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Research in France: CNRS

National Centre for Scientific Research

@ Institutes of Chemistry, Ecology and Environment, Physics,
Nuclear and Particle Physics, Biological Sciences,
Humanities and Social Sciences, Computer Sciences,
Engineering and Systems Sciences, Mathematical
Sciences, Earth Sciences and Astronomy

@ 26.000 permanent employees

research scientists (chargés de recherche)
research directors (directeurs de recherche)
engineers, technicians

e administrative staff

@ 6.000 temporary workers

@ www.cnrs.fr
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Research in France: INRIA

INRIA, Institute for Research in Computer Science and
Control

@ theoretical and applied research in computer science
1.300 research scientists & research directors

1000 Ph.D. students, 500 post-docs

8 research centers

organization by project-teams

www.linria.fr
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Higher education in France

Public universities

@ 81 universities
@ no entrance examination
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Higher education in France

Public universities

@ 81 universities

@ no entrance examination
Grandes écoles

@ highly selective admission based on national ranking in
competitive written and oral exams

@ two years of dedicated preparatory classes

@ small number of students
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Higher education in France

Public universities

@ 81 universities
@ no entrance examination

Grandes écoles

@ highly selective admission based on national ranking in
competitive written and oral exams

@ two years of dedicated preparatory classes
@ small number of students

Private universities

@ a few smaller institutions
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Exchange opportunities

Exchange opportunities

e ERASMUS

@ european programs

@ Institut Frangais Prague

@ Research in Paris, research scholarships
° ...
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Partial differential equations

Example of a partial differential equation (PDE)
LetQ c RY, d =1,2,83.
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Partial differential equations

Example of a partial differential equation (PDE)
Let O c RY, d=1,2,3. Find v: Q — R such that

-V (KVu) =f in Q,
u=20 on 09,
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Partial differential equations

Example of a partial differential equation (PDE)
Let O c RY, d=1,2,3. Find v: Q — R such that
V- (KVu) = in Q,
u=20 on 09,
where

o K: Q — R9%4 s a diffusion tensor,
@ f:Q — Ris asource term.
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Partial differential equations

Example of a partial differential equation (PDE)
Let O c RY, d=1,2,3. Find v: Q — R such that

V- (KVu) = in Q,
u=20 on 09,
where /
o K: Q — R9%4 s a diffusion tensor, 2
e f:Q — Ris asource term.
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Partial differential equations

Example of a partial differential equation (PDE)
Let O c RY, d=1,2,3. Find v: Q — R such that

V- (KVu) = in Q,
u=20 on 09,
where /
o K: Q — R9%4 s a diffusion tensor, bz
e f:Q — Ris asource term.

Formin 1D
Let Q be an interval, ©2 =|a. b[, a, b two real numbers, a < b.
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Partial differential equations

Example of a partial differential equation (PDE)
Let O c RY, d=1,2,3. Find v: Q — R such that

-V (KVu) =f in Q,
u=20 on 09,

where /
o K: Q — R9%4 s a diffusion tensor, 2
@ f:Q — Risasource term.

Formin 1D
Let Q be an interval, ©2 =|a. b[, a, b two real numbers, a < b.
Let k :]a, b[— R and f :]a, b[— R be two given functions.
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Partial differential equations

Example of a partial differential equation (PDE)
Let O c RY, d=1,2,3. Find v: Q — R such that

-V (KVu) =f in Q,
u=20 on 09,

where /
o K: Q — R9%4 s a diffusion tensor, 2
@ f:Q — Risasource term.

Formin 1D

Let Q be an interval, ©2 =|a. b[, a, b two real numbers, a < b.
Let k :]a, b[— R and f :]a, b[— R be two given functions. Find
u :]a, b[— R such that

_(ku/)/ =f )
u(a) = u(b) =0. &Z7,

Martin Vohralik Modeling, simulation, and a posteriori estimates



INRIA | PDEs & numerics A posteriori estimates O

Partial differential equations

Example of a partial differential equation (PDE)
Let O c RY, d=1,2,3. Find v: Q — R such that

-V (KVu) =f in Q,
u=20 on 09,

where /
o K: Q — R9%4 s a diffusion tensor, 2
@ f:Q — Risasource term.

Formin 1D

Let Q be an interval, ©2 =|a. b[, a, b two real numbers, a < b.
Let k :]a, b[— R and f :]a, b[— R be two given functions. Find
u :]a, b[— R such that

—(ku') =1, b )
u(a) = u(b) =0. e " &Z7’
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Example: elastic string

S P

Elastic string with displacement v and weight f
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Example: heat flow

~
I

>0

. Y

Q

A room with a heater of f > 0 and temperature u

v d
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Example: underground water flow

Underground with a water well of f > 0 and pressure head u
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Comments on partial differential equations

Comments

@ PDEs describe a huge number of environmental and
physical phenomena
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Comments on partial differential equations

Comments
@ PDEs describe a huge number of environmental and
physical phenomena

@ it is almost never possible to find analytical, exact solutions
(not even Einstein could solve PDEs ...)
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Comments on partial differential equations

Comments

@ PDEs describe a huge number of environmental and
physical phenomena

@ it is almost never possible to find analytical, exact solutions
(not even Einstein could solve PDEs ...)

@ still we need to approximate their solutions as precisely as
possible so as to build bridges and dams, construct cars
and planes, forecast the weather, drill oil and natural gas,
depollute soils and oceans, concept medications, devise
advanced health care techniques, predict population
dynamics, steer economic and financial markets ...
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Comments on partial differential equations

Comments

@ PDEs describe a huge number of environmental and
physical phenomena

@ it is almost never possible to find analytical, exact solutions
(not even Einstein could solve PDEs ...)

@ still we need to approximate their solutions as precisely as
possible so as to build bridges and dams, construct cars
and planes, forecast the weather, drill oil and natural gas,
depollute soils and oceans, concept medications, devise
advanced health care techniques, predict population
dynamics, steer economic and financial markets ...
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Numerical approximations of PDEs

Numerical methods

@ mathematically-based algorithms
@ evaluated with the aid of computers
@ deliver approximate solutions
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Numerical approximations of PDEs

Numerical methods

@ mathematically-based algorithms
@ evaluated with the aid of computers
@ deliver approximate solutions

Crucial questions

@ How large is the overall error between the exact and
approximate solutions?

@ Where in space and in time is the error localized?
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Numerical approximations of PDEs

Numerical methods

@ mathematically-based algorithms
@ evaluated with the aid of computers
@ deliver approximate solutions

Crucial questions

@ How large is the overall error between the exact and
approximate solutions?

@ Where in space and in time is the error localized?

&l
&1;; ,,,,, 7 nathematics

Martin Vohralik Modeling, simulation, and a posteriori estimates



Q Research and education in France, INRIA
Q Introduction
e Some properties of PDEs and of numerical methods

@ A posteriori error estimates

Q Outlook




INRIA | PDEs & numerics A posteriori estimates O

Properties of the exact solution

—— exactsolution

Solution u (displacement,
temperature, pressure ...) is
continuous

Martin Vohralik

Solution gradient Vu (derivative
u' in 1D) is not necessarily

continuous
informatics gFmathematics
e~
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Properties of the exact solution

Solution u is continuous Flux o :== —KVu (or —ku' in
1D) is continuous
informatics gFmathematics
sl
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Approximate solution and approximate flux

Approximate solution u, is Approximate flux —KV vy,
continuous (—kup) is not in continuous
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A posteriori error estimates

A posteriori error estimate
An a posteriori error estimate is an inequality of the form
1/2

2
lu—unlll <4 D nky

KeTh

L d
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A posteriori error estimates

A posteriori error estimate
An a posteriori error estimate is an inequality of the form
1/2

2
llu = unlll << nk ,
KeTy
where

@ u is the unknown exact solution;
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A posteriori error estimates

A posteriori error estimate
An a posteriori error estimate is an inequality of the form
1/2
2
lu—unll <S> nk ¢

KeTy
where

@ u is the unknown exact solution;
@ up is the known numerical approximation;
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A posteriori error estimates

A posteriori error estimate
An a posteriori error estimate is an inequality of the form
1/2

2
llu = unlll << nk ,
KeTy
where

@ u is the unknown exact solution;
@ up is the known numerical approximation;
@ ||| - ||| is some suitable norm;
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A posteriori error estimates

A posteriori error estimate
An a posteriori error estimate is an inequality of the form
1/2

2
llu = unlll << nk ,
KeTy
where

@ u is the unknown exact solution;

@ up is the known numerical approximation;

@ ||| - ||| is some suitable norm;

@ 7 is the computational mesh of the numerical method;
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A posteriori error estimates

A posteriori error estimate
An a posteriori error estimate is an inequality of the form
1/2

2
lu—unlll <4 D nky

KeTh
where _
@ u is the unknown exact solution;

@ up is the known numerical approximation;

@ ||| - ||| is some suitable norm;

@ 7 is the computational mesh of the numerical method;

@ 1Kk = nk(up) is a quantity linked to the mesh element K,
computable from up, called an element estimator.
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A posteriori error estimates

A posteriori error estimate
An a posteriori error estimate is an inequality of the form
1/2

2
llu = unlll << nk ,
KeTy
where

@ u is the unknown exact solution;

@ up is the known numerical approximation;

@ ||| - ||| is some suitable norm;

@ 7 is the computational mesh of the numerical method;

@ 1Kk = nk(up) is a quantity linked to the mesh element K,

computable from up, called an element estimator.

Magic
We do not know u but we can estimate the error between u and
up!!
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A posteriori error estimates

A posteriori error estimate
An a posteriori error estimate is an inequality of the form
1/2

2
llu = unlll << nk ,
KeTy
where

@ u is the unknown exact solution;
@ up is the known numerical approximation;
@ ||| - ||| is some suitable norm;
@ 7 is the computational mesh of the numerical method;
@ 1Kk = nk(up) is a quantity linked to the mesh element K,
computable from up, called an element estimator.
Magic
We do not know u but we can e/stimate the error between u and

up!!l b
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A posteriori error estimates

Construction of 7k (up)

@ recall that the exact flux o = —KVu is continuous
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A posteriori error estimates

Construction of 7k (up)

@ recall that the exact flux o = —KVu is continuous
@ recall that the approximate flux —KVujy, is not continuous
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A posteriori error estimates

Construction of 7k (up)

@ recall that the exact flux o = —KVu is continuous
@ recall that the approximate flux —KVujy, is not continuous

@ main idea: build a discrete, approximate flux reconstruction
o, which would be continuous as the exact flux o is
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A posteriori error estimates

Construction of 7k (up)

recall that the exact flux o = —KVu is continuous
recall that the approximate flux —KVuy, is not continuous

main idea: build a discