn
− unD − un−1

D

τn
+ rnD(u

n
h − unD)− qnD

∥∥∥∥
D

+mn
D‖unh(rnh − rnD)‖D +mn

D‖∇·(Snh∇unh + θ
n
h)‖D +mn

D‖∇·(vnhunh −wn
h)‖D.

The fact that Snh∇unh + θ
n
h is a piecewise polynomial in D, the inverse inequality, the fact that

hD ≈ hK for all K ∈ SD, and the approximation property (4.16) lead to

‖∇·(Snh∇unh + θ
n
h)‖D . h−1

D ‖Snh∇unh + θ
n
h‖D . h−1

D

{
∑

σ∈GD

hσ‖[[Snh∇unh·n]]‖2σ

} 1
2

.

From here, we easily get

mD‖∇·(Snh∇unh + θ
n
h)‖D .

{
∑

K∈SD

(ηnJ,K)
2

} 1
2

,

using the previous arguments and the boundmn
Kh

− 1
2

K . (mn
K)

1
2 (cn

S,K)−
1
4 (equivalent to the obvious

(mn
K)

1
2h

− 1
2

K (cn
S,K)

1
4 . 1) in each K ∈ SD. Combining the above results, the assertion follows.

Lemma 5.7 (Upper bound on ηnDF,D). There holds

ηnDF,D .

{
∑

K∈SD

(ηnJ,K)2

} 1
2

+

{
∑

K∈SD

mn
K(c

n
S,K)−

1
2h−1

K ‖Snh∇(uh,τ − unh)‖2K

} 1
2

+ ηnDO,D.

Proof. Let K ∈ SD. We have, separating the data oscillation, time evolution, and diffusive flux

18



approximation parts,

mn
K‖∇·(S∇uh,τ + θ

n
h)‖K + (m̃n

K)
1
2

∑

σ∈Gint
K

(Ct,K,σ)
1
2 ‖(S∇uh,τ + θ

n
h)·n‖σ

. mn
K‖∇·(S∇uh,τ + θ

n
h)‖K + (m̃n

K)
1
2

∑

σ∈Gint
K

‖(S∇uh,τ + θ
n
h)·n‖σ

≤ mn
K(‖∇·(S− Snh)∇uh,τ‖K + ‖∇·Snh∇(uh,τ − unh)‖K + ‖∇·(Snh∇unh + θ

n
h)‖K)

+ (m̃n
K)

1
2

∑

σ∈Gint
K

(‖(S − Snh)∇uh,τ ·n‖σ + ‖Snh∇(uh,τ − unh)·n‖σ + ‖(Snh∇unh + θ
n
h)·n‖σ)

. mn
K‖∇·(S− Snh)∇uh,τ‖K + (m̃n

K)
1
2

∑

σ∈Gint
K

‖(S− Snh)∇uh,τ ·n‖σ

+ (mn
K)

1
2 (cnS,K)−

1
4h

− 1
2

K (‖Snh∇(uh,τ − unh)‖K + ‖Snh∇unh + θ
n
h‖K),

using the inverse inequalities

‖∇·qh‖K . h−1
K ‖qh‖K ,

‖qh·n‖σ . h
− 1

2
K ‖qh‖K

for qh = Snh∇(uh,τ − unh) and qh = Snh∇unh + θ
n
h and the estimate

mn
Kh

− 1
2

K + (m̃n
K)

1
2 . (mn

K)
1
2 (cnS,K)−

1
4

following from [7, Proof of Theorem 5.1]. To conclude, it now suffices to use the Cauchy–Schwarz
inequality, approximation property (4.16), and the definitions of ηnJ,K and ηnDO,D.

Let n ∈ {1, . . . , N} and K ∈ Sn−1,n
h be fixed. We then have:

Lemma 5.8 (Equivalent form of
∫ tn
tn−1

‖Snh∇(uh,τ − unh)‖2K dt). There holds

∫ tn

tn−1

‖Snh∇(uh,τ − unh)‖2K dt =
τn
3
‖Snh∇(unh − un−1

h )‖2K .

Proof. Follows from the definition of uh,τ by (3.9), cf. [24, Equation (6.5)].

