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Nonsmooth and degenerate nonlinearities

: common recipes

Nonsmooth︸ ︷︷ ︸
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Nonsmooth and degenerate nonlinearities

: common recipes

Nonsmooth and degenerate nonlinearities
omnipresent in flows and transport in porous media
cause convergence troubles of standard iterative linearization schemes

Common recipes
timestep cutting
damping
scheme switching (from Newton to fixed-point . . . )
semismooth methods
path finding
variable switching
. . .
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Example regularizations
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Nonsmooth and degenerate nonlinearities: our approach
Algorithm

1 regularization parameter ϵj > 0

2 replace the nonsmooth and degenerate functions by smooth and
nondegenerate ϵj -approximations

3 a few steps of Newton linearization (gentle nonlinearity, good initial guess)
4 decrease ϵj and go back to step 2

Steering
a posteriori estimates of error components
linearization is below regularization: stop Newton iterations
regularization is below discretization: stop regularization (ϵj is never brought
to zero)
discretization is below a specified tolerance: finish
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Example overall behavior
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Modelling flow of water and air through soil
The Richards equation

Find p : Ω× (0,T ) → R such that
∂tS(p)−∇·[Kκ(S(p))(∇p + g)] = f in Ω× (0,T ),

p = 0 on ∂Ω× (0,T ),

(S(p))(·,0) = s0 in Ω.

Nonlinear (nonsmooth and degenerate) functions S and κ
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p: pressure
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Backward Euler & finite element discretization

Lowest-order continuous finite element space

V 0
h :=

{
vh ∈ H1

0 (Ω), vh|K ∈ P1(K ) ∀K ∈ Th
}

Discretization
For each n ∈ {1, . . . ,N}, given pn−1,h ∈ V 0

h , find the approximate pressure
pn,h ∈ V 0

h satisfying

1
τ (S(pn,h)− S(pn−1,h), φh) + (F (pn,h),∇φh) = (f (·, tn), φh) ∀φh ∈ V 0

h ,

where
F (q) := Kκ(S(q))[∇q + g].
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Example regularizations
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Regularization

Regularization
Given p j̄

n−1,h ∈ V 0
h , find pj

n,h ∈ V 0
h satisfying

1
τ (Sϵj (pj

n,h)− Sϵj (p j̄
n−1,h), φh) + (F ϵj (pj

n,h),∇φh) = (f (·, tn), φh) ∀φh ∈ V 0
h ,

where the regularized flux is given by

F ϵj (q) := Kκϵj (Sϵj (q))[∇q + g].

ϵj : sequence of regularization parameters
j̄ : stopping regularization index

M. Vohralík Adaptive regularization and linearization for nonsmooth and degenerate problems 9 / 48



I Richards: adaptivity Multi-phase: adaptivity Richards: estimates C Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Regularization

Regularization
Given p j̄

n−1,h ∈ V 0
h , find pj

n,h ∈ V 0
h satisfying

1
τ (Sϵj (pj

n,h)− Sϵj (p j̄
n−1,h), φh) + (F ϵj (pj

n,h),∇φh) = (f (·, tn), φh) ∀φh ∈ V 0
h ,

where the regularized flux is given by

F ϵj (q) := Kκϵj (Sϵj (q))[∇q + g].

ϵj : sequence of regularization parameters
j̄ : stopping regularization index

M. Vohralík Adaptive regularization and linearization for nonsmooth and degenerate problems 9 / 48



I Richards: adaptivity Multi-phase: adaptivity Richards: estimates C Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Outline
1 Introduction
2 The Richards equation: adaptive regularization and linearization

Discretization
Regularization
Linearization
Flux reconstruction
A posteriori estimates of error components
Adaptive regularization and linearization
Numerical experiments

3 Multi-phase flow with phase transition
4 The Richards equation: overall error certification

A posteriori error estimates
Numerical experiments

5 Conclusions
M. Vohralík Adaptive regularization and linearization for nonsmooth and degenerate problems 9 / 48



I Richards: adaptivity Multi-phase: adaptivity Richards: estimates C Discretization Regularization Linearization Flux Estimates Adaptivity Numerics

Linearization
Linearization
Given an initial guess pj,k−1

n,h , find pj,k
n,h ∈ V 0

h such that, for all φh ∈ V 0
h ,

1
τ (Sϵj (pj,k−1

n,h )−Sϵj (p j̄,k̄
n−1,h), φh)+

1
τ (L(p

j,k
n,h−pj,k−1

n,h ), φh)+(F j,k
n,h,∇φh) = (f (·, tn), φh),

where the linearized flux is given by

F j,k
n,h := Kκϵj (Sϵj (pj,k−1

n,h ))[∇pj,k
n,h + g] + ξ(pj,k

n,h − pj,k−1
n,h ).

k̄ : stopping linearization index
modified Picard:

L := S′
ϵj (p

j,k−1
n,h ), ξ := 0

Newton’s method:

L := S′
ϵj (p

j,k−1
n,h )

ξ := K (κϵj ◦ Sϵj )′(pj,k−1
n,h )[∇pj,k−1

n,h + g]
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Flux reconstruction: −F j ,k
n,h ̸∈ H(div,Ω) → σj ,k

n,h ∈ RT0(Tℓ) ∩ H(div,Ω)
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(Equilibrated) flux reconstruction σℓ

normal trace averaging:
1
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A posteriori estimates of error components

