Polynomial-degree-robust multilevel and domain decomposition methods with optimal step-sizes for mixed finite element discretizations of elliptic problems

Ani Miraçi, Martin Vohralík, and Ivan Yotov

Inria Paris & Ecole des Ponts

Bergen, June 19, 2023

- Introduction
- The model problem and its mixed finite element approximation
- Solvers for mixed finite elements
- 2 Multigrid for high-order mixed finite elements
 - A hierarchy of meshes and spaces
 - The solver
 - Functional writing
 - Main results
- Oomain decomposition for high-order mixed finite elements
 - Numerical experiments
 - Smooth solution and uniform mesh refinement
 - Rough solution and adaptive mesh refinement
- 5 Conclusions

- Introduction
 - The model problem and its mixed finite element approximation
 - Solvers for mixed finite elements
- - A hierarchy of meshes and spaces
 - The solver
 - Functional writing
 - Main results
- - Smooth solution and uniform mesh refinement

- The model problem and its mixed finite element approximation
- Solvers for mixed finite elements
- Multigrid for high-order mixed finite elements
 - A hierarchy of meshes and spaces
 - The solver
 - Functional writing
 - Main results
- Oomain decomposition for high-order mixed finite elements
- 4 Numerical experiments
 - Smooth solution and uniform mesh refinement
 - Rough solution and adaptive mesh refinement
- 5 Conclusions

The model problem

The Dracy porous media flow problem

Find the pressure head $\gamma : \Omega \to \mathbb{R}$ and the Darcy velocity $\mathbf{u} : \Omega \to \mathbb{R}^d$ such that

$oldsymbol{u}=-oldsymbol{K} abla\gamma$	in Ω ,
$ abla \cdot oldsymbol{u} = f$	in Ω ,
<i>u</i> ∙ <i>n</i> = 0	on $\partial \Omega$

Ínni

The model problem

The Dracy porous media flow problem

Find the pressure head $\gamma : \Omega \to \mathbb{R}$ and the Darcy velocity $\mathbf{u} : \Omega \to \mathbb{R}^d$ such that

$oldsymbol{u}=-oldsymbol{K} abla\gamma$	in Ω ,
$ abla \cdot oldsymbol{u} = f$	in Ω ,
<i>u</i> ∙ <i>n</i> = 0	on $\partial \Omega$

Setting

- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$: interval/polygon/polyhedron
- $\mathbf{K} \in [L^{\infty}(\Omega)]^{d \times d}$: symmetric and positive definite diffusion tensor
- $f \in L^2(\Omega)$ of mean value 0: source term

Mixed finite element approximation

Mixed finite element approximation

Find $\boldsymbol{u}_J \in \boldsymbol{V}_J$ and $\gamma_J \in \boldsymbol{W}_J$ such that

$$\begin{aligned} (\boldsymbol{K}^{-1}\boldsymbol{u}_J,\boldsymbol{v}_J) - (\gamma_J,\nabla\cdot\boldsymbol{v}_J) &= 0 \qquad \forall \boldsymbol{v}_J \in \boldsymbol{V}_J, \\ (\nabla\cdot\boldsymbol{u}_J,w_J) &= (f,w_J) \qquad \forall w_J \in \boldsymbol{W}_J. \end{aligned}$$

Mixed finite element approximation

Mixed finite element approximation

Find $\mathbf{u}_J \in \mathbf{V}_J$ and $\gamma_J \in \mathbf{W}_J$ such that

$$(\boldsymbol{K}^{-1}\boldsymbol{u}_J,\boldsymbol{v}_J) - (\gamma_J,\nabla\cdot\boldsymbol{v}_J) = 0 \qquad \forall \boldsymbol{v}_J \in \boldsymbol{V}_J, \\ (\nabla\cdot\boldsymbol{u}_J,\boldsymbol{w}_J) = (f,\boldsymbol{w}_J) \qquad \forall \boldsymbol{w}_J \in \boldsymbol{W}_J.$$

Setting

- \mathcal{T}_{J} : simplicial mesh of Ω
- *V_J* := {*v_J* ∈ *H*₀(div, Ω), *v_J*|_K ∈ **RT**_p(K) ∀K ∈ *T_J*}: Raviart–Thomas space (piecewise vector-valued polynomials on *T_J*) of degree *p*, normal trace continuous and 0 on ∂Ω (*H*₀(div, Ω)-conforming)
- W_J : piecewise polynomials on \mathcal{T}_J of degree p and mean value 0 on Ω

Introduction

- The model problem and its mixed finite element approximation
- Solvers for mixed finite elements
- 2 Multigrid for high-order mixed finite elements
 - A hierarchy of meshes and spaces
 - The solver
 - Functional writing
 - Main results
- Oomain decomposition for high-order mixed finite elements
- 4 Numerical experiments
 - Smooth solution and uniform mesh refinement
 - Rough solution and adaptive mesh refinement
- 5 Conclusions

Introduction Multigrid Domain decomposition Numerics Conclusions Model problem and MFE approximation Solvers for mixed finite elements

MG solvers for mixed finite elements

Saddle-point solvers

• after a choice of basis: find algebraic vectors U and Γ such that

$$\begin{pmatrix} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathsf{U} \\ \mathsf{\Gamma} \end{pmatrix} = \begin{pmatrix} \mathsf{0} \\ \mathsf{F} \end{pmatrix}$$

Introduction Multigrid Domain decomposition Numerics Conclusions Model problem and MFE approximation Solvers for mixed finite elements

MG solvers for mixed finite elements

Saddle-point solvers

after a choice of basis: find algebraic vectors U and Γ such that

$$\begin{pmatrix} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathsf{U} \\ \mathsf{\Gamma} \end{pmatrix} = \begin{pmatrix} \mathsf{0} \\ \mathsf{F} \end{pmatrix}$$

• saddle-point: indefinite system matrix (Benzi, Golub, Liesen (2005))

Introduction Multigrid Domain decomposition Numerics Conclusions Model problem and MFE approximation Solvers for mixed finite elements

MG solvers for mixed finite elements

Saddle-point solvers

• after a choice of basis: find algebraic vectors U and Γ such that

$$\begin{pmatrix} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathsf{U} \\ \mathsf{\Gamma} \end{pmatrix} = \begin{pmatrix} \mathsf{0} \\ \mathsf{F} \end{pmatrix}$$

- saddle-point: indefinite system matrix (Benzi, Golub, Liesen (2005))
- multigrid: Arnold, Falk, Winther (2000), Schöberl, Zulehner (2003), Xu, Chen, Nochetto (2009), Brenner (2009, 2018)

MG solvers for mixed finite elements

Saddle-point solvers

• after a choice of basis: find algebraic vectors U and Γ such that

$$\begin{pmatrix} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathsf{U} \\ \mathsf{F} \end{pmatrix} = \begin{pmatrix} \mathsf{0} \\ \mathsf{F} \end{pmatrix}$$

- saddle-point: indefinite system matrix (Benzi, Golub, Liesen (2005))
- multigrid: Arnold, Falk, Winther (2000), Schöberl, Zulehner (2003), Xu, Chen, Nochetto (2009), Brenner (2009, 2018)

SPD reformulations and solvers

• equivalent reformulation via hybridization: find algebraic vector Λ such that

$$\mathbb{S}\Lambda=G$$

- symmetric and positive definite system matrix
- preconditioned conjugate gradients possible,

MG solvers for mixed finite elements

Saddle-point solvers

• after a choice of basis: find algebraic vectors U and Γ such that

$$\begin{pmatrix} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathsf{U} \\ \mathsf{\Gamma} \end{pmatrix} = \begin{pmatrix} \mathsf{0} \\ \mathsf{F} \end{pmatrix}$$

- saddle-point: indefinite system matrix (Benzi, Golub, Liesen (2005))
- multigrid: Arnold, Falk, Winther (2000), Schöberl, Zulehner (2003), Xu, Chen, Nochetto (2009), Brenner (2009, 2018)

SPD reformulations and solvers

• equivalent reformulation via hybridization: find algebraic vector Λ such that

$$\mathbb{S}\Lambda=G$$

- symmetric and positive definite system matrix
- preconditioned conjugate gradients possible, multigrid not straightforward: Λ (pressure heads on the mesh faces) belong to non-nested spaces (Brenner (1992), Chen (1996), Wheeler, Yotov (2000))

Flux-only reformulation and corresponding MG solvers

Equivalent reformulation

Find $\boldsymbol{u}_{J} \in \boldsymbol{V}_{J}^{f}$ such that

$$(oldsymbol{K}^{-1}oldsymbol{u}_J,oldsymbol{v}_J)=0 \qquad orall oldsymbol{v}_J\inoldsymbol{V}_J^0.$$

Flux-only reformulation and corresponding MG solvers

Equivalent reformulation

Find $\mathbf{u}_{I} \in \mathbf{V}^{f}$, such that

$$(oldsymbol{K}^{-1}oldsymbol{u}_J,oldsymbol{v}_J)=0 \qquad orall oldsymbol{v}_J\inoldsymbol{V}_J^0.$$

•
$$V_J^g := \{ v_J \in V_J : (\nabla \cdot v_J, w_J) = (g, w_J) \ \forall w_J \in W_J \}$$

- only flux unknowns
- multigrid becomes easily possible (Mathew (1993), Ewing, Wang (1994), Hiptmair, Hoppe (1999))

DD solvers for mixed finite elements

Domain decomposition solvers

- Glowinski, Wheeler (1988), Cowsar, Mandel, Wheeler (1995), ...
- Ewing, Wang (1992), ...