Let n ∈ {1, . . . , N} be fixed. We then have:

Lemma 5.9 (Upper bound on the convective time evolution term). There holds

∫ tn

tn−1

(
sup

ϕ∈H1
0 (Ω); |||ϕ|||=1

(∇·(uh,τv−wn
h), ϕ)

)2

dt . τn sup
ϕ∈H1

0 (Ω); |||ϕ|||=1

(∇·((unh − un−1
h )vnh), ϕ)

2

+

∫ tn

tn−1

∑

D∈Dn
h

{(ηnDO,D)
2 + (ηnQ,D)

2}dt.

Proof. Let t ∈ (tn−1, tn] and ϕ ∈ H1
0 (Ω). Then, separating the data oscillation, time evolution,

and quadrature parts,

(∇·(uh,τv−wn
h), ϕ) = (∇·(uh,τ (v − vnh)), ϕ) + (∇·((uh,τ − unh)v

n
h), ϕ) + (∇·(unhvnh −wn

h), ϕ)

= −(uh,τ (v − vnh),∇ϕ) + (∇·((uh,τ − unh)v
n
h), ϕ) − (unhv

n
h −wn

h,∇ϕ)
Bounding the first and last terms of the above expression as in (5.1b) in Lemma 5.4 and integrating
the middle term in time as in Lemma 5.8, the assertion of the lemma follows.
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With the above developments, we can now bound our estimators by the classical residual ones.

Lemma 5.10 (Upper bound on (ηn)2 using the usual residual estimators). There holds

(ηn)2 ≤
(
η(2),n

)2
. τn

∑

D∈Dn
h

∑

K∈SD

{(ηnR,K)2 + (ηnJ,K)2 + (cnS,K)
−1‖Snh∇(unh − un−1

h )‖2K}

+

∫ tn

tn−1

∑

D∈Dn
h

{(ηnDOQ,D)
2 + (ηnDO,D)

2 + (ηnQ,D)
2}dt

+ τn sup
ϕ∈H1

0 (Ω); |||ϕ|||=1

(∇·((unh − un−1
h )vnh), ϕ)

2.

Proof. Follows by combining the results of Lemmas 5.6–5.9.

We are now ready to announce the main result of this section.

Proof of Theorem 4.7. Follows by combining Lemma 5.10 and [25, Lemma 7.1].

6 Adaptive algorithm

We present here an adaptive algorithm based on our a posteriori error estimates which is designed
to ensure that the relative energy error between the exact and approximate solutions will be below
a prescribed tolerance ε. Recalling Corollary (4.6), we impose that

∑N
n=1(η

n
sp + ηntm)

2

∑N
n=1 ‖uh,τ‖2X(tn−1 ,tn)

≤ ε2. (6.1)

On a given time level tn−1, we in particular choose the space mesh Dn
h and time step τn such that

ηnsp ≤ ε
‖uh,τ‖X(tn−1 ,tn)

2
, ηntm ≤ ε

‖uh,τ‖X(tn−1 ,tn)

2
.

At the same time, using the fact that there are no unknown constants hidden in both ηnsp and ηntm,
we intend to equilibrate the space and time estimators ηnsp and ηntm, in the hope to equilibrate the
space and time contributions to the error.

For practical implementation purposes, we introduce the maximal refinement level parameters
Nsp and Ntm. Altogether with some other parameters of the algorithm, they are listed in Table 1.
We also denote by SpTmUnkn the total number of space–time unknowns. The actual algorithm is
as follows:

• let an initial mesh D0
h and an initial time step τ1 be given

• set up the initial conditions on D0
h

• set t0 = t1 = 0, D1
h = D0

h, and n = 1

• set EstSpPrev = 1, EstTmPrev = 0

• set LevTmRef = 0, SpTmUnkn = 0

• set η = 0

while tn < T

• set Count = 0

• set tn = tn−1 + τn

• set up the boundary conditions on Dn
h

• set ηnsp = Crit = 1, ItSpRef = 1
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Parameter Meaning

Nsp maximal level of space refinement
Ntm maximal level of time refinement
Ref percentage of cells for the space mesh refinement
Deref percentage of cells for the space mesh derefinement
Bulk spatial error estimate fraction for the derefinement
DerefSp error estimate percentage for the space mesh derefinement
DerefTm error estimate percentage for the time mesh derefinement
Comp parameter for comparison of ηsp and ηtm
StepsSpDeref number of steps after which the space mesh is derefined
StepsTmDeref number of steps after which the time mesh is derefined

