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Preface

This habilitation summarizes the works that I had a chance to be involved in as a “mâıtre de
conférences” (associate professor) at the Laboratoire Jacques-Louis Lions, Université Pierre et
Marie Curie, Paris, and also, initially, as a postdoctoral fellow of the French National Center
for Scientific Research in Orsay.

The main subject of this habilitation is the numerical analysis and to a lesser extent
scientific calculation. The majority of the papers contain theoretical results: well-posedness
analysis, convergence proofs, a priori and a posteriori error estimates, and proposition and
study of adaptive algorithms. I was also involved in development of scientific calculation
simulation codes.

Many of the results presented herein are closely related to, or motivated by, practical cal-
culations and real-life problems. In my postdoctoral stay I collaborated with the HydroExpert
society on simulations of flow and contaminant transport in the underground porous media,
developing an adaptive simulation code. At the Université Pierre et Marie Curie, I was truly
glad to have been involved in the project A posteriori estimates for efficient calculations and
error control in numerical simulations of porous media in the framework of the French Na-
tional Center for Scientific Research research project GNR MoMaS Mathematical Modeling
and Numerical Simulations for Nuclear Waste Repository Problems. This project included
interactions with the CEA (Commissariat à l’énergie atomique, the French nuclear energy re-
search center). Finally, I have had a chance to collaborate with the IFP (the French Petroleum
Institute) via the ERT project Enhanced oil recovery and geological sequestration of CO2: mesh
adaptivity, a posteriori error control, and other advanced techniques.

I believe sincerely that mathematics and in particular numerical analysis should be applied
to real problems in order to advance the technological limits. Hopefully the results presented
in this habilitation will help to do so. . .
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Chapter 1

Introduction

1.1 General introduction and terminology

A large number of environmental and physical phenomena is described by partial differential
equations. Unfortunately, in the vast majority of cases, it is not possible to find the analyt-
ical, exact solutions of these equations. Then numerical methods, i.e., mathematically-based
algorithms evaluated with the aid of computers, are used as simulation tools.

Except of very particular cases, in accordance with their conception, numerical meth-
ods only deliver approximate solutions, typically functions defined in some finite-dimensional
spaces, different from the exact solutions. Then two extremely important questions are:

1. How large is the overall error between the exact and approximate solutions?

2. Where is the error localized?

Answers to these two questions may be crucial in building bridges and dams, construct-
ing cars and planes, weather forecast, drilling oil and natural gas, depollution of soils and
oceans, drugs conception, advanced health care techniques, population dynamics simulations,
economic and financial predictions etc., as a decision is often taken on the basis of the numer-
ical simulation result; cf., e.g., Ladevèze and Moës [112], Babuška and Oden [23], and Oden
et al. [128]. Taking this reflection one step further, the ultimate goal is to design algorithms
such that:

3. A precision, given before the simulation start, is attained at the end of the simulation
(error control).

4. As small as possible amount of computational work is needed (efficient calculation).

We introduce below several themes allowing to contribute to the satisfaction of this goal:
a posteriori error estimates, stopping criteria and adaptive discretizations, and inexpensive
implementations.

1.1.1 A posteriori error estimates

Traditionally, the quality of numerical solutions is expressed with the aid of a priori error
estimates. These estimates can be evaluated prior to the calculation and give bounds on the
difference between the exact solution and the approximate solution, which is a function of some
mesh-size constant (tending to zero with mesh refinement) and an unknown constant which
depends on the exact solution. They are used to justify theoretically the numerical method



12 Introduction

in question but they cannot be evaluated in general in practice and used in order to give an
answer to the above questions and satisfy the above points.

A posteriori error estimates aim at giving bounds on the error between the known numerical
approximation and the unknown exact solution that can be computed in practice, once the
approximate solution is known, cf. Verfürth [161], Ainsworth and Oden [9], Babuška and
Strouboulis [26], Neittaanmäki and Repin [122], Han [96], or Repin [141]. Thus, in principle,
they might be used in order to answer the questions 1 and 2 above. Consequently, there is a
hope to construct algorithms satisfying points 3 and 4 above.

One may formulate the following five properties describing an optimal a posteriori error
estimate:

i) deliver an upper bound on the error between the exact and approximate solutions which
only uses the approximate solution and which can be fully, without the presence of any
unknown quantities, evaluated (guaranteed upper bound);

ii) give an expression for the estimated error locally, for example in each element of the
computational mesh, and ensure that this estimate on the error represents a lower bound
for the actual error, up to a generic constant (local efficiency);

iii) ensure that the effectivity index, given as the ratio of the estimated and actual error,
goes to one as the computational effort grows (asymptotic exactness);

iv) guarantee the three previous properties independently of the parameters and of their
variation (robustness);

v) give estimators which can be evaluated locally (small evaluation cost).

Property i) allows to give a truly computable error upper bound, i.e., to answer the ques-
tion 1 above. Property ii) enables to predict the error localization, i.e., to answer the question 2
above. Knowing where the error is, one can concentrate more effort in this part of the compu-
tational domain; typically, the mesh is refined in such parts, leading to the so-called concept
of adaptive mesh refinement. Property iii) ensures the optimality of the upper bound; if the
error is quite small and estimator predicts a large value, it may still satisfy property i) but is
probably not too useful as it overestimates highly the error. Property iv) is one of the most
important in practice. In real-life problems, parameters and coefficients (diffusivity, reactiv-
ity, convection, size of the nonlinearity, relative size of space and time scales) may vary over
several degrees of magnitude; an estimator satisfying property iv) ensures that its results will
be equally good in all situations. Finally, property v) guarantees that the evaluation cost will
be much smaller than the cost required to obtain the approximate solution itself (recall that
usually some kind of a global problem needs to be solved in order to obtain the approximate
solution).

We give below in Section 2.1 the state of the art in a posteriori error estimates.

1.1.2 Stopping criteria and adaptive discretizations

A numerical algorithm typically involves several iterative procedures. As an example, for a
nonlinear instationary problem, there is usually a loop over time steps, a linearization iter-
ation, and, if an iterative algebraic solver is used, an algebraic solver iteration, cf. Szabó
and Babuška [153], Quarteroni and Valli [137], Babuška and Strouboulis [26], Ern and Guer-
mond [82], and Han [96]. Towards the satisfaction of the points 3 and 4 above, one may intend,
at each moment of the calculation:

i) distinguish and estimate separately the different error components (error components
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identification and separation);

ii) classify the error components into two groups: substantial error components (crucial for
the calculation, those errors which will always be present (e.g., spatial discretization
error, temporal discretization error)) and subsidiary error components (side for the cal-
culation, those errors which are in general made small or even zero for a sufficient number
of iterations (e.g., linearization error, linear algebraic solver error));

iii) stop the different iterative algorithms whenever the corresponding subsidiary errors drop
to the level at which they do not affect significantly the overall error (stopping criteria);

iv) adjust the calculation parameters (e.g., space meshes and time steps) such that the
substantial errors are equally distributed and of comparable size (error components equi-
libration).

It is stated in Baxter and Iserles [31, p. 273], “The purpose of computation is not to
produce a solution with least error but to produce reliably, robustly and affordably a solution
which is within a user-specified tolerance.” Therefore the substantial errors on the different
stages should be in balance and the subsidiary errors small, see, e.g., Babuška [21], Han [95],
Becker et al. [35], Ladevèze and Moës [113, 112], Ladevèze [110], Babuška and Oden [23], Oden
et al. [128], Strakoš and Tichý [150], and Chaillou and Suri [61, 62]. In the present setting,
satisfying the properties i)–iv) above will lead to efficient calculation allowing for error control
in the sense of Section 1.1.

1.1.3 Implementations, relations between methods, and local postprocess-
ing

As mentioned earlier, one of the central points in numerical simulations is the question of
the efficiency of calculations. One numerical method may often be implemented in many
different ways, leading to the same result in all cases. We call such implementations equivalent
implementations. If one can find a way which is less expensive in terms of the computational
cost than the other ones, one gains a lot in terms of efficiency. Typically, influencing the final
matrix properties (symmetry, positive definiteness, number of unknowns, stencil (the number
of nonzero entries per matrix row), condition number) is a way how to achieve an inexpensive
implementation.

Different equivalent implementations of one numerical method are closely related to seem-
ingly different formulations/different numerical methods which may be shown equivalent in
the sense that the same result can be obtained at the end of the day; then we speak about
equivalent numerical methods. Let us take the example of the vertex-centered finite volume
method and of the finite element method. The first one is locally conservative by construction,
whereas the second one is not. It, nevertheless, appears that, under certain conditions, these
two methods are equivalent (the same result can be obtained at the end of the calculation).
The equivalence relation then allows to reconstruct locally conservative fluxes also from the
finite element method (such fluxes are not at the disposition at a first sight).

Some of these concepts are in fact closely related to techniques used in a posteriori error
estimates. Herein, local postprocessing, i.e., local construction of new/improved approxima-
tions, plays a central role. In a posteriori error estimates, one typically postprocesses, by a
local construction, conforming potentials and/or conforming, locally conservative fluxes. The
terms potential reconstruction and flux reconstruction are also used.

Let us finally mention that the above techniques also allow for nontraditional a priori
analyses.
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1.2 List of papers of this habilitation

The papers forming this habilitation are organized into three different groups: papers in
international peer-reviewed journals, papers submitted to international peer-reviewed journals
(and one important paper currently in preparation), and short papers, notes, and conference
proceedings.

The first group is formed by papers of regular length, published or accepted for publication
in international peer-reviewed journals. The only exception is the paper [A3], which is a
paper resulting from a student project carried out during the CEMRACS 2007 research center
and summer school, which has been published in the ESAIM: Proceedings journal. I have
included [A3] herein and not in the last group as this research is original, has not been published
elsewhere, and the paper is of regular length. The papers in this group are referenced with
the letter “A” at the beginning and form the basis of the habilitation.

The second group is formed by papers of regular length, submitted for publication to in-
ternational peer-reviewed journals, and one paper currently in preparation. They are included
here as, in my opinion, many important results are presented therein. The papers in this group
are referenced with the letter “B” at the beginning.

The last, third, group is formed by short papers, notes, and conference proceedings. Typ-
ically, these papers served for announcement of ideas which have been developed later on in
one of the papers of the first group. The papers in this group are referenced with the letter
“C” at the beginning and I list them here for completeness only.

No paper listed below has been part of or is directly linked with my Ph.D. thesis.

After each paper, I give in brackets the page numbers where it is cited.

1.2.1 Papers in peer-reviewed journals

[A1] Ben Belgacem, F., Bernardi, C., Blouza, A., and Vohraĺık, M. A finite element
discretization of the contact between two membranes. M2AN Math. Model. Numer. Anal.
43, 1 (2009), 33–52. [16, 18, 21, 42, 62, 63]

[A2] Ben Belgacem, F., Bernardi, C., Blouza, A., and Vohraĺık, M. On the uni-
lateral contact between membranes. Part 1: Finite element discretization and mixed
reformulation. Math. Model. Nat. Phenom. 4, 1 (2009), 21–43. [20, 21, 63]

[A3] Cheddadi, I., Fuč́ık, R., Prieto, M. I., and Vohraĺık, M. Computable a posteriori
error estimates in the finite element method based on its local conservativity: improve-
ments using local minimization. ESAIM Proc. 24 (2008), 77–96. [14, 16, 17, 28, 30, 38,
42, 63]

[A4] Cheddadi, I., Fuč́ık, R., Prieto, M. I., and Vohraĺık, M. Guaranteed and robust
a posteriori error estimates for singularly perturbed reaction–diffusion problems. M2AN
Math. Model. Numer. Anal. 43, 5 (2009), 867–888. [16, 18, 38, 63]

[A5] El Alaoui, L., Ern, A., and Vohraĺık, M. Guaranteed and robust a posteriori error
estimates and balancing discretization and linearization errors for monotone nonlinear
problems. Comput. Methods Appl. Mech. Engrg. (2010). DOI 10.1016/j.cma.2010.03.024.
[16, 18, 19, 43, 44, 45, 51, 54, 63, 66]

[A6] Ern, A., Stephansen, A. F., and Vohraĺık, M. Guaranteed and robust discontin-
uous Galerkin a posteriori error estimates for convection–diffusion–reaction problems. J.
Comput. Appl. Math. 234, 1 (2010), 114–130. [16, 17, 18, 29, 31, 39, 40, 63]
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[A7] Ern, A., and Vohraĺık, M. A posteriori error estimation based on potential and flux
reconstruction for the heat equation. SIAM J. Numer. Anal. 48, 1 (2010), 198–223. [16,
18, 19, 20, 40, 46, 47, 48, 49, 51, 56, 63]

[A8] Eymard, R., Hilhorst, D., and Vohraĺık, M. A combined finite volume–finite
element scheme for the discretization of strongly nonlinear convection–diffusion–reaction
problems on nonmatching grids. Numer. Methods Partial Differential Equations 26, 3
(2010), 612–646. [20, 60, 61]

[A9] Hilhorst, D., and Vohraĺık, M. A posteriori error estimates for combined finite
volume–finite element discretizations of reactive transport equations on nonmatching
grids. Comput. Methods Appl. Mech. Engrg. (2010). DOI 10.1016/j.cma.2010.08.017.
[16, 18, 19, 20, 49, 50, 51, 56, 63]

[A10] Jiránek, P., Strakoš, Z., and Vohraĺık, M. A posteriori error estimates including
algebraic error and stopping criteria for iterative solvers. SIAM J. Sci. Comput. 32, 3
(2010), 1567–1590. [16, 17, 19, 35, 36, 37, 51, 53, 63, 66]

[A11] Vohraĺık, M. A posteriori error estimates for lowest-order mixed finite element dis-
cretizations of convection-diffusion-reaction equations. SIAM J. Numer. Anal. 45, 4
(2007), 1570–1599. [16, 18, 21, 29, 31, 32, 33, 38, 39, 40, 50, 62, 63]

[A12] Vohraĺık, M. Residual flux-based a posteriori error estimates for finite volume and
related locally conservative methods. Numer. Math. 111, 1 (2008), 121–158. [16, 18, 21,
33, 38, 39, 50, 61, 63]

[A13] Vohraĺık, M. Guaranteed and fully robust a posteriori error estimates for conforming
discretizations of diffusion problems with discontinuous coefficients. J. Sci. Comput.
(2010). DOI 10.1007/s10915-010-9410-1. [16, 17, 25, 26, 27, 28, 29, 30, 42, 63]

[A14] Vohraĺık, M. Unified primal formulation-based a priori and a posteriori error analysis
of mixed finite element methods. Math. Comp. 79, 272 (2010), 2001–2032. [16, 17, 21,
32, 33, 62, 63]

1.2.2 Papers submitted to peer-reviewed journals

[B1] Ben Belgacem, F., Bernardi, C., Blouza, A., and Vohraĺık, M. On the uni-
lateral contact between membranes. Part 2: A posteriori analysis and numerical exper-
iments. Preprint R10004, Laboratoire Jacques-Louis Lions, submitted for publication,
2010. [16, 18, 20, 21, 42, 43, 63]

[B2] Hannukainen, A., Stenberg, R., and Vohraĺık, M. A unified framework for
a posteriori error estimation for the Stokes problem. Preprint R10016, Laboratoire
Jacques-Louis Lions & HAL Preprint 00470131, submitted for publication, 2010. [16,
18, 40, 41, 42, 63]

[B3] Pencheva, G. V., Vohraĺık, M., Wheeler, M. F., and Wildey, T. Robust a
posteriori error control and adaptivity for multiscale, multinumerics, and mortar cou-
pling. Preprint R10015, Laboratoire Jacques-Louis Lions & HAL Preprint 00467738,
submitted for publication, 2010. [16, 17, 19, 20, 33, 34, 35, 55, 63]

[B4] Vohraĺık, M. A posteriori error estimates, stopping criteria, and adaptivity for two-
phase flows. In preparation, 2010. [16, 19, 20, 51, 52, 57, 63]

[B5] Vohraĺık, M., and Wohlmuth, B. I. Mixed finite element methods: implementation
with one unknown per element, local flux expressions, positivity, polygonal meshes, and
relations to other methods. Preprint R10031, Laboratoire Jacques-Louis Lions and HAL
Preprint 00497394, submitted for publication, 2010. [20, 60, 66]



16 Introduction

1.2.3 Short papers, notes, and conference proceedings

[C1] Ern, A., Nicaise, S., and Vohraĺık, M. An accurate H(div) flux reconstruction
for discontinuous Galerkin approximations of elliptic problems. C. R. Math. Acad. Sci.
Paris 345, 12 (2007), 709–712. [16, 17, 31, 63]

[C2] Ern, A., and Vohraĺık, M. Flux reconstruction and a posteriori error estimation for
discontinuous Galerkin methods on general nonmatching grids. C. R. Math. Acad. Sci.
Paris 347, 7-8 (2009), 441–444. [16, 17, 28, 31, 63]

[C3] Vohraĺık, M. A posteriori error estimates for finite volume and mixed finite element
discretizations of convection–diffusion–reaction equations. ESAIM Proc. 18 (2007), 57–
69. [16, 18, 38]

[C4] Vohraĺık, M. A posteriori error estimation in the conforming finite element method
based on its local conservativity and using local minimization. C. R. Math. Acad. Sci.
Paris 346, 11–12 (2008), 687–690. [16, 17, 25, 26, 27, 28, 42, 63]

[C5] Vohraĺık, M. Two types of guaranteed (and robust) a posteriori estimates for finite
volume methods. In Finite Volumes for Complex Applications V. ISTE and John Wiley
& Sons, London, UK and Hoboken, USA, 2008, pp. 649–656. [16, 17, 28]

1.3 Main contributions of this habilitation

I associate here the papers, preprints, and notes of the three above lists with the three themes
introduced in Section 1.1. In all the listings below, the works are sorted by date.

As described in the Preface, the majority of the papers of this habilitation contain the-
oretical results: well-posedness analysis, convergence proofs, a priori and a posteriori error
estimates, and proposition and study of adaptive algorithms. Many of these results are, how-
ever, motivated or directly linked to practical demands in simulations of real-life problems.
These include the simulation of underground nuclear waste disposals in the framework of the
GNR MoMaS project A posteriori estimates for efficient calculations and error control in nu-
merical simulations of porous media and the simulation of multiphase flows in the framework
of the ERT project Enhanced oil recovery and geological sequestration of CO2: mesh adaptiv-
ity, a posteriori error control, and other advanced techniques. Some of the papers also give
algorithms from the developed scientific calculation simulation codes.