Ímaía

Model problem and MFE approximation Solvers for mixed finite elements

A few central reflections

Usually	Our approach

Model problem and MFE approximation Solvers for mixed finite elements

A few central reflections

Usually

• first choose a basis:

Model problem and MFE approximation Solvers for mixed finite elements

Our approach

A few central reflections

Usually

- first choose a basis:
 - system of linear algebraic equations, quality depends on the basis

Usually

- first choose a basis:
 - system of linear algebraic equations, quality depends on the basis

Our approach

basis-independent approach:

Usually

- first choose a basis:
 - system of linear algebraic equations, quality depends on the basis

- basis-independent approach:
 - functional writing, independent of the basis

Usually

- first choose a basis:
 - system of linear algebraic equations, quality depends on the basis
 - analysis restricted to linear algebraic information and tools

- basis-independent approach:
 - functional writing, independent of the basis

Usually

- first choose a basis:
 - system of linear algebraic equations, quality depends on the basis
 - analysis restricted to linear algebraic information and tools

- basis-independent approach:
 - functional writing, independent of the basis
 - analysis exploits functional information and tools

Usually

- first choose a basis:
 - system of linear algebraic equations, quality depends on the basis
 - analysis restricted to linear algebraic information and tools
- saddle-point indefinite matrix / SPD system on non-nested spaces

- basis-independent approach:
 - functional writing, independent of the basis
 - analysis exploits functional information and tools

Usually

- first choose a basis:
 - system of linear algebraic equations, quality depends on the basis
 - analysis restricted to linear algebraic information and tools
- saddle-point indefinite matrix / SPD system on non-nested spaces

- basis-independent approach:
 - functional writing, independent of the basis
 - analysis exploits functional information and tools
- reduced (flux-only) SPD system (and no construction of div-free bases)

Usually

- first choose a basis:
 - system of linear algebraic equations, quality depends on the basis
 - analysis restricted to linear algebraic information and tools
- saddle-point indefinite matrix / SPD system on non-nested spaces
- "sufficient" number of smoothing steps necessary

- basis-independent approach:
 - functional writing, independent of the basis
 - analysis exploits functional information and tools
- reduced (flux-only) SPD system (and no construction of div-free bases)

Usually

- first choose a basis:
 - system of linear algebraic equations, quality depends on the basis
 - analysis restricted to linear algebraic information and tools
- saddle-point indefinite matrix / SPD system on non-nested spaces
- "sufficient" number of smoothing steps necessary

- basis-independent approach:
 - functional writing, independent of the basis
 - analysis exploits functional information and tools
- reduced (flux-only) SPD system (and no construction of div-free bases)
- one post-smoothing step enough

Usually

- first choose a basis:
 - system of linear algebraic equations, quality depends on the basis
 - analysis restricted to linear algebraic information and tools
- saddle-point indefinite matrix / SPD system on non-nested spaces
- "sufficient" number of smoothing steps necessary

- basis-independent approach:
 - functional writing, independent of the basis
 - analysis exploits functional information and tools
- reduced (flux-only) SPD system (and no construction of div-free bases)
- one post-smoothing step enough
- Pythagoras formula for error decrease

Usually

- first choose a basis:
 - system of linear algebraic equations, quality depends on the basis
 - analysis restricted to linear algebraic information and tools
- saddle-point indefinite matrix / SPD system on non-nested spaces
- "sufficient" number of smoothing steps necessary

- basis-independent approach:
 - functional writing, independent of the basis
 - analysis exploits functional information and tools
- reduced (flux-only) SPD system (and no construction of div-free bases)
- one post-smoothing step enough
- Pythagoras formula for error decrease
- built-in a posteriori estimate on the algebraic error (adaptive smoothing)

Usually

- first choose a basis:
 - system of linear algebraic equations, quality depends on the basis
 - analysis restricted to linear algebraic information and tools
- saddle-point indefinite matrix / SPD system on non-nested spaces
- "sufficient" number of smoothing steps necessary

- basis-independent approach:
 - functional writing, independent of the basis
 - analysis exploits functional information and tools
- reduced (flux-only) SPD system (and no construction of div-free bases)
- one post-smoothing step enough
- Pythagoras formula for error decrease
- built-in a posteriori estimate on the algebraic error (adaptive smoothing)
- p-robustness

Usually

- first choose a basis:
 - system of linear algebraic equations, quality depends on the basis
 - analysis restricted to linear algebraic information and tools
- saddle-point indefinite matrix / SPD system on non-nested spaces
- "sufficient" number of smoothing steps necessary

- basis-independent approach:
 - functional writing, independent of the basis
 - analysis exploits functional information and tools
- reduced (flux-only) SPD system (and no construction of div-free bases)
- one post-smoothing step enough
- Pythagoras formula for error decrease
- built-in a posteriori estimate on the algebraic error (adaptive smoothing)
- p-robustness
- unified treatment of multigrid and DD

Introduction

- The model problem and its mixed finite element approximation
- Solvers for mixed finite elements
- Multigrid for high-order mixed finite elements
 - A hierarchy of meshes and spaces
 - The solver
 - Functional writing
 - Main results
- Oomain decomposition for high-order mixed finite elements
- 4 Numerical experiments
 - Smooth solution and uniform mesh refinement
 - Rough solution and adaptive mesh refinement
- 5 Conclusions

Introduction

- The model problem and its mixed finite element approximation
- Solvers for mixed finite elements
- 2 Multigrid for high-order mixed finite elements
 - A hierarchy of meshes and spaces
 - The solver
 - Functional writing
 - Main results
- Oomain decomposition for high-order mixed finite elements
- 4 Numerical experiments
 - Smooth solution and uniform mesh refinement
 - Rough solution and adaptive mesh refinement
- 5 Conclusions

A hierarchy of meshes

Example: Two mesh hierarchies with J = 3 refinements.

Assumption: The meshes $\{\mathcal{T}_j\}_{0 \le j \le J}$ can be quasi-uniform or graded, satisfying:

- quasi-uniform \mathcal{T}_0 ,
- shape-regularity,
- maximum strength of refinement.

For given polynomial degree p and J, choose *increasing* level-wise polynomial degrees p_j , $j \in \{0, ..., J\}$,

and define the spaces

 $oldsymbol{V}_l^0 := \{oldsymbol{v}_l \in oldsymbol{H}_0(ext{div},\Omega), oldsymbol{v}_l|_{\mathcal{K}} \in oldsymbol{\mathsf{RT}}_{oldsymbol{
ho}_l}(\mathcal{K}) \ orall \mathcal{K} \in \mathcal{T}_l, \
abla \cdot oldsymbol{v}_l = 0\}$

A hierarchy of meshes

Example: Two mesh hierarchies with J = 3 refinements.

Assumption: The meshes $\{T_j\}_{0 \le j \le J}$ can be quasi-uniform or graded, satisfying:

- quasi-uniform T_0 ,
- shape-regularity,
- maximum strength of refinement.

For given polynomial degree p and J, choose *increasing* level-wise polynomial degrees p_j , $j \in \{0, ..., J\}$,

and define the spaces

 $oldsymbol{V}_{I}^{0}:=\{oldsymbol{v}_{I}\inoldsymbol{H}_{0}({ extsf{div}},\Omega), oldsymbol{v}_{J}|_{K}\inoldsymbol{\mathsf{RT}}_{
ho_{I}}(K) \ orall K\in\mathcal{T}_{I}, \
abla\cdotoldsymbol{v}_{I}=0\}$

M. Vohralík
A hierarchy of meshes

Example: Two mesh hierarchies with J = 3 refinements.

Assumption: The meshes $\{\mathcal{T}_j\}_{0 \le j \le J}$ can be quasi-uniform or graded, satisfying:

- quasi-uniform \mathcal{T}_0 ,
- shape-regularity,
- maximum strength of refinement.

For given polynomial degree p and J, choose *increasing* level-wise polynomial degrees p_j , $j \in \{0, ..., J\}$,

and define the spaces

 $\textit{\textbf{V}}_{\textit{l}}^{0} := \{\textit{\textbf{v}}_{\textit{l}} \in \textit{\textbf{H}}_{0}(\mathsf{div}, \Omega), ~\textit{\textbf{v}}_{\textit{l}}|_{\textit{K}} \in \textit{\textbf{RT}}_{\rho_{\textit{l}}}(\textit{K}) ~\forall \textit{K} \in \mathcal{T}_{\textit{l}}, ~ \nabla \cdot \textit{\textbf{v}}_{\textit{l}} = 0\}$

A hierarchy of meshes

Example: Two mesh hierarchies with J = 3 refinements.

Assumption: The meshes $\{\mathcal{T}_j\}_{0 \le j \le J}$ can be quasi-uniform or graded, satisfying:

- quasi-uniform \mathcal{T}_0 ,
- shape-regularity,
- maximum strength of refinement.

For given polynomial degree p and J, choose *increasing* level-wise polynomial degrees p_j , $j \in \{0, ..., J\}$,

and define the spaces

 $oldsymbol{V}_{I}^{0}:=\{oldsymbol{v}_{I}\inoldsymbol{H}_{0}(\operatorname{\mathsf{div}},\Omega), \ oldsymbol{v}_{J}|_{K}\inoldsymbol{\mathsf{RT}}_{
ho_{l}}(K)\ orall K\in\mathcal{T}_{J},\
abla\cdotoldsymbol{v}_{l}=0\}$

M. Vohralík

A hierarchy of meshes

Example: Two mesh hierarchies with J = 3 refinements.

Assumption: The meshes $\{\mathcal{T}_j\}_{0 \le j \le J}$ can be quasi-uniform or graded, satisfying:

- quasi-uniform \mathcal{T}_0 ,
- shape-regularity,
- maximum strength of refinement.

For given polynomial degree p and J, choose *increasing* level-wise polynomial degrees p_j , $j \in \{0, ..., J\}$,

and define the spaces

 $\boldsymbol{V}_{j}^{0}:=\{\boldsymbol{v}_{j}\in\boldsymbol{H}_{0}(\text{div},\Omega), \ \boldsymbol{v}_{j}|_{K}\in\boldsymbol{\mathrm{RT}}_{p_{j}}(K) \ \forall K\in\mathcal{T}_{j}, \ \nabla\cdot\boldsymbol{v}_{j}=0\}.$

M. Vohralík

Multigrid Domain decomposition Numerics Conclusions A hierarchy of meshes and spaces. The solver Eurotional writing Main results

A hierarchy of meshes

Example: Two mesh hierarchies with J = 3 refinements.

Assumption: The meshes $\{\mathcal{T}_i\}_{0 \le i \le J}$ can be quasi-uniform or graded, satisfying:

- quasi-uniform \mathcal{T}_0 ,
- shape-regularity,
- maximum strength of refinement.

For given polynomial degree p and J, choose increasing level-wise polynomial degrees $p_i, j \in \{0, \ldots, J\}$,

$$oldsymbol{V}_j^0 := \{oldsymbol{v}_j \in oldsymbol{H}_0(ext{div},\Omega), \ oldsymbol{v}_j|_{\mathcal{K}} \in oldsymbol{\mathsf{RT}}_{
ho_j}(\mathcal{K}) \ orall \mathcal{K} \in \mathcal{T}_j, \
abla \cdot oldsymbol{v}_j = 0\}.$$

Introduction Multigrid Domain decomposition Numerics Conclusions A hierarchy of meshes and spaces. The solver Europian writing Main results

A hierarchy of meshes and spaces

Example: Two mesh hierarchies with J = 3 refinements.

Assumption: The meshes $\{\mathcal{T}_i\}_{0 \le i \le J}$ can be quasi-uniform or graded, satisfying:

- quasi-uniform \mathcal{T}_0 ,
- shape-regularity,
- maximum strength of refinement.

For given polynomial degree p and J, choose increasing level-wise polynomial degrees $p_i, j \in \{0, \ldots, J\}$,

$$0=\rho_0\leq\rho_1\leq\rho_2\leq\ldots\leq\rho_J=\rho,$$

$$\boldsymbol{V}_{j}^{0} := \{\boldsymbol{v}_{j} \in \boldsymbol{H}_{0}(\mathsf{div}, \Omega), \ \boldsymbol{v}_{j}|_{K} \in \mathbf{RT}_{p_{j}}(K) \ \forall K \in \mathcal{T}_{j}, \ \nabla \cdot \boldsymbol{v}_{j} = 0\}$$

A hierarchy of meshes and spaces

Example: Two mesh hierarchies with J = 3 refinements.

Assumption: The meshes $\{\mathcal{T}_j\}_{0 \le j \le J}$ can be quasi-uniform or graded, satisfying:

- quasi-uniform \mathcal{T}_0 ,
- shape-regularity,
- maximum strength of refinement.

For given polynomial degree p and J, choose *increasing* level-wise polynomial degrees p_j , $j \in \{0, ..., J\}$,

$$0=\rho_0\leq\rho_1\leq\rho_2\leq\ldots\leq\rho_J=\rho,$$

$$\textit{\textbf{V}}_{j}^{0} := \{\textit{\textbf{v}}_{j} \in \textit{\textbf{H}}_{0}(\mathsf{div}, \Omega), ~\textit{\textbf{v}}_{j}|_{\textit{K}} \in \textit{\textbf{RT}}_{\textit{p}_{j}}(\textit{K}) ~\forall\textit{K} \in \mathcal{T}_{j}, ~\nabla \cdot \textit{\textbf{v}}_{j} = 0\}$$

A hierarchy of meshes and spaces The solver Functional writing Main results

A hierarchy of meshes and spaces

Example: Two mesh hierarchies with J = 3 refinements.

Assumption: The meshes $\{\mathcal{T}_j\}_{0 \le j \le J}$ can be quasi-uniform or graded, satisfying:

- quasi-uniform \mathcal{T}_0 ,
- shape-regularity,
- maximum strength of refinement.

For given polynomial degree p and J, choose *increasing* level-wise polynomial degrees p_j , $j \in \{0, ..., J\}$,

$$0 = p_0 \leq p_1 \leq p_2 \leq \ldots \leq p_J = p,$$

$$\boldsymbol{V}_{j}^{0} := \{\boldsymbol{v}_{j} \in \boldsymbol{H}_{0}(\mathsf{div}, \Omega), \ \boldsymbol{v}_{j}|_{\mathcal{K}} \in \boldsymbol{\mathsf{RT}}_{p_{j}}(\mathcal{K}) \ \forall \mathcal{K} \in \mathcal{T}_{j}, \ \nabla \cdot \boldsymbol{v}_{j} = \boldsymbol{0} \}$$

A hierarchy of meshes and spaces The solver Functional writing Main results

A hierarchy of meshes and spaces

Example: Two mesh hierarchies with J = 3 refinements.

Assumption: The meshes $\{\mathcal{T}_j\}_{0 \le j \le J}$ can be quasi-uniform or graded, satisfying:

- quasi-uniform \mathcal{T}_0 ,
- shape-regularity,
- maximum strength of refinement.

For given polynomial degree p and J, choose *increasing* level-wise polynomial degrees p_j , $j \in \{0, ..., J\}$,

$$0 = p_0 \leq p_1 \leq p_2 \leq \ldots \leq p_J = p,$$

$$\boldsymbol{V}_{j}^{0} := \{\boldsymbol{v}_{j} \in \boldsymbol{H}_{0}(\mathsf{div}, \Omega), \ \boldsymbol{v}_{j}|_{\mathcal{K}} \in \boldsymbol{\mathsf{RT}}_{p_{j}}(\mathcal{K}) \ \forall \mathcal{K} \in \mathcal{T}_{j}, \ \nabla \cdot \boldsymbol{v}_{j} = \boldsymbol{0} \}$$

A hierarchy of meshes and spaces

Example: Two mesh hierarchies with J = 3 refinements.

Assumption: The meshes $\{\mathcal{T}_j\}_{0 \le j \le J}$ can be quasi-uniform or graded, satisfying:

- quasi-uniform \mathcal{T}_0 ,
- shape-regularity,
- maximum strength of refinement.

For given polynomial degree p and J, choose *increasing* level-wise polynomial degrees p_j , $j \in \{0, ..., J\}$,

$$0 = \rho_0 \leq \rho_1 \leq \rho_2 \leq \ldots \leq \rho_J = \rho,$$

$$\boldsymbol{V}_{j}^{0} := \{\boldsymbol{v}_{j} \in \boldsymbol{H}_{0}(\mathsf{div}, \Omega), \ \boldsymbol{v}_{j}|_{\mathcal{K}} \in \boldsymbol{\mathsf{RT}}_{p_{j}}(\mathcal{K}) \ \forall \mathcal{K} \in \mathcal{T}_{j}, \ \nabla \cdot \boldsymbol{v}_{j} = \boldsymbol{0} \}$$

A hierarchy of meshes and spaces

Example: Two mesh hierarchies with J = 3 refinements.