A posteriori estimates of error components

ηn,j,k
dis := ∥F j,k

n,h + σj,k
n,h∥ (discretization)

ηn,j,k
lin := ∥F ϵj (pj,k

n,h)− F j,k
n,h∥ (linearization)

ηn,j,k
reg := ∥F (pj,k

n,h)− F ϵj (pj,k
n,h)∥ (regularization)
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Adaptive regularization and linearization

Adaptive regularization and linearization (γlin, γreg ≈ 0.3)

ηn,j,k̄
lin < γlinη

n,j,k̄
reg

ηn,̄j,k̄
reg < γregη

n,̄j,k̄
dis
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Strictly unsaturated medium
Ω = Ω1 ∪ Ω2, Ω1 = (0,1)× (0,1/4],Ω2 = (0,1)× (1/4,1)
T = 1, K = I , g = (0,1)T

effective saturation S (s) = s−SR
SV−SR

van Genuchten model
κ(s) = κc

√
S (s)(1 − (1 − S (s)1/λ2)λ2)2,

S(p) =


[
(1 + (−αp)

1
1−λ2

]−λ2

p ≤ pM,

1 p > pM

pM = 0, SR = 0.026, SV = 0.42, κc = 0.12,α = 0.551,λ2 = 0.655

f (x , y) =

{
0 (x , y) ∈ Ω1,

0.06 cos(4
3πy) sin(x) (x , y) ∈ Ω2

p0(x , y) =

{
−y − 1/4 (x , y) ∈ Ω1,

−4 (x , y) ∈ Ω2
s0 = S(p0)
uniform mesh with 40 × 40 × 2 elements, τ0 = 1
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Adaptive regularization and linearization
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F. Févotte, A. Rappaport, M. Vohralík, Computational Geosciences (2024)
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Injection case
Ω = (0,1)2

T = 1,K = I ,g = (0,−1)T

effective saturation S (s) = s−SR
SV−SR

Brooks–Corey model

κ(s) = S (s)
2+3λ1
λ1 ,

S(p) =

{
(−p/pM)

−λ1 p ≤ pM,

1 p > pM

pM = −0.2, λ1 = 2.239
f = 0
p0 = −1
s0 = S(p0)

quasi uniform mesh with h = 2.82 · 10−2, τ0 = 2.82 · 10−2
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Do we reduce the computational cost?
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Do we lose precision?

Saturation field s = S(p j̄,k̄
n,h) using Newton’s method and adaptive regularization

ϵ1 = 0.1 (left) and modified Picard with no regularization (right)
F. Févotte, A. Rappaport, M. Vohralík, Computational Geosciences (2024)
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Realistic case
Ω = (0,1)2

T = 1
g = (−1,0)T

Q =

(
cos θ − sin θ
sin θ cos θ

)
Kϕ = 0.1
effective saturation S (s) = s−SR

SV−SR
Brooks–Corey model

κ(s) = S (s)
2+3λ1
λ1 ,

S(p) =

{
(−p/pM)

−λ1 p ≤ pM,

1 p > pM
pM = −0.2, λ1 = 2
f = 0
quasi uniform mesh with h = 2.02 · 10−2, τ0 = 2.02 · 10−2

pL(x) =
(pout−pin

0.5

)
x , pout = −2.0, pin = −0.2, pD = p0|ΓD

M. Vohralík Adaptive regularization and linearization for nonsmooth and degenerate problems 19 / 48
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Realistic case setting
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Adaptive regularization and linearization
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Perched water table case
Ω = (−2.5 m,2.5 m)× (−3 m,0 m)

T = 86400 s (one day)
K = I
g = (−1,0)T

effective saturation S (s) = s−SR
SV−SR

van Genuchten model
κ(s) = κc

√
S (s)(1 − (1 − S (s)1/λ2)λ2)2,

S(p) =


[
(1 + (−αp)

1
1−λ2

]−λ2

p ≤ pM,

1 p > pM

f = 0
quasi uniform mesh with h = 8.2 · 10−2

τ0 = 60 s, (increase τn := 1.2τn−1 for n ≥ 1)
initial condition s0 = S(p0) with p0 = −300 m

M. Vohralík Adaptive regularization and linearization for nonsmooth and degenerate problems 23 / 48
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Perched water table case setting

Material κc ϕ SR SV λ2 α

Sand 6.262 × 10−5 0.368 0.07818 1 0.553 2.8
Clay 1.516 × 10−6 0.4686 0.2262 1 0.2835 1.04

M. Vohralík Adaptive regularization and linearization for nonsmooth and degenerate problems 24 / 48
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Perched water table case saturation evolution

Saturation at t = 0 s,21 · 103 s,41 · 103 s,86.1 · 103 s

F. Févotte, A. Rappaport, M. Vohralík, Computational Geosciences (2024)
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Performance: only adaptive regularization and linearization works
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Complementarity problems

System of (nonlinear) algebraic equations with complementarity constraints

F (X ) = 0,
K (X ) ≥ 0, G(X ) ≥ 0, K (X ) · G(X ) = 0

Nonlinear algebraic inequalities ?→ nonlinear algebraic equalities

Complementarity functions: equivalent reformulation as algebraic equalities

F (X ) = 0,
C(X ) = 0

nonlinear nonsmooth system
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Regularized complementary functions
I. Ben Gharbia, J. Ferzly, M. Vohralík et al. Journal of Computational and Applied Mathematics 420 (2023) 114765

Fig. 1. Left: Absolute value function | · | and smoothed absolute value function | · |µ . Right: Fischer–Burmeister function C̃ FB(·) and smoothed
Fischer–Burmeister function C̃ FBµ (·), for different values of the smoothing parameter µ.