Table 1: Different parameters of the adaptive algorithm and their meaning

• while ηnsp ≥ Crit, ItSpRef ≤ Nsp + 1, and EstSpPrev > Comp · EstTmPrev when
ItSpRef 6= 1

• if ItSpRef > 1

• refine such cells D ∈ Dn
h where ηnD,sp ≥ Ref · maxE∈Dn

h
ηnE,sp and such that

their level of refinement is less than Nsp

• create a new mesh Dn
h and interpolate the data onto this new mesh

• solve (3.1) on Dn
h with the time step τn to get new uh,τ |[tn−1,tn]

• compute the space a posteriori error estimate ηnsp
• set EstSpPrev = ηnsp/

√
τn

• compute the norm of the approximate solution ‖uh,τ‖X(tn−1 ,tn) and set Crit =
ε · ‖uh,τ‖X(tn−1 ,tn)/2

• set ItSpRef = ItSpRef+ 1

• compute the time a posteriori error estimate ηntm
• set EstTmPrev = ηntm/

√
τn

• if ηntm ≥ Crit, LevTmRef < Ntm, and EstTmPrev > Comp · EstSpPrev
• set tn = tn − τn, τn = τn/3, and LevTmRef = LevTmRef+ 1

• else

• η2 = η2 +
(
ηntm + ηnsp

)2

• SpTmUnkn = SpTmUnkn+ |Dn
h |

• Count = Count+ 1

• if Count is a multiple of StepsSpDeref

• set NBulkCells as the number of cells which contain Bulk · EstSpPrev part
of the spatial error

• derefine such cells D ∈ Dn
h that ηnD,sp ≤ Deref · maxE∈Dn

h
ηnE,sp and that

ηnD,sp < Comp · DerefSp · EstTmPrev · √τn/2/NBulkCells
• create a new mesh Dn

h and interpolate the data onto this mesh

• if Count is a multiple of StepsTmDeref and EstTmPrev < Comp · DerefTm ·
EstSpPrev, set τn = 3τn and LevTmRef = LevTmRef− 1

• set Dn+1
h = Dn

h , τn+1 = τn, and n = n+ 1
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Figure 2: Nonmatching primal square mesh Dn
h , the corresponding dual triangular mesh T n

h (in

red, left), and the corresponding tertial triangular mesh Sn−1,n
h (in blue, right)

7 Numerical experiments

We apply in this section the a posteriori error estimates of Theorem 4.1 and the adaptive algorithm
of Section 6 to a model problem with a known analytic solution.

We consider (1.1a)–(1.1c) with

Ω = (0, 3) × (0, 3),

S = ν

(
1 0
0 1

)
,

v = (v1, v2),

r = 0,

f = 0,

where v1 = 0.8 and v2 = 0.4 are two constant components of the convective field v and the
parameter ν > 0 determines the amount of diffusion. We will consider the cases ν = 0.001 and
ν = 10. The initial condition u0, as well as the (inhomogeneous) Dirichlet boundary condition, are
given by the exact solution

u(x, y, t) =
1

200ν(t+ t0) + 1
e
−50

(x−x0−v1(t+t0))
2+(y−y0−v2(t+t0))

2

200ν(t+t0)+1 .

This solution represents a Gaussian peak centered at the point (x0, y0) at time t = 0, moved
through the domain Ω by the convective field v, and diffusing with the intensity given by the
parameter ν. We use in particular x0 = 0.5 and y0 = 1.35. Unless otherwise specified, we set the
additional nonnegative parameter t0 to t0 = 0. We will test two cases with the final time T = 0.6
and T = 1.5, respectively.

We consider the scheme (3.1) on square meshes with possibly nonmatching refinements as
indicated in Figure 2. Recall that the diffusive and convective flux reconstructions θh and wh are
constructed in the space Vh; for each time level tn, they are Raviart–Thomas–Nédélec vector fields
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Figure 3: Estimated (left) and actual (right) energy error distribution, adaptive refinement, ν =
0.001, T = 0.6, adaptively refined mesh with Nsp = Ntm = 4

over the fine simplicial meshes Sn−1,n
h (cf. the right part of Figure 2). Their degrees of freedom

(normal fluxes) over the boundaries of the elements D of the grid Dn
h are defined respectively

by (4.6) and (4.7). The remaining degrees of freedom are fixed as t2,D in [31, Section 4.3.3]. By
such a construction, in particular, the residual estimators (4.8) all vanish. We present the results
of Theorem 4.1 in the energy norm (2.3) setting; we use the estimator η given by (4.13b), where we
only evaluate η(1),n. We do not present the results of Theorem 4.2 for the augmented norm (2.7)
since this norm is not easily calculable and since we have decided not to evaluate/compute the
upper bound on the estimator η(2),n, see Remark 4.4. We neglect the additional error from the
inhomogeneous Dirichlet boundary condition.

The starting mesh D1
h is given by a uniform 10×10 space grid and a uniform division of the time

interval into 2 time steps when T = 0.6 and 5 time steps when T = 1.5. The meshes Dn
h are refined

either uniformly or adaptively. In the first case, each square is always divided into nine subsquares,
and the time step is cut by three. In the second case, the adaptive algorithm proposed in Section 6
is employed. We set Ref = 0.5, Deref = 0.05, Comp = 0.7, StepsSpDeref = 6, StepsTmDeref = 6,
Bulk = 0.85, DerefSp = 0.15, and DerefTm = 0.5. We will be choosing different values of Nsp

and Ntm (recall their definition in Table 1). As we limit the maximal level of space and time
refinements, we usually do not achieve the prescribed tolerance ε in (6.1). Finally, we define the
experimental order of convergence ξ by

ξ :=
log(eN )− log(eN−1)

1
3 log |VN−1| − 1

3 log |VN |
,

where eN is the error on the last space–time mesh, eN−1 is the error on the last but one space–time
mesh, and |VN | and |VN−1| denote the corresponding numbers of total space–time unknowns given
by
∑N

n=1 |Dn
h |.

7.1 Overall performance

We first consider ν = 0.001 and T = 0.6. In this case, the problem is strongly convection-
dominated with a very small amount of diffusion; the initial maximal value is 1, whereas the
maximal value at the end of the simulation is roughly 0.9. Figure 9 below shows some approximate
solutions. In Figure 3, we compare the actual error distribution and the one predicted by our a
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Figure 4: Estimated and actual energy errors (left) and corresponding effectivity indices (right),
ν = 0.001, T = 0.6
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Figure 5: Estimated and actual energy errors (left) and corresponding effectivity indices (right),
ν = 0.001, T = 1.5

posteriori error estimate. The result is presented at the final time, on an adaptively refined mesh
with Nsp = Ntm = 4. We can see that a correct form of the error distribution is predicted
(circular with smaller error in the middle of the circle), whereas this is not completely the case for
the localization—the predicted error distribution is [—] more spread. We anticipate that this is
caused by the fact that the solution itself is rather diffused; increasing Nsp and Ntm improves this
considerably.

We next, in the left part of Figure 4, compare the actual error
(
‖(u − uh,τ )(·, T )‖2 + ‖u −

uh,τ‖2X
) 1

2 with the estimate
(
η2 + ‖u0 − uh,τ (·, 0)‖2

) 1
2 on uniformly/adaptively refined meshes. In

the right part of Figure 4, we present the corresponding effectivity indices, given as the ratios of
the estimate over the error. In the adaptive refinement strategy, we obtain the same precision for
much fewer (roughly 20 times less for the last meshes) space–time unknowns than in the uniform
one. Concerning the experimental order of convergence, we have found ξ = 0.64 and ξ = 0.75 in
the uniform and adaptive cases, respectively. The effectivity indices depend on the local Péclet
number and improve as the mesh is refined (and the local Péclet number decreased), as expected
for the energy norm setting, not robust with respect to the convection dominance. We then in
Figure 5 plot the results for the 2.5 times longer final time T = 1.5. We find very similar results,
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Figure 6: Errors in uniform/adaptive refinement as functions of the total CPU time, ν = 0.001,
T = 0.6 (left), T = 1.5 (right)
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Figure 7: Evolution of the number of spatial unknowns as a function of the simulation time,
ν = 0.001, T = 0.6 (left) and T = 1.5 (right)

with in particular very similar effectivity indices. Our energy norm estimates thus seem to be
independent of (robust with respect to) the final simulation time. In the uniform and adaptive
cases, respectively, we find ξ = 0.47 and ξ = 0.58 for the experimental orders of convergence when
T = 1.5.

