
Mixed and nonconforming finite element

methods on a system of polygons ?
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aDepartment of Modelling of Processes, Faculty of Mechatronics and

Interdisciplinary Engineering Studies, Technical University of Liberec, Hálkova 6,

461 17 Liberec 1, Czech Republic

Abstract

We investigate the lowest-order Raviart–Thomas mixed finite element method for
second-order elliptic problems posed over a system of intersecting two-dimensional
polygons placed in three-dimensional Euclidean space. Such problems arise for ex-
ample in the context of groundwater flow through granitoid massifs, where the
polygons represent the rock fractures. The domain is characteristic by the presence
of intersection lines shared by three or more polygons. We first construct continu-
ous and discrete function spaces ensuring the continuity of scalar functions and an
appropriate continuity of the normal trace of vector functions across such intersec-
tion lines. We then propose a variant of the lowest-order Raviart–Thomas mixed
finite element method for the given problem with the domain discretized into a
triangular mesh and prove its well-posedness. We finally investigate the relation of
the hybridization of the considered mixed finite element method to the piecewise
linear nonconforming finite element method. We extend the results known in this
direction onto networks of polygons, general diffusion tensors, and general boundary
conditions. The obtained relation enables in particular an efficient implementation
of the mixed finite element method. We finally verify the theoretical results on a
model problem with a known analytical solution and show the application of the
proposed method to the simulation of a real problem.
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1 Introduction

The motivation of this paper is the need to simulate water flow through underground
rock massifs. Such massifs are proposed as e.g. nuclear waste repositories and they
are always disrupted by a system of geological faults, fractures. One of the possible
modeling approaches is to approximate the fractures by a network of planar polygonal
disks whose frequency, size, assigned aperture, and orientation are statistically derived
from field measurements, and to consider two-dimensional Darcy flow through such a
network, see e.g. [1], [5], or [24]. This problem is mathematically a second-order elliptic
problem posed over a system of intersecting two-dimensional polygons placed in three-
dimensional Euclidean space. An example of such system is given in Figure 1. The
system in this figure is already discretized into a triangular mesh. We can easily notice
an essential property of a domain created by a system of polygons that is impossible
in classical planar domains: there exist interelement edges in the triangulation which
belong to three or more triangular elements.

We propose and investigate in this paper a variant of the lowest-order Raviart–Thomas
mixed finite element method [19] (cf. also [7] or [20]) for systems of polygons. It turns
out that the essential step is the definition of appropriate continuous and discrete func-
tion spaces: we have to ensure the continuity of the scalar primary unknown (pressure)
across the intersection lines between polygons and an appropriate continuity of the nor-
mal trace of the flux of the primary unknown (the hydraulic conductivity tensor times
the negative of the gradient of the pressure, i.e. the Darcy velocity) across these inter-
section lines. The well-posedness of the weak mixed formulation is then implied by the
well-posedness of the weak primal formulation, which is easy to show. To demonstrate
the existence and uniqueness of the mixed approximation, we define a global inter-
polation operator on the discrete velocity space and prove the commuting diagram
property, which implies the discrete inf–sup condition. An extension to higher-order
mixed finite element methods would be possible along the same lines.

We next investigate the relation of the hybridization of the lowest-order Raviart–
Thomas mixed finite element method to the piecewise linear nonconforming finite
element method. It is known that the matrices of these two methods coincide for an
elliptic problem with an elementwise constant diffusion tensor and a homogeneous
Dirichlet boundary condition, see [3] or a detailed study given in [9]. We extend these
results onto systems of polygons, nonconstant diffusion tensors, and inhomogeneous
mixed Dirichlet/Neumann boundary conditions. The implementation of the consid-
ered mixed finite element method via the nonconforming method is on the one hand
very efficient and on the other hand, since a polygonal domain is a trivial instance of
a system of polygons, is naturally valid also for standard planar domains. Such imple-
mentation in particular avoids the inverting of local matrices (cf. [7, Section V.1.2]),
usually used when the relation with the nonconforming method is not known. Recall
that inverting of local matrices is a potential source of significant numerical errors,
cf. [12].
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The outline of this paper is as follows. In Section 2 we formulate the second-order
elliptic problem on a system of polygons and in Section 3 we define continuous and
discrete function spaces on such system. We state the weak primal formulation and
the nonconforming finite element approximation in Section 4. Section 5 is devoted to
the lowest-order Raviart–Thomas mixed finite element method: we state and show
the existence and uniqueness of the weak mixed solution and of the mixed approxima-
tion, introduce the hybridization of the mixed approximation, and give error estimates.
Next, in Section 6 we investigate the relation between mixed and nonconforming meth-
ods. Finally, the first part of Section 7 presents the results of a numerical experiment
on a model problem with a known analytical solution. The application of our method
to realistic problems has been described in [17]; we give in the second part of Sec-
tion 7 an example of a real problem simulation and briefly compare our approach with
other methods. This paper is a detailed description of the results previously announced
in [16] and [23].

2 Second-order elliptic problem on a system of polygons

We define the system of polygons S and the second-order elliptic problem on this
system in this section. We set

S :=
{

⋃

`∈L

α` \ ∂S
}

, (2.1)

where α` is an open two-dimensional polygon placed in three-dimensional space and
L is the index set of polygons. We suppose that the closures α` of polygons are all
connected into the system; the connection is only possible through an edge, not through
a point. For the purpose of the mathematical description, we require that αi ∩ αj = ∅
if i 6= j and that αi ∩ αj, i 6= j, is either an edge or a point or an empty set. In
order to fulfill this property it is enough to divide each polygon from a general system
of polygons as that of Figure 1 into subpolygons along each intersection line that it
contains. Finally, ∂S is the set of those boundary points of α`, ` ∈ L, which do not
create the connection with other polygons. We suppose that there is a two-dimensional
orthogonal coordinate system given in each polygon.