3.1. Smoothing of the C-functions

The key of our developments is to smooth the non-differentiable equation formulation (2.3b) of the complementarity
constraints (1.1b) with the help of a smooth (i.e. continuously differentiable) function. This smoothing allows us to
approximately transform the nonsmooth nonlinear system (2.3) to a smooth system of nonlinear equations to be solved
by using the standard Newton method.

Let µ > 0 be a (small) smoothing parameter. We construct an approximation function C̃µ : Rm
× Rm

→ Rm of a
C-function C̃ such that C̃µ(·, ·) is of class C1 on Rm

× Rm and satisfies

∥C̃ (x, y) − C̃µ(x, y)∥ → 0 as µ → 0 for all (x, y) ∈ Rm
× Rm.

For example, for l = 1, . . . ,m, a possible smoothing of the min and the Fischer–Burmeister functions (2.1) and (2.2)
can be(

C̃minµ (x, y)
)
l
=

xl + y l

2
−

(
|x − y|µ

)
l

2
, with (|z|µ)l =

√
z2l + µ2, (3.1)(

C̃ FBµ (x, y)
)
l
=

√
µ2 + x2l + y2

l − (xl + y l), (3.2)

where the µ-smoothed absolute value function | · |µ : Rm
→ Rm

+
, m ≥ 0, replaces the absolute value function (not

differentiable at 0), see Fig. 1. Note that both functions | · |µ and C̃ FB,µ are of class C∞.
We define the function Cµ : Rn

→ Rm as Cµ(X) := C̃µ (K (X),G(X)), where C̃µ : Rm
× Rm

→ Rm is any smoothed
C-function of at least class C1. This allows to approximate problem (1.1) or (1.2) by a system of smooth equations: Find
a vector X ∈ Rn, such that

EX = F ,

Cµ(X) = 0. (3.3)

Thus, Newton-type methods can be applied to solve the system of nonlinear algebraic Eqs. (3.3).
Fixing µ1 > 0, we now describe an iterative method for solving problem (2.3). At the beginning of each smoothing

iteration (outer iteration) denoted hereafter by j ≥ 1, an initial guess X j
∈ Rn is given, and a smoothing parameter µj is

determined; µj will be driven down to zero. Then some iterative nonlinear solver like the Newton method is employed
to solve the smoothed problem written in the form: Find X j

∈ Rn such that

EX j
= F ,

Cµj (X j) = 0. (3.4)

3.2. Newton linearization of the nonlinear algebraic system

In what follows, we detail the Newton method employed to solve problem (3.4) at a fixed outer smoothing step j ≥ 1.
Given an initial vector X j,0 (typically X j,0

= X j−1), Newton’s algorithm generates a sequence (X j,k)k≥1 with X j,k
∈ Rn given

by the following system of linear algebraic equations

Aj,k−1
µj X j,k

= Bj,k−1
µj , (3.5)

5

Regularized absolute value
(Newton-min) functions
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Fig. 1. Left: Absolute value function | · | and smoothed absolute value function | · |µ . Right: Fischer–Burmeister function C̃ FB(·) and smoothed
Fischer–Burmeister function C̃ FBµ (·), for different values of the smoothing parameter µ.

3.1. Smoothing of the C-functions

The key of our developments is to smooth the non-differentiable equation formulation (2.3b) of the complementarity
constraints (1.1b) with the help of a smooth (i.e. continuously differentiable) function. This smoothing allows us to
approximately transform the nonsmooth nonlinear system (2.3) to a smooth system of nonlinear equations to be solved
by using the standard Newton method.

Let µ > 0 be a (small) smoothing parameter. We construct an approximation function C̃µ : Rm
× Rm

→ Rm of a
C-function C̃ such that C̃µ(·, ·) is of class C1 on Rm

× Rm and satisfies

∥C̃ (x, y) − C̃µ(x, y)∥ → 0 as µ → 0 for all (x, y) ∈ Rm
× Rm.

For example, for l = 1, . . . ,m, a possible smoothing of the min and the Fischer–Burmeister functions (2.1) and (2.2)
can be(

C̃minµ (x, y)
)
l
=

xl + y l

2
−

(
|x − y|µ

)
l

2
, with (|z|µ)l =

√
z2l + µ2, (3.1)(

C̃ FBµ (x, y)
)
l
=

√
µ2 + x2l + y2

l − (xl + y l), (3.2)

where the µ-smoothed absolute value function | · |µ : Rm
→ Rm

+
, m ≥ 0, replaces the absolute value function (not

differentiable at 0), see Fig. 1. Note that both functions | · |µ and C̃ FB,µ are of class C∞.
We define the function Cµ : Rn

