A posteriori error estimates robust with respect to the strength of nonlinearities

André Harnist, Koondanibha Mitra, Ari Rappaport, and Martin Vohralík

Inria Paris & Ecole des Ponts

CMAP, 21 February 2023

Outline

- Introduction
 - Numerical approximation of partial differential equations
 - A posteriori error estimates
- 2 Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- Mumerical experiments
- 6 Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

Outline

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- Mumerical experiments
- 6 Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

Numerical approximation of partial differential equations

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- conception: more effort ⇒ closer to the unknown solution
- example: elastic string

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- conception: more effort ⇒ closer to the unknown solution
- example: elastic string

Numerical approximation u_{h_0} and its convergence to u

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- conception: more effort ⇒ closer to the unknown solution
- example: elastic string

Numerical approximation u_h and its convergence to u

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- conception: more effort ⇒ closer to the unknown solution
- example: elastic string

Numerical approximation u_h and its convergence to u

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- conception: more effort ⇒ closer to the unknown solution
- example: elastic string

Numerical approximation u_{ho} and its convergence to u

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- conception: more effort ⇒ closer to the unknown solution
- example: elastic string

Numerical approximation u_{h_0} and its convergence to u

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- conception: more effort ⇒ closer to the unknown solution
- example: elastic string

Numerical approximation u_{hp} and its convergence to u

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- conception: more effort ⇒ closer to the unknown solution
- example: elastic string

Numerical approximation u_{hp} and its convergence to u

Error
$$\|\nabla(u-u_{hp})\| = \left\{ \int_a^b |(u-u_{hp})'|^2 \right\}^{\frac{1}{2}}$$

Numerical methods

- mathematically-based algorithms evaluated by computers
- deliver approximate solutions
- conception: more effort ⇒ closer to the unknown solution
- example: elastic string

Numerical approximation u_{hp} and its convergence to u

Error
$$\|\nabla(u-u_{hp})\| = \left\{ \int_a^b |(u-u_{hp})'|^2 \right\}^{\frac{1}{2}}$$

Need to solve a linear system

$$\mathbb{A}_{hp}\mathsf{U}_{hp}=\mathsf{F}_{hp}$$

Crucial questions

- How large is the overall error?

3 crucial questions

Crucial questions

- How large is the overall error?
- Where (model/space/time/linearization/algebra) is it localized?

3 crucial questions

Crucial questions

- How large is the overall error?
- Where (model/space/time/linearization/algebra) is it localized?
- Can we decrease it efficiently?

3 crucial questions & suggested answers

Crucial questions

- How large is the overall error?
- Where (model/space/time/linearization/algebra) is it localized?
- Oan we decrease it efficiently?

Suggested answers

A posteriori error estimates.

3 crucial questions & suggested answers

Crucial questions

- How large is the overall error?
- Where (model/space/time/linearization/algebra) is it localized?
- Oan we decrease it efficiently?

Suggested answers

- A posteriori error estimates.
- Identification of error components.

3 crucial questions & suggested answers

Crucial questions

- How large is the overall error?
- Where (model/space/time/linearization/algebra) is it localized?
- Oan we decrease it efficiently?

Suggested answers

- A posteriori error estimates.
- Identification of error components.
- Balancing error components, adaptivity (working where needed).

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, tsunami, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known, implementation OK

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, tsunami, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known, implementation OK

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, tsunami, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known, implementation OK

CDG Terminal 2E collapse in 2004 (opened in 2003)

• no earthquake, flooding, tsunami, heavy rain, extreme temperature

Y. El Kamari *, W. Raphael *, *, A. Chateauneuf b,c

deterministic, steady problem, PDE known, data known, implementation OK

probably numerical simulations done with insufficient precision,

CDG Terminal 2E collapse in 2004 (opened in 2003)

- no earthquake, flooding, tsunami, heavy rain, extreme temperature
- deterministic, steady problem, PDE known, data known, implementation OK

probably numerical simulations done with insufficient precision, I believe without error certification by a posteriori error estimates

Outline

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- Mumerical experiments
- **6** Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

Laplacian: find $u: \Omega \to \mathbb{R}$ such that

$$-\nabla \cdot (\nabla u) = f \quad \text{in} \quad \Omega,$$

$$u = 0 \quad \text{on} \quad \partial \Omega.$$

Guaranteed error upper bound (reliability)

$$\frac{\|\nabla(u-u_\ell)\|}{\text{unknown error}} \qquad \qquad \underbrace{\eta(u_\ell)}_{\text{estimator computable from } u_\ell}$$

Error lower bound (efficiency)

$$\eta(u_\ell) \le C_{\mathsf{eff}} ||\nabla(u - u_\ell)||$$

• C_{eff} a generic constant independent of Ω , u, u_{ℓ} and namely of the number of mesh elements $|\mathcal{T}_{\ell}|$ (h if \mathcal{T}_{ℓ} uniform) and of the polynomial degree n (for d < 3)

Laplacian: find $u: \Omega \to \mathbb{R}$ such that

$$\begin{aligned}
-\nabla \cdot (\nabla u) &= f & \text{in } & \Omega, \\
u &= 0 & \text{on } & \partial \Omega.
\end{aligned}$$

Guaranteed error upper bound (reliability)

$$\underbrace{\|\nabla(u-u_\ell)\|}_{\text{unknown error}} \leq \underbrace{\eta(u_\ell)}_{\text{estimator computable from } u_\ell}$$

$$\eta(u_{\ell}) \leq C_{\text{eff}} ||\nabla(u - u_{\ell})||$$

Laplacian: find $u: \Omega \to \mathbb{R}$ such that

$$\begin{aligned}
-\nabla \cdot (\nabla u) &= f & \text{in } & \Omega, \\
u &= 0 & \text{on } & \partial \Omega.
\end{aligned}$$

Guaranteed error upper bound (reliability)

$$\underbrace{\|\nabla(u-u_{\ell})\|}_{\text{unknown error}} \leq \underbrace{\eta(u_{\ell})}_{\text{estimator computable from } u_{\ell}}$$

Error lower bound (efficiency)

$$\eta(u_{\ell}) \leq C_{\text{eff}} ||\nabla(u - u_{\ell})||$$

• C_{eff} a generic constant independent of Ω , u, u_{ℓ} and namely of the number of mesh elements $|\mathcal{T}_{\ell}|$ (h if \mathcal{T}_{ℓ} uniform) and of the polynomial degree p (for d < 3)

Laplacian: find $u: \Omega \to \mathbb{R}$ such that

$$\begin{aligned}
-\nabla \cdot (\nabla u) &= f & \text{in } & \Omega, \\
u &= 0 & \text{on } & \partial \Omega.
\end{aligned}$$

Guaranteed error upper bound (reliability)

$$\underbrace{\|\nabla(u-u_{\ell})\|}_{\text{unknown error}} \leq \underbrace{\eta(u_{\ell})}_{\text{estimator computable from } u_{\ell}}$$

$$\eta(u_{\ell}) \leq \frac{C_{\text{eff}}}{\|\nabla(u-u_{\ell})\|}$$

- C_{eff} a generic constant independent of Ω , u, u_{ℓ} and namely of the number of mesh elements $|\mathcal{T}_{\ell}|$ (h if \mathcal{T}_{ℓ} uniform) and of the polynomial degree p (for d < 3)
- C-s only depends on mesh shape regularity on disput possibly of (if d > 4)

Laplacian: find $u: \Omega \to \mathbb{R}$ such that

$$\begin{aligned}
-\nabla \cdot (\nabla u) &= f & \text{in } & \Omega, \\
u &= 0 & \text{on } & \partial \Omega.
\end{aligned}$$

Guaranteed error upper bound (reliability)

$$\underbrace{\|\nabla(u-u_{\ell})\|}_{\text{unknown error}} \leq \underbrace{\eta(u_{\ell})}_{\text{estimator computable from } u_{\ell}}$$

$$\eta(u_{\ell}) \leq \frac{C_{\text{eff}}}{\|\nabla(u-u_{\ell})\|}$$

- C_{eff} a generic constant independent of Ω , u, u_{ℓ} and namely of the number of mesh elements $|\mathcal{T}_{\ell}|$ (h if \mathcal{T}_{ℓ} uniform) and of the polynomial degree p (for d < 3)
- C_{eff} only depends on mesh shape regularity κ_T , d, and possibly p (if d > 4)

A posteriori error estimates: certify the error in a FE discretization

Laplacian: find $u: \Omega \to \mathbb{R}$ such that

$$\begin{aligned}
-\nabla \cdot (\nabla u) &= f & \text{in } & \Omega, \\
u &= 0 & \text{on } & \partial \Omega.
\end{aligned}$$

Guaranteed error upper bound (reliability)

$$\underbrace{\|\nabla(u-u_{\ell})\|}_{\text{unknown error}} \leq \underbrace{\eta(u_{\ell})}_{\text{estimator computable from } u_{\ell}}$$

$$\eta(u_{\ell}) \leq \frac{C_{\text{eff}}}{\|\nabla(u-u_{\ell})\|}$$

- C_{eff} a generic constant independent of Ω , u, u_{ℓ} and namely of the number of mesh elements $|\mathcal{T}_{\ell}|$ (h if \mathcal{T}_{ℓ} uniform) and of the polynomial degree p (for $d \leq 3$)
- C_{eff} only depends on mesh shape regularity $\kappa_{\mathcal{T}}$, d, and possibly p (if $d \geq 4$)
- Prager & Synge (1947), Ladevèze (1975), Babuška & Rheinboldt (1987)
 Verfürth (1989), Ainsworth & Oden (1993), Destuynder & Métivet (1999)
 Braess Pillwein & Schöberl (2009), Ern & Vohralík (2015)

A posteriori error estimates: certify the error in a FE discretization

Laplacian: find $u: \Omega \to \mathbb{R}$ such that

$$\begin{aligned}
-\nabla \cdot (\nabla u) &= f & \text{in } & \Omega, \\
u &= 0 & \text{on } & \partial \Omega.
\end{aligned}$$

Guaranteed error upper bound (reliability)

$$\underbrace{\|\nabla(u-u_{\ell})\|}_{\text{unknown error}} \leq \underbrace{\eta(u_{\ell})}_{\text{estimator computable from } u_{\ell}}$$

$$\eta(u_{\ell}) \leq \frac{C_{\text{eff}}}{\|\nabla(u-u_{\ell})\|}$$

- C_{eff} a generic constant independent of Ω , u, u_{ℓ} and namely of the number of mesh elements $|\mathcal{T}_{\ell}|$ (h if \mathcal{T}_{ℓ} uniform) and of the polynomial degree p (for d < 3)
- C_{eff} only depends on mesh shape regularity $\kappa_{\mathcal{T}}$, d, and possibly p (if $d \geq 4$)
- Prager & Synge (1947), Ladevèze (1975), Babuška & Rheinboldt (1987), Verfürth (1989), Ainsworth & Oden (1993), Destuynder & Métivet (1999), Braess, Pillwein, & Schöberl (2009), Ern & Vohralík (2015), ...

How large is the overall error?

$h \approx 1/ \mathcal{T}_{\ell} ^{\frac{1}{2}}$	р	$\eta(U_\ell)$	rel. error estimate $\frac{\eta(u_\ell)}{\ \nabla u_\ell\ }$	$\ \nabla(u-u_\ell)\ $	rel. error $\frac{\ \nabla(u-u_\ell)\ }{\ \nabla u_\ell\ }$	$I^{ ext{eff}} = rac{\eta(u_{\ell})}{\ abla(u-u_{\ell})\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-1}				
$\approx h_0/4$	3	2.62 × 10=				
$\approx h_0/8$	4	2.60 × 10=				

How large is the overall error?

