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Numerical approximation of partial differential equations

Numerical methods
mathematically-based algorithms evaluated by computers
deliver approximate solutions
conception: more effort ⇒ closer to the unknown solution
example: elastic string
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3 crucial questions

& suggested answers

Crucial questions
1 How large is the overall error?
2 Where (model/space/time/lineariza-

tion/algebra) is it localized?
3 Can we decrease it efficiently?

Suggested answers

1 A posteriori error estimates.
2 Identification of error components.
3 Balancing error components,

adaptivity (working where needed).
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CDG Terminal 2E collapse in 2004 (opened in 2003)

no earthquake, flooding, tsunami, heavy rain, extreme temperature
deterministic, steady problem, PDE known, data known, implementation OK

probably numerical simulations done with insufficient precision,
I believe without error certification by a posteriori error estimates

Reliability study and simulation of the progressive collapse of
Roissy Charles de Gaulle Airport

Y. El Kamari a, W. Raphael a,*, A. Chateauneuf b,c

a Ecole Supérieure d’Ingénieurs de Beyrouth (ESIB), Université Saint-Joseph, CST Mar Roukos, PO Box 11-514, Riad El Solh Beirut 1107 2050,

Lebanon
b Université Blaise Pascal, Institut Pascal, BP 10448, F-63000 Clermont Ferrand, France
c LGC/CUST – UBP, Campus des Cézeaux, 63174 Aubière, France

1. Introduction

Terminal 2E, with a daring design and wide open spaces, was Charles de Gaulle Airport’s newest addition. Terminal 2E had
been inaugurated in 2003 after some delays in construction. On the 23rd of May 2004, not long after its inauguration, a part
of Terminal 2E’s ceiling collapsed early in the day, leaving four casualties. Some questioned the construction methods as
being the primary cause, which were rushed as the project was a month behind schedule due to technical problems, and
some have also considered the possibility of improper design as the cause of the accident. In the following, a deterministic
analysis and a mechanical reliability assessment will be elaborated. We will show the importance of reliability assessment
and long term strains of materials, especially for public constructions where the human and economic repercussions are
heavy to bear. The purpose of our research is to study the problem using the available data in order to examine the real
reasons of the incident, to see if it were possible to predict the structure’s failure from the beginning and to simulate the
progressive collapse of the structure.

2. General overview of Roissy’s Terminal 2E [1]

We will first describe the terminal, its different construction phases, the incidents that occurred before the accident and
the collapse itself. Then we will present in a general way the principle of finite element modeling, recommendations for good
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Paris Charles de Gaulle Airport also known as Roissy Airport is the world’s eighth-busiest

airport in passengers served. In May 2004, the news of collapse of a portion of Terminal 2E

leaving four casualties shook the world. Luckily, no boarding had been taking place in the

collapsed area which consisted of a boarding area and three footbridges. This part of the

terminal had an innovative design consisting of a vaulted concrete tube. We chose to

model a representative part of the terminal to observe the structure’s behavior. The

purpose of our research is to explain the structure’s collapse and to see if there were

deficiencies from the design phase. Also, our new fine-grained model using Ansys Software

makes it possible to explain the progressive collapse of the structure, which was the main

challenge of our study. Moreover, a sensitivity analysis was performed in order to study

the importance of each of the variables taken into account in the model.

� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC
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a Ecole Supérieure d’Ingénieurs de Beyrouth (ESIB), Université Saint-Joseph, CST Mar Roukos, PO Box 11-514, Riad El Solh Beirut 1107 2050,

Lebanon
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been inaugurated in 2003 after some delays in construction. On the 23rd of May 2004, not long after its inauguration, a part
of Terminal 2E’s ceiling collapsed early in the day, leaving four casualties. Some questioned the construction methods as
being the primary cause, which were rushed as the project was a month behind schedule due to technical problems, and
some have also considered the possibility of improper design as the cause of the accident. In the following, a deterministic
analysis and a mechanical reliability assessment will be elaborated. We will show the importance of reliability assessment
and long term strains of materials, especially for public constructions where the human and economic repercussions are
heavy to bear. The purpose of our research is to study the problem using the available data in order to examine the real
reasons of the incident, to see if it were possible to predict the structure’s failure from the beginning and to simulate the
progressive collapse of the structure.

2. General overview of Roissy’s Terminal 2E [1]

We will first describe the terminal, its different construction phases, the incidents that occurred before the accident and
the collapse itself. Then we will present in a general way the principle of finite element modeling, recommendations for good
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Paris Charles de Gaulle Airport also known as Roissy Airport is the world’s eighth-busiest

airport in passengers served. In May 2004, the news of collapse of a portion of Terminal 2E

leaving four casualties shook the world. Luckily, no boarding had been taking place in the

collapsed area which consisted of a boarding area and three footbridges. This part of the

terminal had an innovative design consisting of a vaulted concrete tube. We chose to

model a representative part of the terminal to observe the structure’s behavior. The

purpose of our research is to explain the structure’s collapse and to see if there were

deficiencies from the design phase. Also, our new fine-grained model using Ansys Software

makes it possible to explain the progressive collapse of the structure, which was the main

challenge of our study. Moreover, a sensitivity analysis was performed in order to study

the importance of each of the variables taken into account in the model.
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A posteriori error estimates: certify the error in a FE discretization
Laplacian: find u : Ω → R such that

−∇·(∇u) = f in Ω,
u = 0 on ∂Ω.