Assumption: The meshes $\{\mathcal{T}_j\}_{0 \le j \le J}$ can be quasi-uniform or graded, satisfying:

- quasi-uniform \mathcal{T}_0 ,
- shape-regularity,
- maximum strength of refinement.

For given polynomial degree p and J, choose *increasing* level-wise polynomial degrees p_j , $j \in \{0, ..., J\}$,

$$\mathbf{0} = \mathbf{p}_{\mathbf{0}} \le \mathbf{p}_{\mathbf{1}} \le \mathbf{p}_{\mathbf{2}} \le \ldots \le \mathbf{p}_{\mathbf{J}} = \mathbf{p},$$

$$\boldsymbol{V}_{j}^{0}:=\{\boldsymbol{v}_{j}\in\boldsymbol{H}_{0}(\mathsf{div},\Omega), \ \boldsymbol{v}_{j}|_{\mathcal{K}}\in\boldsymbol{\mathsf{RT}}_{p_{j}}(\mathcal{K}) \ \forall \mathcal{K}\in\mathcal{T}_{j}, \ \nabla\cdot\boldsymbol{v}_{j}=0\}$$

Outline

Introduction

- The model problem and its mixed finite element approximation
- Solvers for mixed finite elements

2 Multigrid for high-order mixed finite elements

- A hierarchy of meshes and spaces
- The solver
- Functional writing
- Main results
- 3 Domain decomposition for high-order mixed finite elements
- 4 Numerical experiments
 - Smooth solution and uniform mesh refinement
 - Rough solution and adaptive mesh refinement
- 5 Conclusions

-cycle multigrid

V(0,1)-cycle multigrid

V(0,1)-cycle multigrid

V(0,1)-cycle multigrid with block-Jacobi smoothing

- zero pre- and a single post-smoothing step
- cheapest RT₀ coarse solve
- additive Schwarz/block-Jacobi smoothing ρ_i^j

V(0,1)-cycle multigrid with block-Jacobi smoothing and line again

- V-cycle geometric multigrid as in Ewing, Wang (1994)
- zero pre- and a single post-smoothing step
- cheapest RT₀ coarse solve
- additive Schwarz/block-Jacobi smoothing ρ_i^i : fully *parallel* on each level

V(0,1)-cycle multigrid with block-Jacobi smoothing and line search

- V-cycle geometric multigrid as in Ewing, Wang (1994)
- zero pre- and a single post-smoothing step
- cheapest RT₀ coarse solve
- additive Schwarz/block-Jacobi smoothing ρ_i^j : fully parallel on each level
- level-wise step-sizes λ_i^i in correction stage

p-robust multilevel and domain decomposition methods for mixed finite elements

A hierarchy of meshes and spaces The solver Functional writing Main results

V(0,1)-cycle multigrid with block-Jacobi smoothing and line search

- V-cycle geometric multigrid as in Ewing, Wang (1994)
- zero pre- and a single post-smoothing step
- cheapest RT₀ coarse solve
- additive Schwarz/block-Jacobi smoothing ρ_i^i : fully parallel on each level
- level-wise step-sizes λ_i^i in correction stage: optimally chosen by line searchia

A hierarchy of meshes and spaces The solver Functional writing Main results

V(0,1)-cycle multigrid with block-Jacobi smoothing and line search

- V-cycle geometric multigrid as in Ewing, Wang (1994)
- zero pre- and a single post-smoothing step
- cheapest RT₀ coarse solve
- additive Schwarz/block-Jacobi smoothing ρ_i^i : fully *parallel* on each level
- level-wise step-sizes λ_i^i in correction stage: optimally chosen by line searchia

V(0,1)-cycle multigrid with block-Jacobi smoothing and line search

- V-cycle geometric multigrid as in Ewing, Wang (1994)
- zero pre- and a single post-smoothing step
- cheapest RT₀ coarse solve
- additive Schwarz/block-Jacobi smoothing ρ_i^i : fully parallel on each level
- level-wise step-sizes λ_i^i in correction stage: optimally chosen by line searchia

Outline

Introduction

- The model problem and its mixed finite element approximation
- Solvers for mixed finite elements

2 Multigrid for high-order mixed finite elements

- A hierarchy of meshes and spaces
- The solver

• Functional writing

- Main results
- Oomain decomposition for high-order mixed finite elements
- 4 Numerical experiments
 - Smooth solution and uniform mesh refinement
 - Rough solution and adaptive mesh refinement
- 5 Conclusions

p-robust multilevel and domain decomposition methods for mixed finite elements 10 / 23

Introduction Multigrid Domain decomposition Numerics Conclusions A hierarchy of meshes and spaces The solver **Functional writing** Main results Functional writing: for $\boldsymbol{u}_{J}^{0} \in \boldsymbol{V}_{J}^{f}$ arbitrary, construct $\boldsymbol{\rho}_{i}^{i}$, λ_{i}^{i} via \boldsymbol{u}_{i}^{i} Coarse solve: $\rho_0^i \in V_0^0$ s.t. $(K^{-1}\rho_0^i, v_0) = (-(K^{-1}u_J^i, v_0)) \quad \forall v_0 \in V_0^0; \ u_0^i := u_J^i + \rho_0^i.$ global lifting global algebraic residual

Introduction Multigrid Domain decomposition Numerics Conclusions A hierarchy of meshes and spaces The solver **Functional writing** Main results Functional writing: for $\boldsymbol{u}_{J}^{0} \in \boldsymbol{V}_{J}^{f}$ arbitrary, construct $\boldsymbol{\rho}_{i}^{i}$, λ_{i}^{i} via \boldsymbol{u}_{i}^{i} $\textbf{Coarse solve: } \boldsymbol{\rho}_0^i \in \boldsymbol{V}_0^0 \text{ s.t. } (\boldsymbol{K}^{-1}\boldsymbol{\rho}_0^i, \boldsymbol{v}_0) = (-(\boldsymbol{K}^{-1}\boldsymbol{u}_J^i, \boldsymbol{v}_0)) \quad \forall \boldsymbol{v}_0 \in \boldsymbol{V}_0^0; \ \boldsymbol{u}_0^i := \boldsymbol{u}_J^i + \boldsymbol{\rho}_0^i.$ global lifting global algebraic residual **Patchwise smoothing (local solves):** for j = 1 : J and $\boldsymbol{a} \in \mathcal{V}_i, \rho_{i,\boldsymbol{a}}^i \in \boldsymbol{V}_i^{\boldsymbol{a},0}$ s.t. $(\boldsymbol{K}^{-1}\rho^i_{j,\boldsymbol{a}},\boldsymbol{v}_{j,\boldsymbol{a}})_{\omega^{\boldsymbol{a}}_{j}}=-(\boldsymbol{K}^{-1}\boldsymbol{u}^i_{j-1},\boldsymbol{v}_{j,\boldsymbol{a}})_{\omega^{\boldsymbol{a}}_{j}}\quad\forall\boldsymbol{v}_{j,\boldsymbol{a}}\in\boldsymbol{V}^{\boldsymbol{a},0}_{i}.$

Introduction Multigrid Domain decomposition Numerics Conclusions A hierarchy of meshes and spaces The solver Functional writing Main results Functional writing: for $\boldsymbol{u}_{i}^{0} \in \boldsymbol{V}_{i}^{f}$ arbitrary, construct $\boldsymbol{\rho}_{i}^{i}$, λ_{i}^{i} via \boldsymbol{u}_{i}^{i} Coarse solve: $\rho_0^i \in V_0^0$ s.t. $(K^{-1}\rho_0^i, v_0) = (-(K^{-1}u_J^i, v_0)) \quad \forall v_0 \in V_0^0; \ u_0^i := u_J^i + \rho_0^i.$ global lifting global algebraic residual Patchwise smoothing (local solves): for j = 1 : J and $\boldsymbol{a} \in \mathcal{V}_j, \ \boldsymbol{\rho}_{i,\boldsymbol{a}}^j \in \boldsymbol{V}_i^{\boldsymbol{a},0}$ s.t. $(\boldsymbol{K}^{-1} \rho^{i}_{j,\boldsymbol{a}}, \boldsymbol{v}_{j,\boldsymbol{a}})_{\omega^{\boldsymbol{a}}_{j}} = -(\boldsymbol{K}^{-1} \boldsymbol{u}^{i}_{j-1}, \boldsymbol{v}_{j,\boldsymbol{a}})_{\omega^{\boldsymbol{a}}_{i}} \quad \forall \boldsymbol{v}_{j,\boldsymbol{a}} \in \boldsymbol{V}^{\boldsymbol{a},0}_{i}.$ local lifting local algebraic residual Correction direction: $\rho_i^i \in V_i^0, \rho_i^i := \sum \rho_{i,a}^i$.