$h pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	p	$\eta(u_\ell)$	rel. error estimate $\frac{\eta(u_{\ell})}{\ \nabla u_{\ell}\ }$	$\ \nabla(u-u_\ell)\ $	rel. error $\frac{\ \nabla(u-u_\ell)\ }{\ \nabla u_\ell\ }$	$I^{\text{eff}} = \frac{\eta(u_\ell)}{\ \nabla(u - u_\ell)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
		6.07×10^{-1}				
$\approx h_0/2$	2	4.23×10^{-2}	$9.6 \times 10^{-1}\%$	4.07 × 10		
$\approx h_0/4$	3	2.62×10^{-4}		2.60 × 10 =		
$\approx h_0/8$	4	2.60×10^{-7}	5.9 × 10 ⁻¹ %			

$h pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	p	$\eta(u_\ell)$	rel. error estimate $\frac{\eta(u_\ell)}{\ \nabla u_\ell\ }$	$\ \nabla(u-u_\ell)\ $	rel. error $\frac{\ \nabla(u-u_\ell)\ }{\ \nabla u_\ell\ }$	$I^{\text{eff}} = \frac{\eta(u_\ell)}{\ \nabla(u - u_\ell)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 \times 10^{-1}\%$	4.07×10^{-6}	9.2 × 10 1%	
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 \times 10^{-3}\%$	2.60 × 10	5.9 × 10 ⁻³ %	
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 \times 10^{-6}\%$	2.58×10^{-7}	5.8 × 10 ⁻⁹ %	

How large is the overall error? (model pb, known smooth solution)

$h \approx 1/ \mathcal{T}_{\ell} ^{\frac{1}{2}}$	$\rho \mid \eta(u_\ell)$	rel. error estimate $\frac{\eta(u_\ell)}{\ \nabla u_\ell\ }$	$\ \nabla(u-u_\ell)\ $	rel. error $\frac{\ \nabla(u-u_\ell)\ }{\ \nabla u_\ell\ }$	$I^{\text{eff}} = \frac{\eta(u_\ell)}{\ \nabla(u - u_\ell)\ }$
h_0	1 1.25	28%	1.07	24%	1.17
	$6.07 \times 10^{-}$		5.56×10^{-1}		
$\approx h_0/2$	$2 ext{ } 4.23 imes 10^{-}$	9.5×10^{-1} %	4.07×10^{-2}	9.2 × 10 ⁻¹ %	
$\approx h_0/4$	3 2.62 × 10 ⁻	4 5.9 \times 10 ⁻³ %	2.60×10^{-4}	5.9 × 10 ⁻³ %	
$\approx h_0/8$	$4 2.60 \times 10^{-}$	$7 5.9 \times 10^{-6}\%$	2.58×10^{-7}		

How large is the overall error? (model pb, known smooth solution)

$h pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	$\eta(u_\ell)$	rel. error estimate $\frac{\eta(u_\ell)}{\ abla u_\ell\ }$	$\ \nabla(u-u_\ell)\ $	rel. error $\frac{\ \nabla(u-u_\ell)\ }{\ \nabla u_\ell\ }$	$I^{eff} = rac{\eta(u_\ell)}{\ abla(u-u_\ell)\ }$
h_0	1.25	28%	1.07	24%	1.17
	6.07×10^{-1}		5.56×10^{-1}		1.09
$\approx h_0/2$ 2	4.23×10^{-2}	$9.5 \times 10^{-1}\%$	4.07×10^{-2}	$9.2 \times 10^{-1}\%$	1.04
$\approx h_0/4$ 3	2.62×10^{-4}	$5.9 \times 10^{-3}\%$	2.60×10^{-4}	$5.9 \times 10^{-3}\%$	
$\approx h_0/8$	$1.2.60 \times 10^{-7}$	5.9×10^{-6} %	2.58×10^{-7}	$5.8 \times 10^{-6}\%$	

$h \approx 1/ \mathcal{T}_{\ell} ^{\frac{1}{2}}$	p	$\eta(u_\ell)$	rel. error estimate $\frac{\eta(u_\ell)}{\ abla u_\ell\ }$	$\ \nabla(u-u_\ell)\ $	rel. error $\frac{\ \nabla(u-u_\ell)\ }{\ \nabla u_\ell\ }$	$I^{ ext{eff}} = rac{\eta(u_\ell)}{\ abla(u-u_\ell)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$		6.07×10^{-1}		5.56×10^{-1}	13%	1.09
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 \times 10^{-1}\%$	4.07×10^{-2}	$9.2 \times 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 \times 10^{-3}\%$	2.60×10^{-4}	$5.9 \times 10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	5.9×10^{-6} %	2.58×10^{-7}	5.8 × 10 ⁻⁶ %	1.01

A. Ern, M. Vohrelik, SIAM Journal on Numerical Analysis (2015)
V. Dolejší, A. Ern, M. Vohrelik, SIAM Journal on Scientific Computing (2016)

$h \approx 1/ \mathcal{T}_{\ell} ^{\frac{1}{2}}$	p	$\eta(u_\ell)$	rel. error estimate $\frac{\eta(u_\ell)}{\ \nabla u_\ell\ }$	$\ \nabla(u-u_\ell)\ $	rel. error $\frac{\ \nabla (u-u_\ell)\ }{\ \nabla u_\ell\ }$	$I^{ m eff}=rac{\eta(u_\ell)}{\ abla(u-u_\ell)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$		6.07×10^{-1}	14%	5.56×10^{-1}	13%	1.09
$\approx h_0/4$		3.10×10^{-1}		2.92×10^{-1}	6.6%	1.06
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 \times 10^{-1}\%$	4.07×10^{-2}	$9.2 \times 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 \times 10^{-3}\%$	2.60×10^{-4}	$5.9 \times 10^{-3}\%$	1.01
~ h. /2	1	9 kn v 1n=7	5 0 V 10 ⁻⁶ %	9.58 v 10=7	5 g v 10-6°/	1.01

A. Em, M. Vohreilik, SIAM Journal on Numerical Analysis (2015) V. Dolejši, A. Em, M. Vohreilik, SIAM Journal on Scientific Computing (2016)

$h pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	p	$\eta(u_\ell)$	rel. error estimate $\frac{\eta(u_\ell)}{\ \nabla u_\ell\ }$	$\ \nabla(u-u_\ell)\ $	rel. error $\frac{\ \nabla(u-u_\ell)\ }{\ \nabla u_\ell\ }$	$I^{\text{eff}} = \frac{\eta(u_\ell)}{\ \nabla(u-u_\ell)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$		6.07×10^{-1}	14%	5.56×10^{-1}	13%	1.09
$\approx h_0/4$		3.10×10^{-1}	7.0%	2.92×10^{-1}	6.6%	1.06
$\approx h_0/8$		1.45×10^{-1}		1.39×10^{-1}	3.1%	1.04
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 \times 10^{-1}\%$	4.07×10^{-2}	$9.2 \times 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 \times 10^{-3}\%$	2.60×10^{-4}	$5.9 \times 10^{-3}\%$	1.01
6 70		0.00 10-7	E 0 40-50/	0 E0 40-7	E 0 4 A - 60/	4.04

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) V. Dolejši, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

$h \approx 1/ \mathcal{T}_{\ell} ^{\frac{1}{2}}$	$\eta(u_\ell)$	rel. error estimate $\frac{\eta(u_\ell)}{\ \nabla u_\ell\ }$	$\ \nabla(u-u_\ell)\ $	rel. error $\frac{\ \nabla(u-u_\ell)\ }{\ \nabla u_\ell\ }$	$I^{ ext{eff}} = rac{\eta(u_\ell)}{\ abla(u-u_\ell)\ }$
h_0 1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$	6.07×10^{-1}	14%	5.56×10^{-1}	13%	1.09
$\approx h_0/4$	3.10×10^{-1}	7.0%	2.92×10^{-1}	6.6%	1.06
$\approx h_0/8$	1.45×10^{-1}	3.3%	1.39×10^{-1}	3.1%	1.04
$\approx h_0/2$ 2	4.23×10^{-2}	$9.5 \times 10^{-1}\%$	4.07×10^{-2}	$9.2 \times 10^{-1}\%$	1.04
$\approx h_0/4$ 3	2.62×10^{-4}	$5.9 \times 10^{-3}\%$	2.60×10^{-4}	$5.9 \times 10^{-3}\%$	1.01
$\approx h_0/8$	2.60×10^{-7}	$5.9 \times 10^{-6}\%$	2.58×10^{-7}	$5.8 \times 10^{-6}\%$	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) V. Dolejši, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

$h \approx 1/ \mathcal{T}_{\ell} ^{\frac{1}{2}}$	p	$\eta(u_\ell)$	rel. error estimate $\frac{\eta(u_\ell)}{\ \nabla u_\ell\ }$	$\ \nabla(u-u_\ell)\ $	rel. error $\frac{\ \nabla(u-u_\ell)\ }{\ \nabla u_\ell\ }$	$I^{ m eff}=rac{\eta(u_\ell)}{\ abla(u-u_\ell)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$pprox h_0/2$		6.07×10^{-1}	14%	5.56×10^{-1}	13%	1.09
$\approx h_0/4$		3.10×10^{-1}	7.0%	2.92×10^{-1}	6.6%	1.06
$\approx h_0/8$		1.45×10^{-1}	3.3%	1.39×10^{-1}	3.1%	1.04
$\approx h_0/2$	2	4.23×10^{-2}	$9.5 \times 10^{-1}\%$	4.07×10^{-2}	$9.2 \times 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 \times 10^{-3}\%$	2.60×10^{-4}	$5.9 \times 10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 \times 10^{-6}\%$	2.58×10^{-7}	$5.8 \times 10^{-6}\%$	1.01

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015)
V. Dolejší, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

$h pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	p	$\eta(u_\ell)$	rel. error estimate $\frac{\eta(u_\ell)}{\ \nabla u_\ell\ }$	$\ \nabla(u-u_\ell)\ $	rel. error $\frac{\ \nabla(u-u_\ell)\ }{\ \nabla u_\ell\ }$	$I^{ ext{eff}} = rac{\eta(u_\ell)}{\ abla(u-u_\ell)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$		6.07×10^{-1}	14%	5.56×10^{-1}	13%	1.09
$\approx h_0/4$		3.10×10^{-1}	7.0%	2.92×10^{-1}	6.6%	1.06
$\approx h_0/8$		1.45×10^{-1}	3.3%	1.39×10^{-1}	3.1%	1.04
$\approx h_0/2$	2	4.23×10^{-2}		4.07×10^{-2}	$9.2 \times 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}	$5.9 \times 10^{-3}\%$	2.60×10^{-4}	$5.9 \times 10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 \times 10^{-6}\%$	2.58×10^{-7}	$5.8 \times 10^{-6}\%$	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015)
V. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

$h pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	p	$\eta(u_\ell)$	rel. error estimate $\frac{\eta(u_\ell)}{\ \nabla u_\ell\ }$	$\ \nabla(u-u_\ell)\ $	rel. error $\frac{\ \nabla(u-u_\ell)\ }{\ \nabla u_\ell\ }$	$I^{ ext{eff}} = rac{\eta(u_\ell)}{\ abla(u-u_\ell)\ }$
h_0	1	1.25	28%	1.07	24%	1.17
$\approx h_0/2$		6.07×10^{-1}	14%	5.56×10^{-1}	13%	1.09
$\approx h_0/4$		3.10×10^{-1}	7.0%	2.92×10^{-1}	6.6%	1.06
$\approx h_0/8$		1.45×10^{-1}	3.3%	1.39×10^{-1}	3.1%	1.04
$\approx h_0/2$	2	4.23×10^{-2}		4.07×10^{-2}	$9.2 \times 10^{-1}\%$	1.04
$\approx h_0/4$	3	2.62×10^{-4}		2.60×10^{-4}	$5.9 \times 10^{-3}\%$	1.01
$\approx h_0/8$	4	2.60×10^{-7}	$5.9 \times 10^{-6}\%$	2.58×10^{-7}	$5.8 \times 10^{-6}\%$	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015) V. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

Linear problems

A posteriori error estimates **robust** with respect to the **discretization parameters** $|\mathcal{T}_{\ell}|$ (h if \mathcal{T}_{ℓ} uniform) and p ($d \leq 3$).

Nonlinear problems

A posteriori error estimates **robust** with respect to the **strength of nonlinearities?**

Linear problems

A posteriori error estimates robust with respect to the **discretization parameters** $|\mathcal{T}_{\ell}|$ (*h* if \mathcal{T}_{ℓ} uniform) and p ($d \leq 3$).

Nonlinear problems

A posteriori error estimates robust with respect to the strength of nonlinearities?