Guaranteed error upper bound (reliability)

∥∇(u − uℓ)∥︸ ︷︷ ︸
unknown error

η(uℓ)︸ ︷︷ ︸
estimator computable from uℓ

Error lower bound (efficiency)

η(uℓ) ≤ Ceff∥∇(u − uℓ)∥
Ceff a generic constant independent of Ω, u, uℓ and namely of the number of
mesh elements |Tℓ| (h if Tℓ uniform) and of the polynomial degree p (for d ≤ 3)
Ceff only depends on mesh shape regularity κT , d , and possibly p (if d ≥ 4)
Prager & Synge (1947), Ladevèze (1975), Babuška & Rheinboldt (1987),
Verfürth (1989), Ainsworth & Oden (1993), Destuynder & Métivet (1999),
Braess, Pillwein, & Schöberl (2009), Ern & Vohralík (2015), . . .
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How large is the overall error? (model pb, known smooth solution)

h ≈ 1/|Tℓ|
1
2 p η(uℓ) rel. error estimate η(uℓ)

∥∇uℓ∥
∥∇(u − uℓ)∥ rel. error ∥∇(u−uℓ)∥

∥∇uℓ∥
Ieff = η(uℓ)

∥∇(u−uℓ)∥
h0 1 1.25 28% 1.07 24% 1.17

≈h0/2 6.07 × 10−1 14% 5.56 × 10−1 13% 1.09
≈h0/4 3.10 × 10−1 7.0% 2.92 × 10−1 6.6% 1.06
≈h0/8 1.45 × 10−1 3.3% 1.39 × 10−1 3.1% 1.04
≈h0/2 2 4.23 × 10−2 9.5 × 10−1% 4.07 × 10−2 9.2 × 10−1% 1.04
≈h0/4 3 2.62 × 10−4 5.9 × 10−3% 2.60 × 10−4 5.9 × 10−3% 1.01
≈h0/8 4 2.60 × 10−7 5.9 × 10−6% 2.58 × 10−7 5.8 × 10−6% 1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015)
V. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)
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Linear problems
A posteriori error estimates robust with respect to the
discretization parameters |Tℓ| (h if Tℓ uniform) and p (d ≤ 3).

Nonlinear problems
A posteriori error estimates robust with respect to the
strength of nonlinearities?
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A model nonlinear problem
Nonlinear elliptic problem

Find u : Ω → R such that

−∇·(a(|∇u|)∇u) = f in Ω,

u = 0 on ∂Ω.

Ω ⊂ Rd , d ≥ 1, open polytope with Lipschitz boundary ∂Ω
f ∈ L2(Ω)

Assumption (Nonlinear function a)

Function a : [0,∞) → (0,∞), for all x ,y ∈ Rd ,

|a(|x |)x − a(|y |)y | ≤ ac|x − y | (Lipschitz continuity),

(a(|x |)x − a(|y |)y) · (x − y) ≥ am|x − y |2 (strong monotonicity).

am ≤ a(r) ≤ ac, am ≤ (a(r)r)′(r) ≤ ac
M. Vohralík A posteriori error estimates robust with respect to the strength of nonlinearities 8 / 40
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Strength of the nonlinearity, 0 < am ≤ ac < ∞ real parameters

Example (Mean curvature nonlinearity)

a(r) := am +
ac − am√

1 + r2
.

r

a(r) with am = 1

ac = 1
ac = 10
ac = 100
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0

50

100

Strength of the nonlinearity
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am
=

Lipschitz continuity
strong monotonicity

r

(a(r)r)′ with am = 1
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Weak solution and its finite element approximation

Definition (Weak solution)

u ∈ H1
0 (Ω) such that

(a(|∇u|)∇u,∇v) = (f , v) ∀v ∈ H1
0 (Ω).

Definition (Finite element approximation)

uℓ ∈ V p
ℓ such that

(a(|∇uℓ|)∇uℓ,∇vℓ) = (f , vℓ) ∀vℓ ∈ V p
ℓ .

Tℓ simplicial mesh of Ω
p ≥ 1 polynomial degree
conforming finite elements
V p
ℓ := Pp(Tℓ) ∩ H1

0 (Ω)

Need to solve a nonlinear system
Aℓ(Uℓ) = Fℓ
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Sobolev space and error

Sobolev space

H1
0 (Ω)

Sobolev norm error

∥∇(uℓ − u)∥
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Energy and energy differences
Definition (Energy functional)

J : H1
0 (Ω) → R

J (v) :=
∫

Ω
ϕ(|∇v |)− (f , v), v ∈ H1

0 (Ω),

with function ϕ : [0,∞) → [0,∞) such that, for all r ∈ [0,∞),

ϕ(r) :=
∫ r

0
a(s)s ds.

Equivalently
u = arg min

v∈H1
0 (Ω)

J (v), uℓ = arg min
vℓ∈V p

ℓ

J (vℓ).