Figure 6 then present the same results as the left parts of Figures 4 and 5, with this time
the dependence of the errors in uniform and adaptive cases on the simulation duration. The
results are, however, quite implementation/platform dependent, and we consider them as rather
indicative only. In particular, the code TALISMAN [32], where our algorithm is implemented, is
not optimized for the adaptive case yet. The computation in the uniform case is, on the other
hand, slowed down by the fact that at each time step, the energy error contribution is computed,
which we need in the present test setting. We finally, in Figure 7, illustrate another aspect of
the performance of the adaptive algorithm of Section 6: we can see that from the original coarse
time step τ1 = 0.3, the algorithm rapidly arrives at the minimal allowed time step of length 0.3/33

(recall that Ntm = 4) while simultaneously increasing the number of space unknowns (located
there where the spatial error is increased) from the original 100 to roughly 2200.

The left parts of Figures 4 and 5 also show the two components of η: the total diffusive and
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Figure 8: Effectivity indices for the estimators ηnDOQ,D only, ν = 0.001, T = 0.6 (left) and T = 1.5
(right)

convective flux estimator given by

{
N∑

n=1

∫ tn

tn−1

∑

D∈Dn
h

(
ηnDCF,D(t)

)2
dt

} 1
2

,

where ηnDCF,D is given by (4.9), and the total data oscillation–quadrature estimator

{
N∑

n=1

∫ tn

tn−1

∑

D∈Dn
h

(
ηnDOQ,D(t)

)2
dt

} 1
2

,

where ηnDOQ,D is given by (4.12). We remind that the residual estimators ηnR,D given by (4.8) are all
zero here thanks to the chosen construction of the diffusive and convective flux reconstructions θh
and wh. We can see that the data oscillation–quadrature estimators represent the dominant part
of η. In the present case, these estimators only stem from the use of the mass lumping in the time

evolution term; they would equal to zero if the discretization
un
D
−un−1

D

τn
of the temporal derivative

in the scheme (3.1) was replaced by the term (uh,τ )t. Figure 8 shows the effectivity indices for the
estimate given by the (constant-free) diffusive and convective flux estimators ηnDCF,D (4.9) only.
We can see that they are much closer to the optimal value of 1.

We next compare the uniform and adaptive refinement strategies visually, for ν = 0.001 and
T = 0.6. Figure 9 shows the approximate solution at the final time obtained in the adaptive case
withNsp = Ntm = 2 (left) and Nsp = Ntm = 4 (right). We can see that whereas in the first case, the
numerical diffusion is extremely strong (notice that it only applies in the streamline direction by the
definition of the local Péclet upstream weighting (3.7)), in the second one the approximate solution
starts to capture the exact one rather well. Figure 10 then compares the uniform refinement
strategy with the adaptive one. In its left part, the uniform refinement approximate solution at
the final time with Nsp = Ntm = 3 is shown, whereas in its right part, we present its adaptive
refinement counterpart for Nsp = Ntm = 4. The adaptive case gives clearly much better results,
and this for roughly the same total number of space–time unknowns.

We finally focus on the diffusion-dominated case ν = 10 (we consider T = 1.5). In this case, the
adaptive refinement strategy does not lead to important improvements and hence we only present
results for the uniform refinement. In Figure 11, the effectivity index is excellent as very close
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Figure 10: Uniform refinement approximate solution for Nsp = Ntm = 3 (left) and adaptive
refinement approximate solution for Nsp = Ntm = 4 (right), ν = 0.001 and T = 0.6
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Figure 11: Estimated and actual energy errors (left) and corresponding effectivity indices (right),
ν = 10, T = 1.5
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Figure 12: Estimated and actual energy errors (left) and corresponding effectivity indices (right),
ν = 10, T = 1.5, and t0 = 0.5
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Figure 13: Spatial estimators ηnsp and temporal estimators ηntm as a function of the number of
space–time unknowns, ν = 0.001, T = 0.6, Nsp = Ntm = 4

to the optimal value of one. This is probably caused by the fact that the exact solution almost
instantaneously diffuses from the maximal value of 1 to the final maximal value of order 10−4.
Coincidentally, the experimental order of convergence ξ = 0.53 only. The solution presents much
smoother behavior for the parameter t0 = 0.5, in which case ξ takes the almost optimal value 0.97.
We illustrate this case in Figure 12.