Setting Iterative linearization Estimates Numerics Extensions C Numerical approximation of PDEs A posteriori error estimates

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- Numerical experiments
- 6 Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

Setting Iterative linearization Estimates Numerics Extensions C Setting (gradient-dependent nonlinearities) Error measures Known results

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- Mumerical experiments
- 6 Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

Setting Iterative linearization Estimates Numerics Extensions C Setting (gradient-dependent nonlinearities) Error measures Known results

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- Numerical experiments
- 6 Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

A model nonlinear problem

Nonlinear elliptic problem

Find $\mu:\Omega\to\mathbb{R}$ such that

$$-\nabla \cdot (\mathbf{a}(|\nabla \mathbf{u}|)\nabla \mathbf{u}) = f \quad \text{in} \quad \Omega,$$

$$\mathbf{u} = 0 \quad \text{on} \quad \partial \Omega.$$

- $\Omega \subset \mathbb{R}^d$, d > 1, open polytope with Lipschitz boundary $\partial \Omega$
- $f \in L^2(\Omega)$

Function
$$a:[0,\infty)\to (0,\infty)$$
, for all ${\boldsymbol x},{\boldsymbol y}\in\mathbb{R}^d$,

$$|a(|x|)x - a(|y|)y| \le a_c|x - y|$$
 (Lipschitz continuity),
 $(a(|x|)x - a(|y|)y) \cdot (x - y) \ge a_m|x - y|^2$ (strong monotonicity)

•
$$a_{\rm m} \le a(r) \le a_{\rm c}, \, a_{\rm m} \le (a(r)r)'(r) \le a_{\rm c}$$

A model nonlinear problem

Nonlinear elliptic problem

Find $\mu:\Omega\to\mathbb{R}$ such that

$$-\nabla \cdot (\mathbf{a}(|\nabla u|)\nabla u) = f \quad \text{in} \quad \Omega,$$

$$u = 0 \quad \text{on} \quad \partial \Omega.$$

- $\Omega \subset \mathbb{R}^d$, d > 1, open polytope with Lipschitz boundary $\partial \Omega$
- $f \in L^2(\Omega)$

Assumption (Nonlinear function a)

Function $\mathbf{a}:[0,\infty)\to(0,\infty)$, for all $\mathbf{x},\mathbf{y}\in\mathbb{R}^d$,

$$|a(|\mathbf{x}|)\mathbf{x} - a(|\mathbf{y}|)\mathbf{y}| \le \frac{\mathsf{a_c}}{|\mathbf{x} - \mathbf{y}|}$$
 (Lipschitz continuity),

$$(a(|\mathbf{x}|)\mathbf{x} - a(|\mathbf{y}|)\mathbf{y}) \cdot (\mathbf{x} - \mathbf{y}) \ge \frac{\mathbf{a}_{\mathsf{m}}}{\mathbf{a}_{\mathsf{m}}}|\mathbf{x} - \mathbf{y}|^2$$

(strong monotonicity).

A model nonlinear problem

Nonlinear elliptic problem

Find $\mu:\Omega\to\mathbb{R}$ such that

$$-\nabla \cdot (\mathbf{a}(|\nabla \mathbf{u}|)\nabla \mathbf{u}) = f \quad \text{in} \quad \Omega,$$

$$\mathbf{u} = 0 \quad \text{on} \quad \partial \Omega.$$

- $\Omega \subset \mathbb{R}^d$, d > 1, open polytope with Lipschitz boundary $\partial \Omega$
- $f \in L^2(\Omega)$

Assumption (Nonlinear function a)

Function $\mathbf{a}:[0,\infty)\to(0,\infty)$, for all $\mathbf{x},\mathbf{y}\in\mathbb{R}^d$,

$$|a(|\mathbf{x}|)\mathbf{x} - a(|\mathbf{y}|)\mathbf{y}| \le a_{\mathsf{c}}|\mathbf{x} - \mathbf{y}| \qquad \text{(Lipschitz continuity)},$$

$$(a(|\mathbf{x}|)\mathbf{x} - a(|\mathbf{y}|)\mathbf{y}) \cdot (\mathbf{x} - \mathbf{y}) \ge a_{\mathsf{m}}|\mathbf{x} - \mathbf{y}|^2 \qquad \text{(strong monotonicity)}.$$

•
$$a_{\rm m} \le a(r) \le a_{\rm c}, \ a_{\rm m} \le (a(r)r)'(r) \le a_{\rm c}$$

Strength of the nonlinearity, $0 < a_m < a_c < \infty$ real parameters

Example (Mean curvature nonlinearity)

$$a(r):=a_{\mathsf{m}}+\frac{a_{\mathsf{c}}-a_{\mathsf{m}}}{\sqrt{1+r^2}}.$$

$$a_{c} = 100$$
 $a_{c} = 10$
 $a_{c} = 1$

Strength of the nonlinearity, $0 < a_m < a_c < \infty$ real parameters

Example (Mean curvature nonlinearity)

$$a(r):=a_{\mathsf{m}}+\frac{a_{\mathsf{c}}-a_{\mathsf{m}}}{\sqrt{1+r^2}}.$$

 $a_{c} = 100$ $a_{c} = 10$ $a_{c} = 1$

Strength of the nonlinearity, $0 < a_m < a_c < \infty$ real parameters

Example (Mean curvature nonlinearity)

$$a(r):=a_{\mathsf{m}}+\frac{a_{\mathsf{c}}-a_{\mathsf{m}}}{\sqrt{1+r^2}}.$$

Strength of the nonlinearity

$$\frac{\mathbf{a_c}}{\mathbf{a_m}} = \frac{\text{Lipschitz continuity}}{\text{strong monotonicity}}$$

Definition (Weak solution)

 $u \in H_0^1(\Omega)$ such that

$$(a(|\nabla u|)\nabla u, \nabla v) = (f, v) \quad \forall v \in H_0^1(\Omega).$$

$$(a(|
abla u_\ell|)
abla u_\ell,
abla v_\ell) = (f, v_\ell) \qquad orall v_\ell \in V^p_\ell$$

- \mathcal{T}_{ℓ} simplicial mesh of Ω
- p > 1 polynomial degree
- conforming finite elements
- $V_{\ell}^{p} := \mathcal{P}_{p}(\mathcal{T}_{\ell}) \cap H_{0}^{1}(\Omega)$

$$A_{\ell}(\mathsf{U}_{\ell}) = \mathsf{F}$$

Definition (Weak solution)

 $u \in H_0^1(\Omega)$ such that

$$(a(|\nabla u|)\nabla u, \nabla v) = (f, v) \quad \forall v \in H_0^1(\Omega).$$

Definition (Finite element approximation)

 $u_\ell \in V_\ell^p$ such that

$$(a(|\nabla u_{\ell}|)\nabla u_{\ell}, \nabla v_{\ell}) = (f, v_{\ell}) \qquad \forall v_{\ell} \in V_{\ell}^{p}.$$

- \mathcal{T}_{ℓ} simplicial mesh of Ω
- $p \ge 1$ polynomial degree
- conforming finite elements
- $V_{\ell}^{p} := \mathcal{P}_{p}(\mathcal{T}_{\ell}) \cap H_{0}^{1}(\Omega)$

Need to **solve** a **nonlinear system**

$$A_{\ell}(\mathsf{U}_{\ell}) = \mathsf{F}$$

Definition (Weak solution)

 $u \in H_0^1(\Omega)$ such that

$$(a(|\nabla u|)\nabla u, \nabla v) = (f, v) \quad \forall v \in H_0^1(\Omega).$$

Definition (Finite element approximation)

 $u_{\ell} \in V_{\ell}^{p}$ such that

$$(a(|\nabla u_\ell|)\nabla u_\ell, \nabla v_\ell) = (f, v_\ell) \qquad \forall v_\ell \in V_\ell^p.$$

- \mathcal{T}_{ℓ} simplicial mesh of Ω
- p > 1 polynomial degree
- conforming finite elements
- $V_{\ell}^{p} := \mathcal{P}_{p}(\mathcal{T}_{\ell}) \cap H_{0}^{1}(\Omega)$

Need to solve a nonlinear system

$$\mathcal{A}_{\ell}(\mathsf{U}_{\ell}) = \mathsf{F}_{\ell}$$

Setting Iterative linearization Estimates Numerics Extensions C Setting (gradient-dependent nonlinearities) Error measures Known results

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- Numerical experiments
- 6 Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

Sobolev space and error

Sobolev space

$$H_0^1(\Omega)$$

Sobolev norm error

$$\|\nabla(u_{\ell}-u)\|$$

Energy and energy differences

Definition (Energy functional)

$$\mathcal{J}: H^1_0(\Omega) \to \mathbb{R}$$

$$\mathcal{J}(\mathbf{v}) := \int_{\Omega} \phi(|\nabla \mathbf{v}|) - (f, \mathbf{v}), \quad \mathbf{v} \in H_0^1(\Omega),$$

with function $\phi: [0,\infty) \to [0,\infty)$ such that, for all $r \in [0,\infty)$,

$$\phi(r) := \int_0^r a(s) s \, \mathrm{d}s.$$

$$u = \arg\min_{v \in H_0^1(\Omega)} \mathcal{J}(v), \qquad u_\ell = \arg\min_{v_\ell \in V_\ell^p} \mathcal{J}(v_\ell)$$

$$\mathcal{J}(u_{\ell}) - \mathcal{J}(u)$$

Energy and energy differences

Definition (Energy functional)

$${\color{red} {\mathcal J}}: H^1_0(\Omega) o {\mathbb R}$$

$$\mathcal{J}(\mathbf{v}) := \int_{\Omega} \phi(|\nabla \mathbf{v}|) - (f, \mathbf{v}), \quad \mathbf{v} \in H_0^1(\Omega),$$

with function $\phi: [0,\infty) \to [0,\infty)$ such that, for all $r \in [0,\infty)$,

$$\phi(r) := \int_0^r a(s) s \, \mathrm{d}s.$$

Equivalently

$$u = \arg\min_{\mathbf{v} \in H^1_{\epsilon}(\Omega)} \mathcal{J}(\mathbf{v}), \qquad u_{\ell} = \arg\min_{\mathbf{v}_{\ell} \in V^{\rho}_{\ell}} \mathcal{J}(\mathbf{v}_{\ell}).$$

$$\mathcal{J}(u_\ell) - \mathcal{J}(u)$$

- $\mathcal{J}(u_{\ell}) \mathcal{J}(u) > 0$, $\mathcal{J}(u_{\ell}) \mathcal{J}(u) = 0$ if and only if $u_{\ell} = u$
- physically-based error measure

Energy and energy differences

Definition (Energy functional)

$${\color{red} {\cal J}}: H^1_0(\Omega)
ightarrow {\mathbb R}$$

$$\mathcal{J}(\mathbf{v}) := \int_{\Omega} \phi(|\nabla \mathbf{v}|) - (f, \mathbf{v}), \quad \mathbf{v} \in H_0^1(\Omega),$$

with function $\phi:[0,\infty)\to[0,\infty)$ such that, for all $r\in[0,\infty)$,

$$\phi(r) := \int_0^r a(s) s \, \mathrm{d}s.$$

Equivalently

$$u = \arg\min_{\mathbf{v} \in H_0^1(\Omega)} \, \mathcal{J}(\mathbf{v}), \qquad u_\ell = \arg\min_{\mathbf{v}_\ell \in V_\ell^{\mathcal{P}}} \, \mathcal{J}(\mathbf{v}_\ell).$$

Energy difference

$$\int \mathcal{J}(u_\ell) - \mathcal{J}(u)$$

- $\mathcal{J}(u_{\ell}) \mathcal{J}(u) \geq 0$, $\mathcal{J}(u_{\ell}) \mathcal{J}(u) = 0$ if and only if $u_{\ell} = u$
- physically-based error measure

Residual and its dual norm

Definition (Residual)

$$\mathcal{R}: H^1_0(\Omega) \to H^{-1}(\Omega);$$
 for $w \in H^1_0(\Omega), \mathcal{R}(w) \in H^{-1}(\Omega)$ is given by
$$\langle \mathcal{R}(w), v \rangle := (a(|\nabla w|)\nabla w, \nabla v) - (f, v), \quad v \in H^1_0(\Omega).$$

$$|||\mathcal{R}(u_{\ell}) - \mathcal{R}(u)|||_{-1} = \boxed{|||\mathcal{R}(u_{\ell})|||_{-1}} := \sup_{v \in H_0^1(\Omega)} \frac{\langle \mathcal{R}(u_{\ell}), v \rangle}{|||v|||}$$

- $|||\mathcal{R}(u_{\ell})|||_{-1} > 0$, $|||\mathcal{R}(u_{\ell})|||_{-1} = 0$ if and only if $u_{\ell} = u$
- subordinate to the choice of the norm $||| \cdot |||$ on the Sobolev space $H_0^1(\Omega)$
- the most straightforward choice: $|||v||| := ||\nabla v||$
- mathematically-based error measure

Residual and its dual norm

Definition (Residual)

$$\mathcal{R}: H^1_0(\Omega) \to H^{-1}(\Omega);$$
 for $w \in H^1_0(\Omega), \mathcal{R}(w) \in H^{-1}(\Omega)$ is given by
$$\langle \mathcal{R}(w), v \rangle := (a(|\nabla w|)\nabla w, \nabla v) - (f, v), \quad v \in H^1_0(\Omega).$$

Definition (Dual norm of the finite element residual)

$$|||\mathcal{R}(u_{\ell}) - \mathcal{R}(u)|||_{-1} = \boxed{|||\mathcal{R}(u_{\ell})|||_{-1}} := \sup_{v \in H_0^1(\Omega)} \frac{\langle \mathcal{R}(u_{\ell}), v \rangle}{|||v|||}.$$

- $|||\mathcal{R}(u_{\ell})|||_{-1} \geq 0$, $|||\mathcal{R}(u_{\ell})|||_{-1} = 0$ if and only if $u_{\ell} = u$
- subordinate to the choice of the norm $||| \cdot |||$ on the Sobolev space $H_0^1(\Omega)$
- the most straightforward choice: $|||v||| := ||\nabla v||$
- mathematically-based error measure

Setting Iterative linearization Estimates Numerics Extensions C Setting (gradient-dependent nonlinearities) Error measures Known results

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- Numerical experiments
- 6 Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

Sobolev norm

$$\|a_{\mathsf{m}}\|\nabla(u_{\ell}-u)\| \leq \eta(u_{\ell}) \leq \frac{C_{\mathsf{eff}}}{2} \|\nabla(u_{\ell}-u)\|$$

Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler (2008), Garau, Morin, & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020), Botti & Riedlbeck (2020), ...

Energy difference

$$\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \leq \frac{1}{2} \eta(u_{\ell})^2 \leq C_{\text{eff}}^2 \frac{a_{\text{C}}^2}{a_{\text{m}}^2} \big(\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \big)$$

Sobolev norm

$$\|a_{\mathsf{m}}\|\nabla(u_{\ell}-u)\| \leq \eta(u_{\ell}) \leq \frac{C_{\mathsf{eff}}a_{\mathsf{c}}}{C_{\mathsf{eff}}a_{\mathsf{c}}}\|\nabla(u_{\ell}-u)\|$$

Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler (2008), Garau, Morin, & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020), Botti & Riedlbeck (2020), ...

Energy difference

$$\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \leq \frac{1}{2} \eta(u_{\ell})^2 \leq C_{\text{eff}}^2 \frac{a_{\text{c}}^2}{a_{\text{m}}^2} \big(\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \big)$$

Ínria-

Sobolev norm

$$\|a_{\mathsf{m}}\|\nabla(u_{\ell}-u)\| \leq \eta(u_{\ell}) \leq \frac{C_{\mathsf{eff}}a_{\mathsf{c}}}{C_{\mathsf{eff}}a_{\mathsf{c}}}\|\nabla(u_{\ell}-u)\|$$

Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler (2008), Garau, Morin, & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020), Botti & Riedlbeck (2020), ...

Energy difference

$$\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \leq \frac{1}{2} \eta(u_{\ell})^2 \leq C_{\text{eff}}^2 \frac{a_{\text{c}}^2}{a_{\text{m}}^2} (\mathcal{J}(u_{\ell}) - \mathcal{J}(u))$$

Sobolev norm

$$\|a_{\mathsf{m}}\|\nabla(u_{\ell}-u)\| \leq \eta(u_{\ell}) \leq \frac{C_{\mathsf{eff}}}{2} \|\nabla(u_{\ell}-u)\|$$

Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler (2008), Garau, Morin, & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020), Botti & Riedlbeck (2020), ...

Energy difference

$$\mathcal{J}(u_\ell) - \mathcal{J}(u) \leq \frac{1}{2} \eta(u_\ell)^2 \leq \frac{C_{\mathsf{eff}}^2}{a_\mathsf{m}^2} \big(\mathcal{J}(u_\ell) - \mathcal{J}(u) \big)$$

Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening
 & Kreuzer (2008), Bartels & Milicevic (2020), . . .

Strength of the nonlinearity Not robust with respect to $\frac{\partial c}{\partial m}$.

Sobolev norm

$$\|a_{\mathsf{m}}\|\nabla(u_{\ell}-u)\| \leq \eta(u_{\ell}) \leq \frac{C_{\mathsf{eff}}}{2} \|\nabla(u_{\ell}-u)\|$$

Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler (2008), Garau, Morin, & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020), Botti & Riedlbeck (2020), ...

Energy difference

$$\mathcal{J}(u_\ell) - \mathcal{J}(u) \leq \frac{1}{2} \eta(u_\ell)^2 \leq \frac{C_{\mathsf{eff}}^2}{a_{\mathsf{m}}^2} \big(\mathcal{J}(u_\ell) - \mathcal{J}(u) \big)$$

Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening
 & Kreuzer (2008), Bartels & Milicevic (2020), . . .

Strength of the nonlinearity

Not robust with respect to 40 mm.

Sobolev norm

$$|a_{\mathsf{m}}||\nabla(u_{\ell}-u)|| \leq \eta(u_{\ell}) \leq \frac{C_{\mathsf{eff}}}{2} ||\nabla(u_{\ell}-u)||$$

Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler (2008), Garau, Morin, & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020), Botti & Riedlbeck (2020), ...

Energy difference

$$\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \leq \frac{1}{2} \eta(u_{\ell})^2 \leq \frac{C_{\mathsf{eff}}^2}{a_{\mathsf{m}}^2} \left(\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \right)$$

 Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening & Kreuzer (2008), Bartels & Milicevic (2020), . . .

Strength of the nonlinearity Not robust with respect to $\frac{a_0}{a_m}$.

Sobolev norm

$$\|a_{\mathsf{m}}\|\nabla(u_{\ell}-u)\| \leq \eta(u_{\ell}) \leq \frac{C_{\mathsf{eff}}}{2} \|\nabla(u_{\ell}-u)\|$$

Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler (2008), Garau, Morin, & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020), Botti & Riedlbeck (2020), ...

Energy difference

$$\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \leq \frac{1}{2} \eta(u_{\ell})^2 \leq \frac{C_{\mathsf{eff}}^2}{a_{\mathsf{m}}^2} \left(\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \right)$$

Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening
 & Kreuzer (2008), Bartels & Milicevic (2020), . . .

Strength of the nonlinearity

Not robust with respect to $\frac{a_0}{a_0}$.

Non-robustness

Dual norm of the residual

$$|||\mathcal{R}(u_{\ell})|||_{-1} \leq \eta(u_{\ell}) \leq \frac{C_{\text{eff}}}{|||\mathcal{R}(u_{\ell})|||_{-1}}$$

 Chaillou & Suri (2006), El Alaoui, Ern, & Vohralík (2011), Blechta, Málek, & Vohralík (2020), ...

- **Robust** with respect to $\frac{a_c}{a_m}$ if $|||v||| = ||\nabla v||$.

Dual norm of the residual

$$|||\mathcal{R}(u_{\ell})||_{-1} \leq \eta(u_{\ell}) \leq \frac{C_{\text{eff}}}{||\mathcal{R}(u_{\ell})||_{-1}}$$

 Chaillou & Suri (2006), El Alaoui, Ern, & Vohralík (2011), Blechta, Málek, & Vohralík (2020), ...

Strength of the nonlinearity

- Robust with respect to $\frac{\partial c}{\partial v}$ if $|||v||| = ||\nabla v||$.
- $|||\mathcal{R}(u_{\ell})|||_{-1}$ **localizes** over patches of elements.

Known results

Dual norm of the residual

$$|||\mathcal{R}(u_{\ell})||_{-1} \leq \eta(u_{\ell}) \leq \frac{C_{\text{eff}}}{||\mathcal{R}(u_{\ell})||_{-1}}$$

 Chaillou & Suri (2006), El Alaoui, Ern, & Vohralík (2011), Blechta, Málek, & Vohralík (2020), ...

Strength of the nonlinearity

- Robust with respect to $\frac{\partial c}{\partial v}$ if $|||v||| = ||\nabla v||$.
- $|||\mathcal{R}(u_{\ell})|||_{-1}$ localizes over patches of elements.
- Does not see the nonlinearity $(H^{-1}(\Omega))$ residual norm)

Known results

Dual norm of the residual

$$|||\mathcal{R}(u_{\ell})|||_{-1} \leq \eta(u_{\ell}) \leq \frac{C_{\text{eff}}}{||\mathcal{R}(u_{\ell})||_{-1}}$$

 Chaillou & Suri (2006), El Alaoui, Ern, & Vohralík (2011), Blechta, Málek, & Vohralík (2020), ...

Strength of the nonlinearity

- Robust with respect to $\frac{\partial c}{\partial v}$ if $|||v||| = ||\nabla v||$.
- $|||\mathcal{R}(u_{\ell})|||_{-1}$ **localizes** over patches of elements.
- Does not see the nonlinearity $(H^{-1}(\Omega))$ residual norm) (essentially estimates the **flux error** $||a(|\nabla u_{\ell}|)\nabla u_{\ell} - a(|\nabla u|)\nabla u||$).

Non-robustness

Nonlinear problems

A posteriori error estimates **robust** with respect to the **strength of nonlinearities** in more **physically-based error measures**?

Iterative linearization

Addressing iterative linearization

Chaillou & Suri (2006), Ern & Vohralík (2013), Bernardi, Dakroub, Mansour, & Sayah (2015), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020), Botti & Riedlbeck (2020), . . .

Observation

None of the above approaches employ in the analysis, to define norms, the iterative linearization, i.e., how do we solve the nonlinear system $\mathcal{A}_{\ell}(U_{\ell}) = F_{\ell}$.

Iterative linearization

Addressing iterative linearization

Chaillou & Suri (2006), Ern & Vohralík (2013), Bernardi, Dakroub, Mansour, & Sayah (2015), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020), Botti & Riedlbeck (2020), . . .

Observation

None of the above approaches employ in the analysis, to define norms, the iterative linearization, i.e., how do we solve the nonlinear system $A_{\ell}(U_{\ell}) = F_{\ell}$.

Setting Iterative linearization Estimates Numerics Extensions C

Outline

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- 5 Numerical experiments
- **6** Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

etting Iterative linearization Estimates Numerics Extensions C

Iterative linearization

Definition (Linearized finite element approximation)

 $u_{\ell}^{\mathbf{k}} \in V_{\ell}^{p}$ such that

$$(\mathbf{A}_{\ell}^{k-1}\nabla u_{\ell}^{k},\nabla v_{\ell})=(f,v_{\ell})+(\mathbf{b}_{\ell}^{k-1},\nabla v_{\ell}) \qquad \forall v_{\ell} \in V_{\ell}^{p}.$$

- $u_{\ell}^0 \in V_{\ell}^p$ a given initial guess
- iterative linearization index k > 1
- linearization: $\mathbf{A}_{\ell}^{k-1}: \Omega \to \mathbb{R}^{d \times d}$ diffusion matrix, $\mathbf{b}_{\ell}^{k-1}: \Omega \to \mathbb{R}^{d}$ RHS vector

Definition (Linearized energy functional)

$$\begin{split} \mathcal{J}_{\ell}^{k-1} : H_0^1(\Omega) \to \mathbb{R} \\ \mathcal{J}_{\ell}^{k-1}(v) := \frac{1}{n} \left\| (\boldsymbol{A}_{\ell}^{k-1})^{\frac{1}{2}} \nabla v \right\|^2 - (f, v) - (\boldsymbol{b}_{\ell}^{k-1}, \nabla v), \quad v \in H_0^1(\Omega) \end{split}$$

$$u_{\ell}^k := \arg\min_{v_{\ell} \in V_{\ell}^{\rho}} \mathcal{J}_{\ell}^{k-1}(v_{\ell})$$

g Iterative linearization Estimates Numerics Extensions C

Iterative linearization

Definition (Linearized finite element approximation)

 $u_\ell^{m{k}} \in V_\ell^p$ such that

$$(\mathbf{A}_{\ell}^{k-1}\nabla u_{\ell}^{k}, \nabla v_{\ell}) = (f, v_{\ell}) + (\mathbf{b}_{\ell}^{k-1}, \nabla v_{\ell}) \qquad \forall v_{\ell} \in V_{\ell}^{p}.$$

- $u_{\ell}^0 \in V_{\ell}^p$ a given initial guess
- iterative linearization index $k \ge 1$
- linearization: $\mathbf{A}_{\ell}^{k-1}: \Omega \to \mathbb{R}^{d \times d}$ diffusion matrix, $\mathbf{b}_{\ell}^{k-1}: \Omega \to \mathbb{R}^d$ RHS vector

Definition (Linearized energy functional)

$$\begin{split} \mathcal{J}_{\ell}^{k-1} : H_0^1(\Omega) \to \mathbb{R} \\ \mathcal{J}_{\ell}^{k-1}(v) := \frac{1}{2} \left\| (\boldsymbol{A}_{\ell}^{k-1})^{\frac{1}{2}} \nabla v \right\|^2 - (f, v) - (\boldsymbol{b}_{\ell}^{k-1}, \nabla v), \quad v \in H_0^1(\Omega). \end{split}$$

$$u_{\ell}^{k} := \arg\min_{v_{\ell} \in V_{\ell}^{p}} \mathcal{J}_{\ell}^{k-1}(v_{\ell})$$

ng Iterative linearization Estimates Numerics Extensions C

Iterative linearization

Definition (Linearized finite element approximation)

 $u_{\ell}^{\mathbf{k}} \in V_{\ell}^{\mathbf{p}}$ such that

$$(\mathbf{A}_{\ell}^{k-1}\nabla u_{\ell}^{k},\nabla v_{\ell})=(f,v_{\ell})+(\mathbf{b}_{\ell}^{k-1},\nabla v_{\ell}) \qquad \forall v_{\ell}\in V_{\ell}^{p}.$$