Introduction Multigrid Domain decomposition Numerics Conclusions A hierarchy of meshes and spaces The solver Functional writing Main results Functional writing: for $\boldsymbol{u}_{J}^{0} \in \boldsymbol{V}_{J}^{t}$ arbitrary, construct $\boldsymbol{\rho}_{i}^{t}$, λ_{i}^{t} via \boldsymbol{u}_{i}^{t} Coarse solve: $\rho_0^i \in V_0^0$ s.t. $(K^{-1}\rho_0^i, v_0) = (-(K^{-1}u_J^i, v_0)) \quad \forall v_0 \in V_0^0; \ u_0^i := u_J^i + \rho_0^i.$ global lifting global algebraic residual Patchwise smoothing (local solves): for j = 1 : J and $\boldsymbol{a} \in \mathcal{V}_j, \ \boldsymbol{\rho}_{i,\boldsymbol{a}}^j \in \boldsymbol{V}_i^{\boldsymbol{a},0}$ s.t. $(\boldsymbol{K}^{-1} \rho^{i}_{j,\boldsymbol{a}}, \boldsymbol{v}_{j,\boldsymbol{a}})_{\omega^{\boldsymbol{a}}_{j}} = -(\boldsymbol{K}^{-1} \boldsymbol{u}^{i}_{j-1}, \boldsymbol{v}_{j,\boldsymbol{a}})_{\omega^{\boldsymbol{a}}_{i}} \quad \forall \boldsymbol{v}_{j,\boldsymbol{a}} \in \boldsymbol{V}^{\boldsymbol{a},0}_{i}.$ local lifting local algebraic residual Correction direction: $\rho_i^i \in V_i^0, \rho_i^i := \sum \rho_{i,a}^i$. $\mathbf{a} \in \mathcal{V}_i$

A hierarchy of meshes and spaces The solver Functional writing Main results Introduction Multigrid Domain decomposition Numerics Conclusions Functional writing: for $\boldsymbol{u}_{i}^{0} \in \boldsymbol{V}_{i}^{f}$ arbitrary, construct $\boldsymbol{\rho}_{i}^{i}$, λ_{i}^{i} via \boldsymbol{u}_{i}^{i} $\textbf{Coarse solve: } \boldsymbol{\rho}_0^i \in \boldsymbol{V}_0^0 \textbf{ s.t. } (\boldsymbol{K}^{-1}\boldsymbol{\rho}_0^j, \boldsymbol{v}_0) = (\boldsymbol{K}^{-1}\boldsymbol{u}_J^j, \boldsymbol{v}_0) \quad \forall \boldsymbol{v}_0 \in \boldsymbol{V}_0^0 \textbf{; } \boldsymbol{u}_0^i \textbf{:=} \boldsymbol{u}_J^i + \boldsymbol{\rho}_0^i \textbf{.}$ global lifting global algebraic residual Patchwise smoothing (local solves): for j = 1 : J and $\boldsymbol{a} \in \mathcal{V}_i, \ \boldsymbol{\rho}_{i,\boldsymbol{a}}^j \in \boldsymbol{V}_i^{\boldsymbol{a},0}$ s.t. $(\boldsymbol{K}^{-1} \boldsymbol{\rho}^{i}_{j,\boldsymbol{a}}, \boldsymbol{v}_{j,\boldsymbol{a}})_{\omega^{\boldsymbol{a}}_{j}} = -(\boldsymbol{K}^{-1} \boldsymbol{u}^{i}_{j-1}, \boldsymbol{v}_{j,\boldsymbol{a}})_{\omega^{\boldsymbol{a}}_{i}} \quad \forall \boldsymbol{v}_{j,\boldsymbol{a}} \in \boldsymbol{V}^{\boldsymbol{a},0}_{j}.$ local lifting local algebraic residual Correction direction: $\rho_i^i \in V_i^0, \rho_i^i := \sum \rho_{i,a}^i$. $\mathbf{a} \in \mathcal{V}_i$ Level-wise step-sizes by line search: $\lambda_j^i := -\frac{(\mathbf{K}^{-1} \mathbf{u}_{j-1}^i, \rho_j^i)}{\|\mathbf{K}^{-1/2} \rho_i^i\|^2}$ naío

M. Vohralík

p-robust multilevel and domain decomposition methods for mixed finite elements 10 / 23

A hierarchy of meshes and spaces The solver Functional writing Main results Introduction Multigrid Domain decomposition Numerics Conclusions Functional writing: for $\boldsymbol{u}_{i}^{0} \in \boldsymbol{V}_{i}^{f}$ arbitrary, construct $\boldsymbol{\rho}_{i}^{i}$, λ_{i}^{i} via \boldsymbol{u}_{i}^{i} $\textbf{Coarse solve: } \boldsymbol{\rho}_0^i \in \boldsymbol{V}_0^0 \textbf{ s.t. } (\boldsymbol{K}^{-1}\boldsymbol{\rho}_0^j, \boldsymbol{v}_0) = (\boldsymbol{K}^{-1}\boldsymbol{u}_J^j, \boldsymbol{v}_0) \quad \forall \boldsymbol{v}_0 \in \boldsymbol{V}_0^0 \textbf{; } \boldsymbol{u}_0^i \textbf{:=} \boldsymbol{u}_J^i + \boldsymbol{\rho}_0^i \textbf{.}$ global lifting global algebraic residual Patchwise smoothing (local solves): for j = 1 : J and $\boldsymbol{a} \in \mathcal{V}_j, \ \boldsymbol{\rho}_{i,\boldsymbol{a}}^j \in \boldsymbol{V}_i^{\boldsymbol{a},0}$ s.t. $(\boldsymbol{K}^{-1} \boldsymbol{\rho}^{i}_{j,\boldsymbol{a}}, \boldsymbol{v}_{j,\boldsymbol{a}})_{\omega^{\boldsymbol{a}}_{j}} = -(\boldsymbol{K}^{-1} \boldsymbol{u}^{i}_{j-1}, \boldsymbol{v}_{j,\boldsymbol{a}})_{\omega^{\boldsymbol{a}}_{i}} \quad \forall \boldsymbol{v}_{j,\boldsymbol{a}} \in \boldsymbol{V}^{\boldsymbol{a},0}_{j}.$ local lifting local algebraic residual Correction direction: $\rho_i^i \in V_i^0, \rho_i^i := \sum \rho_{i,a}^i$. $\mathbf{a} \in \mathcal{V}_i$ Level-wise step-sizes by line search: $\lambda_j^i := -\frac{(\mathbf{K}^{-1} \mathbf{u}_{j-1}^i, \rho_j^i)}{\|\mathbf{K}^{-1/2} \rho_i^i\|^2}$ *j*-level update: $\boldsymbol{u}_i^l := \boldsymbol{u}_{i-1}^l + \lambda_i^l \boldsymbol{\rho}_i^l$ and $\boldsymbol{u}_i^{l+1} := \boldsymbol{u}_i^l$. Ínaía

M. Vohralík

p-robust multilevel and domain decomposition methods for mixed finite elements 10 / 23

Outline

Introduction

- The model problem and its mixed finite element approximation
- Solvers for mixed finite elements

2 Multigrid for high-order mixed finite elements

- A hierarchy of meshes and spaces
- The solver
- Functional writing
- Main results
- 3 Domain decomposition for high-order mixed finite elements
- 4 Numerical experiments
 - Smooth solution and uniform mesh refinement
 - Rough solution and adaptive mesh refinement
- 5 Conclusions

A hierarchy of meshes and spaces The solver Functional writing Main results

Pythagorean error formula and bound on the algebraic error

Theorem (Pythagorean error representation)

There holds

$$\underbrace{\left\|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_{J}-\boldsymbol{u}_{J}^{i+1})\right\|^{2}}_{new \ error} = \underbrace{\left\|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_{J}-\boldsymbol{u}_{J}^{i})\right\|^{2}}_{old \ error} - \underbrace{\sum_{j=0}^{J} \left(\lambda_{j}^{i} \left\|\boldsymbol{K}^{-1/2} \boldsymbol{\rho}_{j}^{i}\right\|\right)^{2}}_{\left(\eta_{alg}^{i}\right)^{2}}.$$

Corollary (Guaranteed lower bound on the algebraic error)

There holds:

$$\eta_{\mathsf{alg}}^i \leq \left\| \boldsymbol{K}^{-1/2} (\boldsymbol{u}_J - \boldsymbol{u}_J^i) \right\|.$$

 similar situation to the conjugate gradients method, see Meurant (1997) and Strakoš and Tichý (2002)

Introduction Multigrid Domain decomposition Numerics Conclusions A hierarchy of meshes and spaces The solver Functional writing Main results

Pythagorean error formula and bound on the algebraic error

Theorem (Pythagorean error representation)

There holds

$$\underbrace{\left\|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_{J}-\boldsymbol{u}_{J}^{i+1})\right\|^{2}}_{new \ error} = \underbrace{\left\|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_{J}-\boldsymbol{u}_{J}^{i})\right\|^{2}}_{old \ error} - \underbrace{\sum_{j=0}^{J} \left(\lambda_{j}^{i} \|\boldsymbol{K}^{-1/2} \boldsymbol{\rho}_{j}^{i}\|\right)^{2}}_{\left(\eta_{\text{alg}}^{i}\right)^{2}}.$$