1.3.1 A posteriori error estimates

After my Ph.D. thesis, the primary focus of my research was the a posteriori analysis, cf. the
introduction in Section 1.1.1. My contributions to this topic are the papers [A11, A12, A3, A1,
A4, A6, A7, A14, A10, A5, A13, A9], the preprints [B1, B3, B2, B4], and the notes [C3, C1, C4,
C5, C2]. I have, together with my collaborators, focused on development of a posteriori error
estimates for various problems and various numerical methods, satisfying as much as possible
the five optimal properties of Section 1.1.1. I have in particular worked intensively on estimates
which are simultaneously guaranteed and robust, and this also for instationary and nonlinear
problems. I have also worked on unified frameworks. To the best of my knowledge, such results
are very rare in the literature or do not exist at all, cf. the state of the art in a posteriori error
estimates given in Section 2.1 below. These contributions are the subject of Chapter 2.
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Stationary linear problems

I have studied a stationary linear diffusion equation (the Laplace equation or the diffusion equa-
tion with a general inhomogeneous and anisotropic diffusion coefficient), discretized by the
piecewise affine, continuous finite element method (cf. Ciarlet [67]), in [C4] and [A3, A13].
Similar results for the discontinuous Galerkin method are given in [C1, C2] and [A6] and for
the cell- and vertex-centered finite volume methods in [C5] and [A13], respectively. The major
idea of these developments goes back to the Prager–Synge equality, see Prager and Synge [136].
The first focus in these works was to obtain estimates satisfying the property i), i.e., to en-
sure that the estimate gives a guaranteed upper bound on the error, without a presence of any
unknown generic constant, so that the overall error in these different numerical discretiza-
tions can be controlled. Simultaneously, I put an emphasis to satisfy as much as possible the
property iii) (the obtained effectivity indices typically range between 1.1 and 1.4). In addition,
in [A13], I was able to give an estimate fully robust with respect to the discontinuities in the
diffusion tensor, i.e., satisfying the property iv). All the above estimates satisfy the properties
ii) and v) of Section 1.1.1.

The work [A13] contains a systematic comparison of finite difference, piecewise affine finite
element, and cell- and vertex-centered finite volume methods for a stationary linear diffu-
sion problem with a general inhomogeneous and anisotropic diffusion coefficient. The rela-
tions/equivalences between these different numerical methods have been used in [A13] in order
to present the a posteriori error estimates in a unified framework. In [C2], [A6], and partly
in [A13], we were also able to take into account very general nonmatching grids. We give the
details on all these developments in Section 2.2.1.

A unified framework for optimal a posteriori error estimates satisfying all the five optimal
properties of Section 1.1.1 is given in [A14]. It is primarily developed for the different families
and orders of the mixed finite element method, but it applies to any locally conservative
method. This framework is presented in Section 2.2.2. Based on this framework, we have in
the recent preprint [B3] achieved three main extensions. Firstly, different numerical methods
(mixed finite element, discontinuous Galerkin, finite volume) can be used in different parts
of the domain (multinumerics). Secondly, the mortar technique can be used. Lastly, the
discretization can be done in the multiscale setting, allowing for the decomposition of the
problem into h-scale subdomain problems and H-scale interface problems. Some of the family
of estimators proposed in [B3] are robust with respect to the multiscale, i.e., with respect to the
ratio H/h, under an assumption of sufficient regularity. These contributions are discussed in
detail in Section 2.2.3; the use of these results for an adaptive strategy, following the idea in
Wheeler and Yotov [175], is described in Sections 1.3.2 and 3.3.

The last work dedicated to the stationary linear diffusion equation is [A10]. In a discretiza-
tion of such a problem, a system of linear algebraic equations needs to be solved. All the above
results (as well as a vast majority of the results from the literature) are based on the assump-
tion that this linear system has been solved exactly. This is often not the case in practice, as
either direct solvers are used and then roundoff errors can be important, or iterative solvers
are used and are stopped at some point, before reaching the (exact) convergence. The first
result of [A10] are a posteriori error estimates which take into account the error in the solution
of the algebraic linear system. Moreover, the (local) efficiency is proven. This means that our a
posteriori error estimates are safe to be used for adaptive mesh refinement also in the presence
of the algebraic error. This result is described in Section 2.2.4. It can be further used as a
stopping criterion for iterative algebraic solvers, see Sections 1.3.2 and 3.1.

We have, together with my students, later studied the extension of the previous results
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to the singularly perturbed reaction–diffusion case, while focusing on the robustness property
iv). We have in [A4] obtained estimates robust with respect to the size of the reaction term.
This contribution is discussed in detail in Section 2.2.5. I have next, still in the stationary
linear case, studied the convection–diffusion–reaction equation. The first results of [A11, A12]
and [C3] satisfied the properties i), ii), (approximately) iii) and v) but not iv). This missing
robustness has been obtained in the collaboration [A6], upon replacing the energy norm by a
norm consisting of the energy norm augmented by a dual norm of the convective derivative,
following Verfürth [168]. These contributions are discussed in detail in Section 2.2.6.

The last extension in the stationary linear case is to the Stokes problem. We have carried
it out in [B2]. A unified framework, comprising various conforming and conforming stabilized
finite element methods, the discontinuous Galerkin method, the Crouzeix–Raviart noncon-
forming finite element method, the mixed finite element method, and a general class of finite
volume methods, is developed therein, see Section 2.2.7.

Stationary variational inequalities

With my collaborators, I also had a chance to work on variational inequalities, namely on the
contact between two membranes. We have first derived in [A1] a model for the contact between
two membranes and performed its well-posedness analysis, as well as a priori error analysis.
We have also derived herein a residual-based a posteriori error estimate. This estimate does
not satisfy property i). Moreover, property ii) is not satisfied optimally. We have been able to
improve these two points and give guaranteed and locally efficient (up to a numerically negligible
term) estimates in [B1]. These results are reported in Section 2.3.1.

Stationary nonlinear problems

We have studied a posteriori error estimates for stationary second-order monotone nonlinear
problems in [A5]. We were able to achieve all the five optimal properties (the asymptotic
exactness is only approximate); the derived estimates are in particular guaranteed and robust
with respect to the size of the nonlinearity for the error measured as a dual norm of the residual.
This result is described in Section 2.4.1. The use of these results for an adaptive stopping of
the nonlinear solver is described in Sections 1.3.2 and 3.2.

Instationary linear problems

We have also, together with my collaborators, started work on instationary linear problems.
We have, in particular, in [A7] developed a unified framework for a posteriori error estimation
for the heat equation. Estimates giving a guaranteed upper bound on the error measured in
the energy norm augmented by a dual norm of the time derivative, as well as error lower
bounds, local-in-time but global-in-space, are derived under two simple conditions. It is then
shown how to verify these conditions for the discontinuous Galerkin, various finite volume,
and mixed finite element methods in space and the backward Euler scheme in time; extensions
to conforming and nonconforming finite element spatial discretizations are also outlined. This
result is described in Section 2.5.1.

In [A9], the previous result is extended to the instationary linear convection–diffusion–reaction
equation. A guaranteed upper bound in the energy norm is obtained, and, using the approach
of Verfürth [167], lower bound robust with respect to the convection dominance is shown for a
dual norm. We refer to Section 2.5.2 for more details. Moreover, based on these results, an
adaptive algorithm can be designed, cf. Sections 1.3.2 and 3.4.
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Instationary nonlinear problems

Finally, the last result of [B4] is given for a two-phase flow model, a coupled system of insta-
tionary nonlinear convection–diffusion equations. It has been obtained in the framework of
the ERT project collaboration with IFP, the French Petroleum Institute. In a unified setting as
above, it gives a guaranteed upper bound on the error measured by the dual norm of the residual.
The details are given in Section 2.6.1. Moreover, combing the approaches of [A10, A5, A7], an
adaptive algorithm in the sense of Section 1.1.2 can be designed, see Sections 1.3.2 and 3.5.

1.3.2 Stopping criteria and adaptive discretizations

Another subject of my research in these last years, closely related to the a posteriori error
estimates, were stopping criteria for linear and nonlinear iterative solvers and adaptive dis-
cretizations, cf. the introduction in Section 1.1.2. My contributions are contained in the
papers [A10, A5, A9] and the preprints [B3, B4]. The goal is to derive stopping criteria satis-
fying as much as possible the four optimal properties of Section 1.1.2 and to design algorithms
allowing for efficient calculation and error control in the sense of Section 1.1. These works in-
clude stopping criteria for linear algebraic solvers, stopping criteria for nonlinear solvers, error
components equilibration in mortar discretizations, balancing of spatial and temporal errors
in instationary problems, and also a fully adaptive discretization of an instationary nonlinear
coupled system allowing to achieve a given precision. I, however, do not attempt to prove
optimality of the algorithms, as it is the case, e.g., in Stevenson [149] or Cascon et al. [59] for
model diffusion problems. These contributions are the subject of Chapter 3.

Stopping criteria for linear algebraic solvers

Stopping criteria for linear algebraic solvers, based on a posteriori error estimates and developing
the ideas of, e.g., Babuška [21], Becker et al. [35], and Strakoš and Tichý [150], are derived
in [A10]. Recall that our a posteriori error estimates enable to distinguish and estimate sep-
arately the different error components, in particular the error component corresponding to
the discretization error (substantial component, stemming from the numerical scheme chosen
and from the local mesh size) and the error component corresponding to the algebraic error
(subsidiary component, stemming from the iterations of the algebraic solver). It turns out
that as the iteration of an iterative algebraic solver continues, the algebraic error gets smaller
and smaller, whereas the discretization error stagnates. In accordance with point iii) of Sec-
tion 1.1.2, we suggest to stop the linear solver whenever the algebraic error does not affect
significantly the overall error, i.e., when the algebraic error gets smaller than the discretiza-
tion one. This can lead to important computational savings, as a great number of the linear
algebraic solver iterations can typically be spared. We discuss this technique in Section 3.1.

Stopping criteria for nonlinear solvers

In a similar way as above, stopping criteria for nonlinear solvers (e.g., the Newton method or
the fixed-point method) are derived in [A5], developing the ideas of Han [95] or Chaillou and
Suri [61, 62]. An adaptive strategy, refining the computational mesh in places with increased
error while stopping early the nonlinear solver, is outlined in Section 3.2.
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Balancing the subdomain and interface errors in mortar discretizations

It is shown in [B3], on the basis of the a posteriori error estimates developed therein and
following Wheeler and Yotov [175], how to derive an adaptive algorithm equilibrating the sub-
domain and mortar errors, so that an efficient calculation can be done in order to achieve a given
precision. We present this algorithm in Section 3.3.

An adaptive discretization of an instationary convection–diffusion–reaction prob-
lem allowing to achieve a given precision

The a posteriori error estimates of [A7, A9] can be split into a part corresponding to the spatial
error and into a part corresponding to the temporal error. Such an approach has already been
advocated in, e.g., Picasso [133], Verfürth [165], or Bergam et al. [38], but our key result is
that the ratio of the spatial and temporal errors is here not affected by any unknown constant.
An adaptive algorithm equilibrating these two substantial error components can consequently
be constructed. This algorithm, developed in [A9] for the instationary linear convection–
diffusion–reaction equation, is presented in Section 3.4 along with some computational results.

An adaptive discretization of an instationary nonlinear coupled system allowing
to achieve a given precision

Finally, an algorithm for stopping the algebraic and nonlinear solvers when the corresponding
errors do not affect the overall error and equilibrating the space and time errors, developed on
the basis of the a posteriori error estimates of [B4], is presented in Section 3.5. It allows for
efficient calculation and error control in the sense of Section 1.1 for the two phase flow problem.

1.3.3 Implementations, relations between methods, and local postprocess-
ing

The last general topic of my research after my Ph.D. were inexpensive implementations, re-
lations between different numerical methods, and local postprocessing, cf. the introduction
in Section 1.1.3. My contributions are contained in the papers [A2, A8], the preprints [B1, B5],
and all the works on a posteriori analysis. The goal here is to achieve inexpensive implementa-
tions, develop unified frameworks, obtain improved approximations by local postprocessing, and
present nontraditional a priori analyses. These contributions are the subject of Chapter 4.

Inexpensive implementations and relations between different numerical methods

The collaboration [B5] is a follow-up of the paper [170] which was a part of my Ph.D. thesis. It
gives a framework for local elimination of the flux unknowns for lowest-order mixed finite element
methods; consequently, these methods can be written with only one unknown per element,
instead of one unknown per element and one unknown per side. The triple purpose of [B5] is
to present a unified framework, comprising in particular the previous results [170] and Younès
et al. [179], Chavent et al. [63], and Younès et al. [178], to show the closeness/equivalences of
the mixed finite element and various finite volume-type methods, and to obtain an inexpensive
implementation of the mixed finite element method leading to much smaller computational
requirements. We give more details in Section 4.1.1.

Convergence analysis of the discretization of a degenerate parabolic convection–diffusion–
reaction equation by a scheme combining cell-centered finite volumes and piecewise affine finite
elements on nonmatching grids is the subject of the analysis of [A8]. This analysis relies on the
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closeness/equivalence of these two methods. This paper is a follow-up of the paper [91] which
was a part of my Ph.D. thesis and it builds upon the approach of Eymard et al. [87, 88, 90];
its main results are described in Section 4.1.2.

Improvement of approximate solutions by local postprocessing

The cell-centered finite volume method leads to approximations that are only piecewise con-
stant in the mesh cells. This may not be sufficient in many cases. We in [A12] introduce a
locally postprocessed approximation, yielding a piecewise parabolic approximate solution. This
postprocessing is in fact the basis of the a posteriori error estimates of [A12]. We describe
in Section 4.2.1 in details this postprocessing and present a result of [A12] giving an a priori
error estimate for this postprocessing under sufficient regularity of the weak solution and a
convergence result under the minimal regularity of the weak solution.

The mixed finite element method is usually analyzed in the dual mixed formulation frame-
work relying on the Babuška [20]–Brezzi [46] inf–sup condition. We present in Section 4.2.2 a
new a priori analysis of the mixed finite element method, relying on a local postprocessing, the
primal weak formulation, and the discrete Friedrichs inequality. This result has been derived
in [A14]; the local postprocessing is that of [A11, Section 4.1], Arnold and Brezzi [19], and Ar-
bogast and Chen [13]. In particular, the uniform discrete inf–sup condition can be completely
avoided and both a priori and a posteriori analyses can be done in a unified setting.

We have in [A1] derived a finite element method for the discretization of the contact between
two membranes. The method proposed in this reference, however, had a rather increased
number of unknowns; there was, in particular, a discrete unknown for the approximation of
the action of one membrane on the other. The approach of [A2] and [B1] presents an equivalent
formulation with the unknowns reduced to the approximations of the displacements of the two
membranes only; an accurate action of one membrane on the other is then recovered by a local
postprocessing. An a priori error estimate for this postprocessed approximation is also given.
We present the details in Section 4.2.3.

In all the works mentioned in the part on a posteriori error analysis for nonconforming
locally conservative methods in Section 1.3.1, a notion of a potential reconstruction appears.
Such a reconstruction is of an independent interest; the methods in question deliver a discon-
tinuous potential and the present one can be used in place of it. We present this general idea
in Section 4.2.4. Similarly, in all the works mentioned in the part on a posteriori error anal-
ysis for conforming or discontinuous Galerkin methods in Section 1.3.1, a notion of a locally
conservative flux reconstruction appears. This reconstruction is once again of an independent
interest and we present it in Section 4.2.5.
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A posteriori error estimates

The purpose of this chapter is to give a posteriori error estimates satisfying as much as possible
and as well as possible the five optimal properties of Section 1.1.1. In particular, all the esti-
mates presented below, for various problems and methods, rigorously satisfy the guaranteed
upper bound and are often robust with respect to diffusion inhomogeneities and anisotropies,
convection or reaction dominance, size of the nonlinearity, and/or final simulation time. To
the best of my knowledge, guaranteed and simultaneously robust a posteriori error estimates
have not been established elsewhere before. I also focused on concentrating the analyses for
different numerical methods into unified frameworks.

2.1 State of the art

A posteriori error estimates, in particular for the discretization of the Laplace equation by the
finite element method, have received an enormous attention in the literature. Several main
branches of a posteriori estimates have evolved during the last decades.

Explicit residual estimates, initiated by Babuška and Rheinboldt in [25] and presented in
detail in Verfürth [161], are probably the most popular amongst numerical analysts. A rigorous
mathematical theory exists, showing that they fulfill the desirable properties i), ii), iv), and
v) of Section 1.1.1. However, up to very rare exceptions, such as the works of Carstensen and
Funken [53], Carstensen and Klose [56], or the modified approach of Veeser and Verfürth [157],
the property i) is not satisfied in the strict sense, since one has a computable upper bound up
to an unknown multiplicative constant. This constant is independent of the unknown solution
and of the mesh size, but the estimate is only reliable and not guaranteed. Note that in
particular studying the property iii) loses sense in this case.

The equilibrated residual method, cf. Ainsworth and Oden [9], removes the above drawbacks
under the condition that local infinite-dimensional problems can be solved. This is hardly
doable in practice and hence one has to approximate the solutions of these problems, leading
to the loss of the guaranteed upper bound and increased computational cost. It can, however,
be modified by replacing the infinite-dimensional problems by finite-dimensional ones while
introducing a supplementary term only dependent on the data (the so-called data oscillation
term), following Ainsworth [5].

Averaging estimates as the celebrated Zienkiewicz–Zhu one, see [180], are easy to com-
pute, often fulfill the property iii), but systematically fail with the property i) in the strict
(guaranteed) sense. They can, however, be shown to satisfy the property ii), see, e.g.,
Carstensen [51, 52].
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Functional a posteriori error estimates, see Neittaanmäki and Repin [122] and Repin [141]
and the references therein, satisfy the property i) by construction. It is, however, difficult for
them to simultaneously satisfy the property iii) and v); moreover, they are not robust (they
do not fulfill the property iv)).

Other classes of a posteriori error estimates are widely used in practice, such as hierarchical
estimates, cf. Bank and Smith [27], or geometric a posteriori error estimates, cf., e.g., Castro-
Dı́az et al. [60] or Frey and Alauzet [93].