- $u_{\ell}^0 \in V_{\ell}^p$ a given initial guess
- iterative linearization index $k \ge 1$
- linearization: $\mathbf{A}_{\ell}^{k-1}: \Omega \to \mathbb{R}^{d \times d}$ diffusion matrix, $\mathbf{b}_{\ell}^{k-1}: \Omega \to \mathbb{R}^d$ RHS vector

Definition (Linearized energy functional)

$$egin{aligned} \mathcal{J}_\ell^{k-1} : H_0^1(\Omega) &
ightarrow \mathbb{R} \ \mathcal{J}_\ell^{k-1}(v) := rac{1}{2} \left\| (oldsymbol{A}_\ell^{k-1})^{rac{1}{2}}
abla v
ight\|^2 - (f,v) - (oldsymbol{b}_\ell^{k-1},
abla v), \quad v \in H_0^1(\Omega). \end{aligned}$$

$$u_{\ell}^{k} := \arg\min_{v_{\ell} \in V^{p}} \mathcal{J}_{\ell}^{k-1}(v_{\ell})$$

g Iterative linearization Estimates Numerics Extensions C

Iterative linearization

Definition (Linearized finite element approximation)

 $u_{\ell}^{\mathbf{k}} \in V_{\ell}^{\mathbf{p}}$ such that

$$(\mathbf{A}_{\ell}^{k-1}\nabla u_{\ell}^{k},\nabla v_{\ell})=(f,v_{\ell})+(\mathbf{b}_{\ell}^{k-1},\nabla v_{\ell}) \qquad \forall v_{\ell}\in V_{\ell}^{p}.$$

- $u_{\ell}^0 \in V_{\ell}^p$ a given initial guess
- iterative linearization index $k \ge 1$
- linearization: $\mathbf{A}_{\ell}^{k-1}: \Omega \to \mathbb{R}^{d \times d}$ diffusion matrix, $\mathbf{b}_{\ell}^{k-1}: \Omega \to \mathbb{R}^{d}$ RHS vector

Definition (Linearized energy functional)

$$\begin{split} \mathcal{J}_{\ell}^{k-1} &: H_0^1(\Omega) \to \mathbb{R} \\ \mathcal{J}_{\ell}^{k-1}(v) &:= \frac{1}{2} \left\| (\boldsymbol{A}_{\ell}^{k-1})^{\frac{1}{2}} \nabla v \right\|^2 - (f,v) - (\boldsymbol{b}_{\ell}^{k-1}, \nabla v), \quad v \in H_0^1(\Omega). \end{split}$$

$$u_\ell^k := \arg\min_{v_\ell \in V_e^{
ho}} \, \mathcal{J}_\ell^{k-1}(v_\ell)$$

ng Iterative linearization Estimates Numerics Extensions C

Examples

Example (Picard (fixed-point))

$$m{A}_{\ell}^{k-1} = a(|\nabla u_{\ell}^{k-1}|)m{I}_{d}, \quad m{b}_{\ell}^{k-1} = m{0}.$$

Example (Zarantonello)

$$\mathbf{A}_{\ell}^{k-1} = \gamma \mathbf{I}_{d}, \quad \mathbf{b}_{\ell}^{k-1} = \left(\gamma - \mathbf{a}(|\nabla u_{\ell}^{k-1}|)\right) \nabla u_{\ell}^{k-1},$$

with $\gamma \geq \frac{a_0^2}{a_m}$ a constant parameter.

Example ((Damped) Newton)

$$\mathbf{A}_{\ell}^{k-1} = a(|\nabla u_{\ell}^{k-1}|)\mathbf{I}_{d} + \theta \frac{a'(|\nabla u_{\ell}^{k-1}|)}{|\nabla u_{\ell}^{k-1}|} \nabla u_{\ell}^{k-1} \otimes \nabla u_{\ell}^{k-1},$$

$$\mathbf{b}_{\ell}^{k-1} = \theta a'(|\nabla u_{\ell}^{k-1}|) |\nabla u_{\ell}^{k-1}| \nabla u_{\ell}^{k-1},$$

with $\theta \in [0, 1]$ the damping parameter.

• $\theta = 1$ gives the Newton iteration, $\theta = 0$ gives the Picard iteration

ng Iterative linearization Estimates Numerics Extensions C

Examples

Example (Picard (fixed-point))

$$m{A}_{\ell}^{k-1} = a(|\nabla u_{\ell}^{k-1}|) m{I}_d, \quad m{b}_{\ell}^{k-1} = m{0}.$$

Example (Zarantonello)

$$\mathbf{A}_{\ell}^{k-1} = \gamma \mathbf{I}_{d}, \quad \mathbf{b}_{\ell}^{k-1} = \big(\gamma - a(|\nabla u_{\ell}^{k-1}|)\big)\nabla u_{\ell}^{k-1},$$

with $\gamma \geq \frac{a_c^2}{a_m}$ a constant parameter.

Example ((Damped) Newton)

$$\mathbf{A}_{\ell}^{k-1} = a(|\nabla u_{\ell}^{k-1}|)\mathbf{I}_{d} + \theta \frac{a'(|\nabla u_{\ell}^{k-1}|)}{|\nabla u_{\ell}^{k-1}|} \nabla u_{\ell}^{k-1} \otimes \nabla u_{\ell}^{k-1},$$

$$\mathbf{b}_{\ell}^{k-1} = \theta a'(|\nabla u_{\ell}^{k-1}|) |\nabla u_{\ell}^{k-1}| \nabla u_{\ell}^{k-1},$$

with $\theta \in [0, 1]$ the damping parameter.

• $\theta = 1$ gives the Newton iteration, $\theta = 0$ gives the Picard iteration

Examples

Example (Picard (fixed-point))

$$m{A}_{\ell}^{k-1} = a(|\nabla u_{\ell}^{k-1}|)m{I}_{d}, \quad m{b}_{\ell}^{k-1} = m{0}.$$

Example (Zarantonello)

$$\mathbf{A}_{\ell}^{k-1} = \gamma \mathbf{I}_{d}, \quad \mathbf{b}_{\ell}^{k-1} = \big(\gamma - a(|\nabla u_{\ell}^{k-1}|)\big)\nabla u_{\ell}^{k-1},$$

with $\gamma \geq \frac{a_c^2}{a_m}$ a constant parameter.

Example ((Damped) Newton)

$$\mathbf{A}_{\ell}^{k-1} = a(|\nabla u_{\ell}^{k-1}|)\mathbf{I}_{d} + \theta \frac{a'(|\nabla u_{\ell}^{k-1}|)}{|\nabla u_{\ell}^{k-1}|} \nabla u_{\ell}^{k-1} \otimes \nabla u_{\ell}^{k-1},$$

$$\mathbf{b}_{\ell}^{k-1} = \theta a'(|\nabla u_{\ell}^{k-1}|) |\nabla u_{\ell}^{k-1}| \nabla u_{\ell}^{k-1},$$

with $\theta \in [0, 1]$ the damping parameter.

• $\theta = 1$ gives the Newton iteration, $\theta = 0$ gives the Picard iteration

Setting Iterative linearization Estimates Numerics Extensions C

Outline

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- Mumerical experiments
- 6 Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

Theorem (A posteriori estimate of energy)

Let $f \in \mathcal{P}_{p-1}(\mathcal{T}_{\ell})$ for simplicity. For all linearization steps $k \geq 1$,

$$\mathcal{E}_{\ell}^{k} \leq \eta_{\ell}^{k}$$
.

Theorem (A posteriori estimate of energy)

Let $f \in \mathcal{P}_{p-1}(\mathcal{T}_{\ell})$ for simplicity. For all linearization steps $k \geq 1$,

$$\mathcal{E}_{\ell}^{k} \leq \eta_{\ell}^{k}$$
.

Moreover, for k satisfying a stopping criterion, there holds

$$\eta_{\ell}^{k} \leq \frac{C_{\text{eff}}(d, \kappa_{\mathcal{T}}, p \text{ if } d \geq 4)C_{\ell}^{k}\mathcal{E}_{\ell}^{k},$$

Theorem (A posteriori estimate of energy)

Let $f \in \mathcal{P}_{p-1}(\mathcal{T}_{\ell})$ for simplicity. For all linearization steps $k \geq 1$,

$$\mathcal{E}_{\ell}^{k} \leq \eta_{\ell}^{k}.$$

Moreover, for k satisfying a stopping criterion, there holds

$$\eta_{\ell}^{k} \leq C_{\text{eff}}(d, \kappa_{\mathcal{T}}, p \text{ if } d \geq 4)C_{\ell}^{k}\mathcal{E}_{\ell}^{k},$$

where

$$C_\ell^k$$

Zarantonello

Theorem (A posteriori estimate of energy) Let $f \in \mathcal{P}_{p-1}(\mathcal{T}_{\ell})$ for simplicity. For all linearization steps $k \geq 1$, $\mathcal{E}_{\ell}^{k} \leq \eta_{\ell}^{k}$. Moreover, for k satisfying a stopping criterion, there holds $\eta_{\ell}^{k} \leq C_{\text{eff}}(d, \kappa_{\mathcal{T}}, p \text{ if } d \geq 4)C_{\ell}^{k}\mathcal{E}_{\ell}^{k}$, where C_{ℓ}^{k} $\mathcal{E}_{\ell}^{k} \leq \mathcal{E}_{\ell}^{k}$ $\mathcal{E}_{\ell}^{k} \leq \mathcal{E}_{\ell}^{k}$

• $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities

Theorem (A posteriori estimate of energy)

Let $f \in \mathcal{P}_{p-1}(\mathcal{T}_{\ell})$ for simplicity. For all linearization steps $k \geq 1$,

$$\mathcal{E}_{\ell}^{k} \leq \eta_{\ell}^{k}.$$

Moreover, for k satisfying a stopping criterion, there holds

$$\eta_{\ell}^{k} \leq \frac{C_{\mathsf{eff}}(d, \kappa_{\mathcal{T}}, p \ \textit{if} \ d \geq 4)C_{\ell}^{k}\mathcal{E}_{\ell}^{k},$$

where

$$C_{\ell}^{k} := \max_{m{a} \in \mathcal{V}_{\ell}} \left(\frac{\sup_{m{\omega}_{\ell}^{m{a}}} A_{\mathrm{c},\ell}^{k-1}}{\inf_{m{\omega}_{\ell}^{m{a}}} A_{\mathrm{m},\ell}^{k-1}} \right) \left\{ \begin{array}{c} = 1 & Zarantonello \end{array}
ight.$$

• $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities

Theorem (A posteriori estimate of energy)

Let $f \in \mathcal{P}_{p-1}(\mathcal{T}_{\ell})$ for simplicity. For all linearization steps $k \geq 1$,

$$\mathcal{E}_{\ell}^{k} \leq \eta_{\ell}^{k}$$
.

Moreover, for k satisfying a stopping criterion, there holds

$$\eta_{\ell}^{k} \leq \frac{C_{\mathsf{eff}}(d, \kappa_{\mathcal{T}}, p \ \textit{if} \ d \geq 4)C_{\ell}^{k}\mathcal{E}_{\ell}^{k},$$

$$C_{\ell}^{k} := \max_{m{a} \in \mathcal{V}_{\ell}} \left(\frac{\sup_{m{\omega}_{\ell}^{m{a}}} A_{\mathrm{c},\ell}^{k-1}}{\inf_{m{\omega}_{\ell}^{m{a}}} A_{\mathrm{m},\ell}^{k-1}}
ight) \left\{ \begin{array}{c} = 1 & Zarantonello \end{array}
ight.$$

- $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities
- C_{ℓ}^{k} given by **local** (patch) **properties**:

Theorem (A posteriori estimate of energy)

Let $f \in \mathcal{P}_{p-1}(\mathcal{T}_{\ell})$ for simplicity. For all linearization steps $k \geq 1$,

$$\mathcal{E}_{\ell}^{k} \leq \eta_{\ell}^{k}.$$

Moreover, for k satisfying a stopping criterion, there holds

$$\eta_{\ell}^{k} \leq C_{\text{eff}}(d, \kappa_{\mathcal{T}}, p \text{ if } d \geq 4)C_{\ell}^{k}\mathcal{E}_{\ell}^{k},$$

$$C_{\ell}^{k} := \max_{m{a} \in \mathcal{V}_{\ell}} \left(rac{\sup_{m{\omega}_{\ell}^{m{a}}} A_{ ext{c},\ell}^{k-1}}{\inf_{m{\omega}_{\ell}^{m{a}}} A_{ ext{m},\ell}^{k-1}}
ight) \, \left\{ egin{array}{ll} = 1 & \textit{Zarantonello} \ \leq rac{A_{ ext{c}}}{A_{ ext{m}}} \leq rac{a_{ ext{c}}}{a_{ ext{m}}} & \textit{in general.} \end{array}
ight.$$

- $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities
- C_{ℓ}^{k} given by **local** (patch) **properties**:

Theorem (A posteriori estimate of augmented energy)

Let $f \in \mathcal{P}_{p-1}(\mathcal{T}_{\ell})$ for simplicity. For all linearization steps $k \geq 1$,

$$\mathcal{E}_{\ell}^{k} \leq \eta_{\ell}^{k}$$
.