The problem of groundwater flow through fracture networks, see [1], reads as follows.
We seek p (a scalar function in each α`) and u (a two-dimensional vector in each α`),
the solutions of

u=−K(∇p + ∇z) in α` , ` ∈ L , (2.2a)

∇ · u= q in α` , ` ∈ L , (2.2b)

p = pD on ΓD , u · n = uN on ΓN . (2.2c)

Here all the variables are expressed in the local two-dimensional coordinates of the
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Fig. 1. Example of a simple system of polygons (discretized into a triangular mesh)

appropriate α` and ∇ and ∇· are the gradient and divergence operators, respectively,
with respect to these local coordinates. The variable p denotes the pressure head,
p = p̂/%g, where p̂ is the fluid pressure, g is the gravitational acceleration constant,
and % is the fluid density, u is the Darcy flow velocity, q represents stationary sources
or sinks, z is the elevation, i.e. the upward vertical three-dimensional coordinate, and
K is the tensor of hydraulic conductivity. The equation (2.2a) is then the Darcy law,
(2.2b) is the mass balance equation, and (2.2c) prescribes Dirichlet and Neumann
boundary conditions. Let f be an edge such that there exist polygons αi and αj, i 6= j,
such that f = αi ∩ αj. We denote the set of such edges by E int and the set of all i ∈ L
such that f ⊂ ∂αi by If . The system (2.2a)–(2.2c) is completed by requiring

p|αi
= p|αj

on f ∀f ∈ E int , ∀i, j ∈ If , (2.3a)
∑

i∈If

u|αi
· nf,αi

= 0 on f ∀f ∈ E int , (2.3b)

where nf,αi
is the unit outward normal vector of the edge f with respect to the polygon

αi. The equations (2.3a)–(2.3b) express the continuity of p across the interpolygon
boundaries and the mass balance of u across these boundaries (what is the outflow
from one polygon has to be the inflow into the neighboring ones).

We finally suppose that ΓD ∩ ΓN = ∅, ΓD ∪ ΓN = ∂S, that the measure of ΓD is
nonzero, and that K is a symmetric and uniformly positive definite tensor in each α`,
i.e.

K(x)η · η ≥ cKη · η , cK > 0 , (2.4)

for any η ∈ R
2 and almost all x ∈ α`, for all ` ∈ L.

3 Function spaces for nonconforming and mixed finite elements

We give in this section the definitions of function spaces used in the sequel. We will
use the spaces H1(α`) and H(div, α`) on separate polygons with certain matching
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conditions at the interpolygon boundaries in order to define the spaces H1(S) and
H(div,S) on the whole system S. We introduce also the discrete counterparts of these
spaces.

3.1 Continuous function spaces

We use the product of the spaces Lp, 1 ≤ p ≤ ∞, on separate polygons in order to
define the spaces Lp(S) and Lp(S) on the system S,

Lp(S) :=
∏

`∈L

Lp(α`) , Lp(S) := Lp(S) × Lp(S) . (3.1)

For each polygon α`, we denote by H1(α`) the Sobolev space of scalar functions with
square-integrable weak derivatives, H1(α`) = {ϕ ∈ L2(α`) ; ∇ϕ ∈ L2(α`)}. We define
H1(S) as the space of functions whose restrictions to each α` are from H1(α`) and
that coincide at the interpolygon boundaries in the sense of traces,

H1(S) :=
{

v ∈ L2(S) ; v|α`
∈ H1(α`) ∀` ∈ L , (3.2)

(v|αi
)|f = (v|αj

)|f ∀f ∈ E int , ∀i, j ∈ If

}

.

We then have the space H1
D(S) of the functions from H1(S) vanishing on ΓD and the

spaces H
1

2 (∂S), H− 1

2 (∂S), H
1

2 (ΓD), and H− 1

2 (ΓN) as in the standard planar case.

For each polygon α`, we denote by H(div, α`) the space of vector functions with square-
integrable weak divergences, H(div, α`) = {v ∈ L2(α`) ; ∇ · v ∈ L2(α`)}. We define
H(div,S) as the space of functions whose restrictions to each α` are from H(div, α`)
and whose sum of normal traces over all polygons sharing a given edge f ∈ E int is zero
in the appropriate sense,

H(div,S) :=
{

v ∈ L2(S) ; v|α`
∈ H(div, α`) ∀` ∈ L ,

∑

i∈If

〈v|αi
· n∂αi

, ϕi〉∂αi
= 0 ∀ϕi ∈ H1

∂αi\f
(αi) , (3.3)

ϕi|f = ϕj|f ∀i, j ∈ If , ∀f ∈ E int
}

.

Finally, we denote

H0,N(div,S) :=
{

v ∈ H(div,S) ; 〈v · n, ϕ〉∂S = 0 ∀ϕ ∈ H1
D(S)

}

as the space of functions from H(div,S) such that their normal trace on ΓN is equal
to zero in the appropriate sense.
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We use (·, ·)0,α`
to denote the L2 scalar product, ‖ · ‖0,α`

to denote the associated L2

norm, ‖ · ‖1,α`
to denote the H1(α`) norm, and ‖ · ‖H(div,α`) to denote the H(div, α`)

norm given by ‖v‖2
H(div,α`)

= ‖v‖2
0,α`

+ ‖∇ · v‖2
0,α`

. The bracket 〈v · n, ϕ〉∂S denotes

the duality pairing between H− 1

2 (∂S) and H
1

2 (∂S) and may be written formally as
∫

∂S v · nϕ dγ(x). The norms on the spaces defined by (3.1), (3.2), and (3.3) are given
by

‖ · ‖2
·,S :=

∑

`∈L

‖ · ‖2
·,α`

. (3.4)

Remark 3.1 (Continuity across the interpolygon boundaries) The definiti-
ons (3.2) and (3.3) express weakly the conditions (2.3a) and (2.3b). Let Ω ⊂ R

2 be
a polygonal domain and let S be its polygonal partition. Then the definitions (3.2)
and (3.3) coincide with the standard characterizations of H 1(Ω) and H(div, Ω) (cf. [7,
Propositions III.1.1 and III.1.2] or [20, Theorem 1.3]).

Throughout this paper, we shall suppose that Kij ∈ L∞(S), q ∈ L2(S), pD ∈ H
1

2 (ΓD),

and uN ∈ H− 1

2 (ΓN).

3.2 Discrete function spaces

Let us suppose a triangulation Th of the system S such that the boundary edges lie
entirely either in ΓD or in ΓN . We set

M0
−1(Th) :=

{

φ ∈ L2(S) ; φ|e is constant ∀e ∈ Th

}

.

We denote the set of all edges of Th by Eh, the set of all edges of Th except those from
ΓD by Eh,D, and the set of all interior edges of Th by E int

h . We set

M0
−1(Eh,D) := {µ : Eh → R ; µ|f is constant ∀f ∈ Eh ,

µ|f = 0 ∀f ⊂ ΓD } .

For the nonconforming approximation, we set

X1
0 (Eh) :=

{

ϕ ∈ L2(S); ϕ|e is linear ∀e ∈ Th , ϕ is continuous in Qf , f ∈ E int
h

}

,

where Qf is the midpoint of the edge f . The basis of X1
0 (Eh) is spanned by shape

functions ϕf , f ∈ Eh, such that ϕf(Qg) = δfg, g ∈ Eh, δ being the Kronecker delta. A
simple computation gives

∇ϕf |e =
|f |
|e|nf e ∈ Th , f ⊂ ∂e , (3.5)
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where |e| is the area of the element e, |f | is the length of the edge f , and nf is the
unit normal vector of the edge f , outward to e. We finally set

X1
0 (Eh,D) :=

{

ϕ ∈ X1
0 (Eh); ϕ(Qf ) = 0 ∀f ⊂ ΓD

}

.

