Adaptive discretization, regularization, linearization, and algebraic solution in unsteady nonlinear problems

Daniele A. Di Pietro, Eric Flauraud, Martin Vohralík, and Soleiman Yousef

INRIA Paris-Rocquencourt

Barcelona, July 21, 2014
1. Introduction

2. The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results

3. Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments

4. Conclusions and future directions
Outline

1. Introduction

2. The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results

3. Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments

4. Conclusions and future directions
The Stefan problem

\[\partial_t u - \Delta \beta(u) = f \quad \text{in } \Omega \times (0, T), \]
\[u(\cdot, 0) = u_0 \quad \text{in } \Omega, \]
\[\beta(u) = 0 \quad \text{on } \partial \Omega \times (0, T) \]

Nomenclature

- \(u \) enthalpy, \(\beta(u) \) temperature
- \(\beta \): \(L_\beta \)-Lipschitz continuous, \(\beta(s) = 0 \) in \((0, 1)\), strictly increasing otherwise
- phase change, degenerate parabolic problem
- \(u_0 \in L^2(\Omega) \), \(f \in L^2(0, T; L^2(\Omega)) \)

Context

- Ph.D. thesis of Soleiman Yousef
- collaboration with IFP Energies Nouvelles
The Stefan problem

\[\partial_t u - \Delta \beta(u) = f \quad \text{in } \Omega \times (0, T), \]
\[u(\cdot, 0) = u_0 \quad \text{in } \Omega, \]
\[\beta(u) = 0 \quad \text{on } \partial\Omega \times (0, T) \]

Nomenclature

- \(u \) enthalpy, \(\beta(u) \) temperature
- \(\beta \): \(L_\beta \)-Lipschitz continuous, \(\beta(s) = 0 \) in \((0, 1) \), strictly increasing otherwise
- phase change, degenerate parabolic problem
- \(u_0 \in L^2(\Omega), \, f \in L^2(0, T; L^2(\Omega)) \)

Context

- Ph.D. thesis of Soleiman Yousef
- collaboration with IFP Energies Nouvelles

Adaptive regularization, linearization, and algebraic solution
The Stefan problem

\[\partial_t u - \Delta \beta(u) = f \quad \text{in } \Omega \times (0, T), \]
\[u(\cdot, 0) = u_0 \quad \text{in } \Omega, \]
\[\beta(u) = 0 \quad \text{on } \partial \Omega \times (0, T) \]

Nomenclature

- \(u \) enthalpy, \(\beta(u) \) temperature
- \(\beta \): \(L_\beta \)-Lipschitz continuous, \(\beta(s) = 0 \) in \((0, 1)\), strictly increasing otherwise
- phase change, degenerate parabolic problem
- \(u_0 \in L^2(\Omega), f \in L^2(0, T; L^2(\Omega)) \)

Context

- Ph.D. thesis of Soleiman Yousef
- collaboration with IFP Energies Nouvelles
Numerical practice: regularization

Regularization of β, parameter ϵ

\[
\beta(u), \beta^\epsilon(u)
\]
Questions

Discretization

- ...

Question (Stopping and balancing criteria)

- What is a good choice of the regularization parameter ϵ?
- time step?
- space mesh?

- What is a good stopping criterion for the nonlinear solver?
- linear solver?

Question (Error)

- How big is the error $\| u |_{l_n} - u_{hT}^{n,\epsilon,k,i} \|$ on time step n, space mesh K^n, regularization parameter ϵ, linearization step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?
Questions

Discretization

...

Question (Stopping and balancing criteria)

What is a good choice of the
- regularization parameter ϵ?
- time step?
- space mesh?

What is a good stopping criterion for the
- nonlinear solver?
- linear solver?

Question (Error)

How big is the error $\|u|_{n} - u_{h,\tau}^{n,\epsilon,k,i}\|$ on time step n, space mesh \mathcal{K}^{n}, regularization parameter ϵ, linearization step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?
Questions

Discretization

...

Question (Stopping and balancing criteria)

What is a good choice of the

- regularization parameter ϵ?
- time step?
- space mesh?

What is a good stopping criterion for the

- nonlinear solver?
- linear solver?

Question (Error)

How big is the error $\|u|_{n} - u_{n,\epsilon,k,i}^{n}\|$ on time step n, space mesh \mathcal{K}^{n}, regularization parameter ϵ, linearization step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?
Questions

Discretization

- ...

Question (Stopping and balancing criteria)

- What is a good choice of the
 - regularization parameter ϵ?
 - time step?
 - space mesh?
- What is a good stopping criterion for the
 - nonlinear solver?
 - linear solver?

Question (Error)

- How big is the error $\| u_{l_n} - u_{n,\epsilon,k,i} \|$ on time step n, space mesh K^n, regularization parameter ϵ, linearization step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?
Previous results – a posteriori error estimates

Nonlinear steady problems
- Ladevèze (since 1990’s), guaranteed upper bound
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), p-Laplacian
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems
- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems
- Verfürth (1998), framework for energy norm control
- Ohlberger (2001), non energy-norm estimates

Degenerate parabolic problems
- Nochetto, Schmidt, Verdi (2000), Stefan problem
- Dolejší, Ern, Vohralík (2013), ADR, Richards, robustness in a space–time dual mesh-dependent norm
Previous results – a posteriori error estimates

Nonlinear steady problems
- Ladevèze (since 1990’s), guaranteed upper bound
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), p-Laplacian
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems
- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems
- Verfürth (1998), framework for energy norm control
- Ohlberger (2001), non energy-norm estimates

Degenerate parabolic problems
- Nochetto, Schmidt, Verdi (2000), Stefan problem
- Dolejší, Ern, Vohralík (2013), ADR, Richards, robustness in a space–time dual mesh-dependent norm
Previous results – a posteriori error estimates

Nonlinear steady problems
- Ladevèze (since 1990’s), guaranteed upper bound
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), p-Laplacian
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems
- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems
- Verfürth (1998), framework for energy norm control
- Ohlberger (2001), non energy-norm estimates

Degenerate parabolic problems
- Nochetto, Schmidt, Verdi (2000), Stefan problem
- Dolejší, Ern, Vohralík (2013), ADR, Richards, robustness in a space–time dual mesh-dependent norm
Previous results – a posteriori error estimates

Nonlinear steady problems
- Ladevèze (since 1990’s), guaranteed upper bound
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), p-Laplacian
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems
- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems
- Verfürth (1998), framework for energy norm control
- Ohlberger (2001), non energy-norm estimates

Degenerate parabolic problems
- Nochetto, Schmidt, Verdi (2000), Stefan problem
- Dolejší, Ern, Vohralík (2013), ADR, Richards, robustness in a space–time dual mesh-dependent norm
Previous results – adaptive strategies

Stopping criteria for algebraic solvers
- engineering literature, since 1950’s
- Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
- Arioli (2000’s), comparison of the algebraic and discretization errors by a priori arguments

Adaptive inexact Newton method
- Bank and Rose (1982), combination with multigrid
- Hackbusch and Reusken (1989), damping and multigrid
- Deuflhard (1990’s, 2004 book), adaptive damping and multigrid

Model errors
- Ladevèze (since 1990’s), guaranteed upper bound
- Bernardi (2000’s), estimation of model errors
- Babuška, Oden (2000’s), verification and validation
Previous results – adaptive strategies

Stopping criteria for algebraic solvers
- engineering literature, since 1950’s
- Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
- Arioli (2000’s), comparison of the algebraic and discretization errors by a priori arguments

Adaptive inexact Newton method
- Bank and Rose (1982), combination with multigrid
- Hackbusch and Reusken (1989), damping and multigrid
- Deuflhard (1990’s, 2004 book), adaptive damping and multigrid

Model errors
- Ladevèze (since 1990’s), guaranteed upper bound
- Bernardi (2000’s), estimation of model errors
- Babuška, Oden (2000’s), verification and validation
- ...
Previous results – adaptive strategies

Stopping criteria for algebraic solvers
- engineering literature, since 1950’s
- Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
- Arioli (2000’s), comparison of the algebraic and discretization errors by a priori arguments

Adaptive inexact Newton method
- Bank and Rose (1982), combination with multigrid
- Hackbusch and Reusken (1989), damping and multigrid
- Deuflhard (1990’s, 2004 book), adaptive damping and multigrid

Model errors
- Ladevèze (since 1990’s), guaranteed upper bound
- Bernardi (2000’s), estimation of model errors
- Babuška, Oden (2000’s), verification and validation
- ...
I. The Stefan problem
Multiphase flow in porous media

Outline

1. Introduction

2. The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results

3. Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments

4. Conclusions and future directions

M. Vohralík
Adaptive regularization, linearization, and algebraic solution
The Stefan problem

Multiphase flow in porous media

Weak formulation

Functional spaces

\[X := L^2(0, T; H^1_0(\Omega)), \quad Z := H^1(0, T; H^{-1}(\Omega)) \]

Weak formulation

\[u \in Z \quad \text{with} \quad \beta(u) \in X \]

\[u(\cdot, 0) = u_0 \quad \text{in} \quad \Omega \]

\[\langle \partial_t u, \varphi \rangle(s) + (\nabla \beta(u), \nabla \varphi)(s) = (f, \varphi)(s) \quad \forall \varphi \in H^1_0(\Omega) \]

a.e. \(s \in (0, T) \)
Weak formulation

Functional spaces

\[X := L^2(0, T; H^1_0(\Omega)), \quad Z := H^1(0, T; H^{-1}(\Omega)) \]

Weak formulation

\[u \in Z \quad \text{with} \quad \beta(u) \in X \]
\[u(\cdot, 0) = u_0 \quad \text{in} \quad \Omega \]
\[\langle \partial_t u, \varphi \rangle(s) + (\nabla \beta(u), \nabla \varphi)(s) = (f, \varphi)(s) \quad \forall \varphi \in H^1_0(\Omega) \quad \text{a.e.} \quad s \in (0, T) \]
Outline

1 Introduction

2 The Stefan problem
 • A posteriori estimate of the dual norm of the residual
 • Error components identification and adaptivity
 • Efficiency
 • Energy error a posteriori estimate
 • Numerical results

3 Multiphase flow in porous media
 • Weak solution & estimates
 • Numerical experiments

4 Conclusions and future directions
Assumptions

Assumption A (Approximate solution)

The function \(u_{h\tau} \) is such that

\[
\begin{align*}
 u_{h\tau} & \in Z, \\
 \partial_t u_{h\tau} & \in L^2(0, T; L^2(\Omega)), \\
 \beta(u_{h\tau}) & \in X, \\
 u_{h\tau} \Big|_{I_n} & \text{ is affine in time on } I_n \\
 \forall 1 \leq n \leq N.
\end{align*}
\]

Assumption B (Equilibrated flux reconstruction)

For all \(1 \leq n \leq N \), there exists a vector field \(t^n_h \in H(\text{div}; \Omega) \) such that

\[
(\nabla \cdot t^n_h, 1)_K = (f^n, 1)_K - (\partial_t u^n_{h\tau}, 1)_K \\
\forall K \in K_n.
\]

We denote by \(t_{h\tau} \) the space–time function such that \(t_{h\tau} \Big|_{I_n} := t^n_h \).

M. Vohralík

Adaptive regularization, linearization, and algebraic solution
Assumptions

Assumption A (Approximate solution)

The function $u_{h\tau}$ is such that

$$u_{h\tau} \in Z, \quad \partial_t u_{h\tau} \in L^2(0, T; L^2(\Omega)), \quad \beta(u_{h\tau}) \in X,$$

$u_{h\tau}|_{I_n}$ is affine in time on I_n, $\forall 1 \leq n \leq N$.

Assumption B (Equilibrated flux reconstruction)

For all $1 \leq n \leq N$, there exists a vector field $t^n_h \in H(\text{div}; \Omega)$ such that

$$(\nabla \cdot t^n_h, 1)_K = (f^n, 1)_K - (\partial_t u^n_{h\tau}, 1)_K \quad \forall K \in \mathcal{K}^n.$$

We denote by $t_{h\tau}$ the space–time function such that $t_{h\tau}|_{I_n} := t^n_h$.
Theorem (A posteriori error estimate)

Let Assumptions A and B hold. Then

\[
\| R(u_{h,T}) \|_{X'} + \| u_0 - u_{h,T} (\cdot, 0) \|_{H^{-1}(\Omega)} \leq \left\{ \sum_{n=1}^{N} \int_{I^n} \sum_{K \in K^n} \left(\eta_{R,K}^n + \eta_{F,K}^n(t) \right)^2 \, dt \right\}^{1/2} + \eta_{IC},
\]

with

\[
\eta_{R,K}^n := C_{P,K} h_K \| f^n - \partial_t u_{h,T}^n - \nabla \cdot t_h^n \|_K,
\]

\[
\eta_{F,K}^n(t) := \| \nabla \beta(u_{h,T}(t)) + t_h^n \|_K,
\]

\[
\eta_{IC} := \| u_0 - u_{h,T} (\cdot, 0) \|_{H^{-1}(\Omega)}.
\]
Theorem (A posteriori error estimate)

Let Assumptions A and B hold. Then

\[\| \mathcal{R}(u_{hT}) \|_{X'} + \| u_0 - u_{hT}(\cdot, 0) \|_{H^{-1}(\Omega)} \leq \left\{ \sum_{n=1}^{N} \int_{l_n} \sum_{K \in K^n} \left(\eta^n_{R,K} + \eta^n_{F,K}(t) \right)^2 \, dt \right\}^{\frac{1}{2}} + \eta_{IC}, \]

with

\[\eta^n_{R,K} := C_{P,K} h_K \left\| f^n - \partial_t u^n_{hT} - \nabla \cdot t^n_h \right\|_K, \]
\[\eta^n_{F,K}(t) := \| \nabla \beta(u_{hT}(t)) + t^n_h \|_K, \]
\[\eta_{IC} := \| u_0 - u_{hT}(\cdot, 0) \|_{H^{-1}(\Omega)}. \]
Theorem (A posteriori error estimate)

Let Assumptions A and B hold. Then

$$\left\| \mathcal{R}(u_{h\tau}) \right\|_{X'} + \left\| u_0 - u_{h\tau}(\cdot, 0) \right\|_{H^{-1}(\Omega)} \leq \sqrt{\sum_{n=1}^{N} \int_{I_n} \sum_{K \in K^n} \left(\eta^n_{R,K} + \eta^n_{F,K}(t) \right)^2 \, dt} + \eta_{IC},$$

with

$$\eta^n_{R,K} := C_{P,K} h_K \| f^n - \partial_t u^n_{h\tau} - \nabla \cdot t^n_h \|_{K},$$

$$\eta^n_{F,K}(t) := \| \nabla \beta(u_{h\tau}(t)) + t^n_h \|_{K},$$

$$\eta_{IC} := \| u_0 - u_{h\tau}(\cdot, 0) \|_{H^{-1}(\Omega)}.$$
Outline

1. Introduction

2. The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results

3. Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments

4. Conclusions and future directions
Distinguishing different error components

Theorem (An estimate distinguishing the error components)

For time n, linearization k, and regularization ϵ, there holds

$$\| \mathcal{R}(u_{h_{\tau}}^{n,\epsilon,k}) \|_{X_n'} \leq \eta^{n,\epsilon,k}_{sp} + \eta^{n,\epsilon,k}_{tm} + \eta^{n,\epsilon,k}_{reg} + \eta^{n,\epsilon,k}_{lin}.$$

- $I_{h}^{n,\epsilon,k}$ a scheme linearized flux (not $H(\text{div}, \Omega)$), $t_{h}^{n,\epsilon,k}$ reconstructed $H(\text{div}, \Omega)$ flux, Π^n interpolation op.

$$(\eta^{n,\epsilon,k}_{sp})^2 := \tau^n \sum_{K \in K^n} \left(\eta^{n,\epsilon,k}_{R,K} + \| I_{h}^{n,\epsilon,k} + t_{h}^{n,\epsilon,k} \|_K \right)^2,$$

$$(\eta^{n,\epsilon,k}_{tm})^2 := \int_{I^n} \sum_{K \in K^n} \| \nabla \Pi^n \beta(u_{h_{\tau}}^{n,\epsilon,k})(t) - \nabla \Pi^n \beta(u_{h_{\tau}}^{n,\epsilon,k})(t^n) \|_K^2 \, dt,$$

$$(\eta^{n,\epsilon,k}_{reg})^2 := \tau^n \sum_{K \in K^n} \| \nabla \Pi^n \beta(u_{h_{\tau}}^{n,\epsilon,k})(t^n) - \nabla \Pi^n \beta_\epsilon(u_{h_{\tau}}^{n,\epsilon,k})(t^n) \|_K^2,$$

$$(\eta^{n,\epsilon,k}_{lin})^2 := \tau^n \sum_{K \in K^n} \| \nabla \Pi^n \beta_\epsilon(u_{h_{\tau}}^{n,\epsilon,k})(t^n) - I_{h}^{n,\epsilon,k} \|_K^2.$$
Distinguishing different error components

Theorem (An estimate distinguishing the error components)

For time \(n\), linearization \(k\), and regularization \(\epsilon\), there holds

\[
\| R(u^{n,\epsilon,k}_{h\tau}) \|_{X_n} \leq \eta_{sp}^{n,\epsilon,k} + \eta_{tm}^{n,\epsilon,k} + \eta_{reg}^{n,\epsilon,k} + \eta_{lin}^{n,\epsilon,k}.
\]

- \(I_h^{n,\epsilon,k} \) a scheme linearized flux (not \(H(\text{div}, \Omega) \)), \(t_h^{n,\epsilon,k} \) reconstructed \(H(\text{div}, \Omega) \) flux, \(\Pi^n \) interpolation op.

\[
(\eta_{sp}^{n,\epsilon,k})^2 := \tau^n \sum_{K \in \mathcal{K}_n} \left(\eta_{R,K}^{n,\epsilon,k} + \| I_h^{n,\epsilon,k} + t_h^{n,\epsilon,k} \|_K \right)^2,
\]

\[
(\eta_{tm}^{n,\epsilon,k})^2 := \int_{I^n} \sum_{K \in \mathcal{K}_n} \| \nabla^n \beta(u^{n,\epsilon,k}_{h\tau})(t) - \nabla^n \beta(u^{n,\epsilon,k}_{h\tau})(t^n) \|_K^2 \, dt,
\]

\[
(\eta_{reg}^{n,\epsilon,k})^2 := \tau^n \sum_{K \in \mathcal{K}_n} \| \nabla^n \beta(\epsilon u^{n,\epsilon,k}_{h\tau})(t^n) - \nabla^n \beta(\epsilon u^{n,\epsilon,k}_{h\tau})(t^n) \|_K^2,
\]

\[
(\eta_{lin}^{n,\epsilon,k})^2 := \tau^n \sum_{K \in \mathcal{K}_n} \| \nabla^n \beta(\epsilon u^{n,\epsilon,k}_{h\tau})(t^n) - I_h^{n,\epsilon,k} \|_K^2.
\]
Outline

1. Introduction
2. The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results
3. Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments
4. Conclusions and future directions

M. Vohralík
Adaptive regularization, linearization, and algebraic solution
Efficiency assumptions

Assumption C (Technicalities)

All the meshes are shape-regular and all the approximations are piecewise polynomial.

Residual estimators

\[
\left(\eta_{\text{res,1}}^{n,\epsilon_n, k_n} \right)^2 := \tau^n \sum_{K \in K^{n-1,n}} h_K^2 \left\| f^n - \partial_t u_{hT}^{n,\epsilon_n, k_n} + \nabla \cdot I_h^{n,\epsilon_n, k_n} \right\|_K^2,
\]

\[
\left(\eta_{\text{res,2}}^{n,\epsilon_n, k_n} \right)^2 := \tau^n \sum_{F \in F^{i,n-1,n}} h_F \left\| [I_h^{n,\epsilon_n, k_n}] \cdot n_F \right\|_F^2.
\]

Assumption D (Approximation property)

For all \(1 \leq n \leq N\), there holds

\[
\tau^n \sum_{K \in K^{n-1,n}} \left\| I_h^{n,\epsilon_n, k_n} + t_h^{n,\epsilon_n, k_n} \right\|_K^2 \leq C \left(\left(\eta_{\text{res,1}}^{n,\epsilon_n, k_n} \right)^2 + \left(\eta_{\text{res,2}}^{n,\epsilon_n, k_n} \right)^2 \right).
\]
Efficiency assumptions

Assumption C (Technicalities)

All the meshes are shape-regular and all the approximations are piecewise polynomial.

Residual estimators

\[
\left(\eta_{\text{res,1}}^{n,\epsilon_n,k_n} \right)^2 := \tau^n \sum_{K \in \mathcal{K}^{n-1,n}} h_K^2 \| f^n - \partial_t u_{h\tau}^{n,\epsilon_n,k_n} + \nabla \cdot I_h^{n,\epsilon_n,k_n} \|_K^2,
\]

\[
\left(\eta_{\text{res,2}}^{n,\epsilon_n,k_n} \right)^2 := \tau^n \sum_{F \in \mathcal{F}^{i,n-1,n}} h_F \| [I_h^{n,\epsilon_n,k_n}] \cdot n_F \|_F^2.
\]

Assumption D (Approximation property)

For all \(1 \leq n \leq N \), there holds

\[
\tau^n \sum_{K \in \mathcal{K}^{n-1,n}} \| I_h^{n,\epsilon_n,k_n} + t_h^{n,\epsilon_n,k_n} \|_K^2 \leq C \left(\left(\eta_{\text{res,1}}^{n,\epsilon_n,k_n} \right)^2 + \left(\eta_{\text{res,2}}^{n,\epsilon_n,k_n} \right)^2 \right).
\]
Efficiency assumptions

Assumption C (Technicalities)

All the meshes are shape-regular and all the approximations are piecewise polynomial.

Residual estimators

\[
\left(\eta_{\text{res},1}^{n,\epsilon_n,k_n} \right)^2 := \tau^n \sum_{K \in \mathcal{K}^{n-1,n}} h_K^2 \| f^n - \partial_t u_{h_T}^{n,\epsilon_n,k_n} + \nabla \cdot l_h^{n,\epsilon_n,k_n} \|_K^2,
\]

\[
\left(\eta_{\text{res},2}^{n,\epsilon_n,k_n} \right)^2 := \tau^n \sum_{F \in \mathcal{F}^{i,n-1,n}} h_F \| [l_h^{n,\epsilon_n,k_n}] \cdot n_F \|_F^2
\]

Assumption D (Approximation property)

For all \(1 \leq n \leq N \), there holds

\[
\tau^n \sum_{K \in \mathcal{K}^{n-1,n}} \| l_h^{n,\epsilon_n,k_n} + t_h^{n,\epsilon_n,k_n} \|_K^2 \leq C \left(\left(\eta_{\text{res},1}^{n,\epsilon_n,k_n} \right)^2 + \left(\eta_{\text{res},2}^{n,\epsilon_n,k_n} \right)^2 \right).
\]
Theorem (Efficiency)

Let, for all $1 \leq n \leq N$, the stopping and balancing criteria be satisfied with the parameters $\Gamma_{\text{lin}}, \Gamma_{\text{reg}},$ and Γ_{tm} small enough. Let Assumptions C and D hold. Then

$$\eta_{\text{sp}}^{n,\epsilon_n,k_n} + \eta_{\text{tm}}^{n,\epsilon_n,k_n} + \eta_{\text{reg}}^{n,\epsilon_n,k_n} + \eta_{\text{lin}}^{n,\epsilon_n,k_n} \lesssim \|\mathcal{R}(u_{hT}^{n,\epsilon_n,k_n})\|_{X'_n}.$$
Outline

1. Introduction

2. **The Stefan problem**
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - **Energy error a posteriori estimate**
 - Numerical results

3. **Multiphase flow in porous media**
 - Weak solution & estimates
 - Numerical experiments

4. Conclusions and future directions
Relation residual–energy norm

Energy estimate (by the Gronwall lemma)

\[
\frac{L\beta}{2} \| u - u_{h \tau} \|^2_{X'} + \frac{L\beta}{2} \| (u - u_{h \tau})(\cdot, T) \|^2_{H^{-1}(\Omega)} + \| \beta(u) - \beta(u_{h \tau}) \|^2_{Q_T} \\
\leq \frac{L\beta}{2} \left(2e^T - 1\right) \left(\| R(u_{h \tau}) \|^2_{X'} + \| (u - u_{h \tau})(\cdot, 0) \|^2_{H^{-1}(\Omega)} \right)
\]

Theorem (Temperature and enthalpy errors, tight Gronwall)

Let \(u_{h \tau} \in Z \) such that \(\beta(u_{h \tau}) \in X \) be arbitrary. There holds

\[
\frac{L\beta}{2} \| u - u_{h \tau} \|^2_{X'} + \frac{L\beta}{2} \| (u - u_{h \tau})(\cdot, T) \|^2_{H^{-1}(\Omega)} + \| \beta(u) - \beta(u_{h \tau}) \|^2_{Q_T} \\
+ 2 \int_0^T \left(\| \beta(u) - \beta(u_{h \tau}) \|^2_{Q_t} + \int_0^t \| \beta(u) - \beta(u_{h \tau}) \|^2_{Q_s} e^{t-s} \, ds \right) \, dt \\
\leq \frac{L\beta}{2} \left\{ \left(2e^T - 1\right) \| (u - u_{h \tau})(\cdot, 0) \|^2_{H^{-1}(\Omega)} + \| R(u_{h \tau}) \|^2_{X'} \right\} \\
+ 2 \int_0^T \left(\| R(u_{h \tau}) \|^2_{X'_t} + \int_0^t \| R(u_{h \tau}) \|^2_{X'_s} e^{t-s} \, ds \right) \, dt
\]
Relation residual–energy norm

Energy estimate (by the Gronwall lemma)

\[
\frac{L_\beta}{2} \| u - u_{h_T} \|^2_{X'} + \frac{L_\beta}{2} \| (u - u_{h_T}) (\cdot, T) \|^2_{H^{-1}(\Omega)} + \| \beta(u) - \beta(u_{h_T}) \|^2_{Q_T} \\
\leq \frac{L_\beta}{2} (2e^T - 1) \left(\| \mathcal{R}(u_{h_T}) \|^2_{X'} + \| (u - u_{h_T}) (\cdot, 0) \|^2_{H^{-1}(\Omega)} \right)
\]

Theorem (Temperature and enthalpy errors, tight Gronwall)

Let \(u_{h_T} \in Z \) such that \(\beta(u_{h_T}) \in X \) be arbitrary. There holds

\[
\frac{L_\beta}{2} \| u - u_{h_T} \|^2_{X'} + \frac{L_\beta}{2} \| (u - u_{h_T}) (\cdot, T) \|^2_{H^{-1}(\Omega)} + \| \beta(u) - \beta(u_{h_T}) \|^2_{Q_T} \\
+ 2 \int_0^T \left(\| \beta(u) - \beta(u_{h_T}) \|^2_{Q_t} + \int_0^t \| \beta(u) - \beta(u_{h_T}) \|^2_{Q_s} e^{t-s} \, ds \right) \, dt \\
\leq \frac{L_\beta}{2} \left\{ (2e^T - 1) \| (u - u_{h_T}) (\cdot, 0) \|^2_{H^{-1}(\Omega)} + \| \mathcal{R}(u_{h_T}) \|^2_{X'} \right. \\
+ 2 \int_0^T \left(\| \mathcal{R}(u_{h_T}) \|^2_{X'_t} + \int_0^t \| \mathcal{R}(u_{h_T}) \|^2_{X'_s} e^{t-s} \, ds \right) \, dt \left\}.
\]
Outline

1. Introduction

2. The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results

3. Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments

4. Conclusions and future directions
The Stefan problem
Multiphase flow in porous media

Linearization stopping criterion

\[\eta_{\text{lin}}^{n,\epsilon,k} \leq \Gamma_{\text{lin}} \left(\eta_{\text{sp}}^{n,\epsilon,k} + \eta_{\text{tm}}^{n,\epsilon,k} + \eta_{\text{reg}}^{n,\epsilon,k} \right) \]

Number of Newton iterations

Error components estimators

- space
- time
- regularization
- linearization

M. Vohralík
Adaptive regularization, linearization, and algebraic solution
Regularization stopping criterion

\[\eta_{reg,n,\epsilon,k_n} \leq \Gamma_{reg}(\eta_{sp,n,\epsilon,k_n} + \eta_{tm,n,\epsilon,k_n}) \]
Equilibrating time and space errors

\[\gamma_{tm} \eta_{sp}^{n,\epsilon_n,k_n} \leq \eta_{tm}^{n,\epsilon_n,k_n} \leq \Gamma_{tm} \eta_{sp}^{n,\epsilon_n,k_n} \]

Error components estimators

- **Space**
- **Time**

Total number of space–time unknowns

Overall error estimators

- **Space over-ref.**
- **Time over-ref.**
- **Equilibrating**
Error and estimate (dual norm of the residual)

![Graph showing error and error estimate vs. total number of space–time unknowns]

- **err. unif.** - Error uniform
- **est. unif.** - Estimate uniform
- **err. ad.** - Error adaptive
- **est. ad.** - Estimate adaptive

M. Vohralík
Adaptive regularization, linearization, and algebraic solution
Effectivity indices (dual norm of the residual)

![Graph showing effectivity indices](image)

- Effectivity index vs. Total number of space–time unknowns
 - Black diamond: Effectivity unif.
 - Green triangle: Effectivity ad.