→ Rm as Cµ(X) := C̃µ (K (X),G(X)), where C̃µ : Rm
× Rm

→ Rm is any smoothed
C-function of at least class C1. This allows to approximate problem (1.1) or (1.2) by a system of smooth equations: Find
a vector X ∈ Rn, such that

EX = F ,

Cµ(X) = 0. (3.3)

Thus, Newton-type methods can be applied to solve the system of nonlinear algebraic Eqs. (3.3).
Fixing µ1 > 0, we now describe an iterative method for solving problem (2.3). At the beginning of each smoothing

iteration (outer iteration) denoted hereafter by j ≥ 1, an initial guess X j
∈ Rn is given, and a smoothing parameter µj is

determined; µj will be driven down to zero. Then some iterative nonlinear solver like the Newton method is employed
to solve the smoothed problem written in the form: Find X j

∈ Rn such that

EX j
= F ,

Cµj (X j) = 0. (3.4)

3.2. Newton linearization of the nonlinear algebraic system

In what follows, we detail the Newton method employed to solve problem (3.4) at a fixed outer smoothing step j ≥ 1.
Given an initial vector X j,0 (typically X j,0

= X j−1), Newton’s algorithm generates a sequence (X j,k)k≥1 with X j,k
∈ Rn given

by the following system of linear algebraic equations

Aj,k−1
µj X j,k

= Bj,k−1
µj , (3.5)

5

Regularized Fischer–Burmeister functions
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Regularized complementary functions
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3.1. Smoothing of the C-functions

The key of our developments is to smooth the non-differentiable equation formulation (2.3b) of the complementarity
constraints (1.1b) with the help of a smooth (i.e. continuously differentiable) function. This smoothing allows us to
approximately transform the nonsmooth nonlinear system (2.3) to a smooth system of nonlinear equations to be solved
by using the standard Newton method.

Let µ > 0 be a (small) smoothing parameter. We construct an approximation function C̃µ : Rm
× Rm

→ Rm of a
C-function C̃ such that C̃µ(·, ·) is of class C1 on Rm

× Rm and satisfies

∥C̃ (x, y) − C̃µ(x, y)∥ → 0 as µ → 0 for all (x, y) ∈ Rm
× Rm.

For example, for l = 1, . . . ,m, a possible smoothing of the min and the Fischer–Burmeister functions (2.1) and (2.2)
can be(

C̃minµ (x, y)
)
l
=

xl + y l

2
−

(
|x − y|µ

)
l

2
, with (|z|µ)l =

√
z2l + µ2, (3.1)(

C̃ FBµ (x, y)
)
l
=

√
µ2 + x2l + y2

l − (xl + y l), (3.2)

where the µ-smoothed absolute value function | · |µ : Rm
→ Rm

+
, m ≥ 0, replaces the absolute value function (not

differentiable at 0), see Fig. 1. Note that both functions | · |µ and C̃ FB,µ are of class C∞.
We define the function Cµ : Rn

→ Rm as Cµ(X) := C̃µ (K (X),G(X)), where C̃µ : Rm
× Rm

→ Rm is any smoothed
C-function of at least class C1. This allows to approximate problem (1.1) or (1.2) by a system of smooth equations: Find
a vector X ∈ Rn, such that

EX = F ,

Cµ(X) = 0. (3.3)

Thus, Newton-type methods can be applied to solve the system of nonlinear algebraic Eqs. (3.3).
Fixing µ1 > 0, we now describe an iterative method for solving problem (2.3). At the beginning of each smoothing

iteration (outer iteration) denoted hereafter by j ≥ 1, an initial guess X j
∈ Rn is given, and a smoothing parameter µj is

determined; µj will be driven down to zero. Then some iterative nonlinear solver like the Newton method is employed
to solve the smoothed problem written in the form: Find X j

∈ Rn such that

EX j
= F ,

Cµj (X j) = 0. (3.4)

3.2. Newton linearization of the nonlinear algebraic system

In what follows, we detail the Newton method employed to solve problem (3.4) at a fixed outer smoothing step j ≥ 1.
Given an initial vector X j,0 (typically X j,0

= X j−1), Newton’s algorithm generates a sequence (X j,k)k≥1 with X j,k
∈ Rn given

by the following system of linear algebraic equations

Aj,k−1
µj X j,k

= Bj,k−1
µj , (3.5)
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Fig. 1. Left: Absolute value function | · | and smoothed absolute value function | · |µ . Right: Fischer–Burmeister function C̃ FB(·) and smoothed
Fischer–Burmeister function C̃ FBµ (·), for different values of the smoothing parameter µ.

3.1. Smoothing of the C-functions
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C̃minµ (x, y)
)
l
=

xl + y l

2
−

(
|x − y|µ

)
l

2
, with (|z|µ)l =

√
z2l + µ2, (3.1)(

C̃ FBµ (x, y)
)
l
=

√
µ2 + x2l + y2

l − (xl + y l), (3.2)
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+
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Fig. 4. [Adaptive smoothing Newton method, smoothed F–B function (3.2), adaptive stopping criterion (6.5)] Estimators (6.3) as a function of
cumulated Newton iterations (left). Estimators (6.3) (middle) and relative norm of the total residual vector (2.6) (right) as a function of smoothing
iterations j at convergence of the linearization solver.