Energy difference
J (uℓ)− J (u)

J (uℓ)− J (u) ≥ 0, J (uℓ)− J (u) = 0 if and only if uℓ = u
physically-based error measure
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Residual and its dual norm

Definition (Residual)

R : H1
0 (Ω) → H−1(Ω); for w ∈ H1

0 (Ω), R(w) ∈ H−1(Ω) is given by

⟨R(w), v⟩ := (a(|∇w |)∇w ,∇v)− (f , v), v ∈ H1
0 (Ω).

Definition (Dual norm of the finite element residual)

|||R(uℓ)−R(u)|||−1 = |||R(uℓ)|||−1 := sup
v∈H1

0 (Ω)

⟨R(uℓ), v⟩
|||v ||| .

|||R(uℓ)|||−1 ≥ 0, |||R(uℓ)|||−1 = 0 if and only if uℓ = u
subordinate to the choice of the norm ||| · ||| on the Sobolev space H1

0 (Ω)

the most straightforward choice: |||v ||| := ∥∇v∥
mathematically-based error measure
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Known results
Sobolev norm

am∥∇(uℓ − u)∥ ≤ η(uℓ) ≤ Ceffac∥∇(uℓ − u)∥
Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler
(2008), Garau, Morin, & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner
(2018), Heid & Wihler (2020), Botti & Riedlbeck (2020), . . .

Energy difference

J (uℓ)− J (u) ≤ 1
2
η(uℓ)

2 ≤ C2
eff

a2
c

a2
m

(
J (uℓ)− J (u)

)

Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening
& Kreuzer (2008), Bartels & Milicevic (2020), . . .

Strength of the nonlinearity

Not robust with respect to ac
am

.
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Known results

Dual norm of the residual

|||R(uℓ)|||−1 ≤ η(uℓ) ≤ Ceff|||R(uℓ)|||−1

Chaillou & Suri (2006), El Alaoui, Ern, & Vohralík (2011), Blechta, Málek, &
Vohralík (2020), . . .

Strength of the nonlinearity

Robust with respect to ac
am

if |||v ||| = ∥∇v∥.
|||R(uℓ)|||−1 localizes over patches of elements.
Does not see the nonlinearity (H−1(Ω) residual norm)
(essentially estimates the flux error ∥a(|∇uℓ|)∇uℓ−a(|∇u|)∇u∥).
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Nonlinear problems
A posteriori error estimates robust with respect to the
strength of nonlinearities in more physically-based error
measures?
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Iterative linearization

Addressing iterative linearization
Chaillou & Suri (2006), Ern & Vohralík (2013), Bernardi, Dakroub, Mansour, &
Sayah (2015), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler
(2020), Botti & Riedlbeck (2020), . . .

Observation
None of the above approaches employ in the analysis, to define norms, the
iterative linearization, i.e., how do we solve the nonlinear system Aℓ(Uℓ) = Fℓ.
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Iterative linearization
Definition (Linearized finite element approximation)

uk
ℓ ∈ V p

ℓ such that

(Ak−1
ℓ ∇uk

ℓ ,∇vℓ) = (f , vℓ) + (bk−1
ℓ ,∇vℓ) ∀vℓ ∈ V p

ℓ .

u0
ℓ ∈ V p

ℓ a given initial guess
iterative linearization index k ≥ 1
linearization: Ak−1

ℓ : Ω → Rd×d diffusion matrix, bk−1
ℓ : Ω → Rd RHS vector

Definition (Linearized energy functional)

J k−1
ℓ : H1

0 (Ω) → R

J k−1
ℓ (v) :=

1
2

∥∥∥(Ak−1
ℓ )

1
2∇v

∥∥∥
2
− (f , v)− (bk−1

ℓ ,∇v), v ∈ H1
0 (Ω).

Equivalently
uk
ℓ := arg min

vℓ∈V p
ℓ

J k−1
ℓ (vℓ)
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Examples
Example (Picard (fixed-point))

Ak−1
ℓ = a(|∇uk−1

ℓ |)Id , bk−1
ℓ = 0.

Example (Zarantonello)

Ak−1
ℓ = γId , bk−1

ℓ =
(
γ − a(|∇uk−1

ℓ |)
)
∇uk−1

ℓ ,

with γ ≥ a2
c

am
a constant parameter.

Example ((Damped) Newton)

Ak−1
ℓ = a(|∇uk−1

ℓ |)Id + θ
a′(|∇uk−1

ℓ |)
|∇uk−1

ℓ |
∇uk−1

ℓ ⊗∇uk−1
ℓ ,

bk−1
ℓ = θa′(|∇uk−1

ℓ |)|∇uk−1
ℓ |∇uk−1

ℓ ,

with θ ∈ [0,1] the damping parameter.

θ = 1 gives the Newton iteration, θ = 0 gives the Picard iteration
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A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of augmented energy)
Let f ∈ Pp−1(Tℓ) for simplicity. For all linearization steps k ≥ 1,

Ek
ℓ ≤ ηk

ℓ .

Moreover, for k satisfying a stopping criterion, there holds
ηk
ℓ ≤ Ceff(d , κT ,p if d ≥ 4)Ck

ℓ Ek
ℓ ,

where
Ck
ℓ

:= max
a∈Vℓ

(
supωa

ℓ
Ak−1

c,ℓ

infωa
ℓ

Ak−1
m,ℓ

)

{
= 1 Zarantonello

≤ Ac

Am
≤ ac

am
in general.