Moreover, for k satisfying a stopping criterion, there holds

$$\eta_{\ell}^{k} \leq C_{\text{eff}}(d, \kappa_{\mathcal{T}}, p \text{ if } d \geq 4)C_{\ell}^{k}\mathcal{E}_{\ell}^{k},$$

$$C_{\ell}^{k} := \max_{m{a} \in \mathcal{V}_{\ell}} \left(rac{\sup_{m{\omega}_{\ell}^{m{a}}} A_{ ext{c},\ell}^{k-1}}{\inf_{m{\omega}_{\ell}^{m{a}}} A_{ ext{m},\ell}^{k-1}}
ight) \, \left\{ egin{array}{ll} = 1 & \textit{Zarantonello} \ \leq rac{A_{ ext{c}}}{A_{ ext{m}}} \leq rac{a_{ ext{c}}}{a_{ ext{m}}} & \textit{in general.} \end{array}
ight.$$

- $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities
- C_{ℓ}^{k} given by **local** (patch) **properties**: typically **much better** than a_{c}/a_{m}

Theorem (A posteriori estimate of augmented energy)

Let $f \in \mathcal{P}_{p-1}(\mathcal{T}_{\ell})$ for simplicity. For all linearization steps $k \geq 1$,

$$\mathcal{E}_{\ell}^{k} \leq \eta_{\ell}^{k}$$
.

Moreover, for k satisfying a stopping criterion, there holds

$$\eta_{\ell}^{k} \leq C_{\mathsf{eff}}(d, \kappa_{\mathcal{T}}, p \ \textit{if} \ d \geq 4)C_{\ell}^{k}\mathcal{E}_{\ell}^{k},$$

$$C_{\ell}^{k} := \max_{m{a} \in \mathcal{V}_{\ell}} \left(rac{\sup_{m{\omega}_{\ell}^{m{a}}} A_{ ext{c},\ell}^{k-1}}{\inf_{m{\omega}_{\ell}^{m{a}}} A_{ ext{m},\ell}^{k-1}}
ight) \, \left\{ egin{array}{ll} = 1 & \textit{Zarantonello} \ \leq rac{A_{ ext{c}}}{A_{ ext{m}}} \leq rac{a_{ ext{c}}}{a_{ ext{m}}} & \textit{in general.} \end{array}
ight.$$

- $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities
- C_{ℓ}^{k} given by **local** (patch) **properties**: typically **much better** than a_{c}/a_{m}
- C_{ℓ}^{k} computable: we can affirm robustness a posteriori, for the given case

Theorem (A posteriori estimate of augmented energy)

Let
$$f \in \mathcal{P}_{p-1}(\mathcal{T}_{\ell})$$
 for simplicity. For all linearization steps $k \geq 1$,
$$\underbrace{\mathcal{J}(u_{\ell}^k) - \mathcal{J}(u)}_{\text{energy difference}} \leq \underbrace{\mathcal{J}(u_{\ell}^k) - \mathcal{J}^*(\sigma_{\ell}^k)}_{\text{en. diff. estimate}}$$
$$\text{Moreover, for } k \text{ satisfying a stopping criterion, there holds}$$
$$\eta_{\ell}^k \leq C_{\text{eff}}(d, \kappa_{\mathcal{T}}, p \text{ if } d \geq 4) C_{\ell}^k \mathcal{E}_{\ell}^k,$$

$$C_{\ell}^{k} := \max_{\boldsymbol{a} \in \mathcal{V}_{\ell}} \left(\frac{\sup_{\boldsymbol{\omega}_{\ell}^{\boldsymbol{a}}} A_{\mathrm{c},\ell}^{k-1}}{\inf_{\boldsymbol{\omega}_{\ell}^{\boldsymbol{a}}} A_{\mathrm{m},\ell}^{k-1}} \right) \; \left\{ \begin{array}{l} = 1 & \textit{Zarantonello} \\ \leq \frac{A_{\mathrm{c}}}{A_{\mathrm{m}}} \leq \frac{a_{\mathrm{c}}}{a_{\mathrm{m}}} & \textit{in general.} \end{array} \right.$$

- $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities
- C_{ℓ}^{k} given by **local** (patch) **properties**: typically **much better** than a_{c}/a_{m}
- C_{ℓ}^{k} computable: we can affirm robustness a posteriori, for the given case

Theorem (A posteriori estimate of augmented energy)

Let
$$f \in \mathcal{P}_{p-1}(\mathcal{T}_{\ell})$$
 for simplicity. For all linearization steps $k \geq 1$,
$$\underbrace{\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}(u) + \lambda_{\ell}^{k} \underbrace{(\mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k}) - \mathcal{J}_{\ell}^{k-1}(u_{\langle \ell \rangle}^{k}))}}_{energy \ difference} \leq \underbrace{\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}^{*}(\sigma_{\ell}^{k}) + \lambda_{\ell}^{k} \underbrace{(\mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k}) - \mathcal{J}_{\ell}^{*,k-1}(\sigma_{\ell}^{k}))}_{en. \ diff. \ en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearization} = \underbrace{n. \ diff. \ linearization \ estimate}_{en. \ diff. \ linearizati$$

Moreover, for k satisfying a stopping criterion, there holds

$$\eta_{\ell}^{k} \leq C_{\text{eff}}(d, \kappa_{\mathcal{T}}, p \text{ if } d \geq 4)C_{\ell}^{k}\mathcal{E}_{\ell}^{k},$$

$$C_{\ell}^{k} := \max_{\boldsymbol{a} \in \mathcal{V}_{\ell}} \left(\frac{\sup_{\omega_{\ell}^{\boldsymbol{a}}} A_{\mathrm{c},\ell}^{k-1}}{\inf_{\omega_{\ell}^{\boldsymbol{a}}} A_{\mathrm{m},\ell}^{k-1}} \right) \; \left\{ \begin{array}{ll} = 1 & \textit{Zarantonello} \\ \leq \frac{A_{\mathrm{c}}}{A_{\mathrm{m}}} \leq \frac{a_{\mathrm{c}}}{a_{\mathrm{m}}} & \textit{in general.} \end{array} \right.$$

- $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities
- C_{ℓ}^{k} given by local (patch) properties: typically much better than a_{c}/a_{m}
- C_{ℓ}^{k} computable: we can affirm robustness a posteriori, for the given case

Theorem (A posteriori estimate of augmented energy)

Let
$$f \in \mathcal{P}_{p-1}(\mathcal{T}_{\ell})$$
 for simplicity. For all linearization steps $k \geq 1$,
$$\underbrace{\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}(u)}_{\text{energy difference}} + \lambda_{\ell}^{k} \underbrace{(\mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k}) - \mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k}))}_{\text{en. diff. linearization}} \leq \underbrace{\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}^{*}(\sigma_{\ell}^{k})}_{\text{en. diff. linearization}} + \lambda_{\ell}^{k} \underbrace{(\mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k}) - \mathcal{J}^{*}, k-1}_{\text{en. diff. linearization}} (\sigma_{\ell}^{k}))$$

Moreover, for k satisfying a stopping criterion, there holds

$$\eta_\ell^{m{k}} \leq C_{ ext{eff}}(m{d}, \kappa_{\mathcal{T}}, p ext{ if } m{d} \geq 4)C_\ell^{m{k}} \mathcal{E}_\ell^{m{k}},$$

$$C_{\ell}^{k} := \max_{\boldsymbol{a} \in \mathcal{V}_{\ell}} \left(\frac{\sup_{\omega_{\ell}^{\boldsymbol{a}}} A_{\mathrm{c},\ell}^{k-1}}{\inf_{\omega_{\ell}^{\boldsymbol{a}}} A_{\mathrm{m},\ell}^{k-1}} \right) \; \left\{ \begin{array}{l} = 1 & \textit{Zarantonello} \\ \leq \frac{A_{\mathrm{c}}}{A_{\mathrm{m}}} \leq \frac{a_{\mathrm{c}}}{a_{\mathrm{m}}} & \textit{in general.} \end{array} \right.$$

- λ_{ℓ}^{k} computable weight to make the two components comparable
- $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities
- C_{ℓ}^{k} given by local (patch) properties: typically much better than a_{c}/a_{m}
- C_{ℓ}^{k} computable: we can affirm robustness a posteriori, for the given case

Setting Iterative linearization Estimates Numerics Extensions C

Outline

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
 - A posteriori error estimates for an augmented energy difference
- Numerical experiments
- 6 Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

Setting Iterative linearization Estimates Numerics Extensions C

Smooth solution

Setting

- unit square $\Omega = (0, 1)^2$
- known smooth solution u(x, y) := 10 x(x 1)y(y 1)
- mean curvature or exponential nonlinearity

$$a(r) = a_{\mathsf{m}} + rac{a_{\mathsf{c}} - a_{\mathsf{m}}}{\sqrt{1 + r^2}} \qquad ext{or} \qquad a(r) = a_{\mathsf{m}} + (a_{\mathsf{c}} - a_{\mathsf{m}}) rac{1 - e^{-rac{3}{2}r^2}}{1 + 2e^{-rac{3}{2}}}$$

- p = 1,3969 DOFs
- stopping iteration \overline{k} such that $\|\nabla(u_{\ell}^{\overline{k}-1}-u_{\ell}^{\overline{k}})\|<10^{-6}$
- effectivity indices

$$\underbrace{I_{\ell}^{k} := \left(\frac{\eta_{\ell}^{k}}{\mathcal{E}_{\ell}^{k}}\right)^{\frac{1}{2}}}_{\text{total}}, \quad I_{N,\ell}^{k} := \underbrace{\left(\frac{\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}^{*}(\sigma_{\ell}^{k})}{\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}(u)}\right)^{\frac{1}{2}}}_{\text{energy difference}}, \quad I_{L,\ell}^{k} := \underbrace{\left(\frac{\mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k}) - \mathcal{J}_{\ell}^{*,k-1}(\sigma_{\ell}^{k})}{\mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k}) - \mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k})}\right)^{\frac{1}{2}}}_{\text{energy difference linearization}}$$

Error certification robust wrt the nonlinearities (mean curvature)

Error certification robust wrt the nonlinearities (exponential, robustness only for Zarantonello)

Error certification robust wrt the nonlinearities (exponential)

Components of $\mathcal{E}^{\overline{k}}_{\ell}$: the energy difference $\mathcal{E}^{\overline{k}}_{N,\ell} = \mathcal{J}(u^{\overline{k}}_{\ell}) - \mathcal{J}(u)$, the energy difference of the linearized problem $\mathcal{E}^{\overline{k}}_{L,\ell} = \mathcal{J}^{\overline{k}-1}_{\ell}(u^{\overline{k}}_{\ell}) - \mathcal{J}^{\overline{k}-1}_{\ell}(u^{\overline{k}}_{\ell})$, & the weight λ^k_{ℓ}

Singular solution

Setting

- L-shaped domain $\Omega = (-1,1)^2 \setminus ([0,1) \times (-1,0])$
- known singular solution $u(\rho,\theta) = \rho^{\frac{2}{3}} \sin(\frac{2}{3}\theta)$
- exponential nonlinearity

$$a(r) = a_{\mathsf{m}} + (a_{\mathsf{c}} - a_{\mathsf{m}}) \frac{1 - e^{-\frac{3}{2}r^2}}{1 + 2e^{-\frac{3}{2}}}$$

 \bullet p = 1, uniform or adaptive mesh refinement

tting Iterative linearization Estimates Numerics Extensions C

Where is the error localized?

