Adaptive regularization and linearization for nonsmooth and degenerate problems

Martin Vohralík

in collaboration with

Ibtihel Ben Gharbia, Joëlle Ferzly, François Févotte, Koondanibha Mitra, Ari Rappaport, & Soleiman Yousef

Inria Paris & Ecole des Ponts

SIAM Geosciences webinar, September 11, 2024

Introduction

- The Richards equation: adaptive regularization and linearization
 - Discretization
 - Regularization
 - Linearization
 - Flux reconstruction
 - A posteriori estimates of error components
 - Adaptive regularization and linearization
 - Numerical experiments
- Multi-phase flow with phase transition
- 4 The Richards equation: overall error certification
 - A posteriori error estimates
 - Numerical experiments

5 Conclusions

Nonsmooth and degenerate nonlinearities

Brooks–Corey pressure–saturation function

Ínai

M. Vohralík

Nonsmooth and degenerate nonlinearities

M. Vohralík

Adaptive regularization and linearization for nonsmooth and degenerate problems 2 / 48

Nonsmooth and degenerate nonlinearities

Nonsmooth and degenerate nonlinearities

- omnipresent in flows and transport in porous media
- cause convergence troubles of standard iterative linearization schemes

Nonsmooth and degenerate nonlinearities: common recipes

Nonsmooth and degenerate nonlinearities

- omnipresent in flows and transport in porous media
- cause convergence troubles of standard iterative linearization schemes

Common recipes

- timestep cutting
- damping
- scheme switching (from Newton to fixed-point ...)
- semismooth methods
- path finding
- variable switching

• . . .

Example regularizations

Brooks–Corey regularized pressure–saturation functions

Ínaía

Example regularizations

Brooks–Corey regularized pressure–saturation functions

Brooks–Corey regularized saturation–relative permeability functions

Nonsmooth and degenerate nonlinearities: our approach

Algorithm

- regularization parameter $\epsilon_i > 0$
- 2 replace the nonsmooth and degenerate functions by smooth and nondegenerate ϵ_j -approximations
- a few steps of Newton linearization (gentle nonlinearity, good initial guess)
- decrease ϵ_j and go back to step •

Steering

- a posteriori estimates of error components
- linearization is below regularization: stop Newton iterations
- regularization is below discretization: stop regularization (
 e_j is never brought to zero)
- discretization is below a specified tolerance: finish

Nonsmooth and degenerate nonlinearities: our approach

Algorithm

- regularization parameter $\epsilon_i > 0$
- 2 replace the nonsmooth and degenerate functions by smooth and nondegenerate ϵ_j -approximations
- a few steps of Newton linearization (gentle nonlinearity, good initial guess)
- decrease ϵ_i and go back to step •

Steering

- a posteriori estimates of error components
- linearization is below regularization: stop Newton iterations
- regularization is below discretization: stop regularization (ε_j is never brought to zero)
- discretization is below a specified tolerance: finish

Nonsmooth and degenerate nonlinearities: our approach

Algorithm

- regularization parameter $\epsilon_i > 0$
- 2 replace the nonsmooth and degenerate functions by smooth and nondegenerate ϵ_j -approximations
- a few steps of Newton linearization (gentle nonlinearity, good initial guess)
- decrease ϵ_i and go back to step •

Steering

- a posteriori estimates of error components
- linearization is below regularization: stop Newton iterations
- regularization is below discretization: stop regularization (ε_j is never brought to zero)
- discretization is below a specified tolerance: finish

Example overall behavior

Richards equation, unsaturated medium, 1 time step

Ínai

Introduction

The Richards equation: adaptive regularization and linearization

- Discretization
- Regularization
- Linearization
- Flux reconstruction
- A posteriori estimates of error components
- Adaptive regularization and linearization
- Numerical experiments
- 3 Multi-phase flow with phase transition
 - The Richards equation: overall error certification
 - A posteriori error estimates
 - Numerical experiments

Introduction

- The Richards equation: adaptive regularization and linearization
 - Discretization
 - Regularization
 - Linearization
 - Flux reconstruction
 - A posteriori estimates of error components
 - Adaptive regularization and linearization
 - Numerical experiments
- 3 Multi-phase flow with phase transition
- 4 The Richards equation: overall error certification
 - A posteriori error estimates
 - Numerical experiments

Conclusions

Modelling flow of water and air through soil

The Richards equation

Find $p: \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t S(p) - \nabla \cdot [\mathbf{K} \kappa(S(p))(\nabla p + \mathbf{g})] = f \quad \text{in } \Omega \times (0, T),$ $p = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(p))(\cdot, 0) = s_0 \quad \text{in } \Omega.$

Modelling flow of water and air through soil

The Richards equation

Find $p: \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t S(p) - \nabla \cdot [\mathbf{K} \kappa(S(p))(\nabla p + \mathbf{g})] = f \quad \text{in } \Omega \times (0, T),$ $p = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(p))(\cdot, 0) = s_0 \quad \text{in } \Omega.$

Setting

- p: pressure
- S(p): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor K, source term $f \in C^1([0, 1])$, gravity g, initial saturation $s_0 \in L^{\infty}(\Omega), 0 \le s_0 \le 1$
- nonlinear (nonsmooth and degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $p: \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t S(p) - \nabla \cdot [\mathbf{K} \kappa(S(p))(\nabla p + \mathbf{g})] = f \quad \text{in } \Omega \times (0, T),$ $p = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(p))(\cdot, 0) = s_0 \quad \text{in } \Omega.$

Setting

- p: pressure
- S(p): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor K, source term $f \in C^1([0, 1])$, gravity g, initial saturation $s_0 \in L^{\infty}(\Omega), 0 \le s_0 \le 1$
- nonlinear (nonsmooth and degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $p: \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t S(p) - \nabla \cdot [\mathbf{K} \kappa(S(p))(\nabla p + \mathbf{g})] = f \quad \text{in } \Omega \times (0, T),$ $p = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(p))(\cdot, 0) = s_0 \quad \text{in } \Omega.$

Setting

- p: pressure
- S(p): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor K, source term $f \in C^1([0, 1])$, gravity g, initial saturation $s_0 \in L^{\infty}(\Omega), 0 \le s_0 \le 1$
- nonlinear (nonsmooth and degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $p: \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t S(p) - \nabla \cdot [\mathbf{K} \kappa(S(p))(\nabla p + \mathbf{g})] = f \quad \text{in } \Omega \times (0, T),$ $p = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(p))(\cdot, 0) = s_0 \quad \text{in } \Omega.$

Nonlinear (nonsmooth and degenerate) functions S and κ

6/48

Richards: adaptivity Multi-phase: adaptivity Richards: estimates C Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

The Richards equation: adaptive regularization and linearization

- Discretization
- I inearization
- Flux reconstruction
- A posteriori estimates of error components
- Adaptive regularization and linearization
- Numerical experiments
- - A posteriori error estimates
 - Numerical experiments

Backward Euler & finite element discretization

Lowest-order continuous finite element space

$$V_h^0 := \left\{ v_h \in H_0^1(\Omega), \ v_h|_K \in \mathcal{P}_1(K) \quad \forall K \in \mathcal{T}_h \right\}$$

Discretization

For each $n \in \{1, ..., N\}$, given $p_{n-1,h} \in V_h^0$, find the approximate pressure $p_{n,h} \in V_h^0$ satisfying

$$\frac{1}{\tau}(\boldsymbol{S}(\boldsymbol{p}_{n,h}) - \boldsymbol{S}(\boldsymbol{p}_{n-1,h}), \varphi_h) + (\boldsymbol{F}(\boldsymbol{p}_{n,h}), \nabla \varphi_h) = (f(\cdot, t_n), \varphi_h) \qquad \forall \varphi_h \in V_h^0,$$

where

$$F(q) := K\kappa(S(q))[\nabla q + g].$$

Lowest-order continuous finite element space

$$V_h^0 := \left\{ v_h \in H_0^1(\Omega), \ v_h|_K \in \mathcal{P}_1(K) \quad \forall K \in \mathcal{T}_h \right\}$$