Table 1
[Adaptive smoothing Newton method, smoothed F–B function (3.2), adaptive stopping
criterion (6.5)] Number of Newton iterations Niter, estimators (6.3), and relative norm
of the total residual vector (2.6) at each smoothing iteration j, at convergence of the
linearization solver.

µj Niter η
j,k
lin,ASN η

j,k
sm,ASN ∥R(X j,k)∥r

1e+00 1 2.17e+03 4.24e+03 2.17e+03
1e−01 3 6.00e+01 2.37e+02 2.03e+02
1e−02 4 9.73e+00 1.53e+01 1.01e+01
1e−03 5 3.18e−01 6.84e−01 6.00e−01
1e−04 7 9.87e−03 3.58e−02 3.43e−02
1e−05 4 1.06e−03 2.33e−03 1.87e−03
1e−06 3 1.14e−04 1.50e−04 7.45e−05
1e−07 3 4.85e−06 8.04e−06 3.84e−06
1e−08 3 3.23e−07 4.72e−07 1.83e−07
1e−09 3 1.43e−08 2.15e−08 8.04e−09

Fig. 5. [Semismooth Newton method (with and without a path-following strategy) and adaptive smoothing method] Cumulated number of Newton
iterations (left) and CPU time (right) as a function of the number of mesh elements.

Newton method, using the smoothed min and F–B functions (3.1) and (3.2) and the stopping criteria (6.2) and (6.5)
respectively for the linearization and smoothing iterations. We compare the number of cumulated linearization iterations
and the global CPU time of the simulation for the different strategies. The results are displayed in Fig. 5. They confirm
the expected reduction of the computational cost of the numerical resolution with our adaptive approaches. Actually,
we notice that the semismooth Newton method with path-following (red curve) and the adaptive smoothing Newton
method (purple and dark blue curves) require significantly fewer cumulated Newton iterations and time to converge, in
comparison with the semismooth Newton method (green and orange curves). Therefore, employing the path-following
strategy or the adaptive strategy based on a posteriori error estimates enables to save many unnecessary additional
iterations, and yield much better results than the pure semismooth Newton method. We note that, using the adaptive
smoothing Newton method, one obtains similar computational results using both the smoothed F–B or the smoothed min
function.
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Fig. 6. [Adaptive inexact smoothing Newton method, smoothed F–B function (3.2), Algorithm 1] Algebraic and linearization estimators (3.10) and
GMRES relative residual as a function of the GMRES iterations i, for a fixed smoothing and linearization iterations, j = 2, k = 2, i varies, left, and
j = 3, k = 1, i varies, right, using the classical stopping criterion (6.7) and the adaptive one (3.11a).

Fig. 7. [Adaptive inexact smoothing Newton method, smoothed F–B function (3.2), Algorithm 1] Estimators (3.10) as a function of smoothing
iterations j at convergence of the algebraic and linearization solvers, left. Estimators as a function of cumulated Newton iterations at convergence
of the algebraic solver, middle. Estimators as a function of cumulated GMRES iterations during the first two smoothing iterations (j = 1 and j = 2),
right.

6.5. Adaptive inexact smoothing Newton method

We focus in this section on the adaptive inexact Newton method introduced in Section 3 and investigate the
performance of Algorithm 1 using the smoothed F–B function (3.2) together with the restarted GMRES method. Typically,
we use a fixed restart parameter equal to 300. The behavior of the adaptive smoothing solvers can be improved
dramatically by using good preconditioners. Here, we merely use an ILU preconditioner to speed-up the GMRES solver.
For other possibilities for preconditioners, we refer to, e.g., [45] and the references therein. To point out the efficiency of
the adaptivity, we test two approaches. First, we stop the algebraic iterations using the standard GMRES stopping criterion
on the relative residual given by

Rrel :=

∥M2\(M1\(B
j,k−1
µj − Aj,k−1

µj X j,k,i))∥

∥M2\(M1\(B
j,k−1
µj − Aj,k−1

µj X j,k−1))∥
≤ 10−10, (6.7)

where M1 and M2 are the preconditioner matrices. Second, we incorporate the adaptive stopping criteria (3.11a) for the
algebraic solver in Algorithm 1. We set the parameters µ1

= 1, ε = 10−5, αalg = 10−3, αlin = 1, and α = 0.1. Fig. 6
depicts the evolution of the algebraic and linearization estimators and the GMRES relative residual during the algebraic
resolution, for specific smoothing step j and linearization step k. For j = 2 and k = 2, we see that 22 GMRES iterations are
needed to achieve the standard stopping criterion (6.7), whereas in the adaptive resolution case, only 10 GMRES iterations
are required to satisfy the adaptive stopping criterion (3.11a). In this case, we can avoid many unnecessary iterations. One
can also see from the right part of Fig. 6, for j = 3 and k = 1, that the overall gain in terms of algebraic iterations obtained
using our stopping criteria is quite significant.

Fig. 7, left, shows the evolution of the estimators during smoothing iterations, at convergence of the nonlinear and
linear solvers. As expected, the estimators decrease when µ decreases at each smoothing step. In the middle part of Fig. 7,
we can observe the behavior of the estimators at the end of the algebraic iterations, during the linearization iterations.
We present 8 curves, each one corresponding to a specific value of µj. We can see that at each smoothing iteration j,
the smoothing estimator η

j,k,i
sm,AISN stagnates after about two iterations. The linearization estimator η

j,k,i
lin,AISN decreases until
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Fig. 11. [Adaptive inexact interior-point method, Algorithm 2] Estimators (5.9) as a function of smoothing iterations j at convergence of the algebraic
and linearization solvers (left). Estimators as a function of cumulated Newton iterations k at convergence of the algebraic solver (right).