Corollary (Guaranteed lower bound on the algebraic error)

There holds:

$$\eta_{\mathsf{alg}}^i \leq \left\| \boldsymbol{K}^{-1/2} (\boldsymbol{u}_J - \boldsymbol{u}_J^i) \right\|.$$

similar situation to the conjugate gradients method, see Meurant (1997) and

Introduction Multigrid Domain decomposition Numerics Conclusions A hierarchy of meshes and spaces The solver Functional writing Main results

Pythagorean error formula and bound on the algebraic error

Theorem (Pythagorean error representation)

There holds

$$\underbrace{\left\|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_{J}-\boldsymbol{u}_{J}^{i+1})\right\|^{2}}_{new \ error} = \underbrace{\left\|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_{J}-\boldsymbol{u}_{J}^{i})\right\|^{2}}_{old \ error} - \underbrace{\sum_{j=0}^{J} \left(\lambda_{j}^{i} \left\|\boldsymbol{K}^{-1/2} \boldsymbol{\rho}_{j}^{i}\right\|\right)^{2}}_{\left(\eta_{alg}^{i}\right)^{2}}.$$

Corollary (Guaranteed lower bound on the algebraic error)

There holds:

$$\eta_{\mathsf{alg}}^i \leq \left\| \boldsymbol{K}^{-1/2} (\boldsymbol{u}_J - \boldsymbol{u}_J^i) \right\|.$$

- similar situation to the conjugate gradients method, see Meurant (1997) and Strakoš and Tichý (2002)
- here one additional iteration $i \rightarrow i + 1$ is sufficient for reliable η_{alo}^{i}

Ínnis

Introduction Multigrid Domain decomposition Numerics Conclusions A hierarchy of meshes and spaces The solver Functional writing Main results

Pythagorean error formula and bound on the algebraic error

Theorem (Pythagorean error representation)

There holds

$$\underbrace{\left\|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_{J}-\boldsymbol{u}_{J}^{i+1})\right\|^{2}}_{new \ error} = \underbrace{\left\|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_{J}-\boldsymbol{u}_{J}^{i})\right\|^{2}}_{old \ error} - \underbrace{\sum_{j=0}^{J} \left(\lambda_{j}^{i} \left\|\boldsymbol{K}^{-1/2} \boldsymbol{\rho}_{j}^{i}\right\|\right)^{2}}_{\left(\eta_{alg}^{i}\right)^{2}}.$$

Corollary (Guaranteed lower bound on the algebraic error)

There holds:

$$\eta_{\text{alg}}^i \leq \left\| \boldsymbol{K}^{-1/2} (\boldsymbol{u}_J - \boldsymbol{u}_J^i) \right\|.$$

- similar situation to the conjugate gradients method, see Meurant (1997) and Strakoš and Tichý (2002)
- here one additional iteration $i \rightarrow i + 1$ is sufficient for reliable η_{alo}^{i}

Ínaío

p-robust error contraction and algebraic estimator efficiency

Theorem (p-robust error contraction of the multilevel solver)

There holds

$$\|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_J - \boldsymbol{u}_J^{i+1})\| \leq \alpha \|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_J - \boldsymbol{u}_J^{i})\|, \qquad 0 < \alpha(\kappa_{\mathcal{T}}, \boldsymbol{d}, \boldsymbol{K}, J) < 1.$$

Theorem (p-robust reliable and efficient bound on the algebraic error)

There holds
$$\eta_{\text{alg}}^{i} \leq \|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_{J} - \boldsymbol{u}_{J}^{i})\|$$
 and, with $\beta = \sqrt{1 - \alpha^{2}}$,
 $\eta_{\text{alg}}^{i} \geq \beta \|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_{J} - \boldsymbol{u}_{J}^{i})\|.$

Corollary (Equivalence of the two main results)

The solver <code>contraction</code> is <code>equivalent</code> to the <code>efficiency</code> of the estimator η^i_{alc}

• α is independent of the polynomial degree p

A hierarchy of meshes and spaces The solver Functional writing Main results

p-robust error contraction and algebraic estimator efficiency

Theorem (p-robust error contraction of the multilevel solver)

There holds

$$ig| oldsymbol{K}^{-1/2} (oldsymbol{u}_J - oldsymbol{u}_J^{i+1}) ig\| \leq lpha ig\| oldsymbol{K}^{-1/2} (oldsymbol{u}_J - oldsymbol{u}_J^i) ig\|, \qquad 0 < lpha (\kappa_{\mathcal{T}}, oldsymbol{d}, oldsymbol{K}, oldsymbol{J}) < 1.$$

Theorem (p-robust reliable and efficient bound on the algebraic error)

There holds
$$\eta_{\text{alg}}^i \leq \|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_J - \boldsymbol{u}_J^i)\|$$
 and, with $\beta = \sqrt{1 - \alpha^2}$,
 $\eta_{\text{alg}}^i \geq \beta \|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_J - \boldsymbol{u}_J^i)\|.$

Corollary (Equivalence of the two main results)

The solver <code>contraction</code> is <code>equivalent</code> to the <code>efficiency</code> of the estimator $\eta^i_{\sf alc}$

- α is independent of the polynomial degree p
 - the dependence on J is at most linear under minim

A hierarchy of meshes and spaces The solver Functional writing Main results

p-robust error contraction and algebraic estimator efficiency

Theorem (p-robust error contraction of the multilevel solver)

There holds

$$ig| oldsymbol{K}^{-1/2} (oldsymbol{u}_J - oldsymbol{u}_J^{i+1}) ig\| \leq lpha ig\| oldsymbol{K}^{-1/2} (oldsymbol{u}_J - oldsymbol{u}_J^i) ig\|, \qquad 0 < lpha (\kappa_{\mathcal{T}}, oldsymbol{d}, oldsymbol{K}, oldsymbol{J}) < 1.$$

Theorem (p-robust reliable and efficient bound on the algebraic error)

There holds
$$\eta_{\text{alg}}^i \leq \|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_J - \boldsymbol{u}_J^i)\|$$
 and, with $\beta = \sqrt{1 - \alpha^2}$,
 $\eta_{\text{alg}}^i \geq \beta \|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_J - \boldsymbol{u}_J^i)\|.$

Corollary (Equivalence of the two main results)

The solver contraction is equivalent to the efficiency of the estimator η_{alg}^i .

- α is independent of the polynomial degree p
 - the dependence on J is at most *linear* under minimal H¹-regularity
 - complete *independence* of *J* is obtained under *H*²-regularity
Introduction Multigrid Domain decomposition Numerics Conclusions A

A hierarchy of meshes and spaces The solver Functional writing Main results

p-robust error contraction and algebraic estimator efficiency

Theorem (p-robust error contraction of the multilevel solver)

There holds

$$ig| oldsymbol{K}^{-1/2} (oldsymbol{u}_J - oldsymbol{u}_J^{i+1}) ig\| \leq lpha ig\| oldsymbol{K}^{-1/2} (oldsymbol{u}_J - oldsymbol{u}_J^i) ig\|, \qquad 0 < lpha (\kappa_{\mathcal{T}}, oldsymbol{d}, oldsymbol{K}, oldsymbol{J}) < 1.$$

Theorem (p-robust reliable and efficient bound on the algebraic error)

There holds
$$\eta_{\text{alg}}^i \leq \|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_J - \boldsymbol{u}_J^i)\|$$
 and, with $\beta = \sqrt{1 - \alpha^2}$,
 $\eta_{\text{alg}}^i \geq \beta \|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_J - \boldsymbol{u}_J^i)\|.$

Corollary (Equivalence of the two main results)

The solver contraction is equivalent to the efficiency of the estimator η_{alg}^i .

- α is independent of the polynomial degree p
- the dependence on J is at most *linear* under minimal H^1 -regularity
- complete *independence* of J is obtained under H²-regularity

M. Vohralík

p-robust multilevel and domain decomposition methods for mixed finite elements 12/23

Introduction Multigrid Domain decomposition Numerics Conclusions A

A hierarchy of meshes and spaces The solver Functional writing Main results

p-robust error contraction and algebraic estimator efficiency

Theorem (p-robust error contraction of the multilevel solver)

There holds

$$\big\|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_J-\boldsymbol{u}_J^{i+1})\big\|\quad \leq \alpha\big\|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_J-\boldsymbol{u}_J^{i})\big\|, \qquad 0<\alpha(\kappa_{\mathcal{T}},\boldsymbol{d},\boldsymbol{\mathsf{K}},\boldsymbol{J})<1.$$

Theorem (p-robust reliable and efficient bound on the algebraic error)

There holds
$$\eta_{\text{alg}}^i \leq \|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_J - \boldsymbol{u}_J^i)\|$$
 and, with $\beta = \sqrt{1 - \alpha^2}$,
 $\eta_{\text{alg}}^i \geq \beta \|\boldsymbol{K}^{-1/2}(\boldsymbol{u}_J - \boldsymbol{u}_J^i)\|.$

Corollary (Equivalence of the two main results)

The solver contraction is equivalent to the efficiency of the estimator η_{alg}^i .

