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Numerical approximation of partial differential equations

Numerical methods
@ mathematically-based algorithms evaluated by computers
@ deliver approximate solutions
@ conception: more effort = closer to the unknown solution
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-

-
M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 2 /40



| Setting lterative linearization Estimates Numerics Extensions C Numerical approximation of PDEs A posteriori error estimates

Numerical approximation of partial differential equations

Numerical methods
@ mathematically-based algorithms evaluated by computers
@ deliver approximate solutions
@ conception: more effort = closer to the unknown solution
@ example: elastic string

-

-
M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 2 /40



| Setting lterative linearization Estimates Numerics Extensions C Numerical approximation of PDEs A posteriori error estimates

Numerical approximation of partial differential equations

Numerical methods
@ mathematically-based algorithms evaluated by computers
@ deliver approximate solutions
@ conception: more effort = closer to the unknown solution
@ example: elastic string
h > Q )

aNU\I b

A

-

- /
M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 2 /40



| Setting lterative linearization Estimates Numerics Extensions C Numerical approximation of PDEs A posteriori error estimates

Numerical approximation of partial differential equations

Numerical methods
@ mathematically-based algorithms evaluated by computers
@ deliver approximate solutions
@ conception: more effort = closer to the unknown solution
@ example: elastic string

h

Numerical approximation uy u

-

-
M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 2 /40



| Setting lterative linearization Estimates Numerics Extensions C Numerical approximation of PDEs A posteriori error estimates

Numerical approximation of partial differential equations

Numerical methods
@ mathematically-based algorithms evaluated by computers
@ deliver approximate solutions
@ conception: more effort = closer to the unknown solution
@ example: elastic string

Numerical approximation u, and its convergence to u

-

-
M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 2 /40



| Setting lterative linearization Estimates Numerics Extensions C Numerical approximation of PDEs A posteriori error estimates

Numerical approximation of partial differential equations

Numerical methods
@ mathematically-based algorithms evaluated by computers
@ deliver approximate solutions
@ conception: more effort = closer to the unknown solution
@ example: elastic string

Numerical approximation u, and its convergence to u

-

-
M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 2 /40



| Setting lterative linearization Estimates Numerics Extensions C Numerical approximation of PDEs A posteriori error estimates

Numerical approximation of partial differential equations

Numerical methods
@ mathematically-based algorithms evaluated by computers
@ deliver approximate solutions
@ conception: more effort = closer to the unknown solution
@ example: elastic string

Numerical approximation uy, and its convergence to u

-

-
M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 2 /40



| Setting lterative linearization Estimates Numerics Extensions C Numerical approximation of PDEs A posteriori error estimates

Numerical approximation of partial differential equations

Numerical methods
@ mathematically-based algorithms evaluated by computers
@ deliver approximate solutions
@ conception: more effort = closer to the unknown solution
@ example: elastic string

— Q

Numerical approximation uy, and its convergence to u

=

IV (u—ung) | = {7 l(u—unp)' |7} ,

M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 2 /40



| Setting lterative linearization Estimates Numerics Extensions C Numerical approximation of PDEs A posteriori error estimates

Numerical approximation of partial differential equations

Numerical methods
@ mathematically-based algorithms evaluated by computers
@ deliver approximate solutions
@ conception: more effort = closer to the unknown solution
@ example: elastic string

— Q

Numerical approximation uy, and its convergence to u

=

_Jrb 12
IV (u—ung) | = {7 l(u—unp)' AnUp, = Fi
M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 2 /40



@ How large is the overall error?

© Where (model/space/time/lineariza-
tion/algebra) is it localized?

© Can we decrease it efficiently?
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CDG Terminal 2E collapse in 2004 (opened in 2003)
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_ Numerical approximation of PDEs A posteriori error estimates
A posteriori error estimates: certify the error in a FE discretization

Laplacian: find u : Q2 — R such that
-V{(Vu)=f in Q,
u=0 on 00Q.
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_ Numerical approximation of PDEs A posteriori error estimates
How large is the overall error? (model pb, known smooth solution)
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_ A posteriori error estimates robust with respect to the strength of nonlinearities 6/ 40



_ Numerical approximation of PDEs A posteriori error estimates
How large is the overall error? (model pb, known smooth solution)

1 . Y (u—
h~1/|Te}2 p|  n(u)  rel. error estimate (X2 | ||V(u— uc)]| rel. error NGl

ho 1 1.25 28% 1.07 24%

_ A posteriori error estimates robust with respect to the strength of nonlinearities 6/ 40



_ Numerical approximation of PDEs A posteriori error estimates
How large is the overall error? (model pb, known smooth solution)

1 . V(u— ff
h~1/|Te}2 p|  n(u)  rel. error estimate /X2 | ||V (u— w)| rel. error ISEztl| ot = alte) -
ho 1 1.25 28% 1.07 24% 1.17

_ A posteriori error estimates robust with respect to the strength of nonlinearities 6/ 40



_ Numerical approximation of PDEs A posteriori error estimates
How large is the overall error? (model pb, known smooth solution)

1 . —
h~1/|Te}2 p|  n(u)  rel. error estimate /X2 | ||V (u— w)| rel. error ISEztl| ot = alte) -
ho 1 1.25 28% 1.07 24% 1.17
~ho/2 6.07 x 107" 14% 5.56 x 107" 13% 1.09

_ A posteriori error estimates robust with respect to the strength of nonlinearities 6/ 40



How large is the overall error? (model pb, known smooth solution)

— T - YV (u— ff__
h~1/|Te)2 p|  n(u)  rel. error estimate /X2 | [|V(u— w)| rel. error INEztll| o — _ alve)
ho 1 1.25 28% 1.07 24% 1.17
~ho/2 6.07 x 107" 14% 5.56 x 107" 13% 1.09
~ho/4 3.10 x 107! 7.0% 2.92 x 107" 6.6% 1.06
bezia -

_ A posteriori error estimates robust with respect to the strength of nonlinearities 6/ 40



_ Numerical approximation of PDEs A posteriori error estimates
How large is the overall error? (model pb, known smooth solution)

h~1/|Te|z p| n(u)  rel eror estimate X4 | [|V(u— u)|| rel. error IN{ezedl | ot = _nlu) .
ho 1 1.25 28% 1.07 24% 1.17
~ho/2 6.07 x 107" 14% 5.56 x 107" 13% 1.09
~ho/4 3.10 x 107! 7.0% 2.92 x 107" 6.6% 1.06
~hy/8 1.45 x 107" 3.3% 1.39 x 107" 3.1% 1.04

_ A posteriori error estimates robust with respect to the strength of nonlinearities 6/ 40



| Setting lterative linearization Estimates Numerics Extensions C

Numerical approximation of PDEs A posteriori error estimates

How large is the overall error? (model pb, known smooth solution)

h~1/|Te2 p|  n(u)  rel. error estimate TR IV (u— )| rel. error ISt |t — i)
ho 1 1.25 28% 1.07 24%
~hy/2 6.07 x 107" 14% 5.56 x 10" 13% 1.09
~ho/4 3.10 x 107" 7.0% 292 x 107" 6.6% 1.06
~ho/8 1.45 x 107" 3.3% 1.39 x 107" 3.1% 1.04
~hy/2 2[423x1072 95x10 % 407x10%2 92x10 "% 1.04
M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 6 / 40



| Setting lterative linearization Estimates Numerics Extensions C Numerical approximation of PDEs A posteriori error estimates

How large is the overall error? (model pb, known smooth solution)

T - p -
h~1/Te|2 p|  n(u)  rel error estimate 780 | ||V (u— up)|| rel. error Izt | o — al)
ho 1 1.25 28% 1.07 24%
~hy/2 6.07 x 107" 14% 5.56 x 10" 13% 1.09
~ho/4 3.10 x 107" 7.0% 292 x 107" 6.6% 1.06
~ho/8 1.45 x 107" 3.3% 1.39 x 107" 3.1% 1.04
~hy/2 2[423x1072 95x10 % 407x10%2 92x10 "% 1.04
~hy/4 3[262x107* 59 x107°% 260x107%* 59x10°% 1.01
M. Vohralik

A posteriori error estimates robust with respect to the strength of nonlinearities 6 / 40



| Setting lterative linearization Estimates Numerics Extensions C

How large is the overall error? (model pb, known smooth solution)

Numerical approximation of PDEs A posteriori error estimates

h~1/|Te2 p|  n(u)  rel. error estimate TR IV (u— )| rel. error ISt |t — i)
ho 1 1.25 28% 1.07 24%
~hy/2 6.07 x 107" 14% 5.56 x 10" 13% 1.09
~ho/4 3.10 x 107" 7.0% 292 x 107" 6.6% 1.06
~ho/8 1.45 x 107" 3.3% 1.39 x 107" 3.1% 1.04
~hy/2 2[423x1072 95x10 % 407x10%2 92x10 "% 1.04
~hy/4 3[262x107* 59 x107°% 260x107%* 59x10°% 1.01
~hy/8 4]260x 1077 59 x10%% 258x10~7 58x10 %% 1.01
M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 6 / 40



Linear problems

A posteriori error estimates robust with respect to the
discretization parameters |7, (/111 7, uniform)yand p (d < ).

_ A posteriori error estimates robust with respect to the strength of nonlinearities 7/ 40



Linear problems

A posteriori error estimates robust with respect to the
discretization parameters |7, (/111 7, uniform)yand p (d < ).

Nonlinear problems

A posteriori error estimates robust with respect to the
strength of nonlinearities?