7.2 Equilibration of the spatial and temporal errors

One of the distinctive features of the algorithm of Section 6 is that it distinguishes the spatial
and temporal parts of the error and tries to equilibrate them adaptively. We present in Figure 13
an illustration of the fact that this algorithm indeed succeeds in doing so: throughout the whole
simulation for the diffusion parameter ν = 0.001, final time T = 0.6, and the maximal allowed
spatial and temporal refinements Nsp = Ntm = 4, the spatial estimators ηnsp given by (4.14) and
the temporal estimators ηntm given by (4.15) are approximately of the same size.

Figures 14 and 15 illustrate that such an equilibration is optimal: in Figure 14, we overrefine
in time (we set Nsp = 3, Ntm = 5), whereas in Figure 15, we overrefine in space (we set Nsp = 5,
Ntm = 3). In the left parts of these figures, we can see that the spatial and temporal estimators
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Figure 14: Spatial and temporal estimators for overrefinement in time (left) and comparison of the
corresponding energy error with the equilibrated case (right), ν = 0.001, T = 0.6
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Figure 15: Spatial and temporal estimators for overrefinement in space (left) and comparison of
the corresponding energy error with the equilibrated case (right), ν = 0.001, T = 0.6

are now disequilibrated. More importantly, much worse precision for a given computational effort
is now achieved in comparison with the equilibrated case, as we can see in the right parts of the
Figures 14 and 15.

Remark that a key property is that both the spatial estimators ηnsp and the temporal esti-
mators ηntm are guaranteed (there is no unknown constant in either of them). This represents
a conceptual difference with the classical residual-based estimators such as those of [21, 24, 25],
where a spatial and a temporal estimator may also be defined, but where both of them feature an
unknown constant. With a wrong choice of this unknown constant, one may easily overestimate
or underestimate either the actual spatial or the actual temporal part of the error, leading to a
situation like those in Figures 14 and 15. Thus, at least for the present numerical experiment, the
suggested spatial and temporal estimators indeed control the error in space and time, respectively,
and seem superior in this respect over the classical residual-based ones.
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8 Conclusions

In Section 4 of this paper, we have derived a guaranteed a posteriori error estimate for transient lin-
ear convection-dominated convection–diffusion–reaction problems, discretized by vertex-centered
finite-volume-type methods. This estimate is based on H(div,Ω)-conforming locally conservative
reconstructions of both the diffusive and convective fluxes. It is particularly easy to calculate in
the setting of the energy norm (2.3); herein, the principal diffusive and convective flux estimators
ηnDCF,D given by (4.9) are constant-free. In the setting of the augmented norm (2.7), the derived
estimate is robust with respect to all convection or reaction dominance and the final time. We have
in this work particularly focused on the use of nonmatching grids, of upwinding, or of mass lump-
ing; all these features are included in the definition of our combined finite volume–finite element
scheme (3.1).

An important vocation of the present paper was the proposition and implementation of an
adaptive algorithm, based on our a posteriori error estimates (cf. Section 6). This algorithm is
proposed in the twofold objective of (a) guaranteeing that a user-given relative precision will be
achieved at the end of the simulation and (b) ensuring that the calculation will be carried out
as efficiently as possible. The second point is partly achieved by distinguishing the spatial and
temporal parts of the error and by equilibrating them. The numerical experiments of Section 7
have confirmed that our spatial and temporal estimators indeed control the error in time and
space. These experiments also showed that our estimates enable to predict very precisely the
spatial error distribution. Consequently, using our adaptive algorithm, much better precision can
be achieved for a given number of unknowns/given CPU time than with a uniform refinement.
The effectivity index (overestimation factor) is rather increased in the energy norm setting in the
convection-dominated regime. It, however, gets quite close to the optimal value of one with space
and time mesh refinements or while increasing the influence of diffusion, thus ensuring optimal
overall error control. In future works, we intend to extend the present methodology to nonlinear
cases and/or to systems of partial differential equations equations, taking up the analysis in [8].
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[13] Eymard, R., Hilhorst, D., and Vohraĺık, M. A combined finite volume–finite element
scheme for the discretization of strongly nonlinear convection–diffusion–reaction problems on
nonmatching grids. Numer. Methods Partial Differential Equations 26, 3 (2010), 612–646.
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