λk
ℓ computable weight to make the two components comparable

Ck
ℓ = 1 for Zarantonello =⇒ robustness wrt the strength of nonlinearities

Ck
ℓ given by local (patch) properties: typically much better than ac/am

Ck
ℓ computable: we can affirm robustness a posteriori, for the given case
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A posteriori error estimates for an augmented energy difference
Theorem (A posteriori estimate of augmented energy)
Let f ∈ Pp−1(Tℓ) for simplicity. For all linearization steps k ≥ 1,

Ek
ℓ︷ ︸︸ ︷

J (uk
ℓ )−J (u)︸ ︷︷ ︸

energy difference

≤
ηk
ℓ︷ ︸︸ ︷

J (uk
ℓ )−J ∗(σk

ℓ )︸ ︷︷ ︸
en. diff. estimate

.

Moreover, for k satisfying a stopping criterion, there holds
ηk
ℓ ≤ Ceff(d , κT ,p if d ≥ 4)Ck

ℓ Ek
ℓ ,

where
Ck
ℓ := max

a∈Vℓ

(
supωa

ℓ
Ak−1

c,ℓ

infωa
ℓ

Ak−1
m,ℓ

) {
= 1 Zarantonello
≤ Ac

Am
≤ ac

am
in general.

λk
ℓ computable weight to make the two components comparable

Ck
ℓ = 1 for Zarantonello =⇒ robustness wrt the strength of nonlinearities

Ck
ℓ given by local (patch) properties: typically much better than ac/am

Ck
ℓ computable: we can affirm robustness a posteriori, for the given case
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Smooth solution
Setting

unit square Ω = (0,1)2

known smooth solution u(x , y) := 10 x(x − 1)y(y − 1)
mean curvature or exponential nonlinearity

a(r) = am +
ac − am√

1 + r2
or a(r) = am + (ac − am)

1 − e− 3
2 r2

1 + 2e− 3
2

p = 1, 3969 DOFs
stopping iteration k such that ∥∇(uk−1

ℓ − uk
ℓ )∥ < 10−6

effectivity indices

Ik
ℓ :=

(
ηk
ℓ

Ek
ℓ

) 1
2

︸ ︷︷ ︸
total

, Ik
N,ℓ :=

(J (uk
ℓ )−J ∗(σk

ℓ )

J (uk
ℓ )−J (u)

) 1
2

︸ ︷︷ ︸
energy difference

, Ik
L,ℓ :=

(
J k−1
ℓ (uk

ℓ )−J ∗,k−1
ℓ (σk

ℓ )

J k−1
ℓ (uk

ℓ )−J k−1
ℓ (uk

⟨ℓ⟩)

) 1
2

︸ ︷︷ ︸
energy difference linearization
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Error certification robust wrt the nonlinearities (mean curvature)
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values are below 1.2. The robustness is anticipated for Zarantonello based on Remark491

3.4, but the fact that the ratios are so good for Newton and Picard implies that the492

constant Ck` of (1.2), in practice is quite close to 1. We next remark that for all493

three solvers the nonlinear effectivity IkN,` behaves the same regardless of linearization494

method which is to be expected since the results are computed at convergence. Next,495

we remark that the results for the Picard iteration and Zarantonello are very similar496

for the linearization effectivity IkL,` whereas the index for Newton behaves more like497

the nonlinear effectivity index. This could be explained by the fact that the constant498

Ck` in (1.2) is more complicated for the Newton iteration. However, since all the499

effectivities are so close, these could also just be numerical artifacts.500
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Fig. 1: [Mean curvature nonlinearity (5.4), smooth solution (5.3), unit square domain,
3969 DOFs] Effectivity indices for the components and total quantities.

We now consider a non-decreasing nonlinear function.501

Example 5.2 (Kink nonlinearity). The kink nonlinearity is defined such that502

for all r ∈ [0,∞),503

(5.5) a(r) :=

{
am if r ≤ r0,

ac + (am − ac) r0r otherwise,
504

where r0 ∈ (0,∞), and am, ac ∈ (0,∞) with am ≤ ac. Observe that Assumption 2.1
holds for the kink nonlinearity. Indeed, Proposition A.2 holds since we have for all
r ∈ [0,∞)\{r0},

φ′′(r) =

{
am if r < r0,

ac otherwise
∈ [am, ac].

The kink nonlinearity fails to be regular enough to satisfy all the hypotheses, e.g., the505

Newton solver to converge. To alleviate this, we introduce a regularized version of506
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the kink. The results for this nonlinear function are given in Figure 2. In this case,507

the Picard solver failed to converge for large values; this is consistent with the theory508

presented in [29], where it is assumed that the nonlinearity equivalent to our function509

a needs to be decreasing. The results for Newton and Zarantonello are similar to510

those of Example 5.1. Both Zarantonello and Newton present effectivity indices close511

to 1 that stabilize for large enough values of the ratio am/ac.512
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Fig. 2: [Kink nonlinearity (5.5), smooth solution (5.3), unit square domain, 3969
DOFs] Effectivity indices for the components and total quantities. The Picard lin-
earization is not included because the solver does not converge for large values of the
ratio.