_ A posteriori error estimates robust with respect to the strength of nonlinearities 7/ 40



| Setting lterative linearization Estimates Numerics Extensions C Numerical approximation of PDEs A posteriori error estimates

Outline

0 Introduction
@ Numerical approximation of partial differential equations
@ A posteriori error estimates
Q Setting and known results
@ Setting (gradient-dependent case)
@ Error measures
@ Known results
Iterative linearization
A posteriori error estimates for an augmented energy difference
Numerical experiments
Extensions
@ Setting (gradient-independent case)
@ A posteriori error estimates for an iteration-dependent norm
@ Numerical experiments
@ Conclusions VA

M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 7 / 40



O Introduction
@ Numerical approximation of partial differential equations
@ A posteriori error estimates
e Setting and known results
@ Setting (gradient-dependent case)
@ Error measures
@ Known results
Iterative linearization
A posteriori error estimates for an augmented energy difference
Numerical experiments
Extensions
@ Setting (gradient-independent case)
@ A posteriori error estimates for an iteration-dependent norm
@ Numerical experiments
@ Conclusions &’,,m_&
" m\ohralk " Aposteriori error estimates robust with respect to the strength of nonlinearities  7/40

0000



O Introduction
@ Numerical approximation of partial differential equations
@ A posteriori error estimates
@ Setting and known results
@ Setting (gradient-dependent case)
@ Error measures
@ Known results
O lterative linearization
O A posteriori error estimates for an augmented energy difference
O Numerical experiments
O Extensions
@ Setting (gradient-independent case)
@ A posteriori error estimates for an iteration-dependent norm
@ Numerical experiments
@ Conclusions &’,,m_&
" m\ohralk " Aposteriori error estimates robust with respect to the strength of nonlinearities  7/40



| Setting lterative linearization Estimates Numerics Extensions C Setting (gradient-dependent nonlinearities) Error measures Known results

A model nonlinear problem

Nonlinear elliptic problem
Find v : Q2 — R such that
=V-(a(|Vu))Vu)=f in Q,
u=0 on 09.

@ Q Cc RY d > 1, open polytope with Lipschitz boundary
e fel?Q)
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Strength of the nonlinearity, 0 < an, < a. < oo real parameters

Example (Mean curvature nonlinearity)

a(r) with am = 1

100 A
50 1
a. = 100
S~ ~— a. =10
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0 5 10 1
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Weak solution and its finite element approximation

Definition (Weak solution)
u € H}() such that

(a(|Vu)Vu,Vv) = (f,v) Vv e H(Q).
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Energy and energy differences

Definition (Energy functional)
J:HI(Q) =R
TW) = [ A9V~ (V). veH@),

with function ¢ : [0, 00) — [0, c0) such that, for all r € [0, o),

o(r) == /Ora(s)sds.
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Energy and energy differences

Definition (Energy functional)
J:HI(Q) =R
TW) = [ A9V~ (V). veH@),

with function ¢ : [0, 00) — [0, c0) such that, for all r € [0, o),

o(r) == /Ora(s)sds.

Equivalently

u=arg min J(v), up = arg min_ J(v).
veHl(Q) veeVy

-
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Energy and energy differences

Definition (Energy functional)
J:HI(Q) =R
TW) = [ A9V~ (V). veH@),

with function ¢ : [0, 00) — [0, c0) such that, for all r € [0, o),

o(r) == /Ora(s)sds.

Equivalently
u=arg min J(v), up = arg min_ J(v).
veHl(Q) veeVy
Energy difference
[T () = T (u)]
@ J(w)—J()>0,T(u)—J(u)=0ifand only if uy = u
@ physically-based error measure VP~
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Residual and its dual norm

Definition (Residual)

R HJ(Q) — H1(Q); for w € H}(Q), R(w) € H~(Q) is given by
(R(w), v) = (a(|[VW|)Vw,VVv) — (f,v), veH(Q). )
&,zfuzz,_
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Residual and its dual norm

Definition (Residual)

R HJ(Q) — H1(Q); for w € H}(Q), R(w) € H~(Q) is given by
(R(w), V) := (a(|Vw|)Vw, Vv) — (f,v), veH(Q).

Definition (Dual norm of the finite element residual)

I1R(ue) = R(U)Il|—1 = | IR(ue)ll| -1 |:= sup W

veHl(Q)

© [[R(ue)ll[-1 = O, IIR(ue)ll[ -1+ = O'if and only if u, = u
@ subordinate to the choice of the norm ||| - ||| on the Sobolev space H} ()
@ the most straightforward choice: |||v||| := ||V V]|

@ mathematically-based error measure -
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Energy difference
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@ Zeidler (1992), Han (1994), Repin (1997), Ladeveze & Moés (1997), Diening
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Sobolev norm
am||V(ue — u)|| < n(ug) < Ceacl|V(ue — vl

@ Pousin & Rappaz (1994), Verflrth (1994), Kim (2007), Houston, Suli, & Wihler
(2008), Garau, Morin, & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner
(2018), Heid & Wihler (2020), Botti & Riedlbeck (2020), ...

Energy difference

1 a2
JI(ug) = J(u) < §n(Ue)2 < C?mg"(J (ue) — T (u))
m
@ Zeidler (1992), Han (1994), Repin (1997), Ladeveze & Moés (1997), Diening
& Kreuzer (2008), Bartels & Milicevic (2020), ...

Strength of the nonlinearity
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Dual norm of the residual

IIR(uelll -1 < n(ue) < Certll[R(u)Il -1

® Chaillou & Suri (2006), El Alaoui, Ern, & Vohralik (2011), Blechta, Malek, &
Vohralik (2020), . ..
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_ Setting (gradient-dependent nonlinearities) Error measures Known results
Known results

Dual norm of the residual

IIR(uol -1 = n(ue) < Cerrl[|R(ue)ll -+

® Chaillou & Suri (2006), El Alaoui, Ern, & Vohralik (2011), Blechta, Malek, &
Vohralik (2020), . ..