Richards: adaptivity Multi-phase: adaptivity Richards: estimates C Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Discretization

For each $n \in \{1, ..., N\}$, given $p_{n-1,h} \in V_h^0$, find the approximate pressure $p_{n,h} \in V_h^0$ satisfying

$$\frac{1}{\tau}(\boldsymbol{\mathcal{S}}(\boldsymbol{\mathcal{p}}_{n,h})-\boldsymbol{\mathcal{S}}(\boldsymbol{\mathcal{p}}_{n-1,h}),\varphi_h)+(\boldsymbol{\mathcal{F}}(\boldsymbol{\mathcal{p}}_{n,h}),\nabla\varphi_h)=(f(\cdot,t_n),\varphi_h)\qquad\forall\varphi_h\in \boldsymbol{V}_h^0,$$

where

$$m{F}(q) := m{K}\kappa(m{S}(q))[
abla q + m{g}].$$

The Richards equation: adaptive regularization and linearization

Discretization

Regularization

- I inearization
- Flux reconstruction
- A posteriori estimates of error components
- Adaptive regularization and linearization
- Numerical experiments
- - A posteriori error estimates
 - Numerical experiments

Example regularizations

Brooks–Corey regularized pressure–saturation functions

Ínai

Example regularizations

Brooks–Corey regularized pressure–saturation functions

Brooks–Corey regularized saturation–relative permeability functions

 I Richards: adaptivity
 Multi-phase: adaptivity
 Richards: estimates
 C
 Discretization
 Regularization
 Linearization
 Flux
 Estimates
 Adaptivity
 Numerics

 Regularization
 Regularization
 Linearization
 Flux
 Estimates
 Adaptivity
 Numerics

Regularization Given $p_{n-1,h}^{\bar{j}} \in V_h^0$, find $p_{n,h}^j \in V_h^0$ satisfying

$$\frac{1}{r}(\boldsymbol{S}_{e^{j}}(\boldsymbol{p}_{n,h}^{j}) - \boldsymbol{S}_{e^{j}}(\boldsymbol{p}_{n-1,h}^{\bar{j}}), \varphi_{h}) + (\boldsymbol{F}_{e^{j}}(\boldsymbol{p}_{n,h}^{j}), \nabla \varphi_{h}) = (f(\cdot, t_{n}), \varphi_{h}) \quad \forall \varphi_{h} \in \boldsymbol{V}_{h}^{0},$$

where the regularized flux is given by

$$oldsymbol{F}_{\epsilon^j}(q) := oldsymbol{K} \kappa_{\epsilon^j}(\mathcal{S}_{\epsilon^j}(q)) [
abla q + oldsymbol{g}].$$

• e^{l} : sequence of regularization parameters

• \overline{j} : stopping regularization index

 I Richards: adaptivity
 Multi-phase: adaptivity
 Richards: estimates
 C
 Discretization
 Regularization
 Linearization
 Flux
 Estimates
 Adaptivity
 Numerics

 Regularization
 Regularization
 Linearization
 Flux
 Estimates
 Adaptivity
 Numerics

Regularization Given $p_{n-1,h}^{\bar{j}} \in V_h^0$, find $p_{n,h}^j \in V_h^0$ satisfying

$$\frac{1}{r}(\boldsymbol{S}_{e^{j}}(\boldsymbol{p}_{n,h}^{j}) - \boldsymbol{S}_{e^{j}}(\boldsymbol{p}_{n-1,h}^{\bar{j}}), \varphi_{h}) + (\boldsymbol{F}_{e^{j}}(\boldsymbol{p}_{n,h}^{j}), \nabla \varphi_{h}) = (f(\cdot, t_{n}), \varphi_{h}) \quad \forall \varphi_{h} \in \boldsymbol{V}_{h}^{0},$$

where the regularized flux is given by

$$oldsymbol{F}_{\epsilon^j}(q):=oldsymbol{K}\kappa_{\epsilon^j}(oldsymbol{S}_{\epsilon^j}(q))[
abla q+oldsymbol{g}].$$

- *e*^{*j*}: sequence of regularization parameters
- \overline{j} : stopping regularization index

The Richards equation: adaptive regularization and linearization

- Discretization
- Regularization
- I inearization
- Flux reconstruction
- A posteriori estimates of error components
- Adaptive regularization and linearization
- Numerical experiments
- - A posteriori error estimates
 - Numerical experiments

Linearization

Linearization

Given an initial guess $p_{n,h}^{j,k-1}$, find $p_{n,h}^{j,k} \in V_h^0$ such that, for all $\varphi_h \in V_h^0$,

 $\frac{1}{\tau}(\boldsymbol{S}_{\epsilon^{j}}(\boldsymbol{p}_{n,h}^{j,k-1})-\boldsymbol{S}_{\epsilon^{j}}(\boldsymbol{p}_{n-1,h}^{\bar{j},\bar{k}}),\varphi_{h})+\frac{1}{\tau}(\boldsymbol{L}(\boldsymbol{p}_{n,h}^{j,k}-\boldsymbol{p}_{n,h}^{j,k-1}),\varphi_{h})+(\boldsymbol{F}_{n,h}^{j,k},\nabla\varphi_{h})=(f(\cdot,t_{n}),\varphi_{h}),$

Richards: adaptivity Multi-phase: adaptivity Richards: estimates C Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

where the linearized flux is given by

$$\boldsymbol{F}_{n,h}^{j,k} := \boldsymbol{K} \kappa_{\boldsymbol{e}^{j}}(\boldsymbol{S}_{\boldsymbol{e}^{j}}(\boldsymbol{p}_{n,h}^{j,k-1}))[\nabla \boldsymbol{p}_{n,h}^{j,k} + \boldsymbol{g}] + \boldsymbol{\xi}(\boldsymbol{p}_{n,h}^{j,k} - \boldsymbol{p}_{n,h}^{j,k-1}).$$

- \bar{k} : stopping linearization index
- modified Picard:

$$L := S'_{e^{j}}(p^{j,k-1}_{n,h}), \quad \xi := \mathbf{0}$$

• Newton's method:

$$egin{aligned} & {m L} := {m S}'_{e^j}({m p}^{j,k-1}_{n,h}) \ & {m \xi} := {m K}(\kappa_{e^j} \circ {m S}_{e^j})'({m p}^{j,k-1}_{n,h}) [
abla {m p}^{j,k-1}_{n,h} + {m g}] \end{aligned}$$

Linearization

Linearization

Given an initial guess $p_{n,h}^{j,k-1}$, find $p_{n,h}^{j,k} \in V_h^0$ such that, for all $\varphi_h \in V_h^0$,

 $\frac{1}{\tau}(\boldsymbol{S}_{\epsilon^{j}}(\boldsymbol{p}_{n,h}^{j,k-1})-\boldsymbol{S}_{\epsilon^{j}}(\boldsymbol{p}_{n-1,h}^{\bar{j},\bar{k}}),\varphi_{h})+\frac{1}{\tau}(\boldsymbol{L}(\boldsymbol{p}_{n,h}^{j,k}-\boldsymbol{p}_{n,h}^{j,k-1}),\varphi_{h})+(\boldsymbol{F}_{n,h}^{j,k},\nabla\varphi_{h})=(f(\cdot,t_{n}),\varphi_{h}),$

Richards: adaptivity Multi-phase: adaptivity Richards: estimates C Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

where the linearized flux is given by

$$\boldsymbol{F}_{n,h}^{j,k} := \boldsymbol{K} \kappa_{\boldsymbol{\epsilon}^{j}}(\boldsymbol{S}_{\boldsymbol{\epsilon}^{j}}(\boldsymbol{p}_{n,h}^{j,k-1}))[\nabla \boldsymbol{p}_{n,h}^{j,k} + \boldsymbol{g}] + \boldsymbol{\xi}(\boldsymbol{p}_{n,h}^{j,k} - \boldsymbol{p}_{n,h}^{j,k-1}).$$