We finally consider a non-monotone nonlinear function similar to the example513

given in [29, Section 5.3.2].514

Example 5.3 (Exponential nonlinearity). The exponential nonlinearity is de-515

fined such that for all r ∈ [0,∞),516

(5.6) a(r) := am + (ac − am)
1− e− 3

2 r
2

1 + 2e−
3
2

.517

where am, ac ∈ (0,∞) with am ≤ ac. Observe that Assumption 2.1 holds for the
exponential nonlinearity. Indeed, Proposition A.2 holds since we have by construction
that for all r ∈ [0,∞),

φ′′(r) = am + (ac − am)
1 + (3r2 − 1)e−

3
2 r

2

1 + 2e−
3
2

∈ [am, ac].

The results are presented in Figure 3. We observe that the results for the Zaran-518

tonello iteration are similar to those of Figure 2. However, the effectivity indices of519

the Newton iteration follow an exponential law for large enough values of the ratio520

am/ac. We can see that the reason is that the constant Ck` is becoming very large,521

which is at least a good indicator that the robustness cannot be obtained in this case.522

5.2. Singular solution. We consider the L-shaped domain defined such that523

Ω = (−1, 1)2 \ ([0, 1)×(−1, 0]) and the singular solution u defined in polar coordinates524

such that for all (ρ, θ) ∈ [0,∞)× [0, 2π],525

u(ρ, θ) = ρα sin(αθ)(5.7)526527

with α := 2
3 , so that u ∈ H1(Ω)\H2(Ω). We consider the exponential nonlinearity528

of Example 5.3 ; this choice of solution ensures that the right-hand side f belongs to529
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Fig. 2: [Kink nonlinearity (5.5), smooth solution (5.3), unit square domain, 3969
DOFs] Effectivity indices for the components and total quantities. The Picard lin-
earization is not included because the solver does not converge for large values of the
ratio.
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The results are presented in Figure 3. We observe that the results for the Zaran-518

tonello iteration are similar to those of Figure 2. However, the effectivity indices of519

the Newton iteration follow an exponential law for large enough values of the ratio520

am/ac. We can see that the reason is that the constant Ck` is becoming very large,521

which is at least a good indicator that the robustness cannot be obtained in this case.522

5.2. Singular solution. We consider the L-shaped domain defined such that523

Ω = (−1, 1)2 \ ([0, 1)×(−1, 0]) and the singular solution u defined in polar coordinates524

such that for all (ρ, θ) ∈ [0,∞)× [0, 2π],525
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Error certification robust wrt the nonlinearities (exponential,
robustness only for Zarantonello)

ROBUST A POSTERIORI ESTIMATES FOR NONLINEAR ELLIPTIC PROBLEMS 17

100 101 102 103 104 105 106 107
1.04

1.04

1.04

1.05

1.05

1.05

ac/am

E
ff
ec
ti
v
it
y
in
d
ic
es

Zarantonello

IkL,ℓ

Ikℓ

IkN,ℓ

100 101 102 103 104 105 106 107

0

0.2

0.4

0.6

0.8

1
·106

C
k ℓ

Ck
ℓ

100 101 102 103 104 105 106 107
1.00

2.00

3.00

4.00

ac/am

E
ff
ec
ti
v
it
y
in
d
ic
es

Newton

IkL,ℓ

Ikℓ

IkN,ℓ

Fig. 3: [Exponential nonlinearity (5.6), smooth solution (5.3), unit square domain,
3969 DOFs] Effectivity indices for the components and total quantities. The Picard
linearization is not included because the solver does not converge for large values of
the ratio.

L2(Ω) despite the singularity in the norm of the gradient for the L-shaped solution530

(5.7).531

In particular, we consider two different meshes to analyze the results, see Figure532

4. One mesh is obtained by taking an initial uniform triangulation of Ω while the533

other one is an adaptive mesh whose adaptation algorithm is specified below.534

The results are present in Figure 5. We observe that the results for the Zaran-535

tonello iteration are similar to those of Figure 2. The Newton iteration presents, for536

both meshes, effectivity indices close to 1 that stabilize for large enough values of the537

ratio am/ac.538

(a) 2417 DOFs (b) 2945 DOFs

Fig. 4: Adaptive (left) and uniformly (right) refined meshes for the L-shaped domain
with the singular solution (5.7). The adaptive mesh corresponds to the 28th iteration
of Algorithm 5.4.

5.3. Adaptive mesh convergence. For all T ∈ Tℓ, we denote EkN,T and ηkN,T539

the restrictions of EkN and ηkN, respectively, in the sense that we take the restriction of540

the integrals and L2-inner product over Ω to T in the definitions (2.3) of J and (3.5)541

of J ∗.542

Due to the singularity in the solution of the previous section, it is of interest to543
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Error certification robust wrt the nonlinearities (exponential)
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L,ℓ = J k−1

ℓ (uk
ℓ )− J k−1

ℓ (uk
(ℓ)), & the weight λk

ℓ
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Singular solution

Setting
L-shaped domain Ω = (−1,1)2 \ ([0,1)× (−1,0])

known singular solution u(ρ, θ) = ρ
2
3 sin(2

3θ)

exponential nonlinearity

a(r) = am + (ac − am)
1 − e− 3

2 r2

1 + 2e− 3
2

p = 1, uniform or adaptive mesh refinement
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Where is the error localized?