For a given triangular element e ∈ Th, we define RT0(e) as the space of linear vector
functions with the basis ve

i , i = 1, 2, 3,

ve
i (x) :=

1

2|e|







x − xi

y − yi





 if x = (x, y)t ∈ e , ve
i (x) :=







0

0





 if x 6∈ e , (3.6)

where (xi, yi)
t are the coordinates of the i-th vertex of e. Note that ve

i · nf is constant
over each edge f ⊂ ∂e. The Raviart–Thomas space RT0

−1(Th) of elementwise linear
vector functions without any continuity requirement is defined by

RT0
−1(Th) :=

{

v ∈ L2(S) ; v|e ∈ RT0(e) ∀e ∈ Th

}

. (3.7)

We set the space RT0
0(Th) of functions ensuring the normal trace continuity as

RT0
0(Th) :=

{

v ∈ RT0
−1(Th) ;

∑

e∈Th ;f⊂∂e

v|e · nf,e = 0 on f ∀f ∈ E int
h

}

(3.8)

= RT0
−1(Th) ∩ H(div,S) .

To characterize the discrete functions with zero normal trace on ΓN , we finally set

RT0
0,N(Th) :=

{

v ∈ RT0
0(Th) ; v · n = 0 on ΓN

}

= RT0
−1(Th) ∩ H0,N(div,S) .

4 Nonconforming finite element method

We introduce in this section a weak primal solution of the problem (2.2a)–(2.3b). We
next define its piecewise linear nonconforming finite element approximation.

4.1 Weak primal solution

Let p̃ ∈ H1(S) be such that p̃ = pD on ΓD in the sense of traces. We then define:

Definition 4.1 (Weak primal solution) As the weak primal solution of the problem
(2.2a)–(2.3b), we understand a function p = p0 + p̃, p0 ∈ H1

D(S), satisfying
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(K∇p0,∇ϕ)0,S =(q, ϕ)0,S − 〈uN , ϕ〉∂S − (K∇z,∇ϕ)0,S

−(K∇p̃,∇ϕ)0,S ∀ϕ ∈ H1
D(S) . (4.1)

Existence and uniqueness of the weak primal solution follow from (2.4) and from
the definition of the norms on S given by (3.4) using the Lax–Milgram lemma. The
Friedrichs inequality generalized to systems of polygons,

‖ϕ‖0,S ≤ CF‖∇ϕ‖0,S ∀ϕ ∈ H1
D(S) , (4.2)

is necessary in this respect. We thus briefly sketch its proof. As the system S consists of
a finite number of polygons, there exists a shape-regular triangulation Th of S satisfying
the inverse assumption (the size of all elements in Th is comparable). Let the space
WD(Th) be formed by functions locally in H1(e) on each triangle e ∈ Th such that the
mean values of their traces on interior edges coincide and such that the mean values of
the traces on edges belonging to ΓD are equal to zero. Clearly, H1

D(S) ⊂ WD(Th). Since
the discrete Friedrichs inequality on the space WD(Th) is a straightforward extension
of [22, Lemma V.4.5], also the Friedrichs inequality (4.2) holds true.

4.2 Nonconforming finite element approximation

We now turn to the piecewise linear nonconforming finite element approximation. It
reads as follows:

Definition 4.2 (Nonconforming finite element approximation) As the piece-
wise linear nonconforming finite element approximation of the problem (4.1), we un-
derstand a function ph = p0,h + p̃, p0,h ∈ X1

0 (Eh,D), satisfying

∑

e∈Th

(K∇p0,h,∇ϕh)0,e =
∑

e∈Th

{(q, ϕh)0,e − 〈uN , ϕh〉∂e∩∂S − (K∇z,∇ϕh)0,e

− (K∇p̃,∇ϕh)0,e} ∀ϕh ∈ X1
0 (Eh,D) . (4.3)

Existence and uniqueness of the nonconforming approximation follow by the same
arguments as above. Alternatively, the fact that the stiffness matrix arising from the
nonconforming discretization is invertible can easily be shown as follows: let S be the
nonconforming finite element stiffness matrix given by Sf,g =

∑

e∈Th
(K∇ϕg,∇ϕf)0,e,

f, g ∈ Eh,D. Let the vector X given by Xf , f ∈ Eh,D, be nonzero and let p0,h =
∑

f∈Eh,D
Xfϕf . Then

X t
SX =

∑

f∈Eh,D

∑

g∈Eh,D

XfXgSf,g =
∑

e∈Th

(K∇p0,h,∇p0,h)0,e ≥ cK
∑

e∈Th

‖∇p0,h‖2
0,e > 0 ,
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using (2.4) and since
∑

e∈Th
‖∇p0,h‖2

0,e is only zero when p0,h = 0 (i.e. when X = 0)

owing to the fact that p0,h(Qf ) = 0 for all f ⊂ ΓD (that is, {∑e∈Th
‖∇(·)‖2

0,e}
1

2 is a
norm on X1

0 (Eh,D)).

5 Raviart–Thomas mixed finite element method

We first define in this section a weak mixed solution of the problem (2.2a)–(2.3b) and
show its existence and uniqueness. We then study its lowest-order Raviart–Thomas
mixed finite element approximation. We finally introduce its hybridization and give
error estimates.

5.1 Weak mixed solution

Let ũ ∈ H(div,S) be such that ũ · n = uN on ΓN in the appropriate sense. We then
define:

Definition 5.1 (Weak mixed solution) As the weak mixed solution of the problem
(2.2a)–(2.3b), we understand functions u = u0 + ũ, u0 ∈ H0,N(div,S), and p ∈ L2(S)
such that

(K−1u0,v)0,S − (∇ · v, p)0,S = −〈v · n, pD〉∂S + (∇ · v, z)0,S (5.1a)

−〈v · n, z〉∂S − (K−1ũ,v)0,S ∀v ∈ H0,N(div,S) ,

−(∇ · u0, φ)0,S = −(q, φ)0,S + (∇ · ũ, φ)0,S ∀φ ∈ L2(S) . (5.1b)

Theorem 5.2 (Existence and uniqueness of the weak mixed solution) The
problem (5.1a)–(5.1b) has a unique solution.