- \bar{k} : stopping linearization index
- modified Picard:

$$\boldsymbol{L} := \boldsymbol{S}_{e^{j}}^{\prime}(\boldsymbol{p}_{n,h}^{j,k-1}), \quad \boldsymbol{\xi} := \boldsymbol{0}$$

• Newton's method:

$$egin{aligned} m{L} &:= m{S}'_{\epsilon^j}(m{p}^{j,k-1}_{n,h}) \ m{\xi} &:= m{K}(\kappa_{\epsilon^j} \circ m{S}_{\epsilon^j})'(m{p}^{j,k-1}_{n,h}) [
abla m{p}^{j,k-1}_{n,h} + m{g}] \end{aligned}$$

The Richards equation: adaptive regularization and linearization

- Discretization
- I inearization

Flux reconstruction

- A posteriori estimates of error components
- Adaptive regularization and linearization
- Numerical experiments
- - A posteriori error estimates
 - Numerical experiments

The Richards equation: adaptive regularization and linearization

- Discretization
- I inearization
- Flux reconstruction

A posteriori estimates of error components

- Adaptive regularization and linearization
- Numerical experiments
- - A posteriori error estimates
 - Numerical experiments

A posteriori estimates of error components

A posteriori estimates of error components

$$\begin{split} \eta_{\text{dis}}^{n,j,k} &:= \| \mathbf{F}_{n,h}^{j,k} + \sigma_{n,h}^{j,k} \| \\ \eta_{\text{lin}}^{n,j,k} &:= \| \mathbf{F}_{e^{j}}(\mathbf{p}_{n,h}^{j,k}) - \mathbf{F}_{n,h}^{j,k} \| \\ \eta_{\text{reg}}^{n,j,k} &:= \| \mathbf{F}(\mathbf{p}_{n,h}^{j,k}) - \mathbf{F}_{e^{j}}(\mathbf{p}_{n,h}^{j,k}) \| \end{split}$$

(discretization) (linearization) (regularization)

Ímaía

The Richards equation: adaptive regularization and linearization

- Discretization
- I inearization
- Flux reconstruction
- A posteriori estimates of error components
- Adaptive regularization and linearization
- Numerical experiments
- - A posteriori error estimates
 - Numerical experiments
Richards: adaptivity Multi-phase: adaptivity Richards: estimates C Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Adaptive regularization and linearization

Adaptive regularization and linearization ($\gamma_{\text{lin}}, \gamma_{\text{reg}} \approx 0.3$)

$$\begin{split} \eta_{\mathrm{lin}}^{n,j,\bar{k}} &< \gamma_{\mathrm{lin}} \eta_{\mathrm{reg}}^{n,j,\bar{k}} \\ \eta_{\mathrm{reg}}^{n,\bar{j},\bar{k}} &< \gamma_{\mathrm{reg}} \eta_{\mathrm{dis}}^{n,\bar{j},\bar{k}} \end{split}$$

Outline

The Richards equation: adaptive regularization and linearization

- Discretization
- I inearization
- Flux reconstruction
- A posteriori estimates of error components
- Adaptive regularization and linearization
- Numerical experiments
- - A posteriori error estimates
 - Numerical experiments

Strictly unsaturated medium

- $\Omega = \Omega_1 \cup \Omega_2, \Omega_1 = (0, 1) \times (0, 1/4], \Omega_2 = (0, 1) \times (1/4, 1)$ $T = 1, K = I, g = (0, 1)^T$ • effective saturation $\mathscr{S}(s) = \frac{s - S_{R}}{S_{R} - S_{R}}$ van Genuchten model $\kappa(\mathbf{s}) = \kappa_{\rm e} \sqrt{\mathscr{S}(\mathbf{s})} (1 - (1 - \mathscr{S}(\mathbf{s})^{1/\lambda_2})^{\lambda_2})^2$ $S(p) = \begin{cases} \left[(1 + (-\alpha p)^{\frac{1}{1-\lambda_2}} \right]^{-\lambda_2} & p \le p_{\mathsf{M}}, \\ 1 & p > p_{\mathsf{M}} \end{cases}$ • $p_{\rm M} = 0, S_{\rm B} = 0.026, S_{\rm V} = 0.42, \kappa_{\rm C} = 0.12, \alpha = 0.551, \lambda_2 = 0.655$ • $f(x,y) = \begin{cases} 0 & (x,y) \in \Omega_1, \\ 0.06\cos(\frac{4}{3}\pi y)\sin(x) & (x,y) \in \Omega_2 \end{cases}$ • $p_0(x,y) = \begin{cases} -y - 1/4 & (x,y) \in \Omega_1, \\ -4 & (x,y) \in \Omega_2 \end{cases}$
- $s_0 = S(p_0)$
- uniform mesh with $40 \times 40 \times 2$ elements, $\tau_0 = 1$

Richards: adaptivity Multi-phase: adaptivity Richards: estimates C Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Adaptive regularization and linearization

F. Févotte, A. Rappaport, M. Vohralík, Computational Geosciences (2024)

Richards: adaptivity Multi-phase: adaptivity Richards: estimates C Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Injection case

- $\Omega = (0, 1)^2$
- $T = 1, K = I, q = (0, -1)^T$
- effective saturation $\mathscr{S}(s) = \frac{s S_{\text{R}}}{S_{\text{V}} S_{\text{R}}}$
- Brooks–Corey model

$$egin{aligned} &\kappa(s) = \mathscr{S}(s)^{rac{2+3\lambda_1}{\lambda_1}}, \ &S(p) = egin{cases} (-
ho/
ho_{\mathsf{M}})^{-\lambda_1} &
ho \leq
ho_{\mathsf{M}}, \ 1 &
ho >
ho_{\mathsf{M}} \end{aligned}$$

- $p_{M} = -0.2, \lambda_1 = 2.239$ • f = 0
- $p_0 = -1$
- $s_0 = S(p_0)$
- guasi uniform mesh with $h = 2.82 \cdot 10^{-2}$, $\tau_0 = 2.82 \cdot 10^{-2}$

Ínaía

Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Do we reduce the **computational cost**?

Number of linearization iterations on each time step

E Févotte, A. Bappaport, M. Vohralík, Computational Geosciences (2024)

M. Vohralík

Do we reduce the **computational cost**?

Number of linearization iterations on each time step

Cumulative number of linearization iterations

F. Févotte, A. Rappaport, M. Vohralík, Computational Geosciences (2024)

M. Vohralík

Do we lose precision?

Saturation field $s = S(p_{n,b}^{\overline{j},\overline{k}})$ using Newton's method and adaptive regularization $\epsilon^1 = 0.1$ (left) and modified Picard with no regularization (right)

F. Févotte, A. Rappaport, M. Vohralík, Computational Geosciences (2024)

Realistic case

• $\Omega = (0, 1)^2$ • T = 1• $\boldsymbol{q} = (-1, 0)^T$ • $\mathbf{Q} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$ • $K_{\phi} = 0.1$ • effective saturation $\mathscr{S}(s) = \frac{s - S_{\text{R}}}{S_{\text{V}} - S_{\text{R}}}$ Brooks–Corev model $\kappa(\boldsymbol{s}) = \mathscr{S}(\boldsymbol{s})^{rac{2+3\lambda_1}{\lambda_1}}$ $S(p) = egin{cases} (-p/p_{\mathsf{M}})^{-\lambda_1} & p \leq p_{\mathsf{M}}, \ 1 & p > p_{\mathsf{M}} \end{cases}$ • $p_{M} = -0.2, \lambda_{1} = 2$ • f = 0• guasi uniform mesh with $h = 2.02 \cdot 10^{-2}$, $\tau_0 = 2.02 \cdot 10^{-2}$ • $p_{L}(\mathbf{x}) = \left(\frac{p_{\text{out}} - p_{\text{in}}}{0.5}\right) \mathbf{x}, p_{\text{out}} = -2.0, p_{\text{in}} = -0.2, p_{D} = p_{0}|_{\Gamma_{D}}$

Realistic case setting

Richards: adaptivity Multi-phase: adaptivity Richards: estimates C

M. Vohralík

Ínai

Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Do we reduce the **computational cost**?

Number of linearization iterations on each time step

F. Févotte, A. Rappaport, M. Vohralík, Computational Geosciences (2024)

M. Vohralík

Do we reduce the **computational cost**?

F. Févotte, A. Rappaport, M. Vohralík, Computational Geosciences (2024)

M. Vohralík

Adaptive regularization and linearization

F. Févotte, A. Rappaport, M. Vohralík, Computational Geosciences (2024)

nní

Perched water table case

- $\Omega = (-2.5 \text{ m}, 2.5 \text{ m}) \times (-3 \text{ m}, 0 \text{ m})$
- *T* = 86400 s (one day)
- K = I
- $\boldsymbol{g} = (-1, 0)^T$
- effective saturation $\mathscr{S}(s) = \frac{s S_{\mathsf{R}}}{S_{\mathsf{V}} S_{\mathsf{R}}}$
- van Genuchten model

$$\begin{split} \kappa(\boldsymbol{s}) &= \kappa_{\mathrm{c}} \sqrt{\mathscr{S}(\boldsymbol{s})} (1 - (1 - \mathscr{S}(\boldsymbol{s})^{1/\lambda_{2}})^{\lambda_{2}})^{2}, \\ S(\boldsymbol{p}) &= \begin{cases} \left[(1 + (-\alpha \boldsymbol{p})^{\frac{1}{1-\lambda_{2}}} \right]^{-\lambda_{2}} & \boldsymbol{p} \leq \boldsymbol{p}_{\mathrm{M}}, \\ 1 & \boldsymbol{p} > \boldsymbol{p}_{\mathrm{M}} \end{cases} \end{split}$$

Bichards: adaptivity Multi-phase: adaptivity Bichards: estimates C Discretization Begularization Linearization Flux Estimates Adaptivity Numerics

• *f* = 0

- quasi uniform mesh with $h = 8.2 \cdot 10^{-2}$
- $\tau_0 = 60$ s, (increase $\tau_n := 1.2\tau_{n-1}$ for $n \ge 1$)
- initial condition $s_0 = S(p_0)$ with $p_0 = -300$ m

Richards: adaptivity Multi-phase: adaptivity Richards: estimates C Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Perched water table case setting

Material	κ_{c}	ϕ	$S_{ m R}$	S_{V}	λ_2	α
Sand	$6.262 imes 10^{-5}$	0.368	0.07818	1	0.553	2.8
Clay	$1.516 imes 10^{-6}$	0.4686	0.2262	1	0.2835	1.04

Ínnía

Richards: adaptivity Multi-phase: adaptivity Richards: estimates C Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Perched water table case saturation evolution

Saturation at t = 0 s, $21 \cdot 10^3$ s, $41 \cdot 10^3$ s, $86.1 \cdot 10^3$ s

F. Févotte, A. Rappaport, M. Vohralík, Computational Geosciences (2024)

Ínai

Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Performance: only adaptive regularization and linearization works

Stepwise

Number of linearization iterations on each time step

F. Févotte, A. Rappaport, M. Vohralík, Computational Geosciences (2024)

M. Vohralík

Adaptive regularization and linearization for nonsmooth and degenerate problems 26/48 Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Performance: only adaptive regularization and linearization works

M. Vohralík

Adaptive regularization and linearization for nonsmooth and degenerate problems 26/48

Outline

- Introduction
- The Richards equation: adaptive regularization and linearization
 - Discretization
 - Regularization
 - Linearization
 - Flux reconstruction
 - A posteriori estimates of error components
 - Adaptive regularization and linearization
 - Numerical experiments
- 3 Multi-phase flow with phase transition
 - The Richards equation: overall error certification
 - A posteriori error estimates
 - Numerical experiments

5 Conclusions

Complementarity problems

System of (nonlinear) algebraic equations with complementarity constraints

$$m{F}(m{X}) = m{0}, \ m{K}(m{X}) \geq m{0}, \ m{G}(m{X}) \geq m{0}, \ m{K}(m{X}) \cdot m{G}(m{X}) = m{0}$$

Complementarity problems

System of (nonlinear) algebraic equations with complementarity constraints

$$F(X) = \mathbf{0},$$

$$K(X) \ge \mathbf{0}, \ G(X) \ge \mathbf{0}, \ K(X) \cdot G(X) = \mathbf{0}$$

Nonlinear algebraic inequalities $\xrightarrow{?}$ nonlinear algebraic equalities

Ínnia

Complementarity problems

System of (nonlinear) algebraic equations with complementarity constraints

$$F(X) = \mathbf{0},$$

$$K(X) \ge \mathbf{0}, \ G(X) \ge \mathbf{0}, \ K(X) \cdot G(X) = \mathbf{0}$$

Nonlinear algebraic inequalities $\stackrel{?}{\rightarrow}$ nonlinear algebraic equalities

Complementarity functions: equivalent reformulation as algebraic equalities

 $oldsymbol{F}(oldsymbol{X}) = oldsymbol{0}, \ oldsymbol{C}(oldsymbol{X}) = oldsymbol{0}$

nonlinear nonsmooth system

Richards: adaptivity Multi-phase: adaptivity Richards: estimates C

Regularized complementary functions

Regularized absolute value (Newton-min) functions

Richards: adaptivity Multi-phase: adaptivity Richards: estimates C

Regularized complementary functions

Regularized absolute value (Newton-min) functions

Regularized Fischer–Burmeister functions

Numerical performances

I. Ben Gharbia, J. Ferzly, M. Vohralík, S. Yousef, Journal of Computational and Applied Mathematics (2023)

Ínnís

M. Vohralík

Adaptive regularization and linearization for nonsmooth and degenerate problems 29 / 48

Numerical performances

I. Ben Gharbia, J. Ferzly, M. Vohralík, S. Yousef, Journal of Computational and Applied Mathematics (2023)

Ínaía

Adaptive regularization and linearization for nonsmooth and degenerate problems 30 / 48

Numerical performances

I. Ben Gharbia, J. Ferzly, M. Vohralík, S. Yousef, Journal of Computational and Applied Mathematics (2023)

M. Vohralík

Adaptive regularization and linearization for nonsmooth and degenerate problems 31 / 48

Outline

- Introduction
- The Richards equation: adaptive regularization and linearization
 - Discretization
 - Regularization
 - Linearization
 - Flux reconstruction
 - A posteriori estimates of error components
 - Adaptive regularization and linearization
 - Numerical experiments
- Multi-phase flow with phase transition
- The Richards equation: overall error certification
 - A posteriori error estimates
 - Numerical experiments

Conclusions

Modelling flow of water and air through soil

The Richards equation

Find
$$p: \Omega \times (0, T) \to \mathbb{R}$$
 such that
 $\partial_t S(p) - \nabla \cdot [\mathbf{K}\kappa(S(p))(\nabla p + \mathbf{g})] = f(S(p)) \quad \text{in } \Omega \times (0, T),$
 $p = 0 \qquad \text{on } \partial\Omega \times (0, T),$
 $(S(p))(\cdot, 0) = \mathbf{s}_0 \qquad \text{in } \Omega.$

Modelling flow of water and air through soil

The Richards equation

Find $p: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(p) - \nabla \cdot [\mathbf{K} \kappa(S(p))(\nabla p + \mathbf{g})] = f(S(p)) \quad \text{in } \Omega \times (0, T),$ $p = 0 \qquad \text{on } \partial\Omega \times (0, T),$ $(S(p))(\cdot, 0) = s_0 \qquad \text{in } \Omega.$

Setting

- p: pressure
- S(p): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor K, source term $f \in C^1([0, 1])$, gravity g, initial saturation $s_0 \in L^{\infty}(\Omega), 0 \le s_0 \le 1$
- nonlinear (nonsmooth and degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $p: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(p) - \nabla \cdot [\mathbf{K}\kappa(S(p))(\nabla p + \mathbf{g})] = f(S(p)) \quad \text{in } \Omega \times (0, T),$ $p = 0 \qquad \text{on } \partial\Omega \times (0, T),$ $(S(p))(\cdot, 0) = s_0 \qquad \text{in } \Omega.$

Setting

- p: pressure
- S(p): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor K, source term $f \in C^1([0, 1])$, gravity g, initial saturation $s_0 \in L^{\infty}(\Omega), 0 \le s_0 \le 1$
- nonlinear (nonsmooth and degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $p: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(p) - \nabla \cdot [\mathbf{K} \kappa(S(p))(\nabla p + \mathbf{g})] = f(S(p)) \quad \text{in } \Omega \times (0, T),$ $p = 0 \qquad \text{on } \partial\Omega \times (0, T),$ $(S(p))(\cdot, 0) = s_0 \qquad \text{in } \Omega.$

Setting

- p: pressure
- S(p): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor K, source term $f \in C^1([0, 1])$, gravity g, initial saturation $s_0 \in L^{\infty}(\Omega), 0 \le s_0 \le 1$
- nonlinear (nonsmooth and degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $p: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(p) - \nabla \cdot [\mathbf{K}\kappa(S(p))(\nabla p + \mathbf{g})] = f(S(p)) \quad \text{in } \Omega \times (0, T),$ $p = 0 \qquad \text{on } \partial\Omega \times (0, T),$ $(S(p))(\cdot, 0) = \mathbf{s}_0 \qquad \text{in } \Omega.$

Nonlinear (nonsmooth and degenerate) functions S and κ

32/48

Outline

- Introduction
- The Richards equation: adaptive regularization and linearization
 - Discretization
 - Regularization
 - Linearization
 - Flux reconstruction
 - A posteriori estimates of error components
 - Adaptive regularization and linearization
 - Numerical experiments
- Multi-phase flow with phase transition
- The Richards equation: overall error certification
 - A posteriori error estimates
 - Numerical experiments

Conclusions

Estimates Numerics

Weak formulation

Spaces

 $\boldsymbol{X} := L^2(0, T; H^1_0(\Omega)),$

$$Z := H^1(0, T; H^{-1}(\Omega))$$

Total pressure (Kirchhoff transform)

$$\mathcal{K}(p) := egin{cases} \int_0^p \kappa(\mathcal{S}(arrho)) \, \mathrm{d}arrho & ext{for } p \leq p_{\mathsf{M}}, \ P_{\mathsf{M}} + \kappa(1)(p-p_{\mathsf{M}}) & ext{for } p > p_{\mathsf{M}}, \end{cases}, \qquad heta \, \circ \, \mathcal{K} = \mathcal{S}$$

Weak formulation

$$\begin{split} \Psi \in X & \text{with } \boldsymbol{s} := \theta(\Psi) \in Z, \quad \boldsymbol{s}(0) = \boldsymbol{s}_0 \quad \text{in } \Omega, \\ \int_0^T \langle \partial_t \theta(\Psi), \boldsymbol{v} \rangle + \int_0^T (\boldsymbol{K}(\nabla \Psi + \boldsymbol{g}\kappa(\theta(\Psi))), \nabla \boldsymbol{v}) = \int_0^T (f(\theta(\Psi)), \boldsymbol{v}) \quad \forall \boldsymbol{v} \in X \\ \textbf{Residual } \mathcal{R}(\Psi_{h\tau}) \in X', \text{ for } \Psi_{h\tau} \in X \text{ such that } \boldsymbol{s}_{h\tau} := \theta(\Psi_{h\tau}) \in Z \\ \langle \mathcal{R}(\Psi_{h\tau}), \boldsymbol{v} \rangle_{X',X} := \int_0^T \{(f(\theta(\Psi_{h\tau})), \boldsymbol{v}) - \langle \partial_t \theta(\Psi_{h\tau}), \boldsymbol{v} \rangle - (\boldsymbol{K}(\nabla \Psi_{h\tau} + \boldsymbol{g}\kappa(\theta(\Psi_{h\tau}))), \nabla \boldsymbol{v})\}(\boldsymbol{s}) d\boldsymbol{s} \\ \textbf{Dual norm of the residual} \end{split}$$

$$\|\mathcal{R}(\Psi_{hr})\|_{X'} := \sup_{v \in X, \|v\|_{Y} = 1} \langle \mathcal{R}(\Psi_{hr}), v \rangle_{X', X}$$

Estimates Numerics

Weak formulation

Spaces

 $X := L^2(0, T; H_0^1(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$ Total pressure (Kirchhoff transform)

$$\mathcal{K}(\boldsymbol{\rho}) := egin{cases} \int_0^{\boldsymbol{\rho}} \kappa(\boldsymbol{S}(\varrho)) \, \mathrm{d} \varrho & ext{for } \boldsymbol{\rho} \leq \boldsymbol{p}_{\mathsf{M}}, \ \boldsymbol{P}_{\mathsf{M}} + \kappa(1)(\boldsymbol{\rho} - \boldsymbol{p}_{\mathsf{M}}) & ext{for } \boldsymbol{\rho} > \boldsymbol{p}_{\mathsf{M}}, \end{cases}, \qquad heta \, \circ \, \mathcal{K} = \boldsymbol{S}$$

Weak formulation

$$\Psi \in X \quad \text{with } s := \theta(\Psi) \in Z, \quad s(0) = s_0 \quad \text{in } \Omega,$$

$$\int_0^T \langle \partial_t \theta(\Psi), v \rangle + \int_0^T (\boldsymbol{K}(\nabla \Psi + \boldsymbol{g}_{\mathcal{K}}(\theta(\Psi))), \nabla v) = \int_0^T (f(\theta(\Psi)), v) \quad \forall v \in X$$

Residual $\mathcal{R}(\Psi_{h\tau}) \in X',$ for $\Psi_{h\tau} \in X$ such that $s_{h\tau} := \theta(\Psi_{h\tau}) \in Z$
$$\langle \mathcal{R}(\Psi_{h\tau}), v \rangle_{X',X} := \int_0^T \{ (f(\theta(\Psi_{h\tau})), v) - \langle \partial_t \theta(\Psi_{h\tau}), v \rangle - (\boldsymbol{K}(\nabla \Psi_{h\tau} + \boldsymbol{g}_{\mathcal{K}}(\theta(\Psi_{h\tau}))), \nabla v) \} (s) ds$$

Dual norm of the residual

$$\|\mathcal{R}(\Psi_{h\tau})\|_{X'} := \sup_{v \in X, \, \|v\|_{X}=1} \langle \mathcal{R}(\Psi_{h\tau}), v \rangle_{X', X}$$
Weak formulation

Spaces

 $X := L^2(0, T; H^1_0(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$

Total pressure (Kirchhoff transform)

$$\mathcal{K}(\boldsymbol{\rho}) := \begin{cases} \int_0^{\boldsymbol{\rho}} \kappa(\boldsymbol{S}(\varrho)) \, \mathrm{d}\varrho & \text{for } \boldsymbol{\rho} \leq \boldsymbol{p}_{\mathsf{M}}, \\ \boldsymbol{P}_{\mathsf{M}} + \kappa(1)(\boldsymbol{\rho} - \boldsymbol{\rho}_{\mathsf{M}}) & \text{for } \boldsymbol{\rho} > \boldsymbol{\rho}_{\mathsf{M}}, \end{cases}, \qquad \theta \, \circ \, \mathcal{K} = \boldsymbol{S}$$

Weak formulation

$$\begin{split} \Psi \in X & \text{with } \boldsymbol{s} := \theta(\Psi) \in Z, \quad \boldsymbol{s}(0) = \boldsymbol{s}_0 \quad \text{in } \Omega, \\ \int_0^T \langle \partial_t \theta(\Psi), \boldsymbol{v} \rangle + \int_0^T (\boldsymbol{K}(\nabla \Psi + \boldsymbol{g}_{\kappa}(\theta(\Psi))), \nabla \boldsymbol{v}) = \int_0^T (f(\theta(\Psi)), \boldsymbol{v}) \quad \forall \boldsymbol{v} \in X \\ \text{esidual } \mathcal{R}(\Psi_{h\tau}) \in X', \text{ for } \Psi_{h\tau} \in X \text{ such that } \boldsymbol{s}_{h\tau} := \theta(\Psi_{h\tau}) \in Z \end{split}$$

 $\langle \mathcal{R}(\Psi_{h\tau}), v \rangle_{X',X} := \int_0^T \{ (f(\theta(\Psi_{h\tau})), v) - \langle \partial_t \theta(\Psi_{h\tau}), v \rangle - (\mathbf{K}(\nabla \Psi_{h\tau} + \mathbf{g}\kappa(\theta(\Psi_{h\tau}))), \nabla v) \} (s) ds$ Dual norm of the residual

$$\|\mathcal{R}(\Psi_{h\tau})\|_{X'} := \sup_{v \in X, \, \|v\|_X = 1} \langle \mathcal{R}(\Psi_{h\tau}), v \rangle_{X', X}$$

Weak formulation

Spaces

 $X := L^2(0, T; H^1_0(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$

Total pressure (Kirchhoff transform)

$$\mathcal{K}(\boldsymbol{p}) := \begin{cases} \int_0^{\boldsymbol{p}} \kappa(\boldsymbol{S}(\varrho)) \, \mathrm{d}\varrho & \text{for } \boldsymbol{p} \leq \boldsymbol{p}_{\mathsf{M}}, \\ \boldsymbol{P}_{\mathsf{M}} + \kappa(1)(\boldsymbol{p} - \boldsymbol{p}_{\mathsf{M}}) & \text{for } \boldsymbol{p} > \boldsymbol{p}_{\mathsf{M}}, \end{cases}, \qquad \theta \, \circ \, \mathcal{K} = \boldsymbol{S}$$

Weak formulation

$$\begin{split} \Psi \in X & \text{with } \boldsymbol{s} := \theta(\Psi) \in Z, \quad \boldsymbol{s}(0) = \boldsymbol{s}_0 \quad \text{in } \Omega, \\ \int_0^T \langle \partial_t \theta(\Psi), \boldsymbol{v} \rangle + \int_0^T (\boldsymbol{K}(\nabla \Psi + \boldsymbol{g}\kappa(\theta(\Psi))), \nabla \boldsymbol{v}) = \int_0^T (f(\theta(\Psi)), \boldsymbol{v}) \quad \forall \boldsymbol{v} \in X \\ \text{Residual } \mathcal{R}(\Psi_{h\tau}) \in X', \text{ for } \Psi_{h\tau} \in X \text{ such that } \boldsymbol{s}_{h\tau} := \theta(\Psi_{h\tau}) \in Z \\ \langle \mathcal{R}(\Psi_{h\tau}), \boldsymbol{v} \rangle_{X',X} := \int_0^T \{(f(\theta(\Psi_{h\tau})), \boldsymbol{v}) - \langle \partial_t \theta(\Psi_{h\tau}), \boldsymbol{v} \rangle - (\boldsymbol{K}(\nabla \Psi_{h\tau} + \boldsymbol{g}\kappa(\theta(\Psi_{h\tau}))), \nabla \boldsymbol{v})\}(\boldsymbol{s}) d\boldsymbol{s} \\ \text{Dual norm of the residual} \end{split}$$

$$\|\mathcal{R}(\Psi_{h\tau})\|_{X'} := \sup_{v \in \mathcal{X}, \|v\|_X = 1} \langle \mathcal{R}(\Psi_{h\tau}), v \rangle_{X', X}$$

Weak formulation

Spaces

 $X := L^2(0, T; H_0^1(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$

Total pressure (Kirchhoff transform)

$$\mathcal{K}(\boldsymbol{p}) := egin{cases} \int_0^{\boldsymbol{p}} \kappa(\mathcal{S}(\varrho)) \, \mathrm{d}\varrho & ext{for } \boldsymbol{p} \leq \boldsymbol{p}_\mathsf{M}, \ \mathcal{P}_\mathsf{M} + \kappa(1)(\boldsymbol{p} - \boldsymbol{p}_\mathsf{M}) & ext{for } \boldsymbol{p} > \boldsymbol{p}_\mathsf{M}, \end{cases}, \qquad heta \, \circ \, \mathcal{K} = \mathcal{S}$$

Weak formulation

$$\begin{split} \Psi \in X & \text{with } \boldsymbol{s} := \theta(\Psi) \in Z, \qquad \boldsymbol{s}(0) = \boldsymbol{s}_0 \quad \text{in } \Omega, \\ \int_0^T \langle \partial_t \theta(\Psi), \boldsymbol{v} \rangle + \int_0^T (\boldsymbol{K}(\nabla \Psi + \boldsymbol{g}\kappa(\theta(\Psi))), \nabla \boldsymbol{v}) = \int_0^T (f(\theta(\Psi)), \boldsymbol{v}) \quad \forall \boldsymbol{v} \in X \\ \text{Residual } \mathcal{R}(\Psi_{h\tau}) \in X', \text{ for } \Psi_{h\tau} \in X \text{ such that } \boldsymbol{s}_{h\tau} := \theta(\Psi_{h\tau}) \in Z \\ \langle \mathcal{R}(\Psi_{h\tau}), \boldsymbol{v} \rangle_{X',X} := \int_0^T \{(f(\theta(\Psi_{h\tau})), \boldsymbol{v}) - \langle \partial_t \theta(\Psi_{h\tau}), \boldsymbol{v} \rangle - (\boldsymbol{K}(\nabla \Psi_{h\tau} + \boldsymbol{g}\kappa(\theta(\Psi_{h\tau}))), \nabla \boldsymbol{v})\}(\boldsymbol{s}) d\boldsymbol{s} \\ \text{Dual norm of the residual} \end{split}$$

Dual norm of the residual

$$\|\mathcal{R}(\Psi_{h\tau})\|_{X'} := \sup_{v \in \mathcal{X}, \, \|v\|_X = 1} \langle \mathcal{R}(\Psi_{h\tau}), v \rangle_{X', X}$$

Time-integration functionals based on the sharp Grönwall lemma

Time-integration functionals, $\alpha : [0, T] \rightarrow [0, \infty)$

$$\mathcal{J}_{\alpha}: \mathcal{L}^{2}([0, T]) \to [0, \infty),$$
$$\mathcal{J}_{\alpha}(\varrho) := \left[\exp\left(-\frac{\tau}{5}\alpha\right) \int_{0}^{T} \left(\varrho^{2}(t) + \alpha(t) \exp\left(\frac{\tau}{5}\alpha\right) \int_{0}^{t} \varrho^{2} \right) \mathrm{d}t \right]^{\frac{1}{2}}$$

• define norm on $L^2([0, T])$

• actually equivalent to the $L^2([0, T])$ norm

$$\exp\left(-\frac{1}{2}\int_{0}^{T}\alpha\right)\|\varrho\|_{L^{2}([0,T])} \leq \mathcal{J}_{\alpha}(\varrho) \leq \|\varrho\|_{L^{2}([0,T])}$$

Time-integration functionals based on the sharp Grönwall lemma

Time-integration functionals, $\alpha : [0, T] \rightarrow [0, \infty)$

$$\mathcal{J}_{\alpha}: \mathcal{L}^{2}([0, T]) \to [0, \infty),$$
$$\mathcal{J}_{\alpha}(\varrho) := \left[\exp\left(-\frac{\tau}{5}\alpha\right) \int_{0}^{\tau} \left(\varrho^{2}(t) + \alpha(t) \exp\left(\frac{\tau}{5}\alpha\right) \int_{0}^{t} \varrho^{2} \right) dt \right]^{\frac{1}{2}}$$

• define norm on $L^2([0, T])$

• actually equivalent to the $L^2([0, T])$ norm

$$\exp\left(-\frac{1}{2}\int\limits_{0}^{T}\alpha\right)\|\varrho\|_{L^{2}([0,T])} \leq \mathcal{J}_{\alpha}(\varrho) \leq \|\varrho\|_{L^{2}([0,T])}$$

Time-integration functionals based on the sharp Grönwall lemma

Time-integration functionals, $\alpha : [0, T] \rightarrow [0, \infty)$

$$\mathcal{J}_{\alpha}: \mathcal{L}^{2}([0, T]) \to [0, \infty),$$
$$\mathcal{J}_{\alpha}(\varrho) := \left[\exp\left(-\frac{\tau}{5}\alpha\right) \int_{0}^{T} \left(\varrho^{2}(t) + \alpha(t) \exp\left(\frac{\tau}{5}\alpha\right) \int_{0}^{t} \varrho^{2} \right) dt \right]^{\frac{1}{2}}$$

- define norm on $L^2([0, T])$
- actually equivalent to the $L^2([0, T])$ norm

$$\exp\left(-\frac{1}{2}\int\limits_{0}^{T}\alpha\right)\|\varrho\|_{L^{2}([0,T])} \leq \mathcal{J}_{\alpha}(\varrho) \leq \|\varrho\|_{L^{2}([0,T])}$$

Time-integration functionals based on the sharp Grönwall lemma

Time-integration functionals, $\alpha : [0, T] \rightarrow [0, \infty)$

$$\mathcal{J}_{\alpha}: \mathcal{L}^{2}([0, T]) \to [0, \infty),$$
$$\mathcal{J}_{\alpha}(\varrho) := \left[\exp\left(-\frac{\tau}{5}\alpha\right) \int_{0}^{T} \left(\varrho^{2}(t) + \alpha(t) \exp\left(\frac{\tau}{5}\alpha\right) \int_{0}^{t} \varrho^{2} \right) dt \right]^{\frac{1}{2}}$$

- define norm on $L^2([0, T])$
- actually equivalent to the $L^2([0, T])$ norm

$$\exp\left(-\frac{1}{2}\int\limits_{0}^{T}\alpha\right)\|\varrho\|_{L^{2}([0,T])} \leq \mathcal{J}_{\alpha}(\varrho) \leq \|\varrho\|_{L^{2}([0,T])}$$

Relation error – residual without e^{T} by the sharp Grönwall lemma

Theorem (Relation error – residual without e^{T})

Let $\Psi_{h\tau} \in X$ such that $s_{h\tau} := \theta(\Psi_{h\tau}) \in Z$. Then

$$e^{-\int_0^T (\lambda + \mathfrak{C}_1)} \| (s - s_{h\tau})(T) \|_{H^{-1}(\Omega)}^2 + \mathcal{J}_{\lambda + \mathfrak{C}_1} \left(\theta_{\partial, \mathsf{M}}^{-\frac{1}{2}} \| s - s_{h\tau} \| \right)^2$$

$$\leq \|\boldsymbol{s}_0 - \boldsymbol{s}_{h\tau}(0)\|_{H^{-1}(\Omega)}^2 + \boldsymbol{\mathcal{J}}_{\lambda + \mathfrak{C}_1}(\lambda^{-\frac{1}{2}} \|\boldsymbol{\mathcal{R}}(\Psi_{h\tau})\|_{H^{-1}(\Omega)})^2,$$

$$\begin{split} & e^{-\int_0^{\mathcal{T}}\mathfrak{C}_2} \|(s-s_{h\tau})(\mathcal{T})\|^2 + \frac{1}{2}\mathcal{J}_{\mathfrak{C}_2}\left(\left\|D(s)^{-\frac{1}{2}}\mathcal{K}^{\frac{1}{2}}\nabla(\Psi-\Psi_{h\tau})\right\|\right)^2 \\ & \leq \|s_0-s_{h\tau}(0)\|^2 + \mathcal{J}_{\mathfrak{C}_2}\left(\eta^{\mathsf{deg}}\right)^2 + 4\,\mathcal{J}_{\mathfrak{C}_2}\left(D_{\mathsf{m}}^{-\frac{1}{2}}\|\mathcal{R}(\Psi_{h\tau})\|_{H^{-1}(\Omega)}\right)^2, \end{split}$$

$$\begin{aligned} & \mathcal{J}_{\lambda}(\|\partial_t(s-s_{h\tau})\|_{H^{-1}(\Omega)})^2 \\ & \leq 3 \left[\mathcal{J}_{\lambda}(\|\Psi-\Psi_{h\tau}\|_{H^{-1}(\Omega)})^2 + \mathfrak{C}_3(T) \, \mathcal{J}_{\lambda} \left(\|s-s_{h\tau}\|\right)^2 + \mathcal{J}_{\lambda}(\|\mathcal{R}(\Psi_{h\tau})\|_{H^{-1}(\Omega)})^2 \right]. \end{aligned}$$

Guaranteed a posteriori error estimate

Theorem (Guaranteed a posteriori error estimate)

Let $\Psi_{h\tau} \in X$ such that $s_{h\tau} := \theta(\Psi_{h\tau}) \in Z$. Then

 $\|\mathcal{R}(\Psi_{h\tau}(t))\|_{H^{-1}(\Omega)} \leq \eta_{\mathcal{R}}(t).$

Consequently,

$$\begin{split} \mathcal{E}_{L^{2}}^{2} &:= e^{-\int_{0}^{T} (\lambda + \mathfrak{C}_{1})} \| (s - s_{h\tau})(T) \|_{H^{-1}(\Omega)}^{2} + \mathcal{J}_{\lambda + \mathfrak{C}_{1}} (\theta_{\partial, \mathsf{M}}^{-\frac{1}{2}} \| s - s_{h\tau} \|)^{2} \\ &\leq [\eta^{\mathsf{ini}, H^{-1}}]^{2} + \mathcal{J}_{\lambda + \mathfrak{C}_{1}} (\lambda^{-\frac{1}{2}} \eta_{\mathcal{R}})^{2} =: \eta_{L^{2}}^{2}, \\ \mathcal{E}_{H^{1}}^{2} &:= e^{-\int_{0}^{T} \mathfrak{C}_{2}} \| (s - s_{h\tau})(T) \|^{2} + \frac{1}{2} \mathcal{J}_{\mathfrak{C}_{2}} (\| D(s)^{-\frac{1}{2}} \mathcal{K}^{\frac{1}{2}} \nabla (\Psi - \Psi_{h\tau}) \|)^{2} \\ &\leq [\eta^{\mathsf{ini}, L^{2}}]^{2} + \mathcal{J}_{\mathfrak{C}_{2}} \left(\eta^{\mathsf{deg}} \right)^{2} + 4 \mathcal{J}_{\mathfrak{C}_{2}} \left(D_{\mathsf{m}}^{-\frac{1}{2}} \eta_{\mathcal{R}} \right)^{2} =: \eta_{H^{1}}^{2}. \end{split}$$

Outline

- Introduction
- The Richards equation: adaptive regularization and linearization
 - Discretization
 - Regularization
 - Linearization
 - Flux reconstruction
 - A posteriori estimates of error components
 - Adaptive regularization and linearization
 - Numerical experiments
- Multi-phase flow with phase transition
- The Richards equation: overall error certification
 - A posteriori error estimates
 - Numerical experiments

Conclusions

Degenerate case with known solution

- unit square $\Omega = (0, 1)^2$
- *T* = 1
- *K* = *I*
- nonlinearities

$$\kappa(s) = 1, \quad S(p) = egin{cases} \exp(p-1) & ext{if } p < 1, \ 1 & ext{if } p \ge 1 \end{cases}$$

exact solution

$$p_{\text{exact}}(x, y, t) = 12(1 + t^2) x y (1 - x)(1 - y)$$

- f and s₀ chosen accordingly
- $(h, \tau) = (h_0, \tau_0)/\ell$ with $\ell \in \{1, 2, 4\}$, $h_0 = 0.2, \tau_0 = 0.04$

Evolution of the solution and of the estimators

Saturation of the exact solution p_{exact} and the domain $\Omega^{\text{deg}}(t)$ at t = 1

Principal estimators $\eta_{n,h,\Omega}^{\mathsf{F}}(t)$, $\eta^{\mathsf{deg}}(t)$, and $\eta_{n,h,\Omega}^{\mathsf{qd},t}(t)$ for $\ell = 2$

K. Mitra, M. Vohralík, Mathematics of Computation (2024)

How large is the error?

wira, w. vonrank, mainematics of Computation (2024)

Is our prediction efficient and robust wrt the final time?

K. Mitra, M. Vohralík, Mathematics of Computation (2024)

Richards: adaptivity Multi-phase: adaptivity Richards: estimates

Estimates Numerics

Where (in space and time) is the error localized?

Elementwise effectivity indices (t = 1, $\ell = 4$)

K. Mitra, M. Vohralík, Mathematics of Computation (2024)

Realistic case

- unit square $\Omega = (0, 1)^2$
- *T* = 1
- f = 0, heterogeneous and anisotropic K, $g = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$
- Brooks–Corey-type saturation and permeability laws

$$S(p) = egin{cases} rac{1}{(2-p)^{rac{1}{3}}} & ext{if } p < 1, \ 1 & ext{if } p \geq 1 \end{cases}, \quad \kappa(s) = s^3$$

- unknown exact solution
- $(h, \tau) = (h_0, \tau_0)/\ell$ with $\ell \in \{1, 2, 4\}$, $h_0 = 0.2, \tau_0 = 0.04$

Realistic case

t = 1S 0.9 0.8 0.7 0.6 n \underline{y} 0.5 \boldsymbol{x} 0.5 $\Omega^{
m deg}$ 0 0

Numerical saturation for $\ell = 2$ at t = 1

Where (in space and time) is the error **localized**?

Estimated local error ($t = 1, \ell = 2$)

Exact local error ($t = 1, \ell = 2$)

K. Mitra, M. Vohralík, Mathematics of Computation (2024)

M. Vohralík

Benchmark case (infiltration in a vadose zone from a water body)

- $\Omega = (0,2) \times (0,3)$
- *T* = 1

•
$$f = 0, \, \mathbf{K} = 4.96 \times 10^{-2} \mathbf{I}, \, \mathbf{g} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• van Genuchten saturation and permeability laws

$$S(p) = egin{cases} 1/(1+(p_{\mathsf{M}}-p)^{rac{1}{1-\lambda_2}})^{\lambda_2} & ext{if } p < p_{\mathsf{M}}, \ 1 & ext{if } p \geq p_{\mathsf{M}} \end{cases}, \quad \kappa(s) = \sqrt{s}\,(1-(1-s^{1/\lambda_2})^{\lambda_2})^2$$

- $\lambda_2 = 1 1/2.06, \, p_{\rm M} = 1$
- unknown exact solution
- *h* = 1/4, *τ* = 10/48

Benchmark case

No Flux

Setting

Numerical pressure at t = 10/48

M. Vohralík

Adaptive regularization and linearization for nonsmooth and degenerate problems 46 / 48

Richards: adaptivity Multi-phase: adaptivity Richards: estimates Where (in space and time) is the error **localized**?

Estimates Numerics

Estimated local error (t = 10/48)

Exact local error (t = 10/48)

K. Mitra, M. Vohralík, Mathematics of Computation (2024)

M. Vohralík

Outline

- Introduction
- The Richards equation: adaptive regularization and linearization
 - Discretization
 - Regularization
 - Linearization
 - Flux reconstruction
 - A posteriori estimates of error components
 - Adaptive regularization and linearization
 - Numerical experiments
- Multi-phase flow with phase transition
- 4 The Richards equation: overall error certification
 - A posteriori error estimates
 - Numerical experiments

Conclusions

Conclusions

- adaptive regularization: keep Newton linearization and avoid timestep cutting, damping, scheme switching, or variable switching
- steered by a posteriori estimates
- certification of the overall error committed in the numerical simulation
- **sound numerical performance** (Richards equation, multiphase flows, multicompositional flows, complementarity problems)

Conclusions

Conclusions

- adaptive regularization: keep Newton linearization and avoid timestep cutting, damping, scheme switching, or variable switching
- steered by a posteriori estimates
- certification of the overall error committed in the numerical simulation
- **sound numerical performance** (Richards equation, multiphase flows, multicompositional flows, complementarity problems)
- FÉVOTTE F., RAPPAPORT A., VOHRALIK M. Adaptive regularization, discretization, and linearization for nonsmooth problems based on primal-dual gap estimators, *Comput. Methods Appl. Mech. Engrg.* **418** (2024), 116558.

- FÉVOTTE F., RAPPAPORT A., VOHRALÍK M. Adaptive regularization for the Richards equation, *Comput. Geosci.* (2024), DOI 10.1007/s10596-024-10309-7.
- BEN GHARBIA I., FERZLY J., VOHRALIK M., YOUSEF S. Semismooth and smoothing Newton methods for nonlinear systems with complementarity constraints: Adaptivity and inexact resolution, J. Comput. Appl. Math. 420 (2023), 114765.

MITRA K., VOHRALIK M. Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic problems in iteration-dependent norms. An orthogonal decomposition result based on iterative linearization. HAL Preprint 04156711, 2023.

MITRA K., VOHRALIK M. A posteriori error estimates for the Richards equation, Math. Comp. 93 (2024), 1053–1096.

Conclusions

Conclusions

- adaptive regularization: keep Newton linearization and avoid timestep cutting, damping, scheme switching, or variable switching
- steered by a posteriori estimates
- certification of the overall error committed in the numerical simulation
- **sound numerical performance** (Richards equation, multiphase flows, multicompositional flows, complementarity problems)
- FÉVOTTE F., RAPPAPORT A., VOHRALIK M. Adaptive regularization, discretization, and linearization for nonsmooth problems based on primal-dual gap estimators, *Comput. Methods Appl. Mech. Engrg.* **418** (2024), 116558.

- FÉVOTTE F., RAPPAPORT A., VOHRALÍK M. Adaptive regularization for the Richards equation, *Comput. Geosci.* (2024), DOI 10.1007/s10596-024-10309-7.
- BEN GHARBIA I., FERZLY J., VOHRALIK M., YOUSEF S. Semismooth and smoothing Newton methods for nonlinear systems with complementarity constraints: Adaptivity and inexact resolution, *J. Comput. Appl. Math.* **420** (2023), 114765.

MITRA K., VOHRALIK M. Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic problems in iteration-dependent norms. An orthogonal decomposition result based on iterative linearization. HAL Preprint 04156711, 2023.

MITRA K., VOHRALIK M. A posteriori error estimates for the Richards equation, Math. Comp. 93 (2024), 1053–1096.

Thank you for your attention!

M. Vohralík

Adaptive regularization and linearization for nonsmooth and degenerate problems 48 / 48