M. Vohralík

Adaptive regularization, linearization, and algebraic solution
Error and estimate (energy norm)

![Graph showing error and estimate (energy norm)]

- **Error and estimate (energy norm)**
 - **Error**
 - error. unif.
 - err. ad.
 - **Estimate**
 - est. unif.
 - est. ad.

Total number of space–time unknowns

- 10^4
- 10^5
- 10^6
- 10^7

- **Error/error estimate**
 - 10^0
 - 10^{-1}

M. Vohralík

Adaptive regularization, linearization, and algebraic solution
<table>
<thead>
<tr>
<th>Total number of space–time unknowns</th>
<th>Effectivity index</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^4</td>
<td>12</td>
</tr>
<tr>
<td>10^5</td>
<td>10</td>
</tr>
<tr>
<td>10^6</td>
<td>8</td>
</tr>
<tr>
<td>10^7</td>
<td>8</td>
</tr>
</tbody>
</table>

- **Effectivity indices (energy norm)**
 - M. Vohralík
 - Adaptive regularization, linearization, and algebraic solution
Actual and estimated error distribution
Outline

1. Introduction

2. The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results

3. Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments

4. Conclusions and future directions
Multiphase compositional flows

Governing *partial differential* equations

- conservation of mass for *components*
 \[\partial_t l_c + \nabla \cdot \Phi_c = q_c, \quad \forall c \in C \]
- + boundary & initial conditions

Constitutive laws

- *phase* pressures – reference pressure – capillary pressure
 \[P_p := P + P_{cp}(S) \]
- Darcy's law
 \[v_p(P_p, C_p) := -\Lambda (\nabla P_p - \rho_p(P_p, C_p)g) \]
- component fluxes
 \[\Phi_c := \sum_{p\in P_c} \Phi_{p,c}, \quad \Phi_{p,c} := v_p(P_p, S, C_p)C_{p,c}v_p(P_p, C_p) \]
- amount of moles of component *c* per unit volume
 \[l_c := \phi \sum_{p\in P_c} \zeta_p(P_p, C_p)S_p C_{p,c} \]
Multiphase compositional flows

Governing partial differential equations
- conservation of mass for components
 \[\partial_t l_c + \nabla \cdot \Phi_c = q_c, \quad \forall c \in C \]
- + boundary & initial conditions

Constitutive laws
- phase pressures -- reference pressure -- capillary pressure
 \[P_p := P + P_{cp}(S) \]
- Darcy’s law
 \[\nu_p(P_p, C_p) := -\Lambda (\nabla P_p - \rho_p(P_p, C_p)g) \]
- component fluxes
 \[\Phi_c := \sum_{p \in \mathcal{P}_c} \Phi_{p,c}, \quad \Phi_{p,c} := \nu_p(P_p, S, C_p)C_{p,c}v_p(P_p, C_p) \]
- amount of moles of component c per unit volume
 \[l_c := \phi \sum_{p \in \mathcal{P}_c} \zeta_p(P_p, C_p)S_p C_{p,c} \]
Closure algebraic equations

- conservation of pore volume: \(\sum_{p \in \mathcal{P}} S_p = 1 \)
- conservation of the quantity of the matter: \(\sum_{c \in C_p} C_{p,c} = 1 \) for all \(p \in \mathcal{P} \)
- thermodynamic equilibrium

Mathematical issues

- coupled system
- unsteady, nonlinear
- elliptic–parabolic degenerate type
- dominant advection
Closure **algebraic equations**

- conservation of pore volume: \(\sum_{p \in \mathcal{P}} S_p = 1 \)
- conservation of the quantity of the matter: \(\sum_{c \in C_p} C_{p,c} = 1 \)
 for all \(p \in \mathcal{P} \)
- thermodynamic equilibrium

Mathematical issues

- coupled system
- unsteady, nonlinear
- elliptic–parabolic degenerate type
- dominant advection
Outline

1. Introduction

2. The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results

3. Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments

4. Conclusions and future directions
Weak solution

Energy spaces

\[X := L^2((0, t_F); H^1(\Omega)), \]
\[Y := H^1((0, t_F); L^2(\Omega)) \]

Definition (Weak solution)

Find \((P, (S_p)_{p \in P}, (C_p, c)_{p \in P, c \in C_p})\) such that

\[l_c \in Y \quad \forall c \in C, \]
\[P_p(P, S) \in X \quad \forall p \in P, \]
\[\Phi_c \in [L^2((0, t_F); L^2(\Omega))]^d \quad \forall c \in C, \]
\[\int_0^{t_F} \{(\partial_t l_c, \varphi)(t) - (\Phi_c, \nabla \varphi)(t)\} \, dt = \int_0^{t_F} (q_c, \varphi)(t) \, dt \quad \forall \varphi \in X, \forall c \in C, \]

the initial condition holds,
the algebraic closure equations hold.
Weak solution

Energy spaces

\[
X := L^2((0, t_F); H^1(\Omega)), \\
Y := H^1((0, t_F); L^2(\Omega))
\]