PROOF. The coercivity of the bilinear form (K−1u,v)0,S , u,v ∈ H0,N(div,S), on
the space W = {v ∈ H0,N(div,S) ; (∇ · v, φ)0,S = 0 ∀φ ∈ L2(S)} is the consequence
of the uniform positive definiteness of the tensor K on each α` given by (2.4). Next, we
prove below that the divergence operator from H0,N(div,S) to L2(S) is surjective (and
hence the inf–sup condition). Thus the existence and uniqueness of the weak mixed
solution are guaranteed by [7, Theorem II.1.1] or [20, Theorem 10.1].

To prove the desired surjectivity, we have to show that for all q ∈ L2(S) there exists
v ∈ H0,N(div,S) such that (∇·v, φ)0,S = (q, φ)0,S for all φ ∈ L2(S). Let thus q ∈ L2(S)
be given and let us consider the problem of finding p ∈ H1

D(S) such that

(∇p,∇ϕ)0,S = (q, ϕ)0,S ∀ϕ ∈ H1
D(S) . (5.2)
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The existence and uniqueness of such p follow by the well-posedness of the weak primal
formulation given in Section 4.1. We affirm that the searched v is given by v = −∇p.
To prove this, we have to show that ∇p ∈ H0,N(div,S) and that −∇ · ∇p = q in the
appropriate sense. The second assertion is a simple consequence of (5.2), considering
ϕ ∈ H1

0 (α`), ` ∈ L, as test functions in (5.2). We now proceed to show the first
assertion. Let us consider an edge f ∈ E int. We take ϕ ∈ H1

D(S) such that ϕ only has
as a support the polygons sharing the edge f and such that ϕ is zero on ∂αi \ f for all
i ∈ If in the sense of traces. The second assertion gives ∇p|α`

∈ H(div, α`), ` ∈ L, and
−∑i∈If

(∇ · ∇p, ϕ)0,αi
= (q, ϕ)0,S . Hence, using the Green theorem on each polygon

in (5.2) with the considered ϕ as the test function,

0=
∑

i∈If

(∇p,∇ϕ)0,αi
− (q, ϕ)0,S =

∑

i∈If

〈∇p|αi
· n∂αi

, ϕ〉∂αi

−
∑

i∈If

(∇ · ∇p, ϕ)0,αi
− (q, ϕ)0,S =

∑

i∈If

〈∇p|αi
· n∂αi

, ϕ〉∂αi
,

which by the fact that ϕ ∈ H1(S) implies that ∇p ∈ H(div,S), cf. the definition (3.3).
Finally, ∇p ∈ H0,N(div,S) follows by the above technique applied to (5.2). 2

5.2 Properties of the discrete velocity space

We begin with the space RT0(e) for a given e ∈ Th. Its basis is given by (3.6). The
dual basis to this basis is given by the functionals N e

j , j = 1, 2, 3, where

N e
j (u) =

∫

fe
j

u · n∂e dγ(x) u ∈ RT0(e) .

Each N e
j expresses the flux of u through one edge f e

j of e. The local interpolation
operator is then given by

πe(u) =
3
∑

i=1

N e
i (u)ve

i u ∈ (H1(e))2 . (5.3)

We now turn to the problem of finding the basis and the dual basis of RT0
0(Th). Let

us consider u ∈ RT0
0(Th). We set Nh = {N1, N2, . . . , N|INh

|}, where for each boundary
edge f such that f ⊂ ∂e, we define one functional Nf by

Nf(u) :=
∫

f
u|e · n∂e dγ(x) ,

and for each interior edge f shared by the elements e1, e2, . . . , e|If |, we define |If | − 1
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functionals by

Nf,j(u) :=
1

|If |
∫

f
u|e1

· n∂e1
dγ(x) − 1

|If |
∫

f
u|ej+1

· n∂ej+1
dγ(x) , j = 1, . . . , |If | − 1 .

We use the same denotation If for the index set of polygons sharing a given edge
f ∈ E int in the continuous case and for the index set of elements sharing a given edge
f ∈ E int

h in the discrete case. We have the following lemma:

Lemma 5.3 (Basis of the dual space to RT0
0(Th)) Nh is a basis of the dual space

to RT0
0(Th).

PROOF. To prove the lemma it suffices to show that for all u ∈ RT0
0(Th), from

Nj(u) = 0 ∀ j = 1, . . . , |INh
|, it follows that u = 0. Let us suppose that Nj(u) =

0 ∀ j = 1, . . . , |INh
|. From the definition of the functionals Nf on boundary edges,

we have
∫

f u|e · n∂e dγ(x) = 0 for all boundary edges f . Using the definition of the
functionals Nf,j on interior edges, we have

∫

f u|e1
·n∂e1

dγ(x) =
∫

f u|ej
·n∂ej

dγ(x) for all
j = 2, . . . , |If |. Considering the equality

∑

i∈If

∫

f u|ei
·n∂ei

dγ(x) = 0 characterizing the

continuity of the normal trace of the functions from RT0
0(Th), cf. the definition (3.8),

we come to
∫

f u|e · n∂e dγ(x) = 0 for all f ∈ Eh and all e, f ⊂ ∂e. Since RT0
0(Th) ⊂

RT0
−1(Th), u = 0 follows. 2

We set Vh = {v1,v2, . . . ,v|INh
|}, the basis of RT0

0(Th), in the following way: we define
one basis function vf by vf := ve

f for each boundary edge f . Here ve
f is the local basis

function associated with the element e and its edge f . For each interior edge f shared
by the elements e1, e2, . . . , e|If |, we define |If | − 1 basis functions by

vf,i :=
|If |
∑

k=1, k 6=i+1

vek

f − (|If | − 1)v
ei+1

f , i = 1, . . . , |If | − 1 .

Note that by the definition (3.8) of RT0
0(Th), there is one condition imposed on each

interior edge, so that the number of basis functions of RT0
−1(Th) is decreased by one

on each interior edge to obtain the appropriate continuity of the normal trace. When
|If | = 2, we have the classical basis function. An example of one of the two basis
functions for three elements with the same edge is given in Figure 2. We have the
following lemma:

Lemma 5.4 (Duality) Vh is the dual basis to Nh.