Strength of the nonlinearity
@ Robust with respect to 2 if |||v|| = [Vv||.
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Known results

Dual norm of the residual

IIR(uelll -1 = n(ue) < Certl[[R(ue)l[| 1

@ Robust with respect to 2 if |||v|| = [Vv||.
@ |||R(ur)|||-1 localizes over patches of elements.
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Known results

Dual norm of the residual

IIR(uelll -1 = n(ue) < Certl[[R(ue)l[| 1

@ Robust with respect to 2 if |||v|| = [Vv||.
@ |||R(ur)|||-1 localizes over patches of elements.

@ Does not see the nonlinearity (H~'(Q) residual norm)
(essentially estimates the flux error ||a(|Vu,|)Vu, — a(|Vu|)Vul|).
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_ Setting (gradient-dependent nonlinearities) Error measures Known results

Non-robustness

B A g e Sobolev norm ||V(uy — u)||
6l ||+ Energy difference 7 (us) — J(v)
10 —— Dual norm of the residual ||| R(up)]||—1
)
2
> 10%) :
=
3
2 102 | |
100 1 i
TN NTTT SN NN TT| N WU N1 N T BN K111 B AT M MM WATIT M AN E N ANTT| M
109 10" 102 10% 10* 10° 106 107
ac/am .
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_ Setting (gradient-dependent nonlinearities) Error measures Known results

Nonlinear problems

A posteriori error estimates robust with respect to the
strength of nonlinearities in more physically-based error
measures?

-
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Addressing iterative linearization

® Chaillou & Suri (2006), Ern & Vohralik (2013), Bernardi, Dakroub, Mansour, &
Sayah (2015), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler
(2020), Botti & Riedlbeck (2020), ...
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| Setting lterative linearization Estimates Numerics Extensions C Setting (gradient-dependent nonlinearities) Error measures Known results

lterative linearization

Addressing iterative linearization
°

None of the above approaches employ in the analysis, to define norms, the
iterative linearization, i.e., how do we solve the nonlinear system A,(U;) = F,.

-
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lterative linearization

Definition (Linearized finite element approximation)

u, € VP such that
(AU, V) = (f,ve) + (Bf 1, Vve)  Yvee VP

Leaia '
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lterative linearization

Definition (Linearized finite element approximation)

u, € VP such that
(A5 'Vuf,Vv) = (f,ve) + (b, Vv)) Vv e VP

e u? € VP agiven initial guess
@ iterative linearization index k > 1
e linearization: AX~": Q — R diffusion matrix, bf~": Q — R RHS vector
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lterative linearization

Definition (Linearized finite element approximation)

u, € VP such that
(A5 'Vuf,Vv) = (f,ve) + (b, Vv)) Vv e VP

e u? € VP agiven initial guess
@ iterative linearization index k > 1
e linearization: AX~": Q — R diffusion matrix, bf~": Q — R RHS vector

Definition (Linearized energy functional)

T HQ) - R

1 2 .
T ) =5 | ATV = (v - (T VW), v e K@),

-
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lterative linearization

Definition (Linearized finite element approximation)

u, € VP such that
(A5 'Vuf,Vv) = (f,ve) + (b, Vv)) Vv e VP

e u? € VP agiven initial guess
@ iterative linearization index k > 1
e linearization: AX~": Q — R diffusion matrix, bf~": Q — R RHS vector

Definition (Linearized energy functional)

T HQ) - R

1 2 .
T ) =5 | ATV = (v - (T VW), v e K@),

Equivalently
Ué( = arg min ‘7Zk—1(Vg) .
veeVP lrrzia !
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Examples

Example (Picard (fixed-point))

AT = a([VuTD1y, b =o.

4

@ 0 =1 gives the Newton iteration, § = 0 gives the Picard iteration /-
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Examples

Example (Picard (fixed-point))

AT =gV, b =0.

Example (Zarantonello)

AT =g, b= (v - a( vy ) VYT
withy > == "’2 a constant parameter.
@ ¢ =1 gives the Newton iteration, & = 0 gives the Picard iteration Y/ N
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Examples

Example (Picard (fixed-point))

AT =gV, b =0.

Example (Zarantonello)

AT =qly, b= (v —a(vVufT))) v,

‘32 a constant parameter.

with v > ==

Example ((Damped) Newton)
a(|vug ')
[V
b~ = 0d (VUi VU VU,
with 6 € [0, 1] the damping parameter.

AT = a(|Vuf T g + 0 vufle vus,

@ ¢ =1 gives the Newton iteration, & = 0 gives the Picard iteration Y/~
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A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of energy)
Let f € P,_1(Te) for simplicity. For all linearization steps k > 1,

Kk
Eg =g
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A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of energy)
Let f € P,_1(Te) for simplicity. For all linearization steps k > 1,

EF < nf.
Moreover, there holds
g < Ceri(d, k7 )CFEY,

M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 22 / 40



| Setting lterative linearization Estimates Numerics Extensions C

A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of energy)
Let f € P,_1(Te) for simplicity. For all linearization steps k > 1,

EF < nf.
Moreover, there holds
g < Ceri(d, k7 )CFEY,
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A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of energy)
Let f € P,_1(Te) for simplicity. For all linearization steps k > 1,

EF < nf.
Moreover, there holds
g < Ceri(d, k7 )CFEY,

where { -1 Zarantonello

@ C/ = 1 for Zarantonello = robustness wrt the strength of nonlinearities

M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 22/ 40



| Setting lterative linearization Estimates Numerics Extensions C

A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of energy)
Let f € P,_1(Te) for simplicity. For all linearization steps k > 1,

& <y
Moreover, there holds
5 < Ceit(d, 7 )CLES,
T (supwf A’é/) { — 1 Zarantonello

Cé( .= max ﬁ
acVe \ infa AL,

@ C/ = 1 for Zarantonello = robustness wrt the strength of nonlinearities
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A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of energy)
Let f € P,_1(Te) for simplicity. For all linearization steps k > 1,

& <y
Moreover, there holds
5 < Ceit(d, 7 )CLES,
T (supwf A’é/) { — 1 Zarantonello

Cé( .= max ﬁ
acVe \ infa AL,

@ C/ = 1 for Zarantonello = robustness wrt the strength of nonlinearities
° Cé‘ given by local (patch) properties:
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A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of energy)
Let f € P,_1(Te) for simplicity. For all linearization steps k > 1,
EF < nf.
Moreover, there holds
5 < Ceit(d, 7 )CLES,
where sup, s Ak = 1 Zarantonello
Cf = max W <o o % n general.
eVy n w‘la m7£ — Am = am

@ C/ = 1 for Zarantonello = robustness wrt the strength of nonlinearities
° Cé‘ given by local (patch) properties:
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A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of energy)
Let f € P,_1(Te) for simplicity. For all linearization steps k > 1,
EF < nf.
Moreover, there holds
1§ < Ceit(d, k7 )CLES,
where sup, s Ak = 1 Zarantonello
Cf = max W <o o % n general.
eVy n vuf m7£ — Am = am

@ C/ = 1 for Zarantonello = robustness wrt the strength of nonlinearities
° Cé‘ given by local (patch) properties: typically much better than a./an,
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A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of energy)
Let f € P,_1(Te) for simplicity. For all linearization steps k > 1,
EF < nf.
Moreover, there holds
1§ < Ceit(d, k7 )CLES,
where sup, s Ak = 1 Zarantonello
Cf = max W <o o % n general.
€V n .,u/a m7£ — Am = am

@ C/ = 1 for Zarantonello = robustness wrt the strength of nonlinearities
° Cé‘ given by local (patch) properties: typically much better than a./an,
@ CK computable: we can affirm robustness a posteriori, for the given case
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A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of energy)
Letf € Py_1(To) forg fimplicity. For all linearization steps k > 1, -

J4 4
I (uf)—T (u) < J(u)~T*(o})
energy difference en. diff. estimate
Moreover, there holds

n§ < Ceit(d, K7 )CLES,
Y sup, .« AL’ =1 Zarantonello
Ci = P <’IS1> { B & in general.
(4 Infx‘;a Am,é = Am = am g

@ C/ = 1 for Zarantonello = robustness wrt the strength of nonlinearities
° Cj,‘ given by local (patch) properties: typically much better than a./an,
e Cf computable: we can affirm robustness a posteriori, for the given case
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A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of augmented energy)
Let f € P,_1(Te) for simplicity. For all linearization steps k > 1,
k

3 nf

k k (7k—1¢, k k—1¢, 1k k k k(7k—1¢, k k=1 _k
T(u) =T (W) +X (T, (u) =T, () < T(W) =T (af) +X T, (U) =T (a¢))-
N — ~
energy difference en. diff li?vrearization en. diff. estimate en. diff. linearization estimate
Moreover, there holds

5 < Ceir(d, k7 )CLEY,

where

g A1 =1 Zarantonello
Cé( := max (M> { Ac a

G o
: Kk—1 < — < — ingeneral.
acVy Infx‘;a Am,é — Am = am g

@ C/ = 1 for Zarantonello = robustness wrt the strength of nonlinearities
° Cj,‘ given by local (patch) properties: typically much better than a./an,
e Cf computable: we can affirm robustness a posteriori, for the given case
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A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of augmented energy)

Let f € P,_1(Te) for simplicity. For all linearization steps k > 1, .
gl U/

K k(ak—17,k k—1¢, K k x( k k(rk—1¢, k *k—10 kK
T(u) =T (W) +X (T, (u) =T, () < T(W) =T (af) +X T, (U) =T (a¢))-
N—— N
energy difference en. diff li?vrearization en. diff. estimate en. diff. linearization estimate
Moreover, there holds

5 < Ceir(d, k7 )CLES,
LA sup,,a A’g . =1 Zarantonello
Cf = v \ ot ’ AT <fe &, general.
(4 n J;j’ m,¢ = Am = am

