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The model problem

The Dracy porous media flow problem

Find the pressure head γ : Ω → R and the Darcy velocity u : Ω → Rd such that

u = −K∇γ in Ω,

∇·u = f in Ω,

u·n = 0 on ∂Ω.

Setting
Ω ⊂ Rd , 1 ≤ d ≤ 3: interval/polygon/polyhedron
K ∈ [L∞(Ω)]d×d : symmetric and positive definite diffusion tensor
f ∈ L2(Ω) of mean value 0: source term
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Mixed finite element approximation

Mixed finite element approximation
Find uJ ∈ V J and γJ ∈ WJ such that

(K−1uJ ,vJ)− (γJ ,∇ · vJ) = 0 ∀vJ ∈ V J ,

(∇ · uJ ,wJ) = (f ,wJ) ∀wJ ∈ WJ .

Setting
TJ : simplicial mesh of Ω
V J := {vJ ∈ H0(div,Ω), vJ |K ∈ RTp(K ) ∀K ∈ TJ}: Raviart–Thomas space
(piecewise vector-valued polynomials on TJ ) of degree p, normal trace
continuous and 0 on ∂Ω (H0(div,Ω)-conforming)
WJ : piecewise polynomials on TJ of degree p and mean value 0 on Ω
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MG solvers for mixed finite elements
Saddle-point solvers

after a choice of basis: find algebraic vectors U and Γ such that(
A Bt

B 0

)(
U
Γ

)
=

(
0
F

)

saddle-point: indefinite system matrix (Benzi, Golub, Liesen (2005))

multigrid: Arnold, Falk, Winther (2000), Schöberl, Zulehner (2003), Xu, Chen,
Nochetto (2009), Brenner (2009, 2018)

SPD reformulations and solvers
equivalent reformulation via hybridization: find algebraic vector Λ such that

SΛ = G

symmetric and positive definite system matrix
preconditioned conjugate gradients possible,

multigrid not straightforward: Λ
(pressure heads on the mesh faces) belong to non-nested spaces (Brenner
(1992), Chen (1996), Wheeler, Yotov (2000))
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Flux-only reformulation and corresponding MG solvers

Equivalent reformulation

Find uJ ∈ V f
J such that

(K−1uJ ,vJ) = 0 ∀vJ ∈ V 0
J .

V g
J := {vJ ∈ V J : (∇·vJ ,wJ) = (g,wJ) ∀wJ ∈ WJ}

only flux unknowns
multigrid becomes easily possible (Mathew (1993), Ewing, Wang (1994),
Hiptmair, Hoppe (1999))
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DD solvers for mixed finite elements

Domain decomposition solvers
Glowinski, Wheeler (1988), Cowsar, Mandel, Wheeler (1995), . . .
Ewing, Wang (1992), . . .
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A few central reflections
Usually

first choose a basis:
system of linear algebraic equations,
quality depends on the basis

analysis restricted to linear
algebraic information and tools

saddle-point indefinite matrix / SPD
system on non-nested spaces
“sufficient” number of smoothing
steps necessary

Our approach

basis-independent approach:

functional writing, independent of the
basis

analysis exploits functional
information and tools

reduced (flux-only) SPD system (and
no construction of div-free bases)
one post-smoothing step enough
Pythagoras formula for error decrease
built-in a posteriori estimate on the
algebraic error (adaptive smoothing)
p-robustness
unified treatment of multigrid and DD
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A hierarchy of meshes and spaces
Example: Two mesh hierarchies with J = 3 refinements.

Assumption: The meshes {Tj}0≤j≤J can be quasi-uniform or
graded, satisfying:

quasi-uniform T0,
shape-regularity,
maximum strength of refinement.

For given polynomial degree p and J, choose increasing
level-wise polynomial degrees pj , j ∈ {0, . . . , J},

and define the spaces

V 0
j := {v j ∈ H0(div,Ω), v j |K ∈ RTpj (K ) ∀K ∈ Tj , ∇·v j = 0}.
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Functional writing: for u0
J ∈ V f

J arbitrary, construct ρi
j , λ

i
j via u i

j

Coarse solve: ρi
0 ∈ V 0

0 s.t. (K−1ρi
0,v0)︸ ︷︷ ︸

global lifting

= −(K−1ui
J ,v0)︸ ︷︷ ︸

global algebraic residual

∀v0 ∈ V 0
0; ui

0 := ui
J + ρi

0.

Patchwise smoothing (local solves): for j = 1 : J and a ∈ Vj , ρ
i
j,a ∈ V a,0

j s.t.

(K−1ρi
j,a,v j,a)ωa

j︸ ︷︷ ︸
local lifting

= −(K−1ui
j−1,v j,a)ωa

j︸ ︷︷ ︸
local algebraic residual

∀v j,a ∈ V a,0
j .

Correction direction: ρi
j ∈ V 0

j ,ρi
j :=

∑
a∈Vj

ρi
j,a.

Level-wise step-sizes by line search: λi
j := −

(K−1ui
j−1,ρ

i
j)∥∥K−1/2ρi

j

∥∥2 .

j-level update: ui
j := ui

j−1 + λi
jρ

i
j and ui+1

J := ui
J .
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Pythagorean error formula and bound on the algebraic error
Theorem (Pythagorean error representation)
There holds∥∥K−1/2(uJ − ui+1

J )
∥∥2︸ ︷︷ ︸

new error

=
∥∥K−1/2(uJ − ui

J)
∥∥2︸ ︷︷ ︸

old error

−
J∑

j=0

(
λi

j
∥∥K−1/2ρi

j
∥∥)2

.