PROOF. We have to show that Nj(vi) = δij, i, j = 1, . . . , |INh
|. We have from the

definition of the basis functions of RT0(e) that Nf(vf ) = 1 for all boundary edges f ,
and simply Nf (v) = 0 for all v ∈ Vh, v 6= vf . Concerning the interior edges, we easily
come to Nf,j(vg) = 0 for all j = 1, . . . , |If | − 1, f an interior edge, g a boundary edge,

11
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Fig. 2. Velocity basis function for three elements sharing the same edge

and to Nf,j(vg,i) = 0 for all j = 1, . . . , |If | − 1, i = 1, . . . , |Ig| − 1, f an interior edge,
g another interior edge. We have

Nf,j(vf,i) =
1

|If |
∫

f
ve1

f · n∂e1
dγ(x) − 1

|If |
∫

f
v

ej+1

f · n∂ej+1
dγ(x) =

1

|If |
− 1

|If |
= 0

for i 6= j and

Nf,i(vf,i) =
1

|If |
∫

f
ve1

f · n∂e1
dγ(x) − 1

|If |
∫

f
−(|If | − 1)v

ei+1

f · n∂ei+1
dγ(x)

=
1

|If |
+

1

|If |
(|If | − 1) = 1

for i = 1, . . . , |If | − 1, f an interior edge. Thus the proof is completed. 2

We are now ready to define the global interpolation operator. We introduce first a
space smoother than H(div,S),

H(grad,S) :=
{

v ∈ L2(S) ; v|α`
∈ (H1(α`))

2 ∀` ∈ L ,

∑

i∈If

v|αi
· nf,αi

= 0 on f ∀f ∈ E int
}

. (5.4)

We then define the global interpolation operator πh by

πh(u) :=

|INh
|

∑

i=1

Ni(u)vi u ∈ H(grad,S) . (5.5)

We have the following relation between πe and πh:
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Lemma 5.5 (Equality between local and global interpolation operators) The
local and global interpolation operators defined by (5.3) and (5.5), respectively, equal
on each element, i.e.

πh(u)|e = πe(u|e) ∀e ∈ Th, ∀u ∈ H(grad,S) .

PROOF. As the basis functions vi, i = 1, . . . , |INh
|, of RT0

0(Th) are combined from
the local basis functions ve

j on each element, we only have to verify that the coefficients
of ve

j are the same. For boundary edges, the coefficients for both local and global
interpolation operators are equally given by

∫

f u|e · n∂e dγ(x). For an interior edge f ,
we have for the global interpolation operator

{|If |−1
∑

i=1

Nf,i(u)vf,i

}∣

∣

∣

∣

ej

=
{|If |−1
∑

i=1

(

1

|If |
∫

f
u|e1

· n∂e1
dγ(x)

− 1

|If |
∫

f
u|ei+1

· n∂ei+1
dγ(x)

)( |If |
∑

k=1, k 6=i+1

vek

f − (|If | − 1)v
ei+1

f

)}∣

∣

∣

∣

ej

=
|If |−1
∑

i=1, i6=j−1

(

1

|If |
∫

f
u|e1

· n∂e1
dγ(x) − 1

|If |
∫

f
u|ei+1

· n∂ei+1
dγ(x)

)

v
ej

f

−(1 − δj1)
(

1

|If |
∫

f
u|e1

· n∂e1
dγ(x) − 1

|If |
∫

f
u|ej

· n∂ej
dγ(x)

)

(|If | − 1)v
ej

f

using the definition of Nf,i and vf,i, i = 1, . . . , |If | − 1, j = 1, . . . , |If |. Considering
now only the coefficients of v

ej

f , we come to

|If |−1
∑

i=1

1

|If |
∫

f
u|e1

· n∂e1
dγ(x) −

|If |−1
∑

i=1

1

|If |
∫

f
u|ei+1

· n∂ei+1
dγ(x)

=
(

(|If | − 1)
1

|If |
+

1

|If |
) ∫

f
u|e1

· n∂e1
dγ(x) =

∫

f
u|e1

· n∂e1
dγ(x)

for j = 1, using the normal trace continuity of u, which is expressed by
∑|If |

i=1

∫

f u|ei
·

n∂ei
dγ(x) = 0. Similarly,

(|If | − 2)
1

|If |
∫

f
u|e1

· n∂e1
dγ(x) +

1

|If |
∫

f
u|e1

· n∂e1
dγ(x)

+
1

|If |
∫

f
u|ej

· n∂ej
dγ(x) − (|If | − 1)

1

|If |
∫

f
u|e1

· n∂e1
dγ(x)

+(|If | − 1)
1

|If |
∫

f
u|ej

· n∂ej
dγ(x) =

∫

f
u|ej

· n∂ej
dγ(x)

for j ≥ 2, and thus the proof is completed. 2
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We conclude this section by the following theorem:

Theorem 5.6 (Commuting diagram property) The commuting diagram property
holds, i.e.

H(grad,S)
div−→ L2(S)







y

πh







y

Ph

RT0
0(Th)

div−→ M0
−1(Th)

,

where πh is the global interpolation operator defined by (5.5) and Ph is the L2(S)-
orthogonal projection onto M 0

−1(Th).

PROOF. The proof is immediate using the previous lemma and the validity of the
commuting diagram property for the local interpolation operator, see e.g. [7, Proposi-
tion III.3.7] or [18, Section 3.4.2]. 2

5.3 Mixed finite element approximation

We are ready to define the mixed approximation:

Definition 5.7 (Mixed finite element approximation) As the lowest-order Ra-
viart–Thomas mixed finite element approximation of the problem (5.1a)–(5.1b), we
understand functions uh = u0,h + ũ, u0,h ∈ RT0

0,N(Th), and ph ∈ M0
−1(Th) satisfying

(K−1u0,h,vh)0,S − (∇ · vh, ph)0,S = −〈vh · n, pD〉∂S + (∇ · vh, z)0,S (5.6a)

−〈vh · n, z〉∂S − (K−1ũ,vh)0,S ∀vh ∈ RT0
0,N(Th) ,

−(∇ · u0,h, φh)0,S = −(q, φh)0,S + (∇ · ũ, φh)0,S ∀φh ∈ M0
−1(Th) . (5.6b)

The commuting diagram property expressed by Theorem 5.6 implies the discrete inf–
sup condition, which in turn ensures that the problem (5.6a)–(5.6b) has a unique
solution.

5.4 Hybridization of the mixed approximation

We will now introduce the hybridization of the mixed approximation:

Definition 5.8 (Hybridization of the mixed approximation) As the hybridiza-
tion of the lowest-order Raviart–Thomas mixed finite element approximation of the

14



problem (5.1a)–(5.1b), we understand functions uh = u0,h + ũ, u0,h ∈ RT0
−1(Th),

ph ∈ M0
−1(Th), and λh ∈ M0

−1(Eh,D) satisfying

∑

e∈Th

{

(K−1u0,h,vh)0,e − (∇ · vh, ph)0,e + 〈vh · n, λh〉∂e

}

=
∑

e∈Th

{

−〈vh · n, pD〉∂e∩ΓD
+ (∇ · vh, z)0,e − 〈vh · n, z〉∂e − (K−1ũ,vh)0,e

}

(5.7a)

∀vh ∈ RT0
−1(Th) ,

−
∑

e∈Th

(∇ · u0,h, φh)0,e = −
∑

e∈Th

{(q, φh)0,e − (∇ · ũ, φh)0,e}

∀φh ∈ M0
−1(Th) , (5.7b)

∑

e∈Th

〈u0,h · n, µh〉∂e = 0 ∀µh ∈ M0
−1(Eh,D) . (5.7c)

It is immediate that if vh ∈ RT0
−1(Th), then vh ∈ RT0

0,N(Th) if and only if

∑

e∈Th

〈vh · n, λh〉∂e = 0 ∀λh ∈ M0
−1(Eh,D) .

This ensures that the triple u0,h, ph, λh exists and is unique and that u0,h and ph are
at the same time the unique solutions of (5.6a)–(5.6b). We summarize the previous
developments in the following theorem:

Theorem 5.9 (Existence and uniqueness of the mixed-hybrid approxima-
tion) The problem (5.7a)–(5.7c) has a unique solution.

5.5 Error estimates

We now give two error estimates, following from the classical interpolation theory. If
the solution (u, p) of (5.1a)–(5.1b) is smooth enough and if (uh, ph, λh) is the solution
of (5.7a)–(5.7c), we have

‖u − uh‖H(div,S) + ‖p − ph‖0,S ≤ Ch(‖p‖1,S + ‖u‖1,S + ‖q‖1,S) ,

where the constant C does not depend on h (see [7, Proposition IV.1.2]).

Using the piecewise linear but nonconforming approximation λ̃h ∈ X1
0 (Eh) given by

the values of the Lagrange multiplier λh at the midpoints of the edges, we have (see [7,
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Theorem V.3.1])

‖p − λ̃h‖0,S ≤ Ch2(‖p‖1,S + ‖u‖1,S + ‖q‖1,S) .

6 Relation between mixed and nonconforming methods

We study in this section the relation between the hybridization of the lowest-order
Raviart–Thomas mixed finite element method and the nonconforming method. We
extend the results of [9] onto systems of polygons, general diffusion tensors, and general
boundary conditions. This also enables us to efficiently implement the mixed finite
element method in the considered case.

6.1 Algebraic condensation of the mixed-hybrid approximation

Let us denote, for all e ∈ Th,

u0,h|e =







ae + cex

be + cey





 , ph|e = pe

and similarly, for all f ∈ Eh,

λh|f = λf .

We now follow the ideas of [9]. Let e ∈ Th be fixed. Consider in (5.7b) a test function
φh equal to 1 on e and zero otherwise. This gives ce = qe/2 − ũe/2 with

qe :=

∫

e q dx

|e| , ũe :=

∫

e ∇ · ũ dx

|e| . (6.1)

Next consider in (5.7a) two test functions, vh = (1, 0)t, vh = (0, 1)t on e and zero
otherwise, whose divergence is apparently zero. This gives

∫

e
K−1u0,h dx +

∫

∂e
λh n dγ(x) = re

with

re := −
∫

∂e∩ΓD

pD n dγ(x) −
∫

∂e
z n dγ(x) −

∫

e
K−1ũ dx .

Let λ̃h ∈ X1
0 (Eh,D) be given by

λ̃h :=
∑

f∈Eh

λfϕf .
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Then using (3.5), we have

∫

∂e
λh n dγ(x) =

∑

f⊂∂e

λf |f |nf = |e|
∑

f∈∂e

λf∇ϕf |e = |e| ∇λ̃h|e .

Next,
∫

e
K−1u0,h dx =

∫

e
K−1 dx







ae

be





+ ce

∫

e
K−1







x

y





 dx .

Let us denote

Ke :=
(

1

|e|
∫

e
K−1 dx

)−1

e ∈ Th . (6.2)

Then the above equations give







ae

be





+ ce

Ke

|e|
∫

e
K−1







x

y





 dx + Ke∇λ̃h|e = Ke

re

|e|

and consequently

u0,h|e =−Ke∇λ̃h|e +
[

qe

2
− ũe

2

]













x

y





 (6.3)

− Ke

|e|
∫

e
K−1







x

y





 dx





 + Ke

re

|e| .

We finally substitute (6.3) into (5.7c). This gives the following system of linear equa-
tions with the only unknowns the Lagrange multipliers λh:

∑

e∈Th

(Ke∇λ̃h,∇µ̃h)0,e =
∑

e∈Th

〈











[

qe

2
− ũe

2

]













x

y





 (6.4)

−Ke

|e|
∫

e
K−1







x

y





 dx





+ Ke

re

|e|











· n, µh

〉

∂e

∀µh ∈ M0
−1(Eh,D) ,

where µ̃h ∈ X1
0 (Eh,D) is given by

µ̃h :=
∑

f∈Eh

µfϕf .

The left-hand side of (6.4) follows by

〈Ke∇λ̃h|e · n, µh〉∂e = 〈Ke∇λ̃h|e · n, µ̃h〉∂e = (Ke∇λ̃h,∇µ̃h)0,e ∀e ∈ Th .
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Here, we have used the fact that Ke∇λ̃h|e · nµh is constant over each edge and hence
its integral over this edge equals to that of Ke∇λ̃h|e · n µ̃h, which is a linear function
with the same value at the edge midpoint by the definition of µ̃h, and finally the Green
theorem in e (notice that Ke∇λ̃h|e is a constant vector in e and hence its divergence
is zero).

The system given by (6.4), in the sequel called (algebraically) condensed mixed-hybrid
method, enables a very efficient implementation of the scheme (5.7a)–(5.7c). In partic-
ular, its system matrix is symmetric and positive definite and the number of unknowns
equals to the number of interior and Neumann boundary edges; remark that this num-
ber does not increase with the number of triangles sharing the given edge. Moreover,
this matrix is assembled directly and one thus can avoid the inverting of local matri-
ces, which is necessary in the traditional static condensation approach (cf. [7, Section
V.1.2]). It is pointed out in [12] that the inverting of local matrices is a potential source
of significant numerical errors. Finally, note that the velocity u0,h ∈ RT0

0,N(Th) is eas-

ily obtained from the knowledge of λ̃h by (6.3). It is easily seen that the system (6.4) is
very close to that given by the nonconforming finite element approximation (4.3). We
give detailed comments on the relation between these two systems in the next section.

6.2 Comparison of condensed mixed-hybrid and nonconforming methods

We consider in this section the detailed relation between the condensed mixed-hybrid
finite element method given by (6.4) and the nonconforming finite element method
given by (4.3). We consider the matrices of the problems and the different parts of the
right-hand sides separately.

System matrix

It is easily seen from (6.4), (4.3), and (6.2) that the system matrix of the condensed
mixed-hybrid method is the system matrix of the nonconforming method with a piece-
wise constant diffusion tensor, given as the inverse of the elementwise average of the
inverse of the original one. In particular, for elementwise constant diffusion tensors,
these matrices coincide, as it was already shown in [9]. Simply, the mixed-hybrid
method employs the harmonic average of the hydraulic conductivity tensor, whereas
the nonconforming method uses instead the arithmetic average.