° )\éf computable weight to make the two components comparable
@ C/ = 1 for Zarantonello = robustness wrt the strength of nonlinearities
° Cj,‘ given by local (patch) properties: typically much better than a./an,

e Cf computable: we can affirm robustness a posteriori, for the given case
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Smooth solution

Setting
@ unit square Q = (0, 1)?
@ known smooth solution u(x, y) :=10x(x — 1)y(y — 1)
@ mean curvature or exponential nonlinearity

3,2

a — am 1—-e 2"

a(r) = am + or a(r)=am+(a — am)———~
N=ant ir ()= am (8 = an) o s

@ p=1,3969 DOFs B B
e stopping iteration k such that | V(u " — uf)|| < 108
@ effectivity indices

1 % 1 — *x,k—1 3
o (//f)? Ko (J(Ué‘)—J (0?))2 e, = TN (W)= (eh)

’ Jw)=J() ) =\ ) =T (ufy)
total energy difference energy difference linearization

s
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Error certification robust wrt the nonlinearities (mean curvature)

Picard Zarantonello Newton
1.12 i 91.15 IR I B 1.12F S o
% 2 1.08) 1 2
— 18 10| | £ £ 110
I e 111 = | | E
ME: g 107 )
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o
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-k |H = 1.05 1 A
o 100101 102 10° 10¢ 105 106 107 L04

e/
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Error certification robust wrt the nonlinearities (exponential,
robustness only for Zarantonello)

1.05

%

— ]
—o—]ij —é‘ 1.05
e 7k | = 1.05

IF =

- |E 1.04

Ak

= 1.04

1.04 b

Zarantonello

10° 10" 10% 10% 10* 105 105 107
a(:/am

M. Vohralik
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Effectivity indices
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Error certification robust wrt the nonlinearities (exponential)

Component errors

105 |- 1108
—o— \i€F , (Zarantonello) 108 1 |
' 5 100
= Eﬁﬁg (Zarantonello) | =
B g 10'F 110t =
—— ek, (Newton) =
_ 1071 1102
—— &k, (Newton)
—e— )\ (Zarantonello) 10-3 |- 1100
+)\§ (NCWtOn) TN T S A TTT] S W T¥T N A1 M AT S W WA TIT] S R WHAITT A WATH| BN}

100 10' 102 103 10% 10° 10° 107
e/ am
Components of Sf: the energy difference 5,@ = j(uﬁ) — J(u), the energy
difference of the linearized problem &F, = 7/~ (uf) — 7/~ (u(@)), & the weight \%
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Singular solution

Setting
@ L-shaped domain Q = (—1,1)2\ ([0,1) x (—1,0])
@ known singular solution u(p, 6) = ps sin(50)
@ exponential nonlinearity

_3,2

1—e 2"

alr)=am+(a —am)—5
14262

@ p = 1, uniform or adaptive mesh refinement
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Where is the error localized?

%107

3.5
3
2.5
2
1.5
1
0.5

Estimated total errors 1 () Exact total errors |V (u — v}/«

x1073

N

—_

Creia -t *QA
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Error certification robust wrt the nonlinearities

Newton Newton
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Decreasing the error efficiently: optimal decay rate wrt DoFs

Error and estimator

10t}

100}

10t 102 10 10t

DOFs
ac __ 3
& =10
M. Vohralik
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o .

% ; =103k
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= g E
(77&2)1/ 2 (uniform) 3 :
(£F )2 (uniform) | £ al
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A model nonlinear problem

Nonlinear elliptic problem
Find u: 2 — R such that
—V-(7K(x)(D(x,u) Vu + g(x,u))) + f(x,u) =0 in Q,
~—— ~—— ~——

diffusion advection reaction

u=0 on 99.

@ 7 > 0 a parameter (time step size in transient problems)

-
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A model nonlinear problem

Nonlinear elliptic problem
Find u: 2 — R such that
—V-(7K(x)(D(x,u) Vu + g(x,u))) + f(x,u) =0 in Q,
~—— ~—— ~——

diffusion advection reaction

u=0 on 99.

@ 7 > 0 a parameter (time step size in transient problems)

Assumption (Nonlinear functions D, q, and f)

ID(X1,81) — D(X2,&2)| < Dm(|X1 — Xo| +[&1 — &2|) VX1,X2 € Qand &y,62 € R,
0 <f(x,8) —f(x,&) < (&2 —&) YxeQandé > &y,
q is “small” wrt KD.
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A model nonlinear problem

Nonlinear elliptic problem
Find u : Q — R such that
—V-(7K(x)(D(x,u) Vu + g(x,u))) + f(x,u) =0 in Q,
~—— ~—— ~——

diffusion advection reaction

u=0 on 99.

@ 7 > 0 a parameter (time step size in transient problems)

Assumption (Nonlinear functions D, q, and f)

ID(X1,81) — D(X2,&2)| < Dm(|X1 — Xo| +[&1 — &2|) VX1,X2 € Qand &y,62 € R,
0 <f(x,8) —f(x,&) < (&2 —&) YxeQandé > &y,
q is “small” wrt KD.

ratio a./am -
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lterative linearization

Definition (Linearized finite element approximation)

u, € VP such that
(uf — uf=", Ve))u§—1 = (RN, ve)  VYvee VP

residual
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lterative linearization

Definition (Linearized finite element approximation)

u, € VP such that
(uf = uf ™" o) s = —(RAU")ve) Vv e VP,

residual

@ linearization: reaction—diffusion scalar product
(W, v)) o= (L(X,uS Yyw,v) + (a(x,uf ") Vw,Vv), w,ve H}(Q)

£ N———— N———

reaction coef. diffusion coef.

@ covers many linearization schemes: Picard (fixed-point), L & M-schemes, ...

-

M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 32 /40



| Setting lterative linearization Estimates Numerics Extensions C Setting (gradient-independent nonlinearities) Estimates Numerics

lterative linearization

Definition (Linearized finite element approximation)

u, € VP such that
(uf = uf ™" o) s = —(RAU")ve) Vv e VP,

residual

@ linearization: reaction—diffusion scalar product
(W, v)) o= (L(X,uS Yyw,v) + (a(x,uf ") Vw,Vv), w,ve H}(Q)

£ N———— N———

reaction coef. diffusion coef.

@ covers many linearization schemes: Picard (fixed-point), L & M-schemes, ...
lteration-dependent norm

1
IVl = (v )i v e H(Q)
@ induced by the linearization scalar product -\
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An orthogonal decomposition of the total residual/error

Theorem (Orthogonal decomposition of the total error into linearization and

discretization components)

For all linearization steps k > 1, there holds

»
2 2 Kkyi112
IR, et = — ||y —ug||| - 1+||\Rd.sc (WIZ s -
total residual/error linearization discretization residual/error
H|Ugi _Ul<(5>|||17u§71 el |Hug_u<g)|”1’u§71
v
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An orthogonal decomposition of the total residual/error

Theorem (Orthogonal decomposition of the total error into linearization and

discretization components)

For all linearization steps k > 1, there holds

>
2 2 Kyp112
IR I, et = = |llug —uglll - 1+||\Rd.sc (WIZ s -
total residual/error linearization discretization residual/error
e =y Il ot =yl
v

@ orthogonal decomposition
@ error components
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A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)
For all linearization steps k > 1,

k—1 k
IR Cuy =My gt = -
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A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)
For all linearization steps k > 1,

k—1 k
IR Cuy =My gt = -

Moreover, for all linearization steps k > 1, there holds

g < Ce(d. 17, p)CAIR(uf)|I|_y ot + Quadrature terms + data oscillation terms,
=L
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A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)
For all linearization steps k > 1,

k—1 k
IR Cuy =My gt = -

Moreover, for all linearization steps k > 1, there holds

g < Ce(d. 17, p)CAIR(uf)|I|_y ot + Quadrature terms + data oscillation terms,
=L

where

{ =1 Zarantonello
Ck
(4

v
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A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)
For all linearization steps k > 1,

k—1 k
IR Cuy =My gt = -

Moreover, for all linearization steps k > 1, there holds

g < Ce(d. 17, p)CAIR(uf)|I|_y ot + Quadrature terms + data oscillation terms,
=L

where

{ =1 Zarantonello
Cck
)

o

@ C; = 1 for Zarantonello = robustness wrt the strength of nonlinearities
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A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)
For all linearization steps k > 1,

k—1 k
IR Cuy =My gt = -

Moreover, for all linearization steps k > 1, there holds

n§ < Cen(d. o7, P)CLIIR(uf Iy st + quadrature terms + data oscillation terms,
=L

where
2 k—1 2 k—1 k—1 =1 Zarantonello
Cé(  max h;,, sup,, Ly + 7 sup,, ay Supy,, v
- 0 _ 0 1 7 . —
acVe \ h2_inf,, LA 4 72inf,, a1 inf,, o

@ C; = 1 for Zarantonello = robustness wrt the strength of nonlinearities
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A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)
For all linearization steps k > 1,

k— k
IR (uy 1)H|_1,u54 <.
Moreover, for all linearization steps k > 1, there holds

8 < Cenr(d. k7, P)CENIR(uf I, i1+ quadrature terms + data oscillation terms.

where

k—1 k 1 k—1 _
CK .= max hZ, sup,, Ly ' + 7 sup,, a sup,,,, ty =1 Zarantonello
)
acVe \ h2_inf,, LA 4 72inf,, ak 17 inf,, a7

@ C; = 1 for Zarantonello = robustness wrt the strength of nonlinearities
@ CF given by local (patch) properties:
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A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)
For all linearization steps k > 1,

k— k
IR (uy 1)H|_1,u54 <.
Moreover, for all linearization steps k > 1, there holds

8 < Cenr(d. k7, P)CENIR(uf I, i1+ quadrature terms + data oscillation terms.

where

2 k—1 k 1 k—1 _
CK .= max hZ, sup,, Ly ' + 7 sup,, a sup,,,, ay 1ac .Zarantonello
)
acVe \ h2_inf,, LA 4 72inf,, ak 17 infy, a7 < — ingeneral.

m

@ C; = 1 for Zarantonello = robustness wrt the strength of nonlinearities
@ CF given by local (patch) properties:
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A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)
For all linearization steps k > 1,

k—1 k
IR Cuy =My gt = -

Moreover, for all linearization steps k > 1, there holds

8 < Cenr(d. k7, P)CENIR(uf I, i1+ quadrature terms + data oscillation terms.

where
ok W2, sup,, LK~ + 72 sup,, al ! sup,, afy! = 1a Zarantonello
¢ = max a
acVe \ h2_inf,, LA 4 72inf,, ak 17 inf,, a7 < . in general.