Estimated total errors ηK (ui
ℓ) Exact total errors ∥∇(u − ui

ℓ)∥K

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Computer Methods in Applied Mechanics and Engineering (2020)
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Adaptive mesh refinement
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Error certification robust wrt the nonlinearities
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Fig. 5: [Exponential nonlinearity (5.6), singular solution (5.7), L-shaped domain]
Effectivity indices for the components and total quantities for the adaptive mesh
(left) and the uniform mesh (right) shown in Figure 4

consider a locally adaptive mesh refinement strategy. We use the standard algorithm,544

cf. [12, 20], as follows.545

Algorithm 5.4 (Adaptive refinement). Let εSTOP, θ ∈ (0, 1) and T0 be a con-546

forming triangulation of Ω. Then for ℓ ≥ 0:547

1. Solve: Solve the linearized problem (2.6) until the convergence criterion (5.2)548

is satisfied.549

2. Estimate: Compute the elementwise estimators {EkN,T }T∈Tℓ
with the sum550

EkN,ℓ as in (3.9a). If EkN,ℓ < εSTOP then stop.551

3. Mark: Choose a minimal (in terms of cardinality) set Mℓ ⊂ Tℓ such that552

(5.8)
∑

T∈Mℓ

ηkN,T ≥ θ2
∑

T∈Tℓ

ηkN,T .553

4. Refine: Perform a minimal conforming refinement such that each T ∈ Mℓ554

is refined in Tℓ+1, i.e., each T ∈ Mℓ and each of its sides contains a node of555

Tℓ+1 in its interior. Set ℓ := ℓ+ 1 and restart with Solve.556

The results of the refinement study are displayed in Figure 6 for the exponential557

nonlinearity (5.6) and the singular solution (5.7). We also consider two values of558

the parameter ac/am, namely 103 and 106. Firstly we note that for both values of559

the ratio, the asymptotic rates for the estimator and error agree with the theoretical560

optimal rate of (DOFs)1/2 for the adaptive algorithm. However, we also note that561

for the larger value of 106, the pre-asymptotic regime is longer and the estimator562

overestimates by more in this regime.563

6. Proof of Theorem 3.3.564

Proof of Theorem 3.3. For any x, y ∈ [0,∞), we denote x ≲ y to mean x ≤ Cy565

with C ≥ 0 only depending on the space dimension d, the mesh shape-regularity κT ,566

and possibly when d = 4, the polynomial degree p. Let k ≥ 1. From arguments of [6]567

and [22], we have EkN,ℓ ≤ ηkN,ℓ + ηkr,ℓ and EkL,ℓ ≤ ηkL,ℓ + ηkr,ℓ, respectively, which yields568

(6.1)
Ekℓ

(3.14a)
= EkN,ℓ + λkℓEkL,ℓ
≤ ηkN,ℓ + ηkr,ℓ + λkℓ (η

k
L,ℓ + ηkr,ℓ)

(3.14b)
= ηkℓ + (1 + λkℓ )η

k
r,ℓ.

569
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Uniform mesh refinement
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100 101 102 103 104 105 106 107

1

1.5

2

2.5

C
k ℓ

Ck
ℓ

100 101 102 103 104 105 106 107

1.06

1.07

1.08

1.09

1.10

ac/am

E
ff
ec
ti
v
it
y
in
d
ic
es

Newton

IkL,ℓ

Ikℓ

IkN,ℓ

100 101 102 103 104 105 106 107

1

1.5

2

2.5

C
k ℓ

Ck
ℓ

100 101 102 103 104 105 106 107

1.05

1.10

1.15

1.20

1.25

ac/am

E
ff
ec
ti
v
it
y
in
d
ic
es

Newton

IkL,ℓ

Ikℓ

IkN,ℓ

Fig. 5: [Exponential nonlinearity (5.6), singular solution (5.7), L-shaped domain]
Effectivity indices for the components and total quantities for the adaptive mesh
(left) and the uniform mesh (right) shown in Figure 4

consider a locally adaptive mesh refinement strategy. We use the standard algorithm,544

cf. [12, 20], as follows.545

Algorithm 5.4 (Adaptive refinement). Let εSTOP, θ ∈ (0, 1) and T0 be a con-546

forming triangulation of Ω. Then for ℓ ≥ 0:547

1. Solve: Solve the linearized problem (2.6) until the convergence criterion (5.2)548

is satisfied.549

2. Estimate: Compute the elementwise estimators {EkN,T }T∈Tℓ
with the sum550

EkN,ℓ as in (3.9a). If EkN,ℓ < εSTOP then stop.551

3. Mark: Choose a minimal (in terms of cardinality) set Mℓ ⊂ Tℓ such that552

(5.8)
∑

T∈Mℓ

ηkN,T ≥ θ2
∑

T∈Tℓ

ηkN,T .553

4. Refine: Perform a minimal conforming refinement such that each T ∈ Mℓ554

is refined in Tℓ+1, i.e., each T ∈ Mℓ and each of its sides contains a node of555