Sources term

Using the simple trick of replacing µh by µ̃h and the Green theorem in each e ∈ Th as
at the end of Section 6.1, we have for the sources term of the condensed mixed-hybrid
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method the expression

∑

e∈Th

(qe, µ̃h)0,e +
∑

e∈Th

qe

2













xe

ye





− Ke

|e|
∫

e
K−1







x

y





 dx,∇µ̃h







0,e

,

where (xe, ye)
t are the coordinates of the barycentre of the triangle e. In particular, if

K is elementwise constant, the second term of the above expression vanishes. Hence
the essential difference with the source term of the nonconforming method is the
employment of the elementwise average of q given by (6.1) rather than taking q directly.

Dirichlet boundary condition term

Let the function pD be smooth enough and let us consider the usual approximation p̃ ≈
∑

f⊂ΓD
pD(Qf )ϕf . Then the Dirichlet boundary condition term in the nonconforming

method becomes

−
∑

e∈Th

(K∇p̃,∇µ̃h)0,e ≈ −
∑

e∈Th

(

K
∑

f⊂∂e∩ΓD

pD(Qf )
|f |
|e|nf ,∇µ̃h

)

0,e

,

where µ̃h ∈ X1
0 (Eh,D) and where we have employed the relation (3.5). This is obviously

equivalent, up to replacing K by Ke, to the expression for this term from the condensed
mixed-hybrid method

−
∑

e∈Th

(

Ke

|e|
∫

∂e∩ΓD

pD n dγ(x) ,∇µ̃h

)

0,e

≈ −
∑

e∈Th

(

Ke

|e|
∑

f⊂∂e∩ΓD

pD(Qf )|f |nf ,∇µ̃h

)

0,e

.

Neumann boundary condition term

Let us for simplicity consider just one edge f where the Neumann boundary condi-
tion is prescribed, i.e. ΓN = f . Then the Neumann boundary condition term in the
nonconforming method, with the usual approximation supposing that uN is smooth
enough and for the test function ϕf , is

−
∫

f
uNϕf dγ(x) ≈ −

∫

f
uN(Qf )ϕf dγ(x) = −uN(Qf )|f | .

Recall that this term equals to zero for all other test functions ϕg, g ∈ Eh,D, g 6= f .

Using the same techniques as in the above paragraphs, we can express the Neumann
boundary condition term in the condensed mixed-hybrid method as
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−
∑

e∈Th

(ũe, µ̃h)0,e −
∑

e∈Th

ũe

2













xe

ye





− Ke

|e|
∫

e
K−1







x

y





 dx,∇µ̃h







0,e

−
∑

e∈Th

〈{

Ke

|e|
∫

e
K−1ũdx

}

· n, µh

〉

∂e

.

Let K be elementwise constant; then the second term of the above expression vanishes
and its third term simplifies. Let e ∈ Th be such that f ⊂ ∂e and let us finally consider
the usual approximation ũ ≈ uN(Qf)|f |ve

f , where ve
f ∈ RT0(e) is the local velocity

basis function associated with the element e and its edge f . Then this term is a priori
nonzero only for e and for the three test functions ϕg, g ⊂ ∂e, and has the form

−uN(Qf )|f |
|e|

(∫

e
∇ · ve

f dx, ϕg

)

0,e

− uN(Qf )|f |
|e|

〈{∫

e
ve

f dx
}

· n, ϕg

〉

∂e

.

A simple computation gives

∫

e
∇ · ve

f dx = 1 ,
∫

e
ve

f dx =
1

2
w ,

where w = (xe, ye)
t − (xf , yf)

t with (xf , yf)
t being the coordinates of the vertex of

e opposite to f . This finally gives for the Neumann boundary condition term in the
condensed mixed-hybrid method, using simple geometrical properties of a triangle,

−uN(Qf )|f |
3

− uN(Qf )|f ||g|
2|e| w · ng = −uN(Qf )|f |δf,g ,

which coincides with the expression from the nonconforming method.

Gravity term

Using that the gradient of z is piecewise constant, a development similar to that for the
Dirichlet boundary condition gives that the expressions for the gravity term from the
nonconforming and condensed mixed-hybrid methods differ just by the employment
of K, Ke, respectively.

7 Numerical experiments

We present in this section the results of a numerical experiment on a model problem
with a known analytical solution. We then describe the application of the proposed
method to the simulation of real fracture flow and compare it with other methods.

20



a
1

Ã
3

Ã
2

Ã
9

Ã
10

Ã
12

Ã
1

Ã
4Ã

5

Ã
6

Ã
7

Ã
8

Ã
11

x

y
z

a
4

a
3

a
2

a
1

x x
1 4=

x x
2 1=

x x
3 1=

y
1

y
2

y
3

y
4

a
4

a
3

a
2

Fig. 3. System S for the model problems and coordinate systems in each polygon

7.1 Model problem with a known analytical solution

We consider two simple model problems in this section. The first model problem corre-
sponds to the system S created by four rectangles as viewed in Figure 3. We verify on
this problem the theoretical error estimates for the situation where the central edge is
shared by four polygons. The second model problem is a simplification of the previous
one, with just the rectangles α1 and α2 creating the system; there is no multiply shared
edge in this case. Both model problems have the same known analytical solution in
α1 and α2. We consider the second model problem in order to investigate the changes
of the approximation error implied by the presence of a multiply shared edge. All the
computations presented in this section were done in double precision on a personal
computer with machine precision being in power of 10−16. The resulting systems of
linear equations were solved by the preconditioned conjugate gradients method.

The first model problem is given by:

S = α1 ∪ α2 ∪ α3 ∪ α4 \ ∂S ,

u=−(∇p + ∇z) in αi , i = 1, 2, 3, 4 ,

∇ · u=0 in αi , i = 1, 2, 3, 4 ,
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p = 0 on Γ1 , p = 0 on Γ2 ,

u · n = 0 on Γ3 , u · n = 0 on Γ4 ,

p = sin
(

πx1

2X

)

sinh
(

π(A + B)

2X

)

+ S A on Γ5 , p = S y1 on Γ6 ,

p = 0 on Γ7 , p = 0 on Γ8 ,

u · n = 0 on Γ9 , u · n = 0 on Γ10 ,

p = sin
(

πx4

2X

)

sinh
(

π(B + B)

2X

)

on Γ11 , p = 0 on Γ12 ,

where A = |Γ4| =
√

5/4, X = |Γ2| = 1, B = |Γ3| = |Γ9| = |Γ10| =
√

13/4, and
S = ∂z/∂y2 − ∂z/∂y1. The geometry of this model problem is viewed in Figure 3. The
exact solution can be found as

p|α1
=sin

(

πx1

2X

)

sinh
(

π(y1 + B)