@ C; = 1 for Zarantonello = robustness wrt the strength of nonlinearities
° Cj,‘ given by local (patch) properties: typically much better than a./an,
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A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)
For all linearization steps k > 1,

k— k
IR (uy 1)H|_17u54 <.
Moreover, for all linearization steps k > 1, there holds

8 < Cenr(d. k7, P)CENIR(uf I, i1+ quadrature terms + data oscillation terms.

where
2 k—1 k 1 k—1 —
Cl :=ma P2 supu, Ly ' + ¥ sup,, @ Supy,, v 13C .Zarantonello
o )
acVe \ h2_inf,, LA 4 72inf,, ak 17 inf,, a7 < . in general.

@ C; = 1 for Zarantonello = robustness wrt the strength of nonlinearities
° Cé‘ given by local (patch) properties: typically much better than a./an,
° C}; computable: we can affirm robustness a posteriori, for the given case
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A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)
For all linearization steps k > 1,

k—1 k
IR Cuy =My gt = -

Moreover, for all linearization steps k > 1, there holds

8 < Cenr(d. k7, P)CENIR(uf I, i1+ quadrature terms + data oscillation terms.

where
ok W2, sup,, LK~ + 72 sup,, al ! sup,, afy! = 1a Zarantonello
¢ = max a
acVe \ h2_inf,, LA 4 72inf,, ak 17 inf,, a7 < . in general.

@ C; = 1 for Zarantonello = robustness wrt the strength of nonlinearities
° Cé‘ given by local (patch) properties: typically much better than a./an,

° C}; computable: we can affirm robustness a posteriori, for the given case
@ also local efficiency
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The Richards equation

Setting
@ one time step of the Richards equation
@ unit square Q = (0,1)?
@ realistic data

f(x.€) = S(€) = S(u (X)), D(x,€) =r(S(€)), q(x.€) = —r(S5()g,

()

@ time step length 7 € [1073,1]
@ van Genuchten saturation and permeability laws

s©)= 1+~ g)ﬁ)_k, K(s) =5 (1 (1 - s%)*)z, A=05
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One time step of the Richards equation with realistic data

IsoValue

U=Uout

IsoValue 1=2,t=0.01
)” , u ) u out ﬂ«‘{\ﬂ “/” “;H 9 (
- = e |

D= S0

No Flux
Time step length 7 = 1

HEEEEEEEEN
—O00L6b604

Time step length 7 = 0.01

- AN
leia L2
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Error certification robust wrt the nonlinearities

M-Scheme L-Scheme
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Where is the error localized?

Error MS 1=2,t=1,1=9 .IszaBJS
i m-3.86
m-3.64

Error, 7 =1

ni MS 1=2,t=1,i=9
Ka =~ w

Estimate, 7 = 1

g
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_ Setting (gradient-independent nonlinearities) Estimates Numerics
Error components and adaptivity via stopping criteria

2, Picard 7 =0.01, £ =2
§ -2 e i S Sy
= T
Moy
=3 :
g -9 i :
2 | IR@)I -1
= -8 +7]fin,g
1 i
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Conclusions

Conclusions
@ a posteriori certification of the error for nonlinear problems
@ robustness with respect to the strength of nonlinearities

@ augmenting the energy difference by the (discretization) error on the given
linearization step

@ employing iteration-dependent norms
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Conclusions

Conclusions
@ a posteriori certification of the error for nonlinear problems

@ robustness with respect to the strength of nonlinearities

@ augmenting the energy difference by the (discretization) error on the given
linearization step

@ employing iteration-dependent norms

@ HARNIST A., MITRA K., RAPPAPORT A., VOHRALIK M. Robust a posteriori estimates of energy differences
for nonlinear elliptic problems. To be submitted, 2023.

@ MITRA K., VOHRALIK M. Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic
problems in iteration-dependent norms. An orthogonal decomposition result based on iterative linearization.

To be submitted, 2023.

-

M. Vohralik A posteriori error estimates robust with respect to the strength of nonlinearities 40 / 40



| Setting lterative linearization Estimates Numerics Extensions C

Conclusions

Conclusions
@ a posteriori certification of the error for nonlinear problems

@ robustness with respect to the strength of nonlinearities

@ augmenting the energy difference by the (discretization) error on the given
linearization step

@ employing iteration-dependent norms

@ HARNIST A., MITRA K., RAPPAPORT A., VOHRALIK M. Robust a posteriori estimates of energy differences
for nonlinear elliptic problems. To be submitted, 2023.

@ MITRA K., VOHRALIK M. Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic
problems in iteration-dependent norms. An orthogonal decomposition result based on iterative linearization.
To be submitted, 2023.

Thank you for your attention!
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