The results presented below fall into the category of so-called equilibrated fluxes estimates,
whose main ideas can be traced back to the Prager–Synge equality [136] and the hypercircle
method, cf. Synge [152]. Estimates of this kind can be found in Ladevèze [109], Ladevèze
and Leguillon [111], Repin [139], Destuynder and Métivet [75], Luce and Wohlmuth [118],
Ainsworth [5], Vejchodský [158], Korotov [108], or Braess and Schöberl [44], see also Haslinger
and Hlaváček [97], Vacek [154], Nečas and Hlaváček [120], Hlaváček et al. [100], and Fierro
and Veeser [92]. They have also recently been shown robust with respect to the polynomial
degree by Braess et al. in [43]. This distinguishes them from the other classes of estimates.

The differences between the various types of estimates become more important in the ro-
bustness property iv) for singularly perturbed problems. Not many robustness results were
proven, and this mostly for the residual estimates. For the diffusion case with discontinuities
in the diffusion coefficient, let us cite Dörfler and Wilderotter [80], Bernardi and Verfürth [41],
Petzoldt [131], Ainsworth [4], or Chen and Dai [64]. All these estimates are, however, based
on the “monotonicity around vertices” condition on the distribution of the diffusion coef-
ficient (see [41, Hypothesis 2.7]) or a similar assumption. For the reaction–diffusion case,
Verfürth [164] was able to obtain robust estimates in the energy norm. Similar results were
obtained by Ainsworth and Babuška [7] and Grosman in [94] for the equilibrated residual
method; neither of these bounds is guaranteed. In the convection–diffusion–reaction case, a
robust result was obtained by Verfürth [168] upon augmenting the energy norm by the dual
norm of the convective derivative. This result was extended to the discontinuous Galerkin
case by Schötzau and Zhu [146]. An alternative approach for a different norm is pursued by
Sangalli [145]; once again, neither of these bounds is guaranteed.

In the last years, there has been a vivid increase of various extensions and applications
of a posteriori error estimates. Estimates for the Stokes problem have been derived in, e.g.,
Verfürth [159, 160], Dari et al. [71], Houston et al. [101], Dörfler and Ainsworth [79], Repin
and Stenberg [142], or Becker et al. [33]. Estimates for multiscale, multinumerics, or mortar
coupling have been derived in, e.g., Wohlmuth [176, 177], Belhachmi [36], Bergam et al. [37],
Aarnes and Efendiev [1], Larson and Målqvist [115], and Creusé and Nicaise [70]. Algebraic
error a posteriori error estimates and stopping criteria for iterative algebraic solvers have
been derived in Becker et al. [35], Patera and Rønquist [129], Arioli et al. [18], Arioli and
Loghin [17], Picasso [134], and Silvester and Simoncini [147]. For a posteriori error estimates
for variational inequalities, we cite in particular Hlaváček et al. [100], Ainsworth [10], Chen and
Nochetto [65], Veeser [155], Nochetto et al. [127], Hild and Nicaise [99], Braess et al. [42], and
Weiss and Wohlmuth [174]. Finally, for nonlinear problems and linearization error estimators,
let us quote Pousin and Rappaz [135], Han [95], Picasso [132], Verfürth [161], Liu and Yan [117],
Veeser [156], Carstensen and Klose [56], Han [96], Carstensen et al. [57], Chaillou and Suri [61,
62], and Diening and Kreuzer [76].

Lately, a posteriori error estimates have also been derived for linear and nonlinear instation-
ary problems. Let me cite in particular the works of Picasso [133], Verfürth [165], and Bergam
et al. [38], where residual-based a posteriori error estimates for conforming finite elements and
linear problems have been derived. I also mention Makridakis and Nochetto [119], Lakkis and
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Makridakis [114], and de Frutos et al. [73] for the so-called elliptic reconstruction technique
allowing for optimal error estimates in higher order norms for conforming finite elements. A
posteriori error estimates based on flux reconstruction have been presented by Repin in [140],
whereas Babuška and Ohnimus [24], Babuška et al. [22], and Strouboulis et al. [151] were
able to extended to the heat equation in a conforming setting various estimators for elliptic
problems. Extensions to nonconforming methods are given in, e.g., Nicaise and Soualem [123]
or Cascón et al. [58]. Much less work has been done on nonlinear instationary problems; I
quote, in particular, Nochetto et al. [124, 125, 126], Verfürth [162, 163, 166], Ladevèze and
Moës [113, 112], Ladevèze [110], and Akrivis et al. [12].

To the best of my knowledge, a posteriori error estimates satisfying all the five optimal
properties of Section 1.1.1 do not exist yet. Unified analyses and unified frameworks are also
quite rare; I cite, in particular, Ainsworth and Oden [8], Ainsworth [5], Carstensen [52, 55],
Carstensen et al. [54], and Kim [104, 105]. These two points also constitute my biggest
motivation.

2.2 Stationary linear problems

2.2.1 Pure diffusion equation: guaranteed estimates

Let us consider the model second-order elliptic problem

−∇·(S∇p) = f in Ω, (2.1a)

p = 0 on ∂Ω, (2.1b)

where Ω ⊂ R
d, d = 2, 3, is a polygonal (polyhedral) domain (open, bounded, and connected

set), S is a symmetric, bounded, and uniformly positive definite tensor, and f ∈ L2(Ω). The
weak formulation consists in finding p ∈ H1

0 (Ω) such that

(S∇p,∇ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω). (2.2)

I present the a posteriori error estimates here quite in detail. I do so in view of the simplicity
of the model problem (2.1a)–(2.1b) and also to highlight the main ideas and building principles
that will be reused for more complicated problems below. I start with conforming lowest-order
discretizations in the section below and then pass to a unified framework in the subsequent
section.

Conforming discretizations

Let us consider the discretization of (2.2) by the lowest-order finite element method. It reads:
find ph ∈ X0

h such that
(S∇ph,∇ϕh) = (f, ϕh) ∀ϕh ∈ X0

h. (2.3)

Here X0
h is the space of continuous, piecewise affine functions over a simplicial mesh Th of Ω,

equal to 0 on ∂Ω.
I have in [C4] proposed a guaranteed a posteriori error estimate for the energy error between

the (unknown) weak solution p of (2.2) and the finite element approximate solution ph of (2.3).
Recall that the energy error is given by

|||p − ph||| := ‖S 1

2∇(p− ph)‖. (2.4)

Let Dh be a dual mesh to the simplicial mesh Th, formed by dual volumes around each vertex
of the mesh Th (we refer to Figure 2.1, left, for an example and to [A13, Section 2.1] for the
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Th

Dh

D

SD

Figure 2.1: Original simplicial mesh Th and an associated dual mesh Dh (left) and the fine
simplicial mesh SD := Sh|D of a dual volume D ∈ Dh (right)

details). Divide Dh into Dint
h , containing the dual volumes associated with the interior vertices,

and Dext
h , containing the dual volumes associated with the boundary vertices. Suppose for

simplicity that S and f are piecewise constant on Th. Then we have, see [C4, Theorem 3.2]
or [A13, Theorem 4.5] (we refer to Luce and Wohlmuth [118] for a closely related result and
to [136, 152, 109, 97, 154, 120, 111, 100, 139, 75, 5, 158, 108, 44, 43] for similar ideas):

Theorem 2.2.1 (Guaranteed estimates for the diffusion problem (2.1a)–(2.1b) and the finite
element discretization (2.3)). Let p be the solution of (2.2) and ph the solution of (2.3). Let
a vector field th ∈ H(div,Ω) be arbitrary but such that

(∇·th, 1)D = (f, 1)D ∀D ∈ Dint
h . (2.5)

Then

|||p − ph||| ≤
{

∑

D∈Dh

(ηR,D + ηDF,D)
2

} 1

2

,

where the diffusive flux estimator is given by

ηDF,D := ‖S 1

2∇ph + S− 1

2 th‖D D ∈ Dh, (2.6)

and the residual estimator is given by

ηR,D := mD,S‖f −∇·th‖D D ∈ Dh, (2.7)

with the weighting coefficient

mD,S := C
1

2

P,D

hD

c
1

2

S,D

D ∈ Dint
h , mD,S := C

1

2

F,D,∂Ω

hD

c
1

2

S,D

D ∈ Dext
h , (2.8)

where hD is the diameter of the dual volume D, cS,D is the smallest eigenvalue that S takes
on D, and CP,D and CF,D,∂Ω are, respectively, the constants from the Poincaré (A.1) and the
Friedrichs (A.2) inequalities.

We give here the proof of this theorem, as it is very simple and as we find it quite instructive.

Proof. The proof is divided into two steps.
Step 1 (Characterization of the energy error).
We first show that

|||p − ph||| = inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{|(f −∇·t, ϕ)|+ |(S∇ph + t,∇ϕ)|}. (2.9)
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Notice that

|||p − ph||| =
(
S∇(p− ph),

∇(p− ph)

|||p − ph|||

)

by (2.4) and the symmetry of S. Define ϕ := (p − ph)/|||p − ph||| and note that ϕ ∈ H1
0 (Ω).

Thus, we immediately have (S∇p,∇ϕ) = (f, ϕ) by (2.2). Using this we obtain, for an arbitrary
vector field t ∈ H(div,Ω), employing the Green theorem,

(S∇(p− ph),∇ϕ) = (f, ϕ)− (S∇ph,∇ϕ) = (f, ϕ)− (S∇ph + t,∇ϕ) + (t,∇ϕ)

= (f −∇·t, ϕ)− (S∇ph + t,∇ϕ)

≤ |(f −∇·t, ϕ)|+ |(S∇ph + t,∇ϕ)|.

From here, it is enough to note that |||ϕ||| = 1 and that t ∈ H(div,Ω) was chosen arbitrary to
conclude that the right-hand side term of (2.9) is an upper bound on the left-hand side one.
For the converse estimate, it suffices to set t = −S∇p and to use (2.2), the Cauchy–Schwarz
inequality, and the fact that |||ϕ||| = 1, cf. [C4, Theorem 2.1] or [A13, Theorem 4.1].

Step 2 (Bounding the negative norm (2.9) using the local conservation property (2.5)).
We now bound the right-hand side of (2.9). To this purpose, choose a vector field th ∈

H(div,Ω) satisfying (2.5) as t in (2.9). Let D ∈ Dint
h and denote by ϕD the mean value of ϕ

over D, ϕD := (ϕ, 1)D/|D|, where |D| is the measure of D. Then, using (2.5), the Poincaré
inequality (A.1), the Cauchy–Schwarz inequality, and the definition (2.4) of the energy norm,

|(f −∇·th, ϕ)D | = |(f −∇·th, ϕ− ϕD)D| ≤ ηR,D|||ϕ|||D .

We cannot use a similar approach also for D ∈ Dext
h since there is no local conservativity

assumed on these volumes (recall that (2.5) is only supposed to hold for D ∈ Dint
h ). On the

other hand, however, ϕ = 0 on ∂D ∩ ∂Ω, whence

|(f −∇·th, ϕ)D | ≤ ηR,D|||ϕ|||D

for each D ∈ Dext
h , using the Friedrichs inequality (A.2), the Cauchy–Schwarz inequality,

and the definition (2.4) of the energy norm. Finally, |(S∇ph + th,∇ϕ)D| ≤ ηDF,D|||ϕ|||D is
immediate using the Cauchy–Schwarz inequality. We thus come to

|||p − ph||| ≤
∑

D∈Dh

(ηR,D + ηDF,D)|||ϕ|||D .

Hence, it now suffices to use the Cauchy–Schwarz inequality and to notice that |||ϕ||| = 1 in
order to conclude the proof.

Remark 2.2.2 (Flux reconstruction for the diffusion problem (2.1a)–(2.1b)). We will call the
vector field th from Theorem 2.2.1 an equilibrated flux reconstruction. The equilibration is here
meant in two senses. Firstly, the side fluxes of th over the sides σ of the mesh Dh (and Th),
i.e., the quantities 〈th·nσ, 1〉σ with nσ the unit normal vector of σ, are univalued, the same for
the two elements which share the given side σ. Secondly, th is by (2.5) locally conservative, on
the mesh Dh.

In order to use the estimate of Theorem 2.2.1 in practice, we need a way to construct a
flux reconstruction th satisfying the condition (2.5). For this purpose, we first construct a fine
simplicial mesh Sh, a submesh (conforming refinement) of both the original simplicial mesh
Th and of the dual mesh Dh, see Figure 2.1, right. We then specify th in a finite-dimensional
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subspace of H(div,Ω), defined over the mesh Sh. We choose for this purpose the lowest-order
Raviart–Thomas [138] space or its three-dimensional equivalent of Nédélec [121]. These spaces
are typically used in the mixed finite element method, cf. Brezzi and Fortin [47] or Roberts and
Thomas [143].

A simple construction of the flux reconstruction th is suggested in [C4]. It consists in
directly prescribing the degrees of freedom of th (the normal fluxes/components over the sides
of the mesh Sh) by

th·nσ := −{{S∇ph·nσ}} (2.10)

for all sides σ of the mesh Sh. Here, {{·}} is the (arithmetic) averaging operator. The flux
reconstruction th is in this case constructed from the approximate solution flux −S∇ph by
simple averaging of the normal components over the sides of the mesh Sh. It turns out that this
construction yields (2.5) (see [A13, Section 4.3] and the references therein). This construction
can be shown locally efficient, see below, but, except in one space dimension, it leads to
effectivity indices not close to the optimal value of one. It was the subject of [A3] to identify
the reason for this fact and to suggest a remedy. The main idea is to use the averaging
construction (2.10) only on those sides of the mesh Sh which lie on the boundary ∂D of a dual
volume D ∈ Dint

h . This is sufficient for (2.5) to hold. The remaining degrees of freedom of
th are then determined while solving some local discrete minimization problems in each dual
volume D ∈ Dh, see [A3, Section 3].

Two other constructions of th are proposed in [A13]. It turns out that the best results
are obtained when th is a solution of local Neumann problems by the mixed finite element
method, see [A13, Section 4.3.4]. This can be viewed as a generalization of the idea going
back to Bank and Weiser [28] and, in its present form, it was proposed in [C2]. In [A13], all
the above constructions of th are discussed in detail. Also, through the equivalences/close
relations between the different classical numerical methods, Theorem 2.2.1 is extended in [A13]
to the cell- and vertex-centered finite volume methods and to the finite difference method. The
relations of the above estimate to the residual, equilibrated residual, averaging, functional, and
other equilibrated fluxes estimates is discussed in [A13, Section 4.4]. Extensions to general
inhomogeneous Dirichlet and Neumann boundary conditions are given in [C5].

An important and mathematically much more involved result is to show that the estimates
of Theorem 2.2.1 are also locally efficient. This result is given in [A13] for the different
constructions of the flux reconstruction th discussed above (see Theorems 5.1 and 5.5 in this
reference). These results may be summarized as follows:

Theorem 2.2.3 (Local efficiency of the estimates for the diffusion problem (2.1a)–(2.1b) and
the finite element discretization (2.3)). For all D ∈ Dh, there holds

ηDF,D ≤ CC
1

2

S,Dc
− 1

2

S,D|||p − ph|||D, (2.11a)

ηR,D ≤ CC
1

2

S,Dc
− 1

2

S,D|||p − ph|||D, (2.11b)

where the constant C depends only on the space dimension d and on the shape regularity
parameter of the mesh Sh and where cS,D is the smallest eigenvalue that S takes on D and
CS,D is the largest eigenvalue that S takes on D.

The proof has two main steps. Firstly, we show that for any of the above constructions
of the flux reconstruction th, our estimates are in each dual volume smaller or equal to the
classical residual estimates. The proof consists in using the way how the flux reconstruction th
was constructed from the approximate flux −S∇ph. The main technical tools in the case of the
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construction of th by (2.10) is the mapping to a reference element, by the Piola transformation
as we are working with H(div,Ω)-conforming vectors, properties of Raviart–Thomas–Nédélec
spaces, equivalence of norms on finite-dimensional spaces, and scaling arguments. The tools in the
case of the construction of th by the mixed finite element solution of local Neumann problems,
see [A13, proof of Theorem 5.5], are the use of local postprocessing of the mixed finite element
solution, following [A11, Section 4.1], Arnold and Brezzi [19], and Arbogast and Chen [13], the
Green theorem, the Cauchy–Schwarz inequality, the discrete Poincaré and Friedrichs inequalities,
see Section A.2 below or [169], and the inverse inequality. This last inequality typically states
that ‖∇vh‖K ≤ Ch−1

K ‖vh‖K for a polynomial vh; here hK is the diameter of the element K and
C is a generic mesh-size-independent constant (see, e.g., Quarteroni and Valli [137, Proposition
6.3.2]).

In the second step, see [A13, proof of Theorems 5.1 and 5.4], the techniques of Verfürth [161]
are employed. Firstly, element and edge bubble functions are introduced. These are polynomials
which are such that they are nonzero only in the interior of a given simplex or a given side.
With the help of these bubble functions, boundary terms, arising from the integration by parts
of the Green theorem, can be discarded. Then once again mappings to a reference element,
equivalence of norms on finite-dimensional spaces (recall that all the approximate solution, the
data, and the bubble functions are polynomials), and scaling arguments are needed. The last
ingredients in the lower bound proofs are the definition (2.2) of the weak solution, the Green
theorem, the Cauchy–Schwarz inequality, definition (2.4) of the energy norm, and the inverse
inequality.

Remark 2.2.4 (Robustness with respect to the discontinuities in S using harmonic averaging).
One of the key results of [A13] is that it is possible to construct a flux reconstruction th

such that the factors C
1

2

S,D/c
1

2

S,D in (2.11a)–(2.11b) vanish. Crucially, no “monotonicity around
vertices” condition on the distribution of the diffusion coefficient as that of [41, Hypothesis 2.7]
or those of [80, 131, 4, 64] is necessary here, see Theorem 5.1 in [A13]. The main argument
is to notice that, following [A6] (cf. also the preprint [84]), this robustness with respect to the
inhomogeneities in S can be achieved whenever harmonic averaging is used both in the numerical
method and in the construction of th.

Remark 2.2.5 (Robustness with respect to the discontinuities in S in a dual norm). Consider,
instead of (2.4), the dual norm of the residual

|||p − ph|||# := sup
ϕ∈H1

0
(Ω)\{0}

(S∇(p − ph),∇ϕ)

‖∇ϕ‖ (2.12)

as the error measure. Note that |||p − ph|||# = |||p − ph||| whenever S is constant and scalar
but that |||p− ph|||# and |||p− ph||| are different in general. A guaranteed upper bound similar
to that of Theorem 2.2.1 has been proved in [A13, Corollary 4.6] for this error measure. More
importantly, a lower bound robust with respect to both the inhomogeneities and anisotropies in
S is proven in [A13, Theorem 5.4 and Corollary 5.6].

We now present some numerical results. As a first example, we show in Figure 2.2, left,
the estimated and actual energy errors and the two estimators ηDF := {∑D∈Dh

η2DF,D}
1

2 and

ηR := {∑D∈Dh
η2R,D}

1

2 for a model example in one space dimension, cf. [A13, Section 7.1.1].
Note that, as predicted by the theory, the estimate is bigger than or equal to the error, i.e.,
guaranteed, satisfying property i) of Section 1.1.1. In the right part of this figure, we give
the corresponding effectivity index (recall that this is the ratio of the estimate over the error,
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Figure 2.2: Estimated and actual energy error (left) and the corresponding effectivity index
(right), vertex-centered finite volume method, problem (2.1a)–(2.1b) with a smooth solution
in one space dimension

Figure 2.3: Estimated (left) and actual (right) energy error distribution, harmonic-weighted
vertex-centered finite volume method, interface problem (2.1a)–(2.1b) with contrast 5 in the
diffusion coefficient

bigger or equal to one as the estimate is guaranteed). In this particular case, we get the
asymptotic exactness, property iii).

As a second example, we present some results for a discontinuous diffusion coefficient with
a checkerboard pattern distribution of [A13, Section 7.1.2]. Figure 2.3, left, shows the energy
error distribution predicted by our a posteriori error estimate, whereas in its right part, we
give the exact distribution. The fact that they match very well is a numerical evidence of
the local efficiency, property ii). In Figure 2.4, we next plot the effectivity indices for two
different contrasts in the coefficients: 5 and 100. The fact that the two plots show similar
values (close to one) is the numerical evidence of robustness, property iv). Note finally that
our estimates satisfy property v) of Section 1.1.1 as well, as, being evaluated on local patches,
their evaluation cost is small.

For more computational examples, we refer to [A3] and [A13].

A unified framework for the error in the potentials

The estimate of Theorem 2.2.1 is only stated for the lowest-order finite element method (2.3).
It, however, turns out that it holds in the same form for an arbitrary function ph ∈ H1

0 (Ω),
see its proof. We still need a more general result, as many numerical methods produce an
approximation ph such that it is from the space H1(K) for every mesh element K ∈ Th but
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Figure 2.4: Energy error effectivity indices, harmonic-weighted vertex-centered finite volume
method, interface problem (2.1a)–(2.1b) with contrast 5 (left) and 100 (right) in the diffusion
coefficient

not from the space H1
0 (Ω) (we denote this space by H1(Th)).

We have presented such a result in the preprint [84] (which is a part of Stephansen [148])
and in [A6] (in a more general convection–diffusion–reaction setting, see Section 2.2.6 below),
cf. also [C1] and [C2]. We refer to [68, 6, 104, 69, 83, 116, 11] for closely related results. For
some previous results, we refer to [72, 74, 2, 103, 34, 4].

In order to present this general result, we will need the following assumption:

Assumption 2.2.6 (Flux reconstruction for the diffusion problem (2.1a)–(2.1b)). There exists
a mesh D∗

h, D∗
h = Dint,∗

h ∪ Dext,∗
h , where the volumes in Dext,∗

h have a side lying in ∂Ω, and
there exists a vector field th ∈ H(div,Ω), arbitrary but such that

(∇·th, 1)D = (f, 1)D ∀D ∈ Dint,∗
h .

We then have (see [84, Theorem 3.7] and [A6, Theorem 3.1 and Lemma 4.1]):

Theorem 2.2.7 (Guaranteed estimates for the diffusion problem (2.1a)–(2.1b): a unified
framework for the error in the potentials). Let p be the solution of (2.2) and let ph ∈ H1(Th)
be arbitrary. Let Assumption 2.2.6 be satisfied. Let finally sh ∈ H1

0 (Ω) be arbitrary. Then

|||p − ph||| ≤
{

∑

D∈D∗

h

η2NC,D

} 1

2

+

{
∑

D∈D∗

h

(ηR,D + ηDF,D)
2

} 1

2

,

where the nonconformity estimator is given by

ηNC,D := ‖S 1

2∇(ph − sh)‖D D ∈ D∗
h, (2.13)

the diffusive flux estimator ηDF,D is given by (2.6), and the residual estimator ηR,D is given
by (2.7).

Remark that Theorem 2.2.7 has the same structure as Theorem 2.2.1, with, additionally,
the estimators ηNC,D stemming from the nonconformity of ph, i.e., from the fact that ph 6∈
H1

0 (Ω). The proof uses the same idea as that of Theorem 2.2.1, with, additionally, a triangle-like
inequality for the treatment of the nonconformity, see [A11, Lemma 7.1]. Note also that the
mesh D∗

h in Assumption 2.2.6 is very general and can be nonmatching and contain nonconvex
or non-star-shaped elements. Typically, this mesh is either the original simplicial mesh Th, a
dual mesh Dh, or the fine simplicial mesh Sh of the previous section.
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Remark 2.2.8 (Potential and flux reconstructions). Recall that the exact potential p is such
that p ∈ H1

0 (Ω) and that the exact flux −S∇p is such that −S∇p ∈ H(div,Ω). In the setting of
Theorem 2.2.7, the approximate solution ph can be such that ph 6∈ H1

0 (Ω) and the approximate
flux −S∇ph can be such that −S∇ph 6∈ H(div,Ω). The functions sh and th of Theorem 2.2.7,
clearly stemming from the nonconformity of ph and −S∇ph, are herein called respectively the
potential and flux reconstructions.

2.2.2 Pure diffusion equation: a unified framework for locally conservative
methods

Many numerical methods, like the mixed finite element one, cf. Brezzi and Fortin [47] or
Roberts and Thomas [143], the finite volume one, cf. Eymard et al. [88], mimetic finite
difference, cf. Brezzi et al. [48], covolume, cf. Chou et al. [66] and other, directly (or almost
directly) produce an approximation of the flux u := −S∇p. Then a natural problem one may
pose is how to derive a posteriori error estimates for the error between an approximate flux
uh and the exact one u, say, in the energy norm

|||u − uh|||∗ := ‖S− 1

2 (u− uh)‖. (2.14)

I have investigated this problem in [A11, A14]. In particular, I have shown the following
result (see [A14, Theorems 6.1 and 6.8]) (as these methods are typically locally conservative
on the given (simplicial) mesh Th, there is no need here for a construction of a dual grid Dh

or of the grid Sh as in the previous section):

Theorem 2.2.9 (Guaranteed estimates for the diffusion problem (2.1a)–(2.1b): a unified
framework for the error in the fluxes). Let p be the solution of (2.2), let u := −S∇p, and let
uh ∈ H(div,Ω) be arbitrary but such that

(∇·uh, 1)K = (f, 1)K ∀K ∈ Th. (2.15)

Let sh ∈ H1
0 (Ω) be arbitrary. Then

|||u − uh|||∗ ≤
{

∑

K∈Th

(
η2P,K + η2R,K

)
} 1

2

,

where the potential estimator is given by

ηP,K := |||uh + S∇sh|||∗,K K ∈ Th (2.16)

and the residual estimator by

ηR,K := mK,S‖f −∇·uh‖K K ∈ Th, (2.17)

with the weighting coefficient

mK,S := C
1

2

P,K

hK

c
1

2

S,K

.

Recall that estimates for the error in the potentials are given by Theorem 2.2.7; combining
Theorems 2.2.7 and 2.2.9, estimates for errors in both the potentials and fluxes are obtained.

In order to apply Theorems 2.2.7 and 2.2.9 to a given numerical method, a way of con-
structing of the potential reconstruction sh is crucial. I believe that a right way is to obtain
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sh in two steps. Firstly, for many numerical methods such as the finite volume or the mixed
finite element one, a local postprocessing is applied so as to obtain an improved potential p̃h.
In the case of mixed finite elements, this is proposed in [A11, Section 4.1] for the lowest-order
case: on each element K ∈ Th, we define p̃h by (supposing that S is piecewise constant)

−S∇p̃h|K = uh|K , (2.18a)

(p̃h, 1)K
|K| = ph|K ; (2.18b)

here uh and ph are the mixed finite element flux and potential approximations, respectively.
For higher-order cases, I follow Arnold and Brezzi [19] and Arbogast and Chen [13], see [A14,
Section 4.4.2]. I apply similar ideas to the case of finite volumes, see [A12, Section 3.2],
taking inspiration from Eymard et al. [89]. The potential postprocessed by (2.18a)–(2.18b) or
a similar procedure is typically nonconforming, not contained in H1

0 (Ω) (except in one space
dimension). Thus, a second step is to apply to p̃h an averaging operator, yielding sh ∈ H1

0 (Ω).
In fact, I typically apply the a posteriori estimates of Theorems 2.2.7 and 2.2.9 to p̃h and not
to ph.

The crucial property of the locally postprocessed potential p̃h in mixed finite elements is
that its traces on the sides of Th are continuous in mean, i.e., 〈p̃h|K , 1〉σK,L

= 〈p̃h|L, 1〉σK,L
for

all interior sides σK,L shared by elements K and L. One can then show the following theorem
(see [A14, Theorem 6.16]):

Theorem 2.2.10 (Local efficiency of the estimates for the diffusion problem (2.1a)–(2.1b)).
For all K ∈ Th, there holds

ηP,K ≤ ηDF,K + ηNC,K , (2.19a)

ηDF,K ≤ |||u − uh|||∗,K + |||p − p̃h|||K , (2.19b)

ηNC,K ≤ CC
1

2

S,Kc
− 1

2

S,TK
|||p − p̃h|||TK , (2.19c)

ηR,K ≤ CC
1

2

S,Kc
− 1

2

S,K |||u − uh|||∗,K , (2.19d)

where the constant C depends only on the space dimension d, the maximal polynomial degree
of uh and p̃h, the maximal polynomial degree of f , and on the shape regularity parameter of
the mesh Th. In (2.19), cS,TK is the smallest eigenvalue that S takes on a patch TK of all
elements sharing a node with K ∈ Th and CS,K is the largest eigenvalue that S takes on the
element K.

The key tools of this proof are the properties of the averaging operator proven in Achdou et
al. [2], Karakashian and Pascal [103], and Burman and Ern [49], together with the techniques
already mentioned for the proof of Theorem 2.2.3.

As a numerical example, we give in Figure 2.5 the estimated and actual error distribution
for a cell-centered finite volume discretization of a diffusion problem with a discontinuous
coefficient (of contrast 5) with a checkerboard pattern distribution of [A12, Section 6.1]. The
approximate solution and the corresponding adaptively refined mesh (for contrast 100) are
given in Figure 2.6.

2.2.3 Pure diffusion equation: multiscale, multinumerics, and mortar cou-
pling

We show here a further extension of the results of the previous section, presented in [B3].
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Figure 2.5: Estimated (left) and actual (right) energy error distribution, cell-centered finite
volume method, interface problem (2.1a)–(2.1b) with contrast 5 in the diffusion coefficient
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Figure 2.6: Approximate solution and the corresponding adaptively refined mesh, cell-centered
finite volume method, interface problem (2.1a)–(2.1b) with contrast 100 in the diffusion coef-
ficient

Firstly, we allow for a multinumerics setting, i.e., different numerical methods (mixed finite
element, discontinuous Galerkin, finite volume) used in different parts of the domain. Sec-
ondly, the different subdomains can be meshed independently, resulting in a nonmatching grid.
Thirdly, the mortar technique (cf. Bernardi et al. [40]) is supposed to be used in order to glue
the approximations from the different subdomains. Lastly, the discretization can be done in
the multiscale setting, allowing for the decomposition of the problem into h-scale subdomain
problems and H-scale interface problems.

A unified framework for the error in the fluxes, as that of Theorem 2.2.9, is given in [B3,
Theorems 3.2 and 3.3]. Similarly, a unified framework for the error in the potentials, as that of
Theorem 2.2.7, is given in [B3, Theorems 3.4 and 3.5]. The potential reconstruction is carried
along the lines described in Section 2.2.2. The flux reconstruction is more involved here, as it
has to take into account the mortar error. Three different ways are proposed in Sections 3.3.2–
3.3.4 of [B3]. The first one is based on a direct prescription, the second one the solution of
h-grid-size low order local Neumann problems, and the last one on the solution of H-grid-size
high order local Neumann problems. Local efficiency, in the spirit of Theorem 2.2.10, is also
proven. Most importantly, this lower bound is robust with respect to the multiscale, i.e., robust
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Figure 2.7: Estimated (left) and actual (right) flux error distribution on a nonmatching mesh
with mortars, mortar mixed finite element method, problem (2.1a)–(2.1b)

with respect to the ratio H/h, for the last of the above three different flux reconstructions,
see [B3, Theorems 4.2, 4.3, and 4.5]. There are two key steps for the lower bound proof. The
first one is similar to that in the proof of Theorem 2.2.3 (analysis of local mixed finite element
problems using local postprocessing). The second one is Lemma A.1 of [B3], an extension of
the result of [2, Theorem 10] to the case of nonmatching grids.

Figure 2.7 gives a computational example for the mortar mixed finite element method of
Arbogast et al. [14]. The interfaces along the x and y axes had nonmatching grids, coupled
by the mortars. We can in particular see that our estimates predict well the error distribution
not only inside the subdomains but also along the mortar interfaces. We refer to Section 3.3
below for an adaptive algorithm balancing the subdomain and mortar errors and another
computational example (in the multinumerics setting).

2.2.4 Pure diffusion equation: taking into account the algebraic error

All the above results are presented under the assumption that the system of linear algebraic
equations of the given numerical method applied to problem (2.1a)–(2.1b) has been solved
exactly. Equivalently, this means that we need (2.5), Assumption 2.2.6, or (2.15) to hold
exactly.

We have in [A10] derived a posteriori error estimates for the discretization of (2.1a)–(2.1b)
by the cell-centered finite volume method which enable to take into account the algebraic error,
i.e., allow for the algebraic system not to be solved exactly. More precisely, we suppose that
instead of the solution algebraic vector P , which should satisfy

SP = H

with S the finite volume system matrix and H the right-hand side, we only have P a that
satisfies

SP a = H −R (2.20)

for an algebraic residual vector R. Let fK denote the mean value of the source term function
f over K ∈ Th, fK := (f, 1)K/|K|, let RTN(Th) stand for the lowest-order Raviart–Thomas–
Nédélec space over the mesh Th, and recall the definition (2.4) of the energy error. The main
result of [A10] can be presented in the following form (see Theorem 5.2 in this reference):
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Theorem 2.2.11 (A posteriori error estimates for the diffusion problem (2.1a)–(2.1b) taking
into account the algebraic error). Let p be the solution of (2.2). Let ua

h and pah be the approx-
imate flux and approximate potential, corresponding to (2.20). In particular, we suppose that
ua
h is such that

(∇·ua
h, 1)K = (f, 1)K −RK ∀K ∈ Th.

Let p̃ah be given by the local postprocessing on each K ∈ Th,

−S∇p̃ah|K = ua
h|K ,

(p̃ah, 1)K
|K| = pah|K .

Let finally sh ∈ H1
0 (Ω) be arbitrary. Then

|||p − p̃ah||| ≤
{

∑

K∈Th

η2NC,K

} 1

2

+

{
∑

K∈Th

η2Osc,K

} 1

2

+ ηAE,

where the nonconformity estimator is given by

ηNC,K := ‖S 1

2∇(p̃ah − sh)‖K K ∈ Th,

the data oscillation estimator is given by

ηOsc,K := mK,S‖f − fK‖K K ∈ Th,

with the weighting coefficient

mK,S := C
1

2

P,K

hK

c
1

2

S,K

,

and the algebraic error estimator is given by

ηAE := inf
rh∈RTN(Th)

∇·rh|K=RK/|K|

sup
ϕ∈H1

0
(Ω)

|||ϕ|||=1

(rh,∇ϕ). (2.22)

The algebraic error estimator ηAE of (2.22) is not (easily and locally) computable. Two
easily, fully, and locally computable upper bounds on ηAE are derived in [A10]; η1AE in Sec-
tion 7.1 and η3AE in Section 7.3. These two upper bounds are general as completely independent
of the algebraic solver used; for the same reason, however, these upper bounds may overestimate
the algebraic error. An approximation η̂2AE of ηAE, tailored for the use of the conjugate gradient
method, see Hestenes and Stiefel [98], as the algebraic solver, is also introduced in [A10, Sec-
tion 7.2]. This approximation is extremely easy to compute and gives excellent computational
results, even if it does not give an upper bound on ηAE (the overall a posteriori error estimate
is not guaranteed in this last case).

Set

ηNC :=

{
∑

K∈Th

η2NC,K

} 1

2

. (2.23)

Under the condition that the algebraic error estimator ηAE (or its upper bound) is small in
comparison with the nonconformity ηNC one, namely that

ηAE ≤ γ ηNC, 0 < γ ≤ 1, (2.24)
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Figure 2.8: Effectivity indices for a posteriori error estimates including the algebraic error
and the different algebraic estimators; problem (2.1a)–(2.1b) with a smooth solution (left) and
with a contrast 100 in the diffusion coefficient (right)

for a parameter γ, typically chosen close to 1, we prove in [A10, Theorem 6.3] a global efficiency
result of the form

ηNC + ηAE ≤ C(1 + γ)(|||p − p̃ah|||+ h.o.t.), (2.25)

where h.o.t. stands for higher-order terms and where the constant C depends only on the space
dimension d, on the shape regularity parameter of the mesh Th, and on the local inhomogeneity
and anisotropy ratio maxK∈Th{CS,K/cS,TK}. Moreover, under the condition that the algebraic
error estimator ηAE,K is small in comparison with the nonconformity estimator ηNC,K locally,
element by element, namely that

ηAE,K ≤ γK ηNC,K , 0 < γK ≤ 1 ∀K ∈ Th, (2.26)

for a set of parameters γK , typically chosen close to 1, we prove in [A10, Theorem 6.2] a local
efficiency result of the form

ηNC,K + ηAE,K ≤ (1 + γK)(CC
1

2

S,Kc
− 1

2

S,TK
|||p − p̃ah|||TK + h.o.t.), (2.27)

where the constant C depends only on the space dimension d and on the shape regularity
parameter of the mesh Th. Note that (2.27) means that the a posteriori error estimate of
Theorem 2.2.11 can be safely used for adaptive mesh refinement even in the presence of the
algebraic error. Moreover, both (2.24) and (2.26) can be further used as a stopping criterion for
iterative algebraic solvers, see Section 3.1 below.

The analysis of [A10] required in particular the coupling of the tools of numerical functional
analysis and numerical linear algebra. Alternative variational formulations and elements of the
duality theory were also necessary.

An example of a numerical result from [A10, Section 8] is presented in Figure 2.8. We con-

sider there a fixed mesh and show the effectivity indices, i.e., the quantities ({∑K∈Th
η2NC,K} 1

2+

{∑K∈Th
η2Osc,K} 1

2 +ηapproxAE )/|||p− p̃ah|||, for the three above-mentioned computable approxima-

tions η1AE, η̂
2
AE, and η3AE of ηAE, as a function of the number of iterations of the conjugate gra-

dient method. Note in particular that the conjugate gradients-tailored estimator η̂2AE of [A10,
Section 7.2] gives effectivity indices systematically close to one from the very first iterations and
thus controls optimally both the discretization and algebraic errors. More results are presented
in Section 3.1 below.
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2.2.5 Reaction–diffusion equation: guaranteed and robust estimates for
conforming discretizations

The subject of the study in [A4] were a posteriori error estimates for the vertex-centered finite
volume discretization of the problem

−∆p+ rp = f in Ω, (2.28a)

p = 0 on ∂Ω, (2.28b)

where r ∈ L∞(Ω), r ≥ 0, is a reaction coefficient and f ∈ L2(Ω). Problem (2.28a)–(2.28b) is
singularly perturbed in case of increased values of r.

In [A4], Theorems 3.1 and 3.2, we first give an extension of the characterization prop-
erty (2.9) to problem (2.28a)–(2.28b). The first main result is the guaranteed upper bound of
Theorem 4.4 of this reference, stating that

|||p − ph||| ≤
{

∑

D∈Dh

(ηR,D + ηDF,D)
2

} 1

2

,

where p is given by (2.28a)–(2.28b), ph is the vertex-centered finite volume approximation,

|||p − ph|||2 := ‖∇(p− ph)‖2 + ‖r 1

2 (p− ph)‖2

is the energy error, and ηR,D and ηDF,D are, respectively, the residual and diffusive flux esti-
mators, fully computable quantities, adaptations of those of Theorem 2.2.1 to the reaction–
diffusion case.

The second main result of [A4] is a robust lower bound of Theorem 5.1 of the form

ηR,D + ηDF,D ≤ C|||p − ph|||D,

with a generic constant C as those of Theorem 2.2.3, independent of the size of the reaction
function r. The tools are similar to those of Theorems 2.2.1 and 2.2.3, with the additional
important results of [A4, Lemma 4.2], where Poincaré, Friedrichs, and trace inequalities-based
(cf. Appendix A below) auxiliary estimates designed to cope optimally with the reaction
dominance are derived. Finally, in [A4, Appendix], in continuation of [A3, Section 3], local
discrete minimization problems in each dual volume D ∈ Dh, designed to bring the value of
the effectivity index down to one, independently of the reaction coefficient r, are derived.

Figure 2.9 gives the effectivity indices for a model problem of [A4, Section 6] in dependence
on the reaction coefficient r ganging between 10−6 and 106. The original estimate (solid lines)
and the local minimization estimate of [A4, Appendix] (dashed lines) are presented. We see
that particularly the later one gives the effectivity index quite close to the optimal value of
one, and this over the whole range of variation of r, which numerically confirms the robustness
of our a posteriori error estimates. Overall, the properties i), ii), iv), and v) of Section 1.1.1
are all satisfied completely and the property iii) is satisfied approximately.

2.2.6 Convection–diffusion–reaction equation: guaranteed (and robust) es-
timates for mixed finite element, finite volume, and discontinuous
Galerkin discretizations

The papers [A11, A12] for mixed finite element and finite volume approximations, respec-
tively, (and their advanced publication [C3]) were actually my first works on a posteriori error
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Figure 2.9: Effectivity indices in dependence on the reaction coefficient r of problem (2.28a)–
(2.28b) for two different (uniformly refined) meshes, vertex-centered finite volume method

estimates. I consider therein the convection–diffusion–reaction equation

−∇·(S∇p) +∇·(pw) + rp = f in Ω, (2.29a)

p = 0 on ∂Ω. (2.29b)

General inhomogeneous Dirichlet and Neumann boundary conditions are treated in [A12] in
place of (2.29b).

The estimates derived in [A11] take the form

|||p − p̃h||| ≤
{

∑

K∈Th

η2NC,K

} 1

2

+

{
∑

K∈Th

(ηR,K + ηC,K + ηU,K)2

} 1

2

, (2.30)

where p is the weak solution of (2.29a)–(2.29b), p̃h is a local postprocessing of a mixed fi-
nite element approximation given by (2.18a)–(2.18b), and ηNC,K , ηR,K , ηC,K , and ηU,K are
respectively the nonconformity, residual, convection, and upwinding estimators, see [A11, The-
orem 4.3]. The lower bound then writes, see [A11, Theorem 4.4]

ηNC,K + ηR,K + ηC,K ≤ |||p − p̃h|||TK (C1 + C2 min{PeK , ̺K}), (2.31)

which implies overestimation by a factor proportional to the minimum of the local grid Péclet
number PeK and the factor ̺K , defined by

PeK := hK
Cw,K

cS,K
, ̺K :=

Cw,K

c
1

2

w,r,Kc
1

2

S,K

,

where Cw,K = ‖w‖∞,K and cw,r,K = 1
2∇·w|K+r|K (recall that cS,K is the smallest eigenvalue

that S takes onK). Thus, the lower bound of (2.31) is not robust with respect to the convection
dominance.

The missing robustness has been obtained in the collaboration [A6] in the discontinuous
Galerkin setting, following an idea of Verfürth [168] (see also Schötzau and Zhu [146]). More
precisely, the energy norm |||v||| is replaced by the augmented norm

|||v|||⊕ := |||v||| + sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{BA(v, ϕ) + BD(v, ϕ)} v ∈ H1(Th), (2.32)
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where BA is the skew-symmetric part of the differential operator associated with (2.29a) and
where BD, specific to the discontinuous Galerkin setting, is for all u, v ∈ H1(Th) defined by

BD(u, v) := −
∑

σ∈Eh

〈w·nσ[[u]], {{Π0v}}〉σ ; (2.33)

here Eh is the set of the sides of Th, [[·]] is the operator denoting a jump across a side, and Π0

stands for the L2-orthogonal projection onto constants, see [A6, Section 3.2]. Still adding a
jump seminorm contribution, |||p − ph|||#,Eh = |||ph|||#,Eh (see [A6, equation (51)]), the final
result, guaranteed upper bound which is fully robust in the singularly perturbed regimes resulting
from dominant convection or reaction, can be written as

|||p − ph|||⊕ + |||p − ph|||#,Eh ≤ η̃ + |||ph|||#,Eh ≤ C(|||p − ph|||⊕ + |||p − ph|||#,Eh),

see [A6, Theorem 3.5]. Here p is the weak solution of (2.29a)–(2.29b), ph is the discontinu-
ous Galerkin approximation [A6, equations (14)–(15)], η̃ and |||ph|||#,Eh are fully computable
estimators, and C is a generic constant in particular independent of the size of w and r.

Many additional analytical techniques and tools to those mentioned before have been
used in [A6]. The upper bound, in the energy framework, is based on [A6, Lemma 4.1],
a generalization of [A11, Lemma 7.1]. Its extension for the augmented norm (2.32) is given
in [A6, Lemma 4.2]. The upper bound, as in Theorem 2.2.7, can be formulated quite generally.
It relies on the notion of a potential reconstruction sh ∈ H1

0 (Ω), a diffusive flux reconstruction
th ∈ H(div,Ω), and a convective flux reconstruction qh ∈ H(div,Ω). These reconstructions are
supposed to satisfy, in a extension of Assumption 2.2.6,

(∇·th +∇·qh + rph, 1)K = (f, 1)K ∀K ∈ Th,

cf. [A6, equation (33)]. The way how to obtain the convective and diffusive flux reconstruc-
tions from the discontinuous Galerkin approximation is specified in [A6, equations (18)–(21)].
Treatment of the completely discontinuous functions is achieved via the specific jump semi-
norm, ||| · |||#,Eh , see [A6, equation (51)]. Numerical experiments, see [A6, Section 5], confirm
the robustness with respect to the convection dominance. Nonmatching meshes are also treated
in [A6, Appendix].

2.2.7 The Stokes equation: a unified framework

The paper [B2] develops a unified framework for a posteriori error estimation for the Stokes
problem, in continuation of the work in [A7].

We consider the Stokes problem in the form: given f ∈ [L2(Ω)]d, find u, the velocity, and
p, the pressure, such that

−∆u+∇p = f in Ω, (2.34a)

∇·u = 0 in Ω, (2.34b)

u = 0 on ∂Ω. (2.34c)

We suppose that the inf–sup condition holds with a positive constant β,

inf
q∈L2

0
(Ω)

sup
v∈[H1

0
(Ω)]d

(q,∇·v)
‖∇v‖ ‖q‖ ≥ β, (2.35)
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and define the energy (semi-)norm for (v, q) ∈ [H1(Th)]d × L2
0(Ω) as

|||(v, q)|||2 := ‖∇v‖2 + β2‖q‖2. (2.36)

Our estimates are based on the following assumption:

Assumption 2.2.12 (Flux reconstruction for the Stokes problem (2.34a)–(2.34c)). There
exists a tensor field σh ∈ H(div,Ω) such that

(∇·σh + f , ei)K = 0, i = 1, . . . , d, ∀K ∈ Th, (2.37)

where ei ∈ R
d is the i-th Euclidean unit vector.

We then have (see [B2, Theorem 5.1]):

Theorem 2.2.13 (Guaranteed estimates for the Stokes problem (2.34a)–(2.34c): a unified
framework). Let (u, p) ∈ [H1

0 (Ω)]
d × L2

0(Ω) be the weak solution of (2.34a)–(2.34c) and let
(uh, ph) ∈ [H1(Th)]d × L2

0(Ω) be arbitrary. Choose an arbitrary sh ∈ [H1
0 (Ω)]

d and σh ∈
H(div,Ω) which satisfies Assumption 2.2.12. Then it holds

|||(u − uh, p − ph)|||

≤
{

∑

K∈Th

η2NC,K

}1/2

+
1

CS

{
∑

K∈Th

{
(ηR,K + ηDF,K)2 + η2D,K

}
}1/2

,

where
1

CS
≤ 2√

5− 1

and where the nonconformity estimator is given by

ηNC,K := ‖∇(uh − sh)‖K K ∈ Th,

the divergence estimator is given by

ηD,K :=
‖∇·sh‖K

β
K ∈ Th,

the residual estimator is given by

ηR,K := C
1

2

P,KhK‖∇·σh + f‖K K ∈ Th,

and the diffusive flux estimator is given by

ηDF,K := ‖∇sh − phI − σh‖K K ∈ Th,

where I is a d× d identity matrix.

A local lower bound is also derived in [B2, Theorem 6.1], under the following assumption:

Assumption 2.2.14 (Approximation property for the Stokes problem). For all K ∈ Th, there
holds

‖∇uh − phI − σh‖K ≤ Cηres,K, (2.38)

where C is a generic constant and ηres,K is the residual-based error indicator (see [B2, equa-
tion (6.1)]).
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Theorem 2.2.15 (Local efficiency for the Stokes problem (2.34a)–(2.34c)). Let Assump-
tion 2.2.14 hold. Then, for all K ∈ Th, there holds

ηNC,K + ηD,K + ηR,K + ηDF,K ≤ C|||(u− uh, p− ph)|||TK + C

{
∑

σ∈EK

h−1
σ ‖[[uh]]‖2σ

}1/2

, (2.39)

where C is a generic constant and EK stands for all the sides sharing a node with the element
K (recall that TK stands for all the elements sharing a node with the element K).

The ways how to construct on the discrete level the flux reconstruction σh satisfying
Assumptions 2.2.12 and 2.2.14 (and similar assumptions for the variants of [B2, Theorem 4.1
and Corollaries 5.1 and 5.2]) for different numerical methods, namely the various conforming
and conforming stabilized finite element methods, the discontinuous Galerkin method, the
Crouzeix–Raviart nonconforming finite element method, the mixed finite element method, and
a general class of finite volume methods, are also given in [B2]. In particular, we extend in [B2,
Section 7.2.2] to higher-order methods the approach of [A3, A13] and [C4] (see Section 2.2.1)
through an equilibration technique in the spirit of Ainsworth and Oden [9], on the dual meshes
Dh. For conforming and conforming stabilized finite element methods, the last term of (2.39)
vanishes, giving optimal local efficiency in the sense of property ii) of Section 1.1.1. In many
other methods, it is also possible to bound this term by |||(u−uh, p− ph)|||TK . In my opinion,
the most important contribution of [B2] is that it gives a unified framework for a posteriori
error estimates for the Stokes problem discretized by various numerical methods, optimal in
the sense of the five optimal properties of Section 1.1.1 (up to exact asymptotic exactness).
Supportive numerical experiments conclude [B2].

2.3 Stationary variational inequalities

I also had a chance to be involved in a collaboration on a posteriori error estimates for a system
of variational inequalities, namely the contact between two membranes.

2.3.1 Contact between membranes: optimal estimates for conforming finite
elements

The problem that we have studied in [A1] and [B1] writes: find p1 and p2, the displacements
of two membranes, and λ, the action of the second membrane on the first one, verifying

−µ1∆p1 − λ = f1 in Ω, (2.40a)

−µ2∆p2 + λ = f2 in Ω, (2.40b)

p1 − p2 ≥ 0, λ ≥ 0, (p1 − p2)λ = 0 in Ω, (2.40c)

p1 = 0 on ∂Ω, (2.40d)

p2 = 0 on ∂Ω; (2.40e)

here, µ1 and µ2 are positive constants representing the tensions of the membranes.
In [A1], we have derived residual a posteriori error estimates. These estimates do not satisfy

property i) in the strict sense (an unknown generic constant appears) (see Theorem 7.2 and
Corollary 7.3 in [A1]). Moreover, these estimates are not optimally locally efficient in the sense
of property ii) (see Theorem 7.5 in [A1]). We have been able to improve these two properties
in [B1]. Guaranteed and optimally locally efficient (up to a numerically negligible term) a
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Figure 2.10: The displacements (left) and the action (right) for an adaptive discretization of
the contact between membranes (2.40a)–(2.40e)

Figure 2.11: Adaptively refined mesh for the contact between membranes (2.40a)–(2.40e)

posteriori error estimates via a flux reconstruction similar to that described in Section 2.2.1 are
derived in [B1], see Theorem 3.4 and Corollary 3.5 for the upper bound and Propositions 3.7–
3.9 for the lower bound in this reference. To my best knowledge, such a result has not been
obtained previously elsewhere.

Numerical experiments of [B1, Section 4] show the expected behavior. As an example, we
show in Figure 2.10 the approximated displacements and the approximated action; Figure 2.11
then gives the corresponding adaptively refined mesh.

2.4 Stationary nonlinear problems

2.4.1 Monotone nonlinear problems: guaranteed and robust estimates for
conforming finite elements

We have in [A5] considered the second-order monotone quasi-linear diffusion-type problem

−∇·σ(∇p) = f in Ω, (2.41a)

p = 0 on ∂Ω, (2.41b)

where the flux function σ : Rd → R
d takes the quasi-linear form

∀ξ ∈ R
d, σ(ξ) = a(|ξ|)ξ, (2.42)

with |·| the Euclidean norm in R
d and a : R+ → R a given function. The function a is assumed

to satisfy a growth condition of the form a(x) ∼ xq−2 as x → +∞ for some real number
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q ∈ (1,+∞), so that the natural energy space for the above model problem is the Sobolev
space W 1,q

0 (Ω). The problem (2.41a)–(2.41b) in weak form amounts to finding p ∈ W 1,q
0 (Ω)

such that
(σ(∇p),∇v) = (f, v) ∀v ∈ W 1,q

0 (Ω). (2.43)

Let pL,h be an arbitrary function in W 1,q
0 (Ω). The error measure used in [A5] is the dual

norm of the residual,

Jp(pL,h) := sup
ϕ∈W 1,q

0
(Ω)\{0}

(σ(∇p) − σ(∇pL,h),∇ϕ)

‖∇ϕ‖q
. (2.44)

Let r be the dual exponent of q, r := q/(q − 1). Similarly to Assumption 2.2.6, we will
need below the following assumption:

Assumption 2.4.1 (Flux reconstruction for the nonlinear problem (2.41a)–(2.41b)). There
exists a mesh D∗

h and a vector field th ∈ Wr(div,Ω) := {v ∈ [Lr(Ω)]d; ∇·v ∈ Lr(Ω)} such
that

(∇·th, 1)D = (f, 1)D ∀D ∈ Dint,∗
h .

Let us introduce the linear or affine flux function σL : R
d → R

d. This function is in
practice obtained as, e.g., the Newton or the fixed point linearization of the function σ at a
given function p0 ∈ W 1,q

0 (Ω). We then have, see [A5, Theorem 3.5], developing the ideas from
Han [95] and Chaillou and Suri [61, 62]:

Theorem 2.4.2 (Guaranteed estimates for the monotone nonlinear problem (2.41a)–(2.41b)).
Let p be the solution of (2.43) and let ph ∈ W 1,q

0 (Ω) be arbitrary. Let Assumption 2.4.1 be
satisfied. Then

Jp(pL,h) ≤
{

∑

D∈D∗

h

(ηR,D + ηDF,D)
r

} 1

r

+

{
∑

D∈D∗

h

ηrL,D

} 1

r

,

where the diffusive flux estimator is given by

ηDF,D := ‖σL(∇pL,h) + th‖r,D D ∈ D∗
h,

the residual estimator is given by

ηR,D := mD‖f −∇·th‖r,D D ∈ D∗
h,

with the weighting coefficient mD similar to that of (2.8), and the linearization estimator is
given by

ηL,D := ‖σ(∇pL,h)− σL(∇pL,h)‖r,D D ∈ D∗
h.