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Computer Methods in Applied Mechanics and Engineering (2020)

Setting Iterative linearization Estimates Numerics Extensions C

Adaptive mesh refinement

Error certification robust wrt the nonlinearities

Uniform mesh refinement

Adaptive mesh refinement

Decreasing the error efficiently: optimal decay rate wrt DoFs

Setting Iterative linearization Estimates Numerics Extensions C Setting (gradient-independent nonlinearities) Estimates Numerics

Outline

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- Numerical experiments
- 6 Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

Setting Iterative linearization Estimates Numerics Extensions C Setting (gradient-independent nonlinearities) Estimates Numerics

Outline

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- Numerical experiments
- 6 Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

A model nonlinear problem

Nonlinear elliptic problem

Find
$$u:\Omega\to\mathbb{R}$$
 such that

$$-\nabla \cdot \left(\underline{\tau \underline{K}}(\underline{\mathbf{x}}) (\underbrace{\underline{\mathcal{D}}(\underline{\mathbf{x}},\underline{u})}_{\text{diffusion}} \nabla \underline{u} + \underbrace{\underline{\mathbf{q}}(\underline{\mathbf{x}},\underline{u})}_{\text{advection}} \right) + \underbrace{\underline{\mathbf{f}}(\underline{\mathbf{x}},\underline{u})}_{\text{reaction}} = 0 \quad \text{in} \quad \Omega,$$

$$\underline{u} = 0 \quad \text{on} \quad \partial \Omega.$$

 \bullet $\tau > 0$ a parameter (time step size in transient problems)

$$\begin{aligned} |\mathcal{D}(\pmb{x}_1,\xi_1) - \mathcal{D}(\pmb{x}_2,\xi_2)| &\leq \mathcal{D}_{\mathsf{M}}(|\pmb{x}_1 - \pmb{x}_2| + |\xi_1 - \xi_2|) \quad \forall \pmb{x}_1,\pmb{x}_2 \in \Omega \ \textit{and} \ \xi_1,\xi_2 \in \mathcal{R}, \\ 0 &\leq f(\pmb{x},\xi_2) - f(\pmb{x},\xi_1) \leq f_{\mathsf{M}} \left(\xi_2 - \xi_1\right) \quad \forall \pmb{x} \in \Omega \ \textit{and} \ \xi_2 \geq \xi_1, \\ \pmb{q} \ \textit{is "small" wrt} \ \pmb{K}\mathcal{D}. \end{aligned}$$

A model nonlinear problem

Nonlinear elliptic problem

Find $u:\Omega\to\mathbb{R}$ such that

$$-\nabla \cdot \left(\underline{\tau \underline{K}}(\underline{\mathbf{x}}) (\underline{\underline{\mathcal{D}}}(\underline{\mathbf{x}},\underline{u}) \nabla \underline{u} + \underline{\underline{\mathbf{q}}}(\underline{\mathbf{x}},\underline{u}) \right) \right) + \underbrace{\underline{\mathbf{f}}(\underline{\mathbf{x}},\underline{u})}_{\text{reaction}} = 0 \quad \text{in} \quad \Omega,$$

$$\underline{u} = 0 \quad \text{on} \quad \partial \Omega.$$

• $\tau > 0$ a parameter (time step size in transient problems)

Assumption (Nonlinear functions \mathcal{D} , \boldsymbol{q} , and f)

$$\begin{split} |\mathcal{D}(\boldsymbol{x}_1,\xi_1) - \mathcal{D}(\boldsymbol{x}_2,\xi_2)| &\leq \mathcal{D}_{M}(|\boldsymbol{x}_1 - \boldsymbol{x}_2| + |\xi_1 - \xi_2|) \quad \forall \boldsymbol{x}_1,\boldsymbol{x}_2 \in \Omega \text{ and } \xi_1,\xi_2 \in \mathcal{R}, \\ 0 &\leq f(\boldsymbol{x},\xi_2) - f(\boldsymbol{x},\xi_1) \leq f_{M}\left(\xi_2 - \xi_1\right) \quad \forall \boldsymbol{x} \in \Omega \text{ and } \xi_2 \geq \xi_1, \\ \boldsymbol{q} \text{ is "small" wrt } \underline{\boldsymbol{K}}\mathcal{D}. \end{split}$$

A model nonlinear problem

Nonlinear elliptic problem

Find $u:\Omega\to\mathbb{R}$ such that

$$-\nabla \cdot \left(\underline{\tau \underline{K}}(\underline{\mathbf{x}}) (\underbrace{\underline{\mathcal{D}}(\underline{\mathbf{x}},\underline{u})}_{\text{diffusion}} \nabla \underline{u} + \underbrace{\underline{\mathbf{q}}(\underline{\mathbf{x}},\underline{u})}_{\text{advection}} \right) + \underbrace{\underline{\mathbf{f}}(\underline{\mathbf{x}},\underline{u})}_{\text{reaction}} = 0 \quad \text{in} \quad \Omega,$$

$$\underline{u} = 0 \quad \text{on} \quad \partial \Omega.$$

• $\tau > 0$ a parameter (time step size in transient problems)

Assumption (Nonlinear functions \mathcal{D} , \boldsymbol{q} , and f)

$$\begin{split} |\mathcal{D}(\boldsymbol{x}_1,\xi_1) - \mathcal{D}(\boldsymbol{x}_2,\xi_2)| &\leq \mathcal{D}_{M}(|\boldsymbol{x}_1 - \boldsymbol{x}_2| + |\xi_1 - \xi_2|) \quad \forall \boldsymbol{x}_1, \boldsymbol{x}_2 \in \Omega \text{ and } \xi_1, \xi_2 \in \mathcal{R}, \\ 0 &\leq f(\boldsymbol{x},\xi_2) - f(\boldsymbol{x},\xi_1) \leq f_{M}\left(\xi_2 - \xi_1\right) \quad \forall \boldsymbol{x} \in \Omega \text{ and } \xi_2 \geq \xi_1, \\ \boldsymbol{q} \text{ is "small" wrt } \underline{\boldsymbol{K}}\mathcal{D}. \end{split}$$

Strength of the nonlinearity ratio a_c/a_m

Definition (Linearized finite element approximation)

 $u_{\ell}^{\mathbf{k}} \in V_{\ell}^{\mathbf{p}}$ such that

$$\left(\!\!\left(u_\ell^k-u_\ell^{k-1},\,v_\ell\right)\!\!\right)_{u_\ell^{k-1}}=-\langle\underbrace{\mathcal{R}(u_\ell^{k-1})}_{\text{residual}},v_\ell\rangle\qquad\forall v_\ell\in V_\ell^p.$$

linearization: reaction-diffusion scalar product

$$((w, v))_{u_{\ell}^{k-1}} := (\underbrace{L(x, u_{\ell}^{k-1})}_{\text{reaction coef}} w, v) + (\underbrace{\mathfrak{a}(x, u_{\ell}^{k-1})}_{\text{diffusion coef}} \nabla w, \nabla v), \quad w, v \in H_0^1(\Omega)$$

covers many linearization schemes: Picard (fixed-point), L & M-schemes, ...

$$|||v|||_{1,u_{\ell}^{k-1}} := ((v, v))_{u_{\ell}^{k-1}}^{\frac{1}{2}}, \quad v \in H_0^1(\Omega)$$

Iterative linearization

Definition (Linearized finite element approximation)

 $u_{\ell}^{\mathbf{k}} \in V_{\ell}^{\mathbf{p}}$ such that

$$((u_\ell^k-u_\ell^{k-1},\ v_\ell))_{u_\ell^{k-1}} = -\langle \underbrace{\mathcal{R}(u_\ell^{k-1})}_{\mathsf{residual}}, v_\ell
angle \qquad orall v_\ell \in V_\ell^p.$$

linearization: reaction-diffusion scalar product

$$((w, v))_{u_{\ell}^{k-1}} := (\underbrace{L(x, u_{\ell}^{k-1})}_{\text{reaction coef.}} w, v) + (\underbrace{\mathfrak{a}(x, u_{\ell}^{k-1})}_{\text{diffusion coef.}} \nabla w, \nabla v), \quad w, v \in H_0^1(\Omega)$$

covers many linearization schemes: Picard (fixed-point), L & M-schemes, . . .

$$|||v|||_{1,u_{\rho}^{k-1}} := ((v, v))^{\frac{1}{2}}_{u_{\rho}^{k-1}}, \quad v \in H_0^1(\Omega)$$

induced by the linearization scalar product

Iterative linearization

Definition (Linearized finite element approximation)

 $u_{\ell}^{\mathbf{k}} \in V_{\ell}^{\mathbf{p}}$ such that

$$((u_\ell^k-u_\ell^{k-1},\ v_\ell))_{u_\ell^{k-1}} = -\langle \underbrace{\mathcal{R}(u_\ell^{k-1})}_{\mathsf{residual}}, v_\ell
angle \qquad orall v_\ell \in V_\ell^p.$$

linearization: reaction-diffusion scalar product

$$((w, v))_{u_{\ell}^{k-1}} := (\underbrace{L(x, u_{\ell}^{k-1})}_{\text{reaction coef.}} w, v) + (\underbrace{\mathfrak{a}(x, u_{\ell}^{k-1})}_{\text{diffusion coef.}} \nabla w, \nabla v), \quad w, v \in H_0^1(\Omega)$$

covers many linearization schemes: Picard (fixed-point), L & M-schemes, ...

Iteration-dependent norm

$$|||v|||_{1,u_{\ell}^{k-1}} := ((v, v))^{\frac{1}{2}}_{u_{\ell}^{k-1}}, \quad v \in H_0^1(\Omega)$$

induced by the linearization scalar product

An orthogonal decomposition of the total residual/error

Theorem (Orthogonal decomposition of the total error into linearization and discretization components)

For all linearization steps $k \ge 1$, there holds

$$\underbrace{|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1}}^{2}}_{\text{total residual/error}} = \underbrace{|||u_{\ell}^{k-1} - u_{\ell}^{k}|||_{1,u_{\ell}^{k-1}}^{2}}_{\text{error}} + \underbrace{|||\mathcal{R}_{\text{disc}}^{u_{\ell}^{k-1}}(u_{\ell}^{k})|||_{-1,u_{\ell}^{k-1}}^{2}}_{\text{discretization residual/error}}.$$

- orthogonal decomposition

An orthogonal decomposition of the total residual/error

Theorem (Orthogonal decomposition of the total error into linearization and discretization components)

For all linearization steps $k \ge 1$, there holds

$$\underbrace{ \frac{|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1}}^{2}}{|||u_{\ell}^{k-1}-u_{\ell}^{k}|||_{1,u_{\ell}^{k}}^{2}}}_{|||u_{\ell}^{k-1}-u_{\ell}^{k}|||_{1,u_{\ell}^{k}}^{2}} + \underbrace{|||\mathcal{R}_{\mathrm{disc}}^{u_{\ell}^{k-1}}(u_{\ell}^{k})|||_{-1,u_{\ell}^{k-1}}^{2}}_{|||u_{\ell}^{k}-u_{\ell}^{k}|||_{1,u_{\ell}^{k}}^{2}}.$$

- orthogonal decomposition
- error components

Setting Iterative linearization Estimates Numerics Extensions C Setting (gradient-independent nonlinearities) Estimates Numerics

Outline

- Numerical approximation of partial differential equations
- A posteriori error estimates
- 2 Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- Numerical experiments
- 6 Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps $k \ge 1$,

$$|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1}} \leq \eta_{\ell}^{k}.$$

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps $k \ge 1$,

$$|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1}} \leq \eta_{\ell}^{k}.$$

Moreover, for all linearization steps $k \ge 1$, there holds

$$\eta_\ell^k \leq \textcolor{red}{C_{\text{eff}}(\textit{d},\kappa_{\mathcal{T}},\textit{p})C_\ell^k|||\mathcal{R}(u_\ell^{k-1})|||_{-1,u_\ell^{k-1}} + \textit{quadrature terms} + \textit{data oscillation terms},$$

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps $k \ge 1$,

$$|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1}} \leq \eta_{\ell}^{k}.$$

Moreover, for all linearization steps $k \ge 1$, there holds

$$\eta_\ell^k \leq \textcolor{red}{C_{\text{eff}}(\textit{d},\kappa_{\mathcal{T}},\textit{p})C_\ell^k|||\mathcal{R}(u_\ell^{k-1})|||_{-1,u_\ell^{k-1}} + \textit{quadrature terms} + \textit{data oscillation terms},$$

$$C_{\ell}^{k}$$

$$\begin{cases} = 1 & Zarantonello \end{cases}$$

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps $k \ge 1$,

$$|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1}} \leq \eta_{\ell}^{k}.$$

Moreover, for all linearization steps $k \ge 1$, there holds

$$\eta_\ell^k \leq \textcolor{red}{C_{\text{eff}}(\textit{d},\kappa_{\mathcal{T}},\textit{p})C_\ell^k|||\mathcal{R}(u_\ell^{k-1})|||_{-1,u_\ell^{k-1}} + \textit{quadrature terms} + \textit{data oscillation terms},$$

where

$$C_\ell^k$$

$$\begin{cases} = 1 & Zarantonello \end{cases}$$

• $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps $k \ge 1$,

$$|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1}} \leq \eta_{\ell}^{k}.$$

Moreover, for all linearization steps $k \ge 1$, there holds

$$\eta_\ell^k \leq C_{\text{eff}}(d,\kappa_{\mathcal{T}},p)C_\ell^k |||\mathcal{R}(u_\ell^{k-1})|||_{-1,u_\ell^{k-1}} + quadrature \ terms + \ data \ oscillation \ terms,$$

where

$$C_{\ell}^{k} := \max_{\mathbf{a} \in \mathcal{V}_{\ell}} \left(\frac{h_{\omega_{\mathbf{a}}}^{2} \sup_{\omega_{\mathbf{a}}} L_{\mathrm{M}}^{k-1} + \pi^{2} \sup_{\omega_{\mathbf{a}}} \mathfrak{a}_{\mathrm{M}}^{k-1}}{h_{\omega_{\mathbf{a}}}^{2} \inf_{\omega_{\mathbf{a}}} L_{\mathrm{m}}^{k-1} + \pi^{2} \inf_{\omega_{\mathbf{a}}} \mathfrak{a}_{\mathrm{m}}^{k-1}}, \frac{\sup_{\omega_{\mathbf{a}}} \mathfrak{a}_{\mathrm{M}}^{k-1}}{\inf_{\omega_{\mathbf{a}}} \mathfrak{a}_{\mathrm{m}}^{k-1}} \right) \left\{ \begin{array}{l} = \mathbf{1} \\ \end{array} \right.$$
 Zarantonello