- α is independent of the polynomial degree p
- the dependence on J is at most *linear* under minimal H^1 -regularity
- complete *independence* of J is obtained under H^2 -regularity

Outline

- The model problem and its mixed finite element approximation
- Solvers for mixed finite elements
- Multigrid for high-order mixed finite elements
 - A hierarchy of meshes and spaces
 - The solver
 - Functional writing
 - Main results

3 Domain decomposition for high-order mixed finite elements

- 4 Numerical experiments
 - Smooth solution and uniform mesh refinement
 - Rough solution and adaptive mesh refinement

5 Conclusions

Introduction Multigrid **Domain decomposition** Numerics Conclusions

Domain decomposition for high-order mixed finite elements

Coarse grid \mathcal{T}_H (solid line), fine grid \mathcal{T}_J (dashed line), patch domain ω^a (nria

M. Vohralík

p-robust multilevel and domain decomposition methods for mixed finite elements 13 / 23

Outline

- Introduction
 - The model problem and its mixed finite element approximation
 - Solvers for mixed finite elements
- Multigrid for high-order mixed finite elements
 - A hierarchy of meshes and spaces
 - The solver
 - Functional writing
 - Main results
- 3 Domain decomposition for high-order mixed finite elements

Numerical experiments

- Smooth solution and uniform mesh refinement
- Rough solution and adaptive mesh refinement

Conclusions

Outline

- Introduction
 - The model problem and its mixed finite element approximation
 - Solvers for mixed finite elements
- Multigrid for high-order mixed finite elements
 - A hierarchy of meshes and spaces
 - The solver
 - Functional writing
 - Main results
- 3 Domain decomposition for high-order mixed finite elements

Numerical experiments

- Smooth solution and uniform mesh refinement
- Rough solution and adaptive mesh refinement

5 Conclusions

Smooth solution and uniform mesh refinement

Setting

- Ω : unit square
- **K** = Id
- $\gamma(\mathbf{x}, \mathbf{y}) = \cos(\pi \mathbf{x}) \cos(\pi \mathbf{y})$
- T_0 with mesh size $h_0 = 0.3$, uniform mesh refinement

Ínnie

Contraction factors

M. Vohralík

p-robust multilevel and domain decomposition methods for mixed finite elements 15 / 23

Introduction Multigrid Domain decomposition Numerics Conclusions Smooth solution & uniform mesh Rough solution & adaptive mesh

Effectivity indices of the guaranteed lower bound η_{alg}^{i}

M. Vohralík

p-robust multilevel and domain decomposition methods for mixed finite elements 16 / 23

Number of iterations to decrease $\eta_{\rm alg}^i$ by 10^5

Introduction Multigrid Domain decomposition Numerics Conclusions

p	J = 2	J = 3	J = 4
2	9	9	8
3	9	8	7
6	6	5	4

Ínnía -

Smooth solution & uniform mesh Rough solution & adaptive mesh

Outline

- Introduction
 - The model problem and its mixed finite element approximation
 - Solvers for mixed finite elements
- Multigrid for high-order mixed finite elements
 - A hierarchy of meshes and spaces
 - The solver
 - Functional writing
 - Main results
- Oomain decomposition for high-order mixed finite elements

Numerical experiments

- Smooth solution and uniform mesh refinement
- Rough solution and adaptive mesh refinement

5 Conclusions

Rough solution and adaptive mesh refinement

Setting

- Ω: unit square
- *K* = Id

•
$$\gamma(x, y) = \tan^{-1}(\alpha(r - r_0))$$
, where $r = \sqrt{(x - x_c)^2 + (y - y_c)^2}$

- $\alpha = 1000, x_c = 0.5, y_c = 0.5, r_0 = 0.01$
- T_0 with mesh size $h_0 = 0.3$, adaptive mesh refinement

Adaptive mesh: J = 12, p = 6, & Dörfler marking parameter $\theta = 0.8$

Contraction factors

M. Vohralík

p-robust multilevel and domain decomposition methods for mixed finite elements 20 / 23

Introduction Multigrid Domain decomposition Numerics Conclusions Smooth solution & uniform mesh Rough solution & adaptive mesh

Effectivity indices of the guaranteed lower bound η_{alg}^{i}

M. Vohralík

p-robust multilevel and domain decomposition methods for mixed finite elements 21 / 23

Number of iterations to decrease $\eta_{\rm alg}^i$ by 10^5

Introduction Multigrid Domain decomposition Numerics Conclusions

р	J = 3	J = 6	<i>J</i> = 12
2	13	12	9
3	12	11	8
6	13	10	6

Ínnía -

Smooth solution & uniform mesh Rough solution & adaptive mesh

Outline

- The model problem and its mixed finite element approximation
- Solvers for mixed finite elements
- Multigrid for high-order mixed finite elements
 - A hierarchy of meshes and spaces
 - The solver
 - Functional writing
 - Main results
- Oomain decomposition for high-order mixed finite elements
- 4 Numerical experiments
 - Smooth solution and uniform mesh refinement
 - Rough solution and adaptive mesh refinement

5 Conclusions

p-robust MG and DD methods for mixed finite elements

✓ *p*-robust **algebraic error** contraction

Ínnío

- ✓ *p*-robust algebraic error contraction
- p-robust localized algebraic error a posteriori error estimates

lingt

- ✓ *p*-robust **algebraic error** contraction
- p-robust localized algebraic error a posteriori error estimates
- unified treatment of multigrid and domain decomposition methods

- ✓ *p*-robust **algebraic error** contraction
- p-robust localized algebraic error a posteriori error estimates
- unified treatment of multigrid and domain decomposition methods
- Pythagorean error decrease formula

- ✓ *p*-robust algebraic error contraction
- p-robust localized algebraic error a posteriori error estimates
- unified treatment of multigrid and domain decomposition methods
- Pythagorean error decrease formula
- A. MIRAÇI, M. VOHRALÍK, I. YOTOV A-posteriori-steered *p*-robust multilevel and domain decomposition methods with optimal step-sizes for mixed finite element discretizations of elliptic problems. In preparation, 2023.

- ✓ *p*-robust **algebraic error** contraction
- ✓ p-robust localized algebraic error a posteriori error estimates
- unified treatment of multigrid and domain decomposition methods
- Pythagorean error decrease formula
- A. MIRAÇI, M. VOHRALÍK, I. YOTOV A-posteriori-steered *p*-robust multilevel and domain decomposition methods with optimal step-sizes for mixed finite element discretizations of elliptic problems. In preparation, 2023.
- A. MIRAÇI, J. PAPEŽ, M. VOHRALÍK, A multilevel algebraic error estimator and the corresponding iterative solver with *p*-robust behavior, *SIAM J. Numer. Anal.* **58** (2020), 2856–2884.
- A. MIRAÇI, J. PAPEŽ, M. VOHRALÍK, A-posteriori-steered p-robust multigrid with optimal step-sizes and adaptive number of smoothing steps, SIAM J. Sci. Comput. 43 (2021), S117–S145.

.....

p-robust MG and DD methods for mixed finite elements

- ✓ *p*-robust **algebraic error** contraction
- ✓ p-robust localized algebraic error a posteriori error estimates
- unified treatment of multigrid and domain decomposition methods
- Pythagorean error decrease formula
- A. MIRAÇI, M. VOHRALÍK, I. YOTOV A-posteriori-steered *p*-robust multilevel and domain decomposition methods with optimal step-sizes for mixed finite element discretizations of elliptic problems. In preparation, 2023.
- A. MIRAÇI, J. PAPEŽ, M. VOHRALÍK, A multilevel algebraic error estimator and the corresponding iterative solver with *p*-robust behavior, *SIAM J. Numer. Anal.* **58** (2020), 2856–2884.
- A. MIRAÇI, J. PAPEŽ, M. VOHRALÍK, A-posteriori-steered *p*-robust multigrid with optimal step-sizes and adaptive number of smoothing steps, *SIAM J. Sci. Comput.* 43 (2021), S117–S145.

Thank you for your attention!

Outline

Localized algebraic error estimate

Theorem (Localized algebraic error estimate)

There holds

$$(\eta_{alg}^{i})^{2} = \|\boldsymbol{K}^{-1/2}\boldsymbol{\rho}_{0}^{i}\|^{2} + \sum_{j=1}^{J} \lambda_{j}^{i} \sum_{\boldsymbol{a} \in \mathcal{V}_{j}} \|\boldsymbol{K}^{-1/2}\boldsymbol{\rho}_{j,\boldsymbol{a}}^{i}\|_{\omega_{j}^{\boldsymbol{a}}}^{2}.$$

Solvers for high-order finite elements

Algebraic problem Find $U_J \in \mathbb{R}^{|V_J^{\rho}|}$ such that

$$\mathbb{A}_J \mathsf{U}_J = \mathsf{F}_J$$

- A_J less and less sparse for big p
- A_J worse and worse conditioned for big µ
- A_J looses structure on graded meshes \mathcal{T}_J
- \mathbb{A}_J is dependent on the basis of V_J^p

Black-box iterative solvers do not work well for high ρ & on highly graded meshes T_J

independent on the basis of V_J^p solver constructed from V_J^p , not \mathbb{A}_J

p-robust solver/preconditoner

J. Schöberl, M. Melenk, C. Pechstein, S. Zaglmayr: Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements (2008): globally coupled p = 1 sub-system; p > 1 treated locally on vertex patches

J-robust solver on graded meshes

Solvers for high-order finite elements

Algebraic problem

Find $U_J \in \mathbb{R}^{|V_J^{\rho}|}$ such that

$$\mathbb{A}_J \mathsf{U}_J = \mathsf{F}_J$$

- \mathbb{A}_J less and less sparse for big p
- \mathbb{A}_J worse and worse conditioned for big p
- \mathbb{A}_J looses structure on graded meshes \mathcal{T}_J
- \mathbb{A}_J is dependent on the basis of V_J^p

Black-box iterative solvers do not work well for high p & on highly graded meshes T_J

independent on the basis of V_J^p solver constructed from V_J^p , not \mathbb{A}_J

p-robust solver/preconditoner

J. Schöberl, M. Melenk, C. Pechstein, S. Zaglmayr: Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements (2008): globally coupled p = 1 sub-system; p > 1 treated locally on vertex patches

J-robust solver on graded meshes

Solvers for high-order finite elements

Algebraic problem

Find $U_J \in \mathbb{R}^{|V_J^{p}|}$ such that

$$\mathbb{A}_J \mathsf{U}_J = \mathsf{F}_J$$

- \mathbb{A}_J less and less sparse for big p
- \mathbb{A}_J worse and worse conditioned for big p
- \mathbb{A}_J looses structure on graded meshes \mathcal{T}_J
- \mathbb{A}_J is dependent on the basis of $V^{
 ho}_J$

Black-box iterative solvers do not work well for high p & on highly graded meshes T_J

independent on the basis of V_J^p solver constructed from V_J^p , not \mathbb{A}_J

p-robust solver/preconditoner

J. Schöberl, M. Melenk, C. Pechstein, S. Zaglmayr: Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements (2008): globally coupled p = 1 sub-system; p > 1 treated locally on vertex patches

J-robust solver on graded meshes

Solvers for high-order finite elements

Algebraic problem

Find $U_J \in \mathbb{R}^{|V_J^{\rho}|}$ such that

$$\mathbb{A}_J \mathsf{U}_J = \mathsf{F}_J$$

- \mathbb{A}_J less and less sparse for big p
- \mathbb{A}_J worse and worse conditioned for big p
- \mathbb{A}_J looses structure on graded meshes \mathcal{T}_J

• \mathbb{A}_J is dependent on the basis of V_J^p

Black-box iterative solvers do not work well for high p & on highly graded meshes T_J

independent on the basis of V_J^{ρ} solver constructed from V_J^{ρ} , not \mathbb{A}_J

p-robust solver/preconditioner J. Schöberl, M. Melenk, C. Pechstein, S. Zaglmayr: Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements (2008): globally coupled p = 1 sub-system; p > 1 treated locally on vertex patches

J-robust solver on graded meshes

Solvers for high-order finite elements

Algebraic problem

Find $U_{I} \in \mathbb{R}^{|V_{J}^{P}|}$ such that

$$\mathbb{A}_J \mathsf{U}_J = \mathsf{F}_J$$

- A₁ less and less sparse for big p
- A_{I} worse and worse conditioned for big p
- $\mathbb{A}_{\mathcal{I}}$ looses structure on graded meshes $\mathcal{T}_{\mathcal{I}}$
- \mathbb{A}_{I} is dependent on the basis of V_{I}^{p}

Solvers for high-order finite elements

Algebraic problem

Find U $\iota \in \mathbb{R}^{|V_J^{\rho}|}$ such that

$$\mathbb{A}_J \mathsf{U}_J = \mathsf{F}_J$$

- A less and less sparse for big p
- A_{i} worse and worse conditioned for big p
- $\mathbb{A}_{\mathcal{I}}$ looses structure on graded meshes $\mathcal{T}_{\mathcal{I}}$
- A₁ is dependent on the basis of V_1^p

Black-box iterative solvers do not work well for high p & on highly graded meshes T_{I}

Solvers for high-order finite elements

Algebraic problem

Find $U_J \in \mathbb{R}^{|V_J^{\rho}|}$ such that

$$\mathbb{A}_J \mathsf{U}_J = \mathsf{F}_J$$

- \mathbb{A}_J less and less sparse for big p
- \mathbb{A}_J worse and worse conditioned for big p
- \mathbb{A}_J looses structure on graded meshes \mathcal{T}_J
- \mathbb{A}_J is dependent on the basis of V_J^p

p-robust solver/preconditoner

Black-box iterative solvers do not work well for high p & on highly graded meshes T_J

independent on the basis of V_J^p solver constructed from V_J^p , not \mathbb{A}_J

J. Schöberl, M. Melenk, C. Pechstein, S. Zaglmayr: Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements (2008): globally coupled p = 1 sub-system; p > 1 treated locally on vertex patches *J*-robust solver on graded meshes J. Xu, L. Chen, R. Nochetto: Optimal multilevel methods for H(grad), H(curl), a H(div) systems on graded and unstructured grids (2009):

Solvers for high-order finite elements

Algebraic problem

Find $U_J \in \mathbb{R}^{|V_J^{\rho}|}$ such that

$$\mathbb{A}_J \mathsf{U}_J = \mathsf{F}_J$$

- \mathbb{A}_J less and less sparse for big p
- \mathbb{A}_J worse and worse conditioned for big p
- \mathbb{A}_J looses structure on graded meshes \mathcal{T}_J
- \mathbb{A}_J is dependent on the basis of V_J^p

p-robust solver/preconditoner

Black-box iterative solvers do not work well for high p & on highly graded meshes T_J

independent on the basis of V_J^p solver constructed from V_J^p , not \mathbb{A}_J

J. Schöberl, M. Melenk, C. Pechstein, S. Zaglmayr: Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements (2008): globally coupled p = 1 sub-system; p > 1 treated locally on vertex patches

J-robust solver on graded meshes

Solvers for high-order finite elements and graded meshes

Algebraic problem

Find $U_J \in \mathbb{R}^{|V_J^{\rho}|}$ such that

$$\mathbb{A}_J \mathsf{U}_J = \mathsf{F}_J$$

- \mathbb{A}_J less and less sparse for big p
- \mathbb{A}_J worse and worse conditioned for big p
- \mathbb{A}_J looses structure on graded meshes \mathcal{T}_J
- \mathbb{A}_J is dependent on the basis of V_J^P

p-robust solver/preconditoner

Black-box iterative solvers do not work well for high p & on highly graded meshes T_{I}

independent on the basis of V_J^p solver constructed from V_J^p , not \mathbb{A}_J

J. Schöberl, M. Melenk, C. Pechstein, S. Zaglmayr: Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements (2008): globally coupled p = 1 sub-system; p > 1 treated locally on vertex patches

J-robust solver on graded meshes
Localized algebraic error estimate High-order finite element solvers

Solvers for high-order finite elements and graded meshes

Algebraic problem

Find $U_J \in \mathbb{R}^{|V_J^{\rho}|}$ such that

$$\mathbb{A}_J \mathsf{U}_J = \mathsf{F}_J$$

- \mathbb{A}_J less and less sparse for big p
- \mathbb{A}_J worse and worse conditioned for big p
- \mathbb{A}_J looses structure on graded meshes \mathcal{T}_J
- \mathbb{A}_J is dependent on the basis of V_J^P

p-robust solver/preconditoner

Black-box iterative solvers do not work well for high ρ & on highly graded meshes T_{I}

independent on the basis of V_J^p solver constructed from V_J^p , not \mathbb{A}_J

J. Schöberl, M. Melenk, C. Pechstein, S. Zaglmayr: Additive Schwarz preconditioning for p-version triangular and tetrahedral finite elements (2008): globally coupled p = 1 sub-system; p > 1 treated locally on vertex patches

J-robust solver on graded meshes

J. Xu, L. Chen, R. Nochetto: *Optimal multilevel methods for H*(grad), *H*(curl), and *H*(div) systems on graded and unstructured grids (2009): graded meshes