Set

ηD :=

{
∑

D∈D∗

h

(ηR,D + ηDF,D)
r

} 1

r

(2.45)

the overall discretization error estimator and

ηL :=

{
∑

D∈D∗

h

ηrL,D

} 1

r

(2.46)
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Figure 2.12: Estimated (left) and actual (right) error distribution; problem (2.41a)–(2.41b)
with a singular solution, early stopped nonlinear solver

the overall linearization error estimator. Under the condition that the linearization error
estimator ηL is small in comparison with the discretization ηD one, namely that

ηL ≤ γ ηD, 0 < γ ≤ 1, (2.47)

for a parameter γ, typically chosen close to 1, we prove in [A5, Theorem 4.8] a global efficiency
result of the form

ηL + ηD ≤ CJp(pL,h), (2.48)

with a generic constant C in particular independent of the nonlinear function σ. This means that
our estimates are robust. I am not aware of another result which would give guaranteed and
robust a posteriori error estimates for monotone nonlinear problems. Moreover, under the con-
dition that the linearization error estimator ηL,D is small in comparison with the discretization
one ηR,D + ηDF,D locally, dual volume by dual volume, namely that

ηL,D ≤ γD (ηR,D + ηDF,D), 0 < γD ≤ 1 ∀D ∈ D∗
h, (2.49)

for a set of parameters γD, typically chosen close to 1, we prove in [A5, Theorem 4.4] a local
efficiency result of the form

ηL,D + ηR,D + ηDF,D ≤ C‖σ(∇p)− σ(∇pL,h)‖r,D, (2.50)

with once again a generic constant C, independent of the nonlinear function σ. Note that (2.50)
means that the a posteriori error estimate of Theorem 2.4.2 can be safely used for adaptive
mesh refinement even in the presence of the linearization error. Moreover, both (2.47) and (2.49)
can be further used as a stopping criterion for iterative nonlinear solvers, such as the Newton or
fixed-point ones, see Section 3.2 below.

An example of a numerical result from [A5, Section 6] is presented in Figure 2.12. We
show there a predicted and actual error distribution for a case of a singular solution, obtained
when the Newton method did not converge completely (the local stopping criterion (2.49) with
γD = 0.1 was used). We see that even in this case, the predicted error distribution is excellent.

Many additional analytical techniques and tools to those mentioned before have been used
in [A5]. The analysis relies on the notion of dual norms as Jp(pL,h) of (2.44), the ways how
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to bound them from above and from below, and duality arguments. We work with Sobolev
spaces W 1,q

0 (Ω), in the Lq / Lr setting, and derive Lebesgue exponent q-robust inverse, bubble,
Poincaré, and Friedrichs inequalities. Linearization techniques (e.g., Newton or fixed-point ones)
are needed.

2.5 Instationary linear problems

I present here the contributions I had a chance to participate at concerning a posteriori error
estimates for instationary linear problems.

2.5.1 The heat equation: a unified framework

In [A7], we have considered the heat equation

∂tp−∆p = f a.e. in Ω× (0, T ), (2.51a)

p = 0 a.e. on ∂Ω × (0, T ), (2.51b)

p(·, 0) = p0 a.e. in Ω, (2.51c)

with the final simulation time T > 0, the source term f ∈ L2(Ω × (0, T )), and the initial
condition p0 ∈ L2(Ω). The exact solution is such that p ∈ X := L2(0, T ;H1

0 (Ω)) with ∂tp ∈
X ′ = L2(0, T ;H−1(Ω)). For a.e. t ∈ (0, T ), there holds

〈∂tp, ϕ〉(t) + (∇p,∇ϕ)(t) = (f, ϕ)(t) ∀ϕ ∈ H1
0 (Ω). (2.52)

Prior to presenting the main results, I need to introduce some more notation. Let y ∈ X.
The space-time energy norm is given by

‖y‖2X :=

∫ T

0
‖∇y‖2(t) dt. (2.53)

We take up the approach introduced by Verfürth [165] and measure the error in a numerical
approximation of (2.51a)–(2.51c) in the above energy norm augmented by a dual norm of the
time derivative: for y ∈ Y := {y ∈ X; ∂ty ∈ X ′}, we set

‖y‖Y := ‖y‖X + ‖∂ty‖X′ , ‖∂ty‖X′ :=

{∫ T

0
‖∂ty‖2H−1(t) dt

}1/2

. (2.54)

We allow the spatial meshes to evolve in time; we denote, for all time levels tn, 0 ≤ n ≤ N , the
associated mesh by T n

h . We suppose that the approximate solution on tn, denoted by pnhτ , is
such that pnhτ ∈ H1(T n

h ) and we let phτ be the space-time approximate solution, given by pnhτ
at each discrete time tn and piecewise affine and continuous in time. We denote the space of
such functions by P 1

τ (H
1(Th)). We also denote by P 1

τ (H
1
0 (Ω)) the space of functions piecewise

affine and continuous in time and H1
0 (Ω) in space and P 0

τ (H(div,Ω)) the space of functions
piecewise constant in time and H(div,Ω) in space. Set τn := tn − tn−1, In the time interval
(tn−1, tn], and f̃n := 1

τn

∫
In

f(·, t) dt, the in-time mean value of the data f . Let finally T n,n+1
h

be a common refinement of the two consecutive meshes T n
h and T n+1

h .
As before in Sections 2.2.1, 2.2.2, 2.2.3, and 2.2.7, we intend to give a unified framework.

For this reason, we introduce the following assumption, a space-time variant of the Assump-
tions 2.2.6, 2.4.1, and 2.2.12:
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Assumption 2.5.1 (Potential and flux reconstructions for the heat problem (2.51a)–(2.51c)).
There exist respectively scalar and vector space-time fields

shτ ∈ P 1
τ (H

1
0 (Ω)), thτ ∈ P 0

τ (H(div,Ω)), (2.55)

such that, for all 0 ≤ n ≤ N ,

(snhτ , 1)K = (pnhτ , 1)K ∀K ∈ T n,n+1
h , (2.56)

and, for all 1 ≤ n ≤ N ,

(f̃n − ∂tp
n
hτ −∇·tnhτ , 1)K = 0 ∀K ∈ T n

h . (2.57)

Remark 2.5.2 (Assumption 2.5.1). Note that Assumption 2.5.1 means that the potential
reconstruction shτ preserves the elementwise mean values of phτ , whereas the flux reconstruction
thτ is locally conservative.

Under Assumption 2.5.1, we have, see [A7, Theorem 3.2]:

Theorem 2.5.3 (Guaranteed estimate for the heat problem (2.51a)–(2.51c): a unified frame-
work). Let p be the solution of (2.52) and let phτ ∈ P 1

τ (H
1(Th)) be arbitrary. Let Assump-

tion 2.5.1 be satisfied. Then

‖p − phτ‖Y ≤ 3





N∑

n=1

∫

In

∑

K∈T n
h

(ηnR,K + ηnDF,K(t))2 dt





1/2

+ ηIC + 3‖f − f̃‖X′

+





N∑

n=1

∫

In

∑

K∈T n
h

(ηnNC,1,K)2(t) dt





1/2

+





N∑

n=1

τn
∑

K∈T n
h

(ηnNC,2,K)2





1/2

,

where, for all 1 ≤ n ≤ N and K ∈ T n
h , the residual estimator and the diffusive flux estimator

are respectively given as

ηnR,K := C
1

2

P,KhK‖f̃n − ∂ts
n
hτ −∇·tnhτ‖K ,

ηnDF,K(t) := ‖∇shτ (t) + tnhτ‖K , t ∈ In,

with CP,K := 1/π2 the constant from the Poincaré inequality (A.1), and where the nonconfor-
mity estimators are given by

ηnNC,1,K(t) := ‖∇(shτ − phτ )(t)‖K , t ∈ In,

ηnNC,2,K := C
1

2

P,KhK‖∂t(shτ − phτ )
n‖K .

Finally, the initial condition estimator is given by

ηIC := 21/2‖s0hτ − p0‖.

Note in particular that the estimate of Theorem 2.5.3 gives a guaranteed upper bound on
the error measured in the augmented norm (2.54), and this in a unified framework, not relying
on any particular numerical method.
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We next intend to distinguish the space and time contributions to the error. For this
reason, we define, for all 1 ≤ n ≤ N ,

(ηnsp)
2 :=

∑

K∈T n
h

3

{
τn(9(ηnR,K + ηnDF,1,K)2 + (ηnNC,2,K)2)+

∫

In

(ηnNC,1,K)2(t) dt

}
,

(ηntm)
2 :=

∑

K∈T n
h

3τn‖∇(snhτ − sn−1
hτ )‖2K ,

where
ηnDF,1,K := ‖∇snhτ + tnhτ‖K .

We then have, see [A7, Theorem 3.6]:

Theorem 2.5.4 (Guaranteed estimate distinguishing space and time errors). Under the as-
sumptions of Theorem 2.5.3, there holds

‖p − phτ‖Y ≤
{

N∑

n=1

(ηnsp)
2

}1/2

+

{
N∑

n=1

(ηntm)
2

}1/2

+ ηIC + 3‖f − f̃‖X′ .

Using this splitting, a space-time adaptive time-marching algorithm is proposed in [A7,
Section 3.3], see also Section 3.4 below in the context of the convection–diffusion–reaction
equation. This algorithm develops the ideas of Picasso [133], Verfürth [165], or Bergam et
al. [38] and is designed to make the calculation efficient through balancing the spatial error
parts ηnsp and the temporal error parts ηntm. Moreover, it allows to achieve a user-given precision.
Thus, efficiency and error control in the sense of Section 1.1 can be obtained.

We now turn to the efficiency of the estimate of Theorem 2.5.3. Define, for a set E ⊂ En
h

of the sides and a function v ∈ T n
h , the jump seminorms

|[[v]]|± 1

2
,E :=

{
∑

σ∈E

h±1
σ ‖[[v]]‖2σ

}1/2

,

where hσ denotes the diameter of the side σ. In order to present a lower bound in the unified
framework as well, we need the following assumption (cf. Assumption 2.2.14):

Assumption 2.5.5 (Approximation property for the heat problem (2.51a)–(2.51c)). We as-
sume that for all 1 ≤ n ≤ N and for all K ∈ T n

h ,

‖∇pnhτ + tnhτ‖K ≤ C





∑

L∈TK

h2L‖f̃n − ∂tp
n
hτ +∆pnhτ‖2L





1/2

+ |[[∇pnhτ ·n]]|+ 1

2
,Eint,n

K

+ |[[pnhτ ]]|− 1

2
,En

K
,

with a generic constant C, see [A7, equation (3.17)] (here TK are all the elements sharing a
node with K, En

K are all the sides sharing a node with K, and E
int,n
K are all the sides sharing

a node with K in the interior of Ω).

Define a jump seminorm contribution term

J n(phτ )
2 := τn

∑

K∈T n−1

h

|[[pn−1
hτ ]]|2

− 1

2
,En−1

K

+ τn
∑

K∈T n
h

|[[pnhτ ]]|2− 1

2
,En

K
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and a data oscillation term

(En
f )

2 := ‖f − f̃‖2X′(In)
+ τn

∑

K∈T n
h

h2K‖f̃n −ΠV n
h
f̃n‖2K ,

where V n
h is the discrete approximation space. We then have, see [A7, Theorem 3.9]:

Theorem 2.5.6 (Local efficiency for the heat problem (2.51a)–(2.51c)). Let Assumption 2.5.5
hold, let 1 ≤ n ≤ N , and let both the refinement and coarsening in time be not too abrupt.
Then

ηnsp + ηntm ≤ C(‖p − phτ‖Y (In) + J n(phτ ) + En
f ), (2.58)

where C is a generic constant, in particular independent of the final simulation time T .

The lower bound of Theorem 2.5.6 is local in time but only global in space. This result
is not fully optimal, as we are not sure to predict well the distribution of the error in space,
and, consequently, to refine adequately the space mesh (compare it with the optimal situation
for stationary problems in Section 2.2). However, it is of the same type as that achieved in
Verfürth [165], and, to my best knowledge, local-in-time and local-in-space a posteriori error
estimates for instationary problems have not been presented in the literature yet. Please
also note the occurrence of the term J n(phτ ) on the right-hand side of (2.58). This term
vanishes for conforming methods (finite elements or vertex-centered finite volumes) and can
be bounded by ‖p−phτ‖Y (In) for many other methods, see [A7, Remark 3.10], so that only the
error term ‖p− phτ‖Y (In) and the usual data oscillation term En

f are present on the right-hand
side of (2.58).

To apply the above estimates to a given numerical method, one needs to verify Assump-
tion 2.5.1 for the upper bound of Theorem 2.5.3 and Assumption 2.5.5 for the lower bound
of Theorem 2.5.6. We show how to do this for the discontinuous Galerkin, various finite vol-
ume, mixed finite element, and conforming and nonconforming finite element methods in [A7,
Section 4 and Appendix].

Some additional analytical techniques and tools to those mentioned before have been used
in [A7]. Firstly, the analysis relies on the notion of space-time dual norms as ‖ · ‖X′ , cf. (2.54),
and the ways how to bound them from above and from below. The space bubbles and inverse
inequalities are in the heart of the important averaging operator satisfying the property (2.56).
The time bubbles technique of Verfürth [165] has been used in the lower bound proof.

2.5.2 Convection–diffusion–reaction equation: conforming discretizations

In [A9], we have extended the results of [A7] to the instationary convection–diffusion–reaction
setting in the context of vertex-centered finite volume methods. In particular a guaranteed
upper bound similar to that of Theorem 2.5.3 has been derived in [A9, Theorem 4.2]. We have
also in [A9, Theorem 4.1] derived an estimate for the energy norm only. As in Theorem 2.5.4,
[A9, Corollary 4.6] gives an upper bound distinguishing the space and time error contributions.
A space-time adaptive time marching algorithm, designed to achieve a user-given precision as
efficiently as possible, is presented [A9, Section 6], see Section 3.4 below for its description. A
lower bound similar to that of Theorem 2.5.6 is given in [A9, Theorem 4.7]. In particular,
following Verfürth [167], robustness with respect to the convection dominance is shown in the
dual norm setting.

One of the features of the analysis of [A9] is that it takes into account mass lumping,
upwind weighting for the convection term, and the use of nonmatching grids, which are all
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Figure 2.13: Estimated and actual energy error (left) and the corresponding effectivity in-
dex (right), combined finite volume–finite element method, instationary convection–diffusion–
reaction problem

Figure 2.14: Estimated (left) and actual (right) energy error distribution, combined finite
volume–finite element method, instationary convection–diffusion–reaction problem

useful and frequent in practice. The adaptive algorithm is implemented in the code TALIS-
MAN [171] and numerical experiments are presented in [A9]. To give an example, we show
in Figure 2.13 the estimated and actual energy error and the corresponding effectivity index
for a model problem with a known solution. The results are similar to those of [A11, A12]
in the stationary convection–diffusion–reaction setting: the effectivity index depends on the
local grid Péclet number and only gets to optimal values once the local grid Péclet number
gets small. Figure 2.14 then shows the predicted and actual error distribution. Although the
theoretical result is, as in Theorem 2.5.6, global-in-space only, we can see from Figure 2.14
that the spatial error distribution is in practice predicted by our estimator reasonably well.
Finally, in Figure 2.15, we present examples of approximate solutions. In particular, increasing
the maximal refinement level (the right part in comparison with the left one) visibly helps to
catch much better the steep exact solution. We refer for more examples to [A9, Section 7].

2.6 Instationary nonlinear problems

In the framework of the CNRS GNR MoMaS project A posteriori estimates for efficient calcu-
lations and error control in numerical simulations of porous media and also in the framework of
the collaboration with the IFP, the French Petroleum Institute, via the ERT project Enhanced
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oil recovery and geological sequestration of CO2: mesh adaptivity, a posteriori error control,
and other advanced techniques, I have recently been largely involved in instationary nonlinear
problems. This topic represents a series of works in progress, with in particular three Ph.D.
theses, see Section 5.2 below. The first results in this direction are those of [A10, A5, A7, A9],
see Sections 2.2.4, 2.4.1, 2.5.1, and 2.5.2, respectively. As an example of an ongoing work, I
give below some ideas for the two-phase flow.

2.6.1 Two-phase flow: guaranteed estimates

In [B4], I investigate the two-phase flow, given by the instationary nonlinear coupled system:
find the phase saturations sα, the phase pressures pα, and the phase Darcy velocities uα,
α ∈ {o,w}, such that

∂t(φsα) +∇·uα = qα in Ω× (0, T ), α ∈ {o,w}, (2.59a)

uα = −kr,α(sw)

µα
K(∇pα + ραg∇z) in Ω× (0, T ), α ∈ {o,w}, (2.59b)

so + sw = 1 in Ω× (0, T ), (2.59c)

po − pw = pc(sw) in Ω× (0, T ). (2.59d)

The subscripts o,w stand for nonwetting and wetting phases, respectively. In the present
context, the nonwetting phase is oil and the wetting one is water. In (2.59a)–(2.59d), the
parameters which are only supposed to depend on the space coordinate x and the time t are
the phase viscosities µα, the phase densities ρα, and the phase sources qα, α ∈ {o,w}. For
the sake of simplicity, I suppose that the porosity φ is constant in space and in time; T > 0 is
the final time. The system (2.59a)–(2.59d) is nonlinear and coupled because of the presence
of pc, the capillary pressure, and of kr,α, the phase relative permeabilities, which are both
given functions of sw. For the sake of simplicity of the mathematical analysis only, we suppose
homogeneous Dirichlet boundary conditions

so = 0 on ∂Ω× (0, T ), (2.60a)

pw = 0 on ∂Ω× (0, T ). (2.60b)

The initial condition is imposed through

so(·, 0) = s0o in Ω. (2.61)
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In continuation of the results presented in Sections 2.2.4, 2.4.1, and 2.5.1, I have first
derived guaranteed a posteriori error estimates for the problem (2.59a)–(2.61), and this in a
unified setting, independent of the particular numerical method. The main result of [B4] in
this direction is the equivalent of Theorems 2.2.7, 2.2.11, 2.4.2, and 2.5.3, stating that

|||(sα − sα,hτ , pα − pα,hτ )||| ≤





N∑

n=1

∫

In

∑

K∈T n
h

(ηnR,K,α + ηnDF,K,α(t))
2 dt





1

2

+





N∑

n=1

∫

In

∑

K∈T n
h

(ηnNC,K,α(t))
2 dt





1

2

.

(2.62)

Here |||·, ·||| stands for a dual norm similar to that of (2.44) and ηnR,K,α, η
n
DF,K,α, and ηnNC,K,α

are fully computable estimators as those of Theorem 2.5.3.
In [B4], I have also distinguished, estimated separately, and compared the different error

sources. This allows for efficient calculations through equilibration of the principal components
and stopping criteria for the various involved iterative procedures. Section 3.5 below gives more
details.



Chapter 3

Stopping criteria for linear and
nonlinear iterative solvers and
adaptive discretizations

The results presented in this short chapter are entirely based on the a posteriori error estimates
of Chapter 2. I could have presented them directly in Chapter 2, but I prefer to do so here,
so as to stress their, in my opinion, big importance. The motivation here is to achieve efficient
calculation and error control in the sense of Section 1.1.

3.1 Stopping criteria for linear algebraic solvers

I have in Section 2.2.4 presented a posteriori error estimates of [A10], enabling to take into
account the error stemming from the fact that an iterative algebraic solver did not converge
completely. It turns out that the conditions (2.24) or (2.26) represent natural stopping criteria
for linear algebraic solvers. Let us explain the major idea, see also Becker et al. [35], Patera
and Rønquist [129], Arioli et al. [18], Arioli and Loghin [17], Picasso [134], and Silvester and
Simoncini [147], on the example of Figure 3.1.

In this figure, we plot the evolution of the energy error as a function of the number of
iterations of the conjugate gradients iterative solver for the model problem (2.1a)–(2.1b) dis-
cretized by the cell-centered finite volume method. The behavior is characteristic: in first cca
23 iterations, the error decreases, but it stagnates for all successive iterations. The reason for
that is that the error has two components, the algebraic one, stemming from the fact that the
system of linear equations is not solved exactly, and the discretization one, stemming from the
mesh size and approximation properties of the finite volume solution. At the beginning (we
start from a zero initial vector), the algebraic error dominates. Then, however, the algebraic
error gets small in comparison with the discretization one, and the overall error stagnates, as the
discretization error (which does not change with the iterations) becomes dominant. It shows
that our nonconformity estimator ηNC (2.23) represents a reasonable approximation of the dis-
cretization error, see the behavior of ηNC in Figure 3.1. Similarly, the algebraic error estimator
η3AE (recall that this is an upper bound on ηAE (2.22)) represents the algebraic error. Then
our stopping criterion (2.24) roughly says that we should stop the algebraic solver iteration
when the curves of ηNC and η3AE cross. The property (2.25) testifies that it is safe to do so.
An important number of the algebraic solver iterations, where the overall error does not improve
anymore and where the CPU time is literally wasted, may be sparred. In Figure 3.1, we also
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Figure 3.1: Energy error, overall estimators, and the algebraic and discretization estimators
as a function of the number of iterations of the conjugate gradients iterative solver; prob-
lem (2.1a)–(2.1b) with a smooth solution (left) and with a contrast 100 in the diffusion coef-
ficient (right)
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Figure 3.2: Dual error, overall estimator, and the linearization and discretization estimators as
a function of the number of iterations of the Newton iterative solver; problem (2.41a)–(2.41b)
with q = 10 (left) and q = 50 (right)

plot two overall estimators (ηNC + η3AE and ηNC + η̂2AE) (the data oscillation estimators ηOsc,K

are zero here) showing our final error estimate including the algebraic error (the corresponding
effectivity indices were reported in Figure 2.8).

3.2 Stopping criteria for nonlinear solvers

I have in Section 2.4.1 presented a posteriori error estimates of [A5], enabling to take into
account the error stemming from the fact that an iterative nonlinear solver did not converge
completely. It turns out that the conditions (2.47) or (2.49) represent natural stopping criteria
for nonlinear solvers, as in the previous section for linear solvers. The major idea is apparent
from the example of Figure 3.2.

In this figure, we plot the evolution of the dual error as a function of the number of iterations
of the Newton iterative nonlinear solver for the model problem (2.41a)–(2.41b) discretized by
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Figure 3.3: Adaptive subdomain (left) and mortar (right) meshes, mortar-coupled discontin-
uous Galerkin–mixed finite element method, problem (2.1a)–(2.1b)

the finite element method. The behavior is characteristic: in first cca 5 iterations, the error
decreases, but it stagnates for all successive iterations. The reason for that is that the error
has two components, the linearization one, stemming from the fact that the system of nonlinear
equations is not solved exactly, and the discretization one, stemming from the mesh size and
approximation properties of the finite element solution. At the beginning, the linearization
error dominates. Then, however, the linearization error gets small in comparison with the
discretization one, and the overall error stagnates, as the discretization error (which does not
change with the iterations) becomes dominant. It shows that our discretization estimator
ηD (2.45) represents a reasonable approximation of the discretization error, see its behavior in
Figure 3.2. Similarly, the linearization error estimator ηL (2.46) represents the linearization
error. Then our stopping criterion (2.47) roughly says that we should stop the linearization
solver iteration when the curves of ηD and ηL cross. The property (2.48) testifies that it is
safe to do so. An important number of the linearization solver iterations, where the overall error
does not improve anymore and where the CPU time is literally wasted, may be sparred.

3.3 Balancing the subdomain and interface errors in mortar

discretizations

In Section 2.2.3, we have derived a posteriori error estimates including the error from the use
of mortars on the interfaces between subdomains. Our a posteriori error estimates, as in the
case of Sections 3.1 and 3.2, enable to distinguish the different components of the error. In
the present case, it is the subdomain discretization error, stemming from the mesh size and
approximation properties of the given numerical method in the interiors of the subdomains,
and the mortar discretization error, stemming from the use of mortars to glue the solution over
the nonmatching interface. Following Wheeler and Yotov [175], and using the same detailed
concepts as in Sections 3.1 and 3.2, an adaptive algorithm is designed to balance these two
error components, see [B3, Section 8.3]. Figure 3.3 shows the performance of this algorithm.
Remark that both the subdomain meshes and the mortar interface meshes are refined in the
vicinity of the singularity residing in the origin.
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Parameter Meaning

Nsp maximal level of space refinement
Ntm maximal level of time refinement
Ref percentage of cells for the space mesh refinement
Deref percentage of cells for the space mesh derefinement
Bulk spatial error estimate fraction for the derefinement
DerefSp error estimate percentage for the space mesh derefinement
DerefTm error estimate percentage for the time mesh derefinement
Comp parameter for comparison of ηsp and ηtm
StepsSpDeref number of steps after which the space mesh is derefined
StepsTmDeref number of steps after which the time mesh is derefined

Table 3.1: Different parameters of the adaptive algorithm and their meaning

3.4 An adaptive discretization of an instationary convection–

diffusion–reaction problem allowing to achieve a given pre-
cision

Building upon the ideas of Picasso [133], Verfürth [165], and Bergam et al. [38], space-time
adaptive time-marching algorithms are proposed in [A7, Section 3.3] and [A9, Section 6]. The
purpose is twofold. Firstly, we want that the algorithm automatically achieves a user-given
relative precision, say ε, i.e., that

∑N
n=1(η

n
sp + ηntm)

2

∑N
n=1 ‖phτ‖2X(tn−1,tn)

≤ ε2. (3.1)

Secondly, we want the calculation to be efficient. Using the fact that there are no unknown
constants hidden in both ηnsp and ηntm, we achieve this through balancing the spatial error parts
ηnsp and the temporal error parts ηntm. The algorithm is thus designed to, on each time level
tn−1, choose the space mesh Dn

h and time step τn such that

ηnsp ≈ ε
‖phτ‖X(tn−1 ,tn)

2
, ηntm ≈ ε

‖phτ‖X(tn−1 ,tn)

2
.

For practical implementation purposes, we introduce the maximal refinement level param-
eters Nsp and Ntm. Some other parameters of the algorithm are listed in Table 3.1. We also
denote by SpTmUnkn the total number of space–time unknowns. The actual algorithm is as
follows:

• let an initial mesh D0
h and an initial time step τ1 be given

• set up the initial conditions on D0
h

• set t0 = t1 = 0, D1
h = D0

h, and n = 1

• set EstSpPrev = 1, EstTmPrev = 0

• set LevTmRef = 0, SpTmUnkn = 0

• set η = 0

while tn < T

• set Count = 0
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• set tn = tn−1 + τn

• set up the boundary conditions on Dn
h

• set ηnsp = Crit = 1, ItSpRef = 1

• while ηnsp ≥ Crit, ItSpRef ≤ Nsp + 1, and EstSpPrev > Comp · EstTmPrev when
ItSpRef 6= 1

• if ItSpRef > 1

• refine such cells D ∈ Dn
h where ηnD,sp ≥ Ref ·maxE∈Dn

h
ηnE,sp and such that

their level of refinement is less than Nsp

• create a new mesh Dn
h and interpolate the data onto this new mesh

• solve the discrete problem on Dn
h with the time step τn to get new phτ |[tn−1,tn]

• compute the space a posteriori error estimate ηnsp
• set EstSpPrev = ηnsp/

√
τn

• compute the norm of the approximate solution ‖phτ‖X(tn−1 ,tn) and set Crit =
ε · ‖phτ‖X(tn−1 ,tn)/2

• set ItSpRef = ItSpRef+ 1

• compute the time a posteriori error estimate ηntm
• set EstTmPrev = ηntm/

√
τn

• if ηntm ≥ Crit, LevTmRef < Ntm, and EstTmPrev > Comp · EstSpPrev
• set tn = tn − τn, τn = τn/3, and LevTmRef = LevTmRef+ 1

• else

• η2 = η2 +
(
ηntm + ηnsp

)2

• SpTmUnkn = SpTmUnkn+ |Dn
h |

• Count = Count+ 1

• if Count is a multiple of StepsSpDeref

• set NBulkCells as the number of cells which contain Bulk · EstSpPrev
part of the spatial error

• derefine such cells D ∈ Dn
h that ηnD,sp ≤ Deref ·maxE∈Dn

h
ηnE,sp and that

ηnD,sp < Comp · DerefSp · EstTmPrev · √τn/2/NBulkCells

• create a new mesh Dn
h and interpolate the data onto this mesh

• if Count is a multiple of StepsTmDeref and EstTmPrev < Comp · DerefTm ·
EstSpPrev, set τn = 3τn and LevTmRef = LevTmRef− 1

• set Dn+1
h = Dn

h , τn+1 = τn, and n = n+ 1

3.5 An adaptive discretization of an instationary nonlinear

coupled system allowing to achieve a given precision

In Section 2.6.1, a posteriori error estimates derived in [B4] for the two-phase flow are pre-
sented. These estimates also allow to distinguish, estimate separately, and balance the different
error sources, combining the ideas of all Sections 3.1, 3.2, and 3.4. In particular, the esti-
mate (2.62) can be further developed as follows. Consider the time step n, the linearization
step k (by, e.g., the Newton or the fixed point method), the iterative algebraic solver step i,

and the corresponding approximations (sk,iα,hτ , p
k,i
α,hτ ). Then

|||(sα − sk,iα,hτ , pα − pk,iα,hτ )|||In ≤ ηn,k,isp,α + ηn,k,itm,α + ηn,k,ilin,α + ηn,k,ialg,α,
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where ηn,k,isp,α is a spatial estimator, ηn,k,itm,α a temporal estimator, ηn,k,ilin,α a linearization estimator,

and ηn,k,ialg,α an algebraic estimator. Consequently, the iterative procedures (iterative linearization
and iterative algebraic system solution) on a given time level can be stopped whenever the indi-
vidual errors drop to the level at which they do not affect significantly the overall error. Similarly,
the space and time discretization errors can be equilibrated, adjusted so that they are of similar
size. Such a procedure is likely to lead to important computational savings, as performing an
excessive number of unnecessary linearization/linear solver iterations and using too fine (with
respect to the other components of the error) space or time meshes can be avoided. Many of
these concepts are known for long time in the engineering practice; I hope that the present
developments can set them in a rigorous framework.



Chapter 4

Inexpensive implementations,
relations between different
numerical methods, and
improvement of approximate
solutions by local postprocessing

I present in this chapter various relations and equivalences between different numerical meth-
ods, namely in view of achieving inexpensive implementations and developing unified frameworks
in the sense described in Section 1.1.3. I also mention the results, often stemming from the
a posteriori error estimates of Chapter 2, enabling to obtain improved approximations by local
postprocessing. Some results leading to nontraditional a priori analyses are also described.

4.1 Inexpensive implementations and relations between differ-
ent numerical methods

4.1.1 Inexpensive implementation of the mixed finite element method and
its relation to the finite volume method

Let us consider the diffusion model problem (2.1a)–(2.1b). The lowest-order Raviart–Thomas–
Nédélec mixed finite element method (see [138] and [121]) for this problem leads to linear
algebraic systems of the form

(
A B

t

B 0

)(
U
P

)
=

(
F
G

)
(4.1)

for flux unknowns U and potential unknowns P of indefinite, saddle-point-type.
There has been a long-standing interest to reduce (4.1) to a system for the potentials P

only. The main motivations are to reduce the number of unknowns, to replace the saddle point
system (4.1) by, if possible, a symmetric and positive definite one, and to relate the lowest-
order mixed finite element method to the finite difference and finite volume ones. A possible
solution consists in first using the first block equation of (4.1) to eliminate the unknowns U
through

U = A
−1(F − B

tP ). (4.2)
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Note that (4.2) represents a global flux expression (all the fluxes U are expressed from all
the potentials P ), which includes a solution of a global linear system. Plugging (4.2) into the
second block equation of (4.1), one can solve for P the system

BA
−1

B
tP = BA

−1F −G. (4.3)

The matrix BA
−1

B
t is symmetric and positive definite but the problem is that it tends to be

full and cannot be obtained in practice as this would be too expensive. Various approximate
numerical quadratures have been used in, e.g., Russell and Wheeler [144], Agouzal et al. [3],
Baranger et al. [29], Arbogast et al. [16, 15] to reduce (4.1) into a system of the form

S̃P̃ = H̃. (4.4)

In these approaches, however, because of the numerical quadratures, the new potentials P̃
are in general different from those in (4.1) and one cannot recover the exact potentials P .
To relations between related numerical methods, we refer to, e.g., Klausen and Russell [106],
Droniou et al. [81], Bause et al. [30] and the references therein.

Equivalent, one-unknown-per-element rewriting of (4.1) without any numerical quadrature
in the form

S̄P̄ = H̄, (4.5)

where P̄ is a new unknown from which P can be locally recovered, has been achieved in Younès
et al. [179], Chavent et al. [63], and Younès et al. [178] by exploiting an equivalence between
mixed finite elements and finite volumes. Equivalent, one-unknown-per-element rewriting
of (4.1) without any numerical quadrature in the form

SP = H (4.6)

has been derived in [170]. In both the above approaches, in contrast to (4.4), one obtains
exactly the potentials P of (4.1) (there is no approximation included), and in contrast to (4.3),
the matrices S̄ and S are sparse and locally computable. Intermediately, local flux expressions
(enabling to recover the fluxes U of (4.1) on sides of local patches from the potentials P on
elements of these patches) have been established in [179, 63, 178, 170].

The first goal of the collaboration [B5] was to give a unified framework, comprising in
particular the approaches of [179, 63, 178, 170]. We also testify the closeness/equivalences of
the mixed finite element and various finite volume-type methods. The second goal of [B5] was
to show via a set of numerical experiments that this approach can indeed lead to inexpensive
implementations in the sense of Section 1.1.3. Recall that although (4.5) or (4.6) only gives
the potentials P̄ or P , the flux unknowns U can be recovered by local flux expressions. In [B5],
we also recall that mixed finite elements can easily be defined on general polygonal meshes,
via a solution of local Neumann/Dirichlet problems, and the different versions of the discrete
maximum principle valid in the mixed finite element method.

4.1.2 A combined finite volume–finite element scheme for degenerate para-
bolic convection–diffusion–reaction equations on nonmatching grids

The paper [A8] is a follow-up of the work started in [91]. A new scheme allowing to discretize
strongly nonlinear, degenerate parabolic convection–diffusion–reaction equations on nonmatch-
ing grids is proposed therein. It combines, and uses the tight links between, the cell-centered
finite volume and the piecewise affine finite element methods. In this way, the scheme is
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fully consistent, locally conservative, and the discrete solution is naturally continuous across
the interfaces between the subdomains with nonmatching grids. Moreover, these properties
are achieved without introducing any supplementary equations and unknowns or using any
interpolation at the interfaces, which allows for an inexpensive implementation; the resulting
matrices are positive definite and there is only one unknown per element. The results of a
numerical experiment are presented at the end of [A8], using the code TALISMAN [171] where
the scheme is implemented.

The tools used in [A8] are to a large extent different from those of Chapters 2 and 3. In
particular, in order to show the existence of a unique solution, a Brouwer topopogical degree
argument is used, whereas the convergence is shown using a priori energy estimates, estimates
on differences of time and space translates for the approximate solution, and the Kolmogorov
relative compactness theorem, following Eymard et al. [87, 88, 90].