Tℓ+1 in its interior. Set ℓ := ℓ+ 1 and restart with Solve.556

The results of the refinement study are displayed in Figure 6 for the exponential557

nonlinearity (5.6) and the singular solution (5.7). We also consider two values of558

the parameter ac/am, namely 103 and 106. Firstly we note that for both values of559

the ratio, the asymptotic rates for the estimator and error agree with the theoretical560

optimal rate of (DOFs)1/2 for the adaptive algorithm. However, we also note that561

for the larger value of 106, the pre-asymptotic regime is longer and the estimator562

overestimates by more in this regime.563

6. Proof of Theorem 3.3.564

Proof of Theorem 3.3. For any x, y ∈ [0,∞), we denote x ≲ y to mean x ≤ Cy565

with C ≥ 0 only depending on the space dimension d, the mesh shape-regularity κT ,566

and possibly when d = 4, the polynomial degree p. Let k ≥ 1. From arguments of [6]567

and [22], we have EkN,ℓ ≤ ηkN,ℓ + ηkr,ℓ and EkL,ℓ ≤ ηkL,ℓ + ηkr,ℓ, respectively, which yields568

(6.1)
Ekℓ

(3.14a)
= EkN,ℓ + λkℓEkL,ℓ
≤ ηkN,ℓ + ηkr,ℓ + λkℓ (η

k
L,ℓ + ηkr,ℓ)

(3.14b)
= ηkℓ + (1 + λkℓ )η

k
r,ℓ.
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Fig. 6: [Exponential nonlinearity (5.6), singular solution (5.7), L-shaped domain] We
compare the convergence rates for uniform refinement and adaptive refinement for
two values of the ratio ac/am (left 103, right 106).

It remains to show (3.20).570

Step 1 (Equivalence of ηkL,ℓ and EkL,ℓ). From arguments of [15, 22] for the linearized571

problems (2.6a) and (3.10b), we have for all a ∈ Vℓ,572

(6.2)

∥(Ak−1
ℓ )−

1
2 (ψa

ℓ (A
k−1
ℓ ∇ukℓ − bk−1

ℓ ) + σa,k
ℓ )∥2ωa

ℓ

≲
ess supωa

ℓ
Ak−1

c,ℓ

ess infωa
ℓ
Ak−1

m,ℓ

(
∥ψa

ℓ (A
k−1
ℓ )

1
2∇(ukℓ − uk(ℓ))∥2ωa

ℓ
+ ηa,ke,ℓ

)
.

573

Therefore, recalling the definition (3.21) of Ckℓ , we obtain574

(6.3)

ηkL,ℓ

(4.6)

≲
∑

a∈Vℓ

∥(Ak−1
ℓ )−

1
2 (ψa

ℓ (A
k−1
ℓ ∇ukℓ − bk−1

ℓ ) + σa,k
ℓ )∥2ωa

ℓ

(6.2)

≲ Ckℓ

(∑

a∈Vℓ

∥ψa
ℓ (A

k−1
ℓ )

1
2∇(ukℓ − uk(ℓ))∥2ωa

ℓ
+ ηke,ℓ

)
(4.4)

≲ Ckℓ
(
EkL,ℓ + ηke,ℓ

)
.

575

576

Step 2 (Majorizing ηkN,ℓ by ηkL,ℓ). First, recalling that akℓ := a(·, |∇ukℓ |), and using577

the fact that (x+ y)2 ≤ 2(x2 + y2) for all x, y ∈ R, we obtain578

(6.4)

ηkL,ℓ
(4.6)
=

1

2

∫

Ω

|(Ak−1
ℓ )−

1
2 (Ak−1

ℓ ∇ukℓ − bk−1
ℓ + σkℓ )|2

(3.19)

≥ 1

4

∫

Ω

|(Ak−1
ℓ )−

1
2 (akℓ∇ukℓ + σkℓ )|2

(2.9a)

≥ 1

4

∫

Ω

1

Ak−1
c,ℓ

|akℓ∇ukℓ + σkℓ |2.
579

Now, observing that ∂
∂r ((|σkℓ |− r)ϕ∗

′(·, r)) = (|σkℓ |− r)ϕ∗′′(·, r)−ϕ∗′(·, r), we can use580

an integration by parts (IBP) to obtain a.e. in Ω,581

(6.5)

ϕ∗(·, |σkℓ |)−ϕ∗(·, akℓ |∇ukℓ |)
(3.4)
=

∫ |σk
ℓ |

akℓ |∇uk
ℓ |
ϕ∗′(·, r) dr

(IBP)
=

∫ |σk
ℓ |

akℓ |∇uk
ℓ |
(|σkℓ | − r)ϕ∗′′(·, r) dr −

[
(|σkℓ | − r)ϕ∗′(·, r)

]|σk
ℓ |

akℓ |∇uk
ℓ |

(3.7)
=

∫ |σk
ℓ |

akℓ |∇uk
ℓ |

|σkℓ | − r

ϕ′′ ◦ ϕ′−1(·, r)
dr + (|σkℓ | − akℓ |∇ukℓ |)ϕ′

−1
(·, akℓ |∇ukℓ |).
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A model nonlinear problem
Nonlinear elliptic problem

Find u : Ω → R such that
−∇·

(
τK (x)(D(x ,u)︸ ︷︷ ︸

diffusion

∇u + q(x ,u)︸ ︷︷ ︸
advection

)
)
+ f (x ,u)︸ ︷︷ ︸

reaction

= 0 in Ω,

u = 0 on ∂Ω.