Fig. 12. [Semismooth Newton method (F–B function (2.2)), semismooth Newton method with a path-following strategy, nonparametric interior-point
method, adaptive interior-point method, and adaptive smoothing Newton method (smoothed F–B function (3.2))] Number of cumulated Newton
iterations (left) and CPU time (right) as a function of the number of mesh elements, employing a stopping criterion on the relative norm of the
unified residual vector (6.13).

In Fig. 12, we plot the cumulated number of the Newton iterations (left) and the CPU time (right) required by each
method, as a function of the number of mesh elements. It is clearly seen that the semismooth Newton method (green
curve) is typically more costly, both in terms of the required number of iterations and the CPU time, in comparison
with the other methods. Precisely, we can observe an important gain between the semismooth Newton method (green
curve) and the adaptive smoothing Newton method (purple curve). Moreover, as we can remark from the red curve, the
combination of a path-following strategy to the semismooth Newton method seems to be efficient. Finally, one does not
see a remarkable difference between the results of the nonparametric interior-point method (cyan curve) and the adaptive
interior-point method (black curve) in this test case.

7. Numerical experiments: Two-phase flow with phase transition

The second model problem that we consider in our numerical tests is a two-phase flow model (liquid–gas) with phase
transition in porous media following [46–48]. Each of the liquid phase, denoted by l, and the gas phase, denoted by g, is
composed of two components, water and hydrogen, denoted respectively by w and h.

7.1. Problem statement

The problem at hand can be formulated as a system of nonlinear partial differential equations with nonlinear
complementarity constraints at each time step τν . Let Th be the spatial mesh, we denote respectively by Sν

K , Pν
K , and χ ν

K
the discrete elementwise unknowns approximating the values of the saturation S l, the pressure P l, and the molar fraction
of hydrogen in the liquid phase χ l

h in the element K ∈ Th and on time step 1 ≤ ν ≤ Nt . Let N be the number of elements
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The Richards equation

Find p : Ω× (0,T ) → R such that
∂tS(p)−∇·[Kκ(S(p))(∇p + g)] = f (S(p)) in Ω× (0,T ),

p = 0 on ∂Ω× (0,T ),

(S(p))(·,0) = s0 in Ω.
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Weak formulation
Spaces

X := L2(0,T ;H1
0 (Ω)), Z := H1(0,T ;H−1(Ω))

Total pressure (Kirchhoff transform)

K(p) :=

{∫ p
0 κ(S(ϱ))dϱ for p ≤ pM,

PM + κ(1)(p − pM) for p > pM,
, θ ◦ K = S

Weak formulation
Ψ ∈ X with s := θ(Ψ) ∈ Z , s(0) = s0 in Ω,∫ T

0
⟨∂tθ(Ψ), v⟩+

∫ T

0
(K (∇Ψ+ gκ(θ(Ψ))),∇v) =

∫ T

0
(f (θ(Ψ)), v) ∀v ∈ X

Residual R(Ψhτ ) ∈ X ′, for Ψhτ ∈ X such that shτ := θ(Ψhτ ) ∈ Z

⟨R(Ψhτ ), v⟩X ′,X :=

∫ T

0
{(f (θ(Ψhτ )), v)−⟨∂tθ(Ψhτ ), v⟩−(K (∇Ψhτ+gκ(θ(Ψhτ ))),∇v)}(s)ds v ∈ X

Dual norm of the residual
∥R(Ψhτ )∥X ′ := sup

v∈X , ∥v∥X=1
⟨R(Ψhτ ), v⟩X ′,X
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Time-integration functionals based on the sharp Grönwall lemma

Time-integration functionals, α : [0,T ] → [0,∞)

Jα : L2([0,T ]) → [0,∞),

Jα(ϱ) :=

[
exp

(
−

T
∫
0
α

)∫ T

0

(
ϱ2(t) + α(t) exp

(
T
∫
t
α

)∫ t

0
ϱ2
)

dt

] 1
2

define norm on L2([0,T ])

actually equivalent to the L2([0,T ]) norm

exp

(
−1

2

T
∫
0
α

)
∥ϱ∥L2([0,T ]) ≤ Jα(ϱ) ≤ ∥ϱ∥L2([0,T ])

yield an almost constant value of error independent of T ≥ 1 in applications
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Relation error – residual without eT by the sharp Grönwall lemma

Theorem (Relation error – residual without eT )

Let Ψhτ ∈ X such that shτ := θ(Ψhτ ) ∈ Z. Then

e−∫T
0 (λ+C1)∥(s − shτ )(T )∥2

H−1(Ω) + J λ+C1

(
θ
− 1

2
∂,M∥s − shτ∥

)2

≤ ∥s0 − shτ (0)∥2
H−1(Ω) + J λ+C1(λ

− 1
2 ∥R(Ψhτ )∥H−1(Ω))

2,

e−∫T
0 C2∥(s − shτ )(T )∥2 + 1

2J C2

(∥∥∥D(s)−
1
2K 1

2∇(Ψ−Ψhτ )
∥∥∥)2

≤ ∥s0 − shτ (0)∥2 + J C2

(
ηdeg

)2
+ 4J C2

(
D

− 1
2

m ∥R(Ψhτ )∥H−1(Ω)

)2

,

J λ(∥∂t(s − shτ )∥H−1(Ω))
2

≤ 3
[
J λ(∥Ψ−Ψhτ∥H−1(Ω))

2 + C3(T )J λ (∥s − shτ∥)2 + J λ(∥R(Ψhτ )∥H−1(Ω))
2
]
.
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Guaranteed a posteriori error estimate

Theorem (Guaranteed a posteriori error estimate)

Let Ψhτ ∈ X such that shτ := θ(Ψhτ ) ∈ Z. Then

∥R(Ψhτ (t))∥H−1(Ω) ≤ ηR(t).

Consequently,

E2
L2 := e−∫T

0 (λ+C1)∥(s − shτ )(T )∥2
H−1(Ω) + Jλ+C1(θ

− 1
2

∂,M ∥s − shτ∥)2

≤ [ηini,H−1
]2 + Jλ+C1(λ

− 1
2 ηR)2 =: η2

L2 ,

E2
H1 := e−∫T

0 C2∥(s − shτ )(T )∥2 + 1
2JC2(∥D(s)−

1
2K 1

2∇(Ψ−Ψhτ )∥)2

≤ [ηini,L2
]2 + JC2

(
ηdeg

)2
+ 4JC2

(
D

− 1
2

m ηR

)2

=: η2
H1 .
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Degenerate case with known solution

unit square Ω = (0,1)2

T = 1
K = I
nonlinearities

κ(s) = 1, S(p) =

{
exp(p − 1) if p < 1,
1 if p ≥ 1

exact solution

pexact(x , y , t) = 12 (1 + t2) x y (1 − x) (1 − y)

f and s0 chosen accordingly
(h, τ) = (h0, τ0)/ℓ with ℓ ∈ {1,2,4}, h0 = 0.2, τ0 = 0.04
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Evolution of the solution and of the estimators

Saturation of the exact solution pexact and
the domain Ωdeg(t) at t = 1

0 0.2 0.4 0.6 0.8 1

10
-3

10
-2

10
-1

10
0

Degeneracy sets in

Principal estimators ηF
n,h,Ω(t), η

deg(t),

and ηqd,t
n,h,Ω(t) for ℓ = 2

K. Mitra, M. Vohralík, Mathematics of Computation (2024)
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How large is the error?

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7
10

-3

Overall ηL2 a posteriori error estimator

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

Overall ηH1 a posteriori error estimator
K. Mitra, M. Vohralík, Mathematics of Computation (2024)
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Is our prediction efficient and robust wrt the final time?

0 0.2 0.4 0.6 0.8 1

2

3

4

5

6

7

EL2 effectivity indices

0 0.2 0.4 0.6 0.8 1

3.5

3.6

3.7

3.8

3.9

4

EH1 effectivity indices
K. Mitra, M. Vohralík, Mathematics of Computation (2024)
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Where (in space and time) is the error localized?

Elementwise effectivity indices (t = 1,
ℓ = 1)

Elementwise effectivity indices (t = 1,
ℓ = 4)

K. Mitra, M. Vohralík, Mathematics of Computation (2024)
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Realistic case

unit square Ω = (0,1)2

T = 1

f = 0, heterogeneous and anisotropic K , g =

(
−1
0

)
Brooks–Corey-type saturation and permeability laws

S(p) =


1

(2−p)
1
3

if p < 1,

1 if p ≥ 1
, κ(s) = s3

unknown exact solution
(h, τ) = (h0, τ0)/ℓ with ℓ ∈ {1,2,4}, h0 = 0.2, τ0 = 0.04
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Realistic case

Setting
Numerical saturation for ℓ = 2 at t = 1
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Where (in space and time) is the error localized?

Estimated local error (t = 1, ℓ = 2) Exact local error (t = 1, ℓ = 2)
K. Mitra, M. Vohralík, Mathematics of Computation (2024)
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Benchmark case (infiltration in a vadose zone from a water body)

Ω = (0,2)× (0,3)
T = 1

f = 0, K = 4.96 × 10−2I , g =

(
0
1

)
van Genuchten saturation and permeability laws

S(p) =

{
1/(1 + (pM − p)

1
1−λ2 )λ2 if p < pM,

1 if p ≥ pM
, κ(s) =

√
s (1−(1−s1/λ2)λ2)2

λ2 = 1 − 1/2.06, pM = 1
unknown exact solution
h = 1/4, τ = 10/48
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Benchmark case

Setting Numerical pressure at t = 10/48
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Where (in space and time) is the error localized?