• $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps k > 1.

$$|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1}} \leq \eta_{\ell}^{k}.$$

Moreover, for all linearization steps $k \geq 1$, there holds

$$\eta_\ell^k \leq \textit{C}_{\text{eff}}(\textit{d},\kappa_{\mathcal{T}},\textit{p}) C_\ell^k |||\mathcal{R}(u_\ell^{k-1})|||_{-1,u_\ell^{k-1}} + \textit{quadrature terms} + \textit{data oscillation terms},$$

$$C_{\ell}^{k} := \max_{\boldsymbol{a} \in \mathcal{V}_{\ell}} \left(\frac{h_{\omega_{\boldsymbol{a}}}^{2} \sup_{\omega_{\boldsymbol{a}}} L_{M}^{k-1} + \pi^{2} \sup_{\omega_{\boldsymbol{a}}} \mathfrak{a}_{M}^{k-1}}{h_{\omega_{\boldsymbol{a}}}^{2} \inf_{\omega_{\boldsymbol{a}}} L_{M}^{k-1} + \pi^{2} \inf_{\omega_{\boldsymbol{a}}} \mathfrak{a}_{M}^{k-1}}, \; \frac{\sup_{\omega_{\boldsymbol{a}}} \mathfrak{a}_{M}^{k-1}}{\inf_{\omega_{\boldsymbol{a}}} \mathfrak{a}_{M}^{k-1}} \right) \; \left\{ \begin{array}{c} = \mathbf{1} & \textit{Zarantonello} \\ \end{array} \right.$$

- $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities C_{ℓ}^{k} given by local (patch) properties:

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps k > 1.

$$|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1}} \leq \eta_{\ell}^{k}.$$

Moreover, for all linearization steps $k \geq 1$, there holds

$$\eta_\ell^k \leq C_{\text{eff}}(d,\kappa_{\mathcal{T}},p)C_\ell^k |||\mathcal{R}(u_\ell^{k-1})|||_{-1,u_\ell^{k-1}} + quadrature \ terms + \ data \ oscillation \ terms,$$

$$C_{\ell}^{k} := \max_{\mathbf{a} \in \mathcal{V}_{\ell}} \left(\frac{h_{\omega_{\mathbf{a}}}^{2} \sup_{\omega_{\mathbf{a}}} L_{\mathrm{M}}^{k-1} + \pi^{2} \sup_{\omega_{\mathbf{a}}} \mathfrak{a}_{\mathrm{M}}^{k-1}}{h_{\omega_{\mathbf{a}}}^{2} \inf_{\omega_{\mathbf{a}}} L_{\mathrm{m}}^{k-1} + \pi^{2} \inf_{\omega_{\mathbf{a}}} \mathfrak{a}_{\mathrm{m}}^{k-1}}, \frac{\sup_{\omega_{\mathbf{a}}} \mathfrak{a}_{\mathrm{M}}^{k-1}}{\inf_{\omega_{\mathbf{a}}} \mathfrak{a}_{\mathrm{m}}^{k-1}} \right) \left\{ \begin{array}{l} = \mathbf{1} & \textit{Zarantonello} \\ \leq \frac{a_{\mathrm{C}}}{a_{\mathrm{m}}} & \textit{in general.} \end{array} \right.$$

- $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities C_{ℓ}^{k} given by local (patch) properties:

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps k > 1.

$$|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1}} \leq \eta_{\ell}^{k}.$$

Moreover, for all linearization steps $k \geq 1$, there holds

$$\eta_\ell^k \leq \textit{C}_{\text{eff}}(\textit{d},\kappa_{\mathcal{T}},\textit{p}) C_\ell^k |||\mathcal{R}(u_\ell^{k-1})|||_{-1,u_\ell^{k-1}} + \textit{quadrature terms} + \textit{data oscillation terms},$$

$$C_{\ell}^{k} := \max_{\pmb{a} \in \mathcal{V}_{\ell}} \left(\frac{h_{\omega_{\pmb{a}}}^{2} \sup_{\omega_{\pmb{a}}} L_{\mathsf{M}}^{k-1} + \pi^{2} \sup_{\omega_{\pmb{a}}} \mathfrak{a}_{\mathsf{M}}^{k-1}}{h_{\omega_{\pmb{a}}}^{2} \inf_{\omega_{\pmb{a}}} L_{\mathsf{m}}^{k-1} + \pi^{2} \inf_{\omega_{\pmb{a}}} \mathfrak{a}_{\mathsf{m}}^{k-1}}, \; \frac{\sup_{\omega_{\pmb{a}}} \mathfrak{a}_{\mathsf{M}}^{k-1}}{\inf_{\omega_{\pmb{a}}} \mathfrak{a}_{\mathsf{m}}^{k-1}} \right) \left\{ \begin{array}{ll} = \mathbf{1} & \textit{Zarantonello} \\ \leq \frac{a_{\mathsf{C}}}{a_{\mathsf{m}}} & \textit{in general.} \end{array} \right.$$

- $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow **robustness** wrt the **strength of nonlinearities** C_{ℓ}^{k} given by **local** (patch) **properties**: typically **much better** than a_{c}/a_{m}

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps k > 1.

$$|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1}} \leq \eta_{\ell}^{k}.$$

Moreover, for all linearization steps $k \geq 1$, there holds

$$\eta_\ell^k \leq C_{\text{eff}}(d,\kappa_{\mathcal{T}},p)C_\ell^k |||\mathcal{R}(u_\ell^{k-1})|||_{-1,u_\ell^{k-1}} + quadrature \ terms + \ data \ oscillation \ terms,$$

$$C_{\ell}^{k} := \max_{\boldsymbol{a} \in \mathcal{V}_{\ell}} \left(\frac{h_{\omega_{\boldsymbol{a}}}^{2} \sup_{\omega_{\boldsymbol{a}}} L_{M}^{k-1} + \pi^{2} \sup_{\omega_{\boldsymbol{a}}} \mathfrak{a}_{M}^{k-1}}{h_{\omega_{\boldsymbol{a}}}^{2} \inf_{\omega_{\boldsymbol{a}}} L_{m}^{k-1} + \pi^{2} \inf_{\omega_{\boldsymbol{a}}} \mathfrak{a}_{m}^{k-1}}, \; \frac{\sup_{\omega_{\boldsymbol{a}}} \mathfrak{a}_{M}^{k-1}}{\inf_{\omega_{\boldsymbol{a}}} \mathfrak{a}_{m}^{k-1}} \right) \left\{ \begin{array}{ll} = \mathbf{1} & \textit{Zarantonello} \\ \leq \frac{a_{\mathrm{C}}}{a_{\mathrm{m}}} & \textit{in general.} \end{array} \right.$$

- $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities
- C_{ℓ}^{k} given by **local** (patch) **properties**: typically **much better** than a_{c}/a_{m} C_{ℓ}^{k} **computable**: we can affirm **robustness** *a posteriori*, for the given case

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps k > 1.

$$|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1}} \leq \eta_{\ell}^{k}.$$

Moreover, for all linearization steps $k \geq 1$, there holds

$$\eta_\ell^k \leq C_{\mathsf{eff}}(d,\kappa_{\mathcal{T}},p)C_\ell^k |||\mathcal{R}(u_\ell^{k-1})|||_{-1,u_\ell^{k-1}} + quadrature\ terms + data\ oscillation\ terms,$$

$$C_{\ell}^{k} := \max_{\mathbf{a} \in \mathcal{V}_{\ell}} \left(\frac{h_{\omega_{\mathbf{a}}}^{2} \sup_{\omega_{\mathbf{a}}} L_{\mathrm{M}}^{k-1} + \pi^{2} \sup_{\omega_{\mathbf{a}}} \mathfrak{a}_{\mathrm{M}}^{k-1}}{h_{\omega_{\mathbf{a}}}^{2} \inf_{\omega_{\mathbf{a}}} L_{\mathrm{m}}^{k-1} + \pi^{2} \inf_{\omega_{\mathbf{a}}} \mathfrak{a}_{\mathrm{m}}^{k-1}}, \frac{\sup_{\omega_{\mathbf{a}}} \mathfrak{a}_{\mathrm{M}}^{k-1}}{\inf_{\omega_{\mathbf{a}}} \mathfrak{a}_{\mathrm{m}}^{k-1}} \right) \left\{ \begin{array}{l} = \mathbf{1} & \textit{Zarantonello} \\ \leq \frac{a_{\mathrm{C}}}{a_{\mathrm{m}}} & \textit{in general.} \end{array} \right.$$

- $C_{\ell}^{k} = 1$ for Zarantonello \Longrightarrow robustness wrt the strength of nonlinearities
- C_{ℓ}^{k} given by **local** (patch) **properties**: typically **much better** than a_{c}/a_{m} C_{ℓ}^{k} **computable**: we can affirm **robustness** *a posteriori*, for the given case
- also local efficiency

Setting Iterative linearization Estimates Numerics Extensions C Setting (gradient-independent nonlinearities) Estimates Numerics

Outline

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- Numerical experiments
- 6 Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

The Richards equation

Setting

- one time step of the Richards equation
- unit square $\Omega = (0, 1)^2$
- realistic data

$$f(\mathbf{x}, \xi) = S(\xi) - S(u_{\ell}^{n-1}(\mathbf{x})), \quad \mathcal{D}(\mathbf{x}, \xi) = \kappa(S(\xi)), \quad \mathbf{q}(\mathbf{x}, \xi) = -\kappa(S(\xi)) \mathbf{g},$$

$$\underline{\mathbf{K}} = \begin{bmatrix} 1 & 0.2 \\ 0.2 & 1 \end{bmatrix}, \quad \mathbf{g} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- time step length $\tau \in [10^{-3}, 1]$
- van Genuchten saturation and permeability laws

$$S(\xi) := \left(1 + (2-\xi)^{rac{1}{1-\lambda}}
ight)^{-\lambda}, \quad \kappa(s) := \sqrt{s}\left(1 - (1-s^{rac{1}{\lambda}})^{\lambda}
ight)^2, \quad \lambda = 0.5$$

One time step of the Richards equation with realistic data

Time step length $\tau = 1$

Time step length $\tau = 0.01$

Error certification robust wrt the nonlinearities

Error, $\tau = 1$

Estimate, $\tau = 1$

Where is the error **localized?**

Error, $\tau = 0.01$

Estimate, $\tau = 0.01$

Error components and adaptivity via stopping criteria

L-Scheme $\tau = 0.01$, $\ell = 2$ Storm -2

Storm

Time step length $\tau = 0.01$

Setting Iterative linearization Estimates Numerics Extensions C

Outline

- Numerical approximation of partial differential equations
- A posteriori error estimates
- Setting and known results
 - Setting (gradient-dependent case)
 - Error measures
 - Known results
- Iterative linearization
- A posteriori error estimates for an augmented energy difference
- 5 Numerical experiments
- **6** Extensions
 - Setting (gradient-independent case)
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Conclusions

Conclusions

Conclusions

- a posteriori certification of the error for nonlinear problems
- robustness with respect to the strength of nonlinearities
- augmenting the energy difference by the (discretization) error on the given linearization step
- employing iteration-dependent norms

Conclusions

Conclusions

- a posteriori certification of the error for nonlinear problems
- robustness with respect to the strength of nonlinearities
- augmenting the energy difference by the (discretization) error on the given linearization step
- employing iteration-dependent norms

HARNIST A., MITRA K., RAPPAPORT A., VOHRALÍK M. Robust a posteriori estimates of energy differences for nonlinear elliptic problems. To be submitted, 2023.

MITRA K., VOHRALÍK M. Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic problems in iteration-dependent norms. An orthogonal decomposition result based on iterative linearization. To be submitted, 2023.

Conclusions

Conclusions

- a posteriori **certification** of the **error** for nonlinear problems
- robustness with respect to the strength of nonlinearities
- augmenting the energy difference by the (discretization) error on the given linearization step
- employing iteration-dependent norms

HARNIST A., MITRA K., RAPPAPORT A., VOHRALÍK M. Robust a posteriori estimates of energy differences for nonlinear elliptic problems. To be submitted, 2023.

MITRA K., VOHRALÍK M. Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic problems in iteration-dependent norms. An orthogonal decomposition result based on iterative linearization. To be submitted, 2023.

Thank you for your attention!