4.2 Improvement of approximate solutions by local postpro-

cessing

4.2.1 Convergence rate of a postprocessed approximation in the cell-cente-
red finite volume method

The a posteriori error analysis of the cell-centered finite volume method in [A12] for the
problem (2.29a)–(2.29b) is carried out for the locally postprocessed potential p̃h, given, on
general polygonal meshes, as the weak solution of the following local Neumann problems:

−∇·(S∇p̃h) =
1

|K|
∑

σ∈EK

SK,σ ∀K ∈ Th, (4.7a)

(1− µK)
(p̃h, 1)K

|K| + µK p̃h(xK) = pK ∀K ∈ Th, (4.7b)

−S∇p̃h|K ·n =
SK,σ

|σ| ∀σ ∈ EK , ∀K ∈ Th. (4.7c)

Here, SK,σ are the finite volume side fluxes and µK = 0 or 1, depending on whether the
particular finite volume scheme represents by pK the approximate mean value onK ∈ Th or the
approximate point value in a point xK (for simplicity assumed insideK). On simplicial meshes
and for µK = 0, (4.7a)–(4.7c) reduces to (2.18a)–(2.18b) discussed earlier. The two following
results are shown in [A12]: under sufficient regularity of the weak solution p of (2.29a)–(2.29b)
(p ∈ H2(Th)) and under appropriate conditions on the given finite volume scheme,

∑

K∈Th

‖∇(p− p̃h)‖2K ≤ Ch2, (4.8a)

‖p− p̃h‖2Ω ≤ Ch2. (4.8b)

(4.8a)–(4.8b) are O(h) a priori error estimates for both the energy and L2(Ω) norms. Moreover,
in the diffusion case,

∑

K∈Th

‖∇(p − p̃h)‖2K → 0 as h → 0,

‖p − p̃h‖2Ω → 0 as h → 0,

which are convergence results under the minimal regularity (H1
0 (Ω)) of the weak solution p.
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4.2.2 Primal formulation-based a priori analysis of the mixed finite element
method

The a posteriori error analysis of the mixed finite element method in [A11, A14], see Sec-
tion 2.2.2, is based on the local postprocessing of the potential (2.18a)–(2.18b) for the lowest-
order case or that of Arnold and Brezzi [19] and Arbogast and Chen [13] for the higher-order
cases. It turns out that using this postprocessing, the a priori error analysis of mixed finite
element methods can also be done, in a quite straightforward way.

In a priori analysis of mixed finite element methods, it is classical and very easy to show
that (cf. [A14, Theorem 5.1])

|||u− uh|||∗ ≤ |||u − IVh
(u)|||∗, (4.9)

where, for v ∈ [L2(Ω)]d,

|||v|||∗ := ‖S− 1

2v‖
is the vector energy norm and IVh

is the mixed finite element interpolation operator onto the
flux space Vh. From (4.9), obtaining optimal a priori error estimates for the error in the fluxes
uh follows by classical results of the interpolation theory. It is for the a priori estimates for the
potentials ph that the not-so-easy-to-show uniform-in-h discrete inf–sup condition is necessary;
the estimate for ph then also takes much less straightforward form than that of (4.9) for uh.

In [A14], we proceed differently in order to obtain the a priori error estimates for the error
in the potentials. Our analysis relies on the postprocessed potential p̃h. Note in particular
that in the lowest-order case, we by (2.18a) and by the definitions of the energy norms have

|||p − p̃h||| = |||u− uh|||∗.

Thus, the a priori error estimate for |||p − p̃h||| is immediate from (4.9). For the higher-order
cases, [A14, Lemma 5.4] is the key result enabling to proceed similarly as in the lowest-order
case and arrive on the final estimate for |||p − p̃h|||, see [A14, Theorem 5.5]. The L2-norm a
priori estimate for ‖p− p̃h‖ then follows immediately as

‖p − p̃h‖ ≤ C|||p − p̃h|||

by the discrete Friedrichs inequality (A.6), see [A14, Theorem 5.5]. From this last bound, it
is immediate to arrive at an L2-norm a priori estimate for the error in the original potentials
ph, ‖p − ph‖, see [A14, Theorem 5.6]. Crucially, the uniform discrete inf–sup condition is not
necessary at this step as it is the case in standard analyses. Finally, superconvergence estimates
on ‖PΦh

(p)− ph‖, where PΦh
stands for the L2-orthogonal projection onto the potential space

Φh, can be obtained, see [A14, Theorem 5.7], and therefrom superconvergence estimates on
‖p − p̃h‖ easily follow, see [A14, Theorem 5.8]. The uniform discrete inf–sup condition, not
necessary in our analysis, can in fact be shown as a simple consequence of the above results,
cf. [A14, Theorem 5.9].

Summarizing, the two main tools of the analysis of [A14] are the local postprocessing and
the discrete Friedrichs inequality.

4.2.3 Efficient discretization of the contact between two membranes with a
local postprocessing of the actions

In [A1], we have first proposed three different variational formulations of the contact between
two membranes (2.40a)–(2.40e): a full mixed one [A1, equation (3.4)], a reduced one [A1, equa-
tion (3.11)], and a one including a transformation by the Riesz operator [A1, equation (4.3)]
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and analyzed their well-posedness, see [A1, Theorem 3.5]. This analysis has been extended to
inhomogeneous Dirichlet boundary conditions in [A2].

The discretization of the contact between membranes appears as less evident. In the first
attempt in [A1], we have introduced the Galerkin method for the variational formulation in-
cluding a transformation by the Riesz operator [A1, equation (4.3)], see [A1, equation (5.4)].
Although an optimal a priori error estimate can be obtained, see [A1, Theorem 6.4 and Corol-
lary 6.7], this approach is computationally quite expensive since it involves not only the ap-
proximation of the displacement but also additional discrete unknowns from which the action
of one membrane on the other one may be recovered.

The approach of [A2] and [B1] presents an equivalent formulation with the unknowns reduced
to the approximations of the displacements of the two membranes only, see [A2, equation (3.4)].
An accurate action of one membrane on the other is then recovered by a local postprocessing,
see [A2, equation (4.5)]. Optimal a priori error estimates for both the approximations of the dis-
placements ([A2, Theorem 9]) and the postprocessed action approximation ([A2, Theorem 21])
are also given. The approach of [A2] and [B1] thus gives an inexpensive implementation in the
sense of Section 1.1.3.

4.2.4 Local postprocessing of potentials from locally conservative methods

The potential approximation of so-called nonconforming (locally conservative) methods is typ-
ically nonconforming, not contained in the energy space; for the model problem (2.1a)–(2.1b),
the potential approximation ph (p̃h) is typically not contained in the H1

0 (Ω) space. For com-
pleteness, we mention here that the potential reconstruction sh (sh, shτ ) used in a posteriori
error estimates in [A11, A12, A6, A7, A14, A10] and [B3, B2, B4], cf. the construction of shτ
in Assumption 2.5.1, may be of independent interest, as it is contained in the energy space; for
the model problem (2.1a)–(2.1b), the potential reconstruction sh in particular belongs to the
H1

0 (Ω) space. Remark that we have presented a potential reconstruction also in the multiscale
mortar framework [B3].

4.2.5 Local postprocessing of fluxes from conforming and discontinuous
Galerkin methods

The flux approximation is in many numerical methods nonconforming, not contained in the
energy space, and not locally conservative; for the model problem (2.1a)–(2.1b), the flux
approximation −S∇ph is typically not contained in the H(div,Ω) space and does not satisfy
(−∇·(S∇ph), 1)D = (f, 1)D for all elements D of some mesh D∗

h. For completeness, we mention
here that the flux reconstruction th (σh, thτ ) used in a posteriori error estimates in [C1, C2],
[A6], and [B2] for discontinuous Galerkin methods and in [C4], [A3, A4, A2, A7, A5, A13, A9],
and [B1, B4, B2] for conforming finite element/vertex-centered finite volume methods may be
of independent interest, as it is contained in the energy space and locally conservative; for the
model problem (2.1a)–(2.1b), the flux reconstruction th in particular belongs to the H(div,Ω)
space and satisfies Assumption 2.2.6. In many cases, much more than Assumption 2.2.6 holds;
in the k-th order discontinuous Galerkin method, in particular, we can obtain ∇·th = Πk(f),
where Πk denotes the L2-orthogonal projection onto piecewise polynomials on Th of degree
k, see [C1, Theorem 3.1]. Remark that we have presented a flux reconstruction also in the
multiscale mortar framework [B3].
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Perspectives

I describe here shortly the perspectives I see for my research. Quite a few of them are in fact
already ongoing works.

5.1 Ongoing projects

The two principal projects I am actually involved in are the GNR MoMaS national research
project A posteriori estimates for efficient calculations and error control in numerical simula-
tions of porous media and the ERT project Enhanced oil recovery and geological sequestration
of CO2: mesh adaptivity, a posteriori error control, and other advanced techniques. The goal of
these two projects is to develop, for model problems, a posteriori error estimates satisfying as
much as possible the five optimal properties of Section 1.1.1 and stopping criteria satisfying as
much as possible the four optimal properties of Section 1.1.2 and to derive practical algorithms
applicable to nuclear waste repository and multiphase flow simulations, respectively.

5.2 Co-supervision of Ph.D. candidates

In the framework of the GNR MoMaS project, I have a chance to co-supervise the Ph.D. thesis
of Nancy Chalhoub, together with Alexandre Ern (Ecole Nationale des Ponts et Chaussées,
Marne-la-Vallée) and Toni Sayah (Université Saint-Joseph, Beirut, Lebanon). The subject
of this thesis is the development of a general framework for a posteriori error estimation
in instationary convection–diffusion–reaction problems. The framework is primarily focused
on nonconforming locally conservative methods (the cell-centered finite volume method, the
discontinuous Galerkin method, the mixed finite element method) and is derived for the energy
norm augmented by a dual norm of the convective derivative following Verfürth [167].

In the framework of the ERT project, I have a chance to co-supervise two Ph.D. theses,
together with Daniele Di Pietro (French Petroleum Institute) and Vivette Girault (Laboratoire
Jacques-Louis Lions). The first one is that of Soleiman Yousef. In its theoretical part, the goal
is to develop optimal a posteriori error estimates, stopping criteria, and adaptive algorithms for
the Stefan problem. In its practical part, the goal is to implement these estimates, criteria, and
algorithms into the parallel platform Arcane of the French Petroleum Institute. The second
Ph.D. thesis is that of Carole Widmer. The subject are a posteriori error estimates for cell-
centered finite volume discretizations of two-phase flows, mainly adaptivity with a particular
emphasis on front tracking, parallel implementations, and load balancing.
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5.3 Ongoing collaborations

There are a couple of collaborations that I am involved in, at various stages of advancement.
Together with Alexandre Ern, we are currently in [86] undertaking theoretical analysis of

coupling of the ideas of [A10] and [A5] while proposing and justifying theoretically adaptive
inexact Newton discretizations. We are also in [85] interested in relations, equivalences, and
inexpensive implementations of discontinuous Galerkin methods.

In a collaboration with Vı́t Doleǰśı and Alexandre Ern, we in [77] propose a new framework
for a posteriori error estimation for unsteady nonlinear convection–diffusion problems, enabling
in particular to obtain local efficiency in both space and time.

Together with Barbara Wohlmuth, we are working on extensions/completions of the results
of [B5] to all order mixed finite element methods [172] and to the nonconforming finite element
method [173].

With Sorin Pop and Clément Cancès, we are working in [50] on rigorous a posteriori error
estimates for two-phase flows.

With Christine Bernardi, Alexandre Ern, and Frédéric Hecht, we are in [39] also working
on the extension of flux reconstruction a posteriori error estimates to fourth-order problems.

Finally, with Pavel Jiránek and Zdeněk Strakoš, we investigate stopping criteria for alge-
braic solvers in the framework of conforming finite element methods [102].

5.4 Intended works

In a longer outlook, I would like to stay in the field of numerical analysis and scientific calcu-
lations. I also intend to be active in collaborations with the industry. My personal motivation
is to develop algorithms allowing for error control and efficiency in the sense of Section 1.1,
which could be applied to real problems in order to advance the current technological limits.



Appendix A

Technical tools

Two important technical tools are used for many of the results of this habilitation. I recall
them here for completeness.

A.1 Poincaré, Friedrichs, and trace inequalities

Poincaré, Friedrichs, and trace inequalities play an important role in the theory of partial
differential equations.

Let D ⊂ Ω be a polygon or polyhedron. The Poincaré inequality states that

‖ϕ− ϕD‖2D ≤ CP,Dh
2
D‖∇ϕ‖2D ∀ϕ ∈ H1(D), (A.1)

where ϕD is the mean of ϕ over D given by ϕD := (ϕ, 1)D/|D|. The constant CP,D can for
each convex D be evaluated as 1/π2, cf. Payne and Weinberger [130] and Bebendorf [32].
To evaluate CP,D for nonconvex elements D is more complicated but it still can be done,
cf. Eymard et al. [88, Lemma 10.2] or Carstensen and Funken [53, Section 2].

Let D ⊂ Ω, ∂Ω ∩ ∂D 6= ∅. Then the Friedrichs inequality states that

‖ϕ‖2D ≤ CF,D,∂Ωh
2
D‖∇ϕ‖2D ∀ϕ ∈ H1(D) such that ϕ = 0 on ∂Ω ∩ ∂D. (A.2)

As long as ∂Ω is such that there exists a vector b ∈ R
d such that for almost all x ∈ D, the

first intersection of Bx and ∂D lies in ∂Ω, where Bx is the straight semi-line defined by the
origin x and the vector b, CF,D,∂Ω = 1, cf. [169, Remark 5.8]. To evaluate CF,D,∂Ω in the
general case is more complicated but it still can be done, cf. [169, Remark 5.9] or Carstensen
and Funken [53, Section 3].

Finally, for a simplex K ⊂ Ω, the trace inequality states that

‖ϕ‖2σ ≤ Ct,K,σ(h
−1
K ‖ϕ‖2K + ‖ϕ‖K‖∇ϕ‖K) ∀ϕ ∈ H1(K). (A.3)

It follows from Stephansen [148, Lemma 3.12] that the constant Ct,K,σ can be evaluated as
|σ|hK/|K|, see also Carstensen and Funken [53, Theorem 4.1] for d = 2.

A.2 Discrete Poincaré and Friedrichs inequalities

Recall the Friedrichs and Poincaré inequalities on the whole computational domain Ω, cf. (A.2)
and (A.1):

‖ϕ‖2 ≤ cFh
2
Ω‖∇ϕ‖2 ∀ϕ ∈ H1

0 (Ω) (A.4)
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and
‖ϕ‖2 ≤ cPh

2
Ω‖∇ϕ‖2 + c̃P(ϕ, 1)

2 ∀ϕ ∈ H1(Ω). (A.5)

In numerical approximations, one often works with functions not contained in the spaces
H1

0 (Ω) or H1(Ω). Let W (Th) be formed by functions locally in H1(K) on each K ∈ Th such
that the mean values of their traces on interior sides coincide. Let also W0(Th) ⊂ W (Th)
be such that the mean values of the traces on exterior sides of functions from W0(Th) are
equal to zero. These spaces are nonconforming approximations of the continuous ones, i.e.
W0(Th) 6⊂ H1

0 (Ω) and W (Th) 6⊂ H1(Ω). Discrete Poincaré and Friedrichs inequalities are the
discrete versions of (A.4) and (A.5), valid on the spaces W0(Th) and W (Th), respectively.
There in particular holds

‖ϕh‖2 ≤ CFh
2
Ω

∑

K∈Th

‖∇ϕh‖2K ∀ϕh ∈ W0(Th), ∀h > 0 (A.6)

and
‖ϕh‖2 ≤ CPh

2
Ω

∑

K∈Th

‖∇ϕh‖2K + C̃P(ϕh, 1)
2 ∀ϕh ∈ W (Th), ∀h > 0, (A.7)

where CF, CP, and C̃P are generic constants (see [169] for their precise forms). We refer to
Eymard et al. [87], Doleǰśı et al. [78], Knobloch [107], Brenner [45], or to [169] for more details.
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[87] Eymard, R., Gallouët, T., and Herbin, R. Convergence of finite volume schemes
for semilinear convection diffusion equations. Numer. Math. 82, 1 (1999), 91–116. [21, 61,
68]

[88] Eymard, R., Gallouët, T., and Herbin, R. Finite volume methods. In Handbook
of Numerical Analysis, Vol. VII. North-Holland, Amsterdam, 2000, pp. 713–1020. [21, 32,



74 Bibliography

61, 67]
[89] Eymard, R., Gallouët, T., and Herbin, R. Finite volume approximation of elliptic

problems and convergence of an approximate gradient. Appl. Numer. Math. 37, 1-2 (2001),
31–53. [33]
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A POSTERIORI ERROR ESTIMATES, STOPPING CRITERIA,

AND INEXPENSIVE IMPLEMENTATIONS

for error control and efficiency in numerical simulations

Abstract

This habilitation deals with numerical algorithms for the discretization of linear and nonlinear
elliptic and parabolic convection–diffusion–reaction partial differential equations, of the Stokes
equation, and of a model variational inequality. The principal focus is on developing algorithms
which allow to attain a user-given precision. Moreover, the calculation should be efficient in
the sense that as small as possible amount of computational work is needed.

Our principal tool are a posteriori error estimates. We derive them for many classical
numerical methods, such as the finite volume, finite element, mixed finite element, and discon-
tinuous Galerkin ones. We often devise unified frameworks, incorporating all these methods.
We focus on deriving estimates which would be optimal, i.e., which i) give a guaranteed, fully
computable upper bound on the error between the unknown exact solution and the known
approximate solution; ii) are locally efficient, i.e., give a local lower error bound; iii) are
asymptotically exact, i.e., ensure that the effectivity index (the ratio of the estimated and
actual error) goes to one as the computational effort grows; iv) are robust in the sense that
the three previous properties hold independently of the parameters and of their variation; and
v) which have a small evaluation cost.

Our estimates allow to distinguish, estimate separately, and compare different error sources.
One then can stop the different iterative algorithms (iterative linear solvers, iterative nonlinear
solvers) whenever the corresponding subsidiary errors drop to the level at which they do not
affect significantly the overall error. We can also adjust the calculation parameters (e.g.,
space meshes and time steps) such that the substantial errors (spatial discretization error,
temporal discretization error) are equally distributed and of comparable size. Through such
an adaptivity, efficient calculation with error control can be attained.

The last part of this habilitation is dedicated to inexpensive implementations and to the
study of the relations between different numerical methods, which in particular allows to
develop unified frameworks. We also show how to obtain improved approximate solutions by
local postprocessing and present nontraditional a priori analyses.

All the papers forming this habilitation contain a theoretical analysis. Some of them
also describe implementations of adaptive algorithms into scientific calculation codes and the
majority of them are closely related to applications such as simulations of flow and contaminant
transport in porous media, multiphase reservoir flows, or unilateral contact problems.
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