︸ ︷︷ ︸(
ηi

alg

)2

Corollary (Guaranteed lower bound on the algebraic error)
There holds:

ηi
alg ≤

∥∥K−1/2(uJ − ui
J)
∥∥.

similar situation to the conjugate gradients method, see Meurant (1997) and
Strakoš and Tichý (2002)
here one additional iteration i → i + 1 is sufficient for reliable ηi

alg
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Theorem (Pythagorean error representation)
There holds∥∥K−1/2(uJ − ui+1

J )
∥∥2︸ ︷︷ ︸

new error

=
∥∥K−1/2(uJ − ui

J)
∥∥2︸ ︷︷ ︸

old error

−
J∑

j=0

(
λi

j
∥∥K−1/2ρi

j
∥∥)2

.

︸ ︷︷ ︸(
ηi

alg

)2

Corollary (Guaranteed lower bound on the algebraic error)
There holds:

ηi
alg ≤

∥∥K−1/2(uJ − ui
J)
∥∥.

similar situation to the conjugate gradients method, see Meurant (1997) and
Strakoš and Tichý (2002)
here one additional iteration i → i + 1 is sufficient for reliable ηi

alg
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p-robust error contraction and algebraic estimator efficiency
Theorem (p-robust error contraction of the multilevel solver)
There holds∥∥K−1/2(uJ − ui+1

J )
∥∥ ≤ α

∥∥K−1/2(uJ − ui
J)
∥∥, 0 < α(κT ,d ,K, J) < 1.

Theorem (p-robust reliable and efficient bound on the algebraic error)

There holds ηi
alg ≤

∥∥K−1/2(uJ − ui
J)
∥∥ and, with β =

√
1 − α2,

ηi
alg ≥ β

∥∥K−1/2(uJ − ui
J)
∥∥.

Corollary (Equivalence of the two main results)

The solver contraction is equivalent to the efficiency of the estimator ηi
alg.

α is independent of the polynomial degree p
the dependence on J is at most linear under minimal H1-regularity
complete independence of J is obtained under H2-regularity
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Smooth solution and uniform mesh refinement

Setting
Ω: unit square
K = Id
γ(x , y) = cos(πx) cos(πy)
T0 with mesh size h0 = 0.3, uniform mesh refinement
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Contraction factors
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iteration

10-3
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10-1
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Effectivity indices of the guaranteed lower bound ηi
alg

0 1 2 3 4 5 6 7 8 9

iteration

0.9

0.91

0.92

0.93

0.94

0.95

0.96
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0.99
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Number of iterations to decrease ηi
alg by 105

p J = 2 J = 3 J = 4
2 9 9 8
3 9 8 7
6 6 5 4
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Rough solution and adaptive mesh refinement

Setting
Ω: unit square
K = Id
γ(x , y) = tan−1(α(r − r0)), where r =

√
(x − xc)2 + (y − yc)2

α = 1000, xc = 0.5, yc = 0.5, r0 = 0.01
T0 with mesh size h0 = 0.3, adaptive mesh refinement
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Adaptive mesh: J = 12, p = 6, & Dörfler marking parameter θ = 0.8
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Contraction factors
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Effectivity indices of the guaranteed lower bound ηi
alg

0 1 2 3 4 5 6 7 8 9 10

iteration

0.85

0.9

0.95
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Number of iterations to decrease ηi
alg by 105

p J = 3 J = 6 J = 12
2 13 12 9
3 12 11 8
6 13 10 6
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Conclusions
p-robust MG and DD methods for mixed finite elements

✓ p-robust algebraic error contraction

✓ p-robust localized algebraic error a posteriori error estimates
✓ unified treatment of multigrid and domain decomposition methods
✓ Pythagorean error decrease formula

A. MIRAÇI, M. VOHRALÍK, I. YOTOV A-posteriori-steered p-robust multilevel and
domain decomposition methods with optimal step-sizes for mixed finite element
discretizations of elliptic problems. In preparation, 2023.

A. MIRAÇI, J. PAPEŽ, M. VOHRALÍK, A multilevel algebraic error estimator and the
corresponding iterative solver with p-robust behavior, SIAM J. Numer. Anal. 58 (2020),
2856–2884.
A. MIRAÇI, J. PAPEŽ, M. VOHRALÍK, A-posteriori-steered p-robust multigrid with
optimal step-sizes and adaptive number of smoothing steps, SIAM J. Sci. Comput. 43
(2021), S117–S145.

Thank you for your attention!
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Localized algebraic error estimate

Theorem (Localized algebraic error estimate)
There holds (

ηi
alg

)2
=
∥∥K−1/2ρi

0
∥∥2
+

J∑
j=1

λi
j

∑
a∈Vj

∥∥K−1/2ρi
j,a
∥∥2
ωa

j
.
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Localized algebraic error estimate High-order finite element solvers

Solvers for high-order finite elements

and graded meshes

Algebraic problem
Find UJ ∈ R|V p

J | such that
AJUJ = FJ

AJ less and less sparse for big p
AJ worse and worse conditioned for big p
AJ looses structure on graded meshes TJ
AJ is dependent on the basis of V p

J

Black-box iterative solvers
do not work well for high p &
on highly graded meshes TJ

p-robust solver/preconditoner
J. Schöberl, M. Melenk, C. Pechstein, S. Zaglmayr: Additive Schwarz
preconditioning for p-version triangular and tetrahedral finite elements (2008):
globally coupled p = 1 sub-system; p > 1 treated locally on vertex patches

J-robust solver on graded meshes
J. Xu, L. Chen, R. Nochetto: Optimal multilevel methods for H(grad), H(curl), and
H(div) systems on graded and unstructured grids (2009):

graded meshes

independent on the basis of V p
J

solver constructed from V p
J , not AJ
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