Definition (Weak solution)

Find \((P, (S_p)_{\rho \in \mathcal{P}}, (C_{p,c})_{\rho \in \mathcal{P}, c \in \mathcal{C}_p})\) such that

- \(l_c \in Y \forall c \in \mathcal{C}\),
- \(P_p(P, S) \in X \forall p \in \mathcal{P}\),
- \(\Phi_c \in [L^2((0, t_F); L^2(\Omega))]^d \forall c \in \mathcal{C}\),
- \[\int_0^{t_F} \left\{ (\partial_t l_c, \varphi)(t) - (\Phi_c, \nabla \varphi)(t) \right\} \, dt = \int_0^{t_F} (q_c, \varphi)(t) \, dt \quad \forall \varphi \in X, \forall c \in \mathcal{C},\]

the initial condition holds,

the algebraic closure equations hold.
Estimate distinguishing different error components

Consider

- **time step** n,
- **linearization step** k,
- **iterative algebraic solver step** i,

and the corresponding approximations. Then

$$(\text{dual error + nonconformity})_{ln} \leq \eta_{sp,\alpha}^{n,k,i} + \eta_{tm,\alpha}^{n,k,i} + \eta_{lin,\alpha}^{n,k,i} + \eta_{alg,\alpha}^{n,k,i}.$$

Error components

- $\eta_{sp,\alpha}^{n,k,i}$: spatial discretization
- $\eta_{tm,\alpha}^{n,k,i}$: temporal discretization
- $\eta_{lin,\alpha}^{n,k,i}$: linearization
- $\eta_{alg,\alpha}^{n,k,i}$: algebraic solver
The Stefan problem
Multiphase flow in porous media

Weak solution & estimates
Numerical experiments

Estimate distinguishing different error components

Theorem (Estimate distinguishing different error components)

Consider

- time step n,
- linearization step k,
- iterative algebraic solver step i,

and the corresponding approximations. Then

$$(\text{dual error + nonconformity})_{ln} \leq \eta_{sp,\alpha}^{n,k,i} + \eta_{tm,\alpha}^{n,k,i} + \eta_{lin,\alpha}^{n,k,i} + \eta_{alg,\alpha}^{n,k,i}.$$

Error components

- $\eta_{sp,\alpha}^{n,k,i}$: spatial discretization
- $\eta_{tm,\alpha}^{n,k,i}$: temporal discretization
- $\eta_{lin,\alpha}^{n,k,i}$: linearization
- $\eta_{alg,\alpha}^{n,k,i}$: algebraic solver
Outline

1. Introduction

2. The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results

3. Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments

4. Conclusions and future directions
Test case and numerical setting

Test case

- two-spot setting
- two phases and three components
- homogeneous/heterogeneous permeability distribution

Discretization and resolution

- fully implicit cell-centered finite volumes
- Newton linearization
- GMRes with ILU0 preconditioning algebraic solver
Test case and numerical setting

Test case
- two-spot setting
- two phases and three components
- homogeneous/heterogeneous permeability distribution

Discretization and resolution
- fully implicit cell-centered finite volumes
- Newton linearization
- GMRes with ILU0 preconditioning algebraic solver
Estimators and stopping criteria

Estimators w.r.t. GMRes iterations

Estimators w.r.t. Newton iterations
Newton iterations

Per time step

Cumulated number of Newton iterations

Cumulated

Time

Classical

Adaptive

M. Vohralík

Adaptive regularization, linearization, and algebraic solution
GMRes iterations

Per time and Newton step

Cumulated number of GMRes iterations

- Classical
- Adaptive

Cumulated

54067 iterations

5110 iterations
Outline

1. Introduction

2. The Stefan problem
 - A posteriori estimate of the dual norm of the residual
 - Error components identification and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results

3. Multiphase flow in porous media
 - Weak solution & estimates
 - Numerical experiments

4. Conclusions and future directions
Conclusions

Complete adaptivity

- only a necessary number of algebraic solver / linearization iterations, optimal choice of the regularization parameter
- “smart online decisions”: algebraic solver step / linearization step / regularization / time step refinement / space mesh refinement
- important computational savings
- guaranteed upper bound via a posteriori error estimates

Future directions

- other coupled nonlinear systems
- convergence and optimality
Conclusions

Complete adaptivity

- only a necessary number of algebraic solver / linearization iterations, optimal choice of the regularization parameter
- "smart online decisions": algebraic solver step / linearization step / regularization / time step refinement / space mesh refinement
- important computational savings
- guaranteed upper bound via a posteriori error estimates

Future directions

- other coupled nonlinear systems
- convergence and optimality
Bibliography

Thank you for your attention!