2X

)

+ S y1 ,

u|α1
=

(

− π

2X
cos
(

πx1

2X

)

sinh
(

π(y1 + B)

2X

)

,

− π

2X
sin
(

πx1

2X

)

cosh
(

π(y1 + B)

2X

)

− S − ∂z

∂y1

)

,

p|α2
=sin

(

πx2

2X

)

sinh
(

πy2

2X

)

,

u|α2
=

(

− π

2X
cos
(

πx2

2X

)

sinh
(

πy2

2X

)

,− π

2X
sin
(

πx2

2X

)

cosh
(

πy2

2X

)

− ∂z

∂y2

)

,

p|α3
=sin

(

πx3

2X

)

sinh
(

πy3

2X

)

,

u|α3
=

(

− π

2X
cos
(

πx3

2X

)

sinh
(

πy3

2X

)

,− π

2X
sin
(

πx3

2X

)

cosh
(

πy3

2X

)

− ∂z

∂y3

)

,

p|α4
=sin

(

πx4

2X

)

sinh
(

π(y4 + B)

2X

)

,

u|α4
=

(

− π

2X
cos
(

πx4

2X

)

sinh
(

π(y4 + B)

2X

)

,

− π

2X
sin
(

πx4

2X

)

cosh
(

π(y4 + B)

2X

)

− ∂z

∂y4

)

.

Note that the gradients of z in α1 and α2 are different. Hence the occurrence of the
term S, which ensures the continuity of the normal trace of the velocity field. Table 1
gives the approximation errors in the first rectangle α1. The system S is discretized into
4×2N2 regular triangular elements, h ≈ 1/N . There is the expected O(h) convergence
of uh, O(h) convergence of the elementwise constant ph, and O(h2) convergence of the
piecewise linear but discontinuous λ̃h.
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N Triangles ‖p − ph‖0,S ‖p − λ̃h‖0,S ‖u − uh‖H(div,S)

2 8×4 0.4445 0.1481 1.2247

4 32×4 0.2212 0.0389 0.6263

8 128×4 0.1102 0.0098 0.3150

16 512×4 0.0550 0.0025 0.1577

32 2048×4 0.0275 6.18·10−4 0.0789

64 8192×4 0.0138 1.54·10−4 0.0394

128 32768×4 0.0069 3.87·10−5 0.0197

256 131072×4 0.0034 9.73·10−6 0.0099

Table 1
Approximation errors in α1, the first model problem

The second model problem is given by

S = α1 ∪ α2 \ ∂S ,

u=−(∇p + ∇z) in αi , i = 1, 2 ,

∇ · u=0 in αi , i = 1, 2 .

The boundary conditions on Γ1–Γ6 are given as in the previous case. Also the exact
solution in α1 and α2 stays unchanged. Table 2 gives the approximation errors in the
first rectangle α1 for this model problem. As the exact solution in α1 coincides with
that of the first model problem, we can compare these results with that of Table 1.
The difference in approximation error is very small even for rough triangulations and
disappears for increasing N . Hence a confirmation of the conclusions outlined by the
theory: the presence of multiply shared interpolygon boundaries does not influence the
approximation properties of the lowest-order Raviart–Thomas mixed finite element
method.

7.2 Real problem

We present the simulation of fracture flow around the explorational drill hole Ptp-3
in the granitoid massif of Pot̊učky, Western Bohemia, in this section and compare our
method with other approaches.

There exists a large variety of approaches to modeling the flow through a network
of polygonal disks representing the rock fractures. In [8,10,14] the networks of polyg-
onal disks are replaced by networks of one-dimensional pipes. This allows for fast
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N Triangles ‖p − ph‖0,S ‖p − λ̃h‖0,S ‖u − uh‖H(div,S)

2 8×2 0.4481 0.1496 1.2236

4 32×2 0.2212 0.0393 0.6262

8 128×2 0.1102 0.0099 0.3150

16 512×2 0.0550 0.0025 0.1577

32 2048×2 0.0275 6.24·10−4 0.0789

64 8192×2 0.0138 1.56·10−4 0.0394

128 32768×2 0.0069 3.90·10−5 0.0197

256 131072×2 0.0034 9.76·10−6 0.0099

Table 2
Approximation errors in α1, the second model problem

calculations with large networks, but the precision is compromised. The models pro-
posed in [2,4,11,13,21] discretize the polygonal networks into triangular or quadrilateral
meshes. Because of a very complex geometry, the number of mesh elements is often
sizably increased. Finite difference, finite volume, finite element, or boundary element
methods are used for the discretization. We refer e.g. to [6] for a more detailed survey.

Our intention in the simulation of a real problem was twofold. First, we have con-
structed a very accurate mesh of the fracture network, which had at the same time
as few elements as possible. Second, we have used the mixed finite element method
studied in this paper for the discretization of the fracture flow problem. We have first
approximated the real fractures by a system of polygons generated on the basis of the
results of field measurements from [15]. We have next computed the intersections of
the polygons. In order to simplify the system of intersections in each polygon, these
were slightly moved and stretched in the polygon planes. This allowed for a significant
decrease of the number of triangular elements necessary to discretize each polygon and
for an improvement of their shapes. The triangular mesh had to respect the system of
intersections in each polygon, but as a consequence of the simplifications made, the
interpolygon geometrical correspondence vanished. This was replaced with an element
edges correspondence: the corresponding edges in different polygons did not necessarily
have to match geometrically—only what was the outflow from one triangular element
through a given edge had to be the inflow into the neighboring ones through the edges
that were associated with the given one. Such “mass balance” correspondence is com-
pletely sufficient to implement the mixed finite element method. Finally, based on
the assigned aperture, fracture wall roughness, and filling, the hydraulic permeability
of each triangular element was set. We have thus avoided the classical parallel plate
model.

The optimized triangulation of the fracture network and the model allowing for vari-
able permeability inside the fractures together with the mixed finite element method
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Fig. 4. Distribution of the piezometric head in a fracture network

ensuring the mass balance in each element even for meshes with no real geometrical
correspondence have proved a good agreement between observed phenomena and the
numerical approximation. The model gave an accurate velocity field within fracture
planes and thus in the whole simulated network. Namely, the channeling effect was
successfully simulated both in fracture planes and in the entire network. This effect is
given by the fact that the natural three-dimensional fractures have varying apertures
and consequently the flow is not evenly distributed within the fracture planes. All
these results are described in detail in [17]. We only give here in Figure 4 an example
of the distribution of the piezometric head in the simulated fracture network.
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