Estimated local error (t = 10/48) Exact local error (t = 10/48)
K. Mitra, M. Vohralík, Mathematics of Computation (2024)

M. Vohralík Adaptive regularization and linearization for nonsmooth and degenerate problems 47 / 48



I Richards: adaptivity Multi-phase: adaptivity Richards: estimates C

Outline
1 Introduction
2 The Richards equation: adaptive regularization and linearization

Discretization
Regularization
Linearization
Flux reconstruction
A posteriori estimates of error components
Adaptive regularization and linearization
Numerical experiments

3 Multi-phase flow with phase transition
4 The Richards equation: overall error certification

A posteriori error estimates
Numerical experiments

5 Conclusions
M. Vohralík Adaptive regularization and linearization for nonsmooth and degenerate problems 47 / 48



I Richards: adaptivity Multi-phase: adaptivity Richards: estimates C

Conclusions
Conclusions

adaptive regularization: keep Newton linearization and avoid timestep
cutting, damping, scheme switching, or variable switching
steered by a posteriori estimates
certification of the overall error committed in the numerical simulation
sound numerical performance (Richards equation, multiphase flows,
multicompositional flows, complementarity problems)

FÉVOTTE F., RAPPAPORT A., VOHRALÍK M. Adaptive regularization, discretization, and linearization for nonsmooth problems based on
primal-dual gap estimators, Comput. Methods Appl. Mech. Engrg. 418 (2024), 116558.

FÉVOTTE F., RAPPAPORT A., VOHRALÍK M. Adaptive regularization for the Richards equation, Comput. Geosci. (2024),
DOI 10.1007/s10596-024-10309-7.

BEN GHARBIA I., FERZLY J., VOHRALÍK M., YOUSEF S. Semismooth and smoothing Newton methods for nonlinear systems with
complementarity constraints: Adaptivity and inexact resolution, J. Comput. Appl. Math. 420 (2023), 114765.

MITRA K., VOHRALÍK M. Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic problems in iteration-dependent
norms. An orthogonal decomposition result based on iterative linearization. HAL Preprint 04156711, 2023.

MITRA K., VOHRALÍK M. A posteriori error estimates for the Richards equation, Math. Comp. 93 (2024), 1053–1096.

Thank you for your attention!

M. Vohralík Adaptive regularization and linearization for nonsmooth and degenerate problems 48 / 48



I Richards: adaptivity Multi-phase: adaptivity Richards: estimates C

Conclusions
Conclusions

adaptive regularization: keep Newton linearization and avoid timestep
cutting, damping, scheme switching, or variable switching
steered by a posteriori estimates
certification of the overall error committed in the numerical simulation
sound numerical performance (Richards equation, multiphase flows,
multicompositional flows, complementarity problems)

FÉVOTTE F., RAPPAPORT A., VOHRALÍK M. Adaptive regularization, discretization, and linearization for nonsmooth problems based on
primal-dual gap estimators, Comput. Methods Appl. Mech. Engrg. 418 (2024), 116558.

FÉVOTTE F., RAPPAPORT A., VOHRALÍK M. Adaptive regularization for the Richards equation, Comput. Geosci. (2024),
DOI 10.1007/s10596-024-10309-7.

BEN GHARBIA I., FERZLY J., VOHRALÍK M., YOUSEF S. Semismooth and smoothing Newton methods for nonlinear systems with
complementarity constraints: Adaptivity and inexact resolution, J. Comput. Appl. Math. 420 (2023), 114765.

MITRA K., VOHRALÍK M. Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic problems in iteration-dependent
norms. An orthogonal decomposition result based on iterative linearization. HAL Preprint 04156711, 2023.

MITRA K., VOHRALÍK M. A posteriori error estimates for the Richards equation, Math. Comp. 93 (2024), 1053–1096.

Thank you for your attention!

M. Vohralík Adaptive regularization and linearization for nonsmooth and degenerate problems 48 / 48



I Richards: adaptivity Multi-phase: adaptivity Richards: estimates C

Conclusions
Conclusions

adaptive regularization: keep Newton linearization and avoid timestep
cutting, damping, scheme switching, or variable switching
steered by a posteriori estimates
certification of the overall error committed in the numerical simulation
sound numerical performance (Richards equation, multiphase flows,
multicompositional flows, complementarity problems)

FÉVOTTE F., RAPPAPORT A., VOHRALÍK M. Adaptive regularization, discretization, and linearization for nonsmooth problems based on
primal-dual gap estimators, Comput. Methods Appl. Mech. Engrg. 418 (2024), 116558.

FÉVOTTE F., RAPPAPORT A., VOHRALÍK M. Adaptive regularization for the Richards equation, Comput. Geosci. (2024),
DOI 10.1007/s10596-024-10309-7.

BEN GHARBIA I., FERZLY J., VOHRALÍK M., YOUSEF S. Semismooth and smoothing Newton methods for nonlinear systems with
complementarity constraints: Adaptivity and inexact resolution, J. Comput. Appl. Math. 420 (2023), 114765.

MITRA K., VOHRALÍK M. Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic problems in iteration-dependent
norms. An orthogonal decomposition result based on iterative linearization. HAL Preprint 04156711, 2023.

MITRA K., VOHRALÍK M. A posteriori error estimates for the Richards equation, Math. Comp. 93 (2024), 1053–1096.

Thank you for your attention!
M. Vohralík Adaptive regularization and linearization for nonsmooth and degenerate problems 48 / 48


	Introduction
	The Richards equation: adaptive regularization and linearization
	Discretization
	Regularization
	Linearization
	Flux reconstruction
	A posteriori estimates of error components
	Adaptive regularization and linearization
	Numerical experiments

	Multi-phase flow with phase transition
	The Richards equation: overall error certification
	A posteriori error estimates
	Numerical experiments

	Conclusions