τ > 0 a parameter (time step size in transient problems)

Assumption (Nonlinear functions D, q, and f )

|D(x1, ξ1)−D(x2, ξ2)| ≤ DM(|x1 − x2|+ |ξ1 − ξ2|) ∀x1,x2 ∈ Ω and ξ1, ξ2 ∈ R,
0 ≤ f (x , ξ2)− f (x , ξ1) ≤ fM (ξ2 − ξ1) ∀x ∈ Ω and ξ2 ≥ ξ1,

q is “small” wrt KD.

Strength of the nonlinearity
ratio ac/am
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Iterative linearization

Definition (Linearized finite element approximation)

uk
ℓ ∈ V p

ℓ such that
((

uk
ℓ − uk−1

ℓ , vℓ
))

uk−1
ℓ

= −⟨R(uk−1
ℓ )︸ ︷︷ ︸

residual

, vℓ⟩ ∀vℓ ∈ V p
ℓ .

linearization: reaction–diffusion scalar product((
w , v

))
uk−1
ℓ

:= (L(x ,uk−1
ℓ )︸ ︷︷ ︸

reaction coef.

w , v) + (a(x ,uk−1
ℓ )︸ ︷︷ ︸

diffusion coef.

∇w ,∇v), w , v ∈ H1
0 (Ω)

covers many linearization schemes: Picard (fixed-point), L & M-schemes, . . .
Iteration-dependent norm

|||v |||1,uk−1
ℓ

:=
((

v , v
)) 1

2

uk−1
ℓ

, v ∈ H1
0 (Ω)

induced by the linearization scalar product
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An orthogonal decomposition of the total residual/error

Theorem (Orthogonal decomposition of the total error into linearization and
discretization components)
For all linearization steps k ≥ 1, there holds

|||R(uk−1
ℓ )|||2−1,uk−1

ℓ︸ ︷︷ ︸
total residual/error

|||uk−1
ℓ −uk

⟨ℓ⟩|||1,uk−1
ℓ

= |||uk−1
ℓ − uk

ℓ |||21,uk−1
ℓ︸ ︷︷ ︸

linearization
error

+ |||Ruk−1
ℓ

disc (uk
ℓ )|||2−1,uk−1

ℓ︸ ︷︷ ︸
discretization residual/error

|||uk
ℓ−uk

⟨ℓ⟩|||1,uk−1
ℓ

.

orthogonal decomposition
error components
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A posteriori error estimates for an iteration-dependent norm
Theorem (A posteriori estimate of iteration-dependent norm)
For all linearization steps k ≥ 1,

|||R(uk−1
ℓ )|||−1,uk−1

ℓ
≤ ηk

ℓ .

Moreover, for all linearization steps k ≥ 1, there holds

ηk
ℓ ≤ Ceff(d , κT ,p)Ck

ℓ |||R(uk−1
ℓ )|||−1,uk−1

ℓ
+ quadrature terms + data oscillation terms,

where

Ck
ℓ

:= max
a∈Vℓ

(
h2
ωa supωa Lk−1

M + π2 supωa a
k−1
M

h2
ωa infωa Lk−1

m + π2 infωa a
k−1
m

,
supωa a

k−1
M

infωa a
k−1
m

)

{
= 1 Zarantonello

≤ ac

am
in general.

Ck
ℓ = 1 for Zarantonello =⇒ robustness wrt the strength of nonlinearities

Ck
ℓ given by local (patch) properties: typically much better than ac/am

Ck
ℓ computable: we can affirm robustness a posteriori, for the given case

also local efficiency
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The Richards equation
Setting

one time step of the Richards equation
unit square Ω = (0,1)2

realistic data

f (x , ξ) = S(ξ)− S(un−1
ℓ (x)), D(x , ξ) = κ(S(ξ)), q(x , ξ) = −κ(S(ξ))g,

K =

[
1 0.2

0.2 1

]
, g =

(
1
0

)

time step length τ ∈ [10−3,1]
van Genuchten saturation and permeability laws

S(ξ) :=
(

1 + (2 − ξ)
1

1−λ

)−λ
, κ(s) :=

√
s
(

1 − (1 − s
1
λ )λ
)2
, λ = 0.5
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One time step of the Richards equation with realistic data

Time step length τ = 1 Time step length τ = 0.01

M. Vohralík A posteriori error estimates robust with respect to the strength of nonlinearities 36 / 40



I Setting Iterative linearization Estimates Numerics Extensions C Setting (gradient-independent nonlinearities) Estimates Numerics

Error certification robust wrt the nonlinearities
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Where is the error localized?

Error, τ = 1 Estimate, τ = 1
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Where is the error localized?

Error, τ = 0.01 Estimate, τ = 0.01
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Error components and adaptivity via stopping criteria
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Conclusions

Conclusions
a posteriori certification of the error for nonlinear problems
robustness with respect to the strength of nonlinearities
augmenting the energy difference by the (discretization) error on the given
linearization step
employing iteration-dependent norms

HARNIST A., MITRA K., RAPPAPORT A., VOHRALÍK M. Robust a posteriori estimates of energy differences
for nonlinear elliptic problems. To be submitted, 2023.

MITRA K., VOHRALÍK M. Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic
problems in iteration-dependent norms. An orthogonal decomposition result based on iterative linearization.
To be submitted, 2023.

Thank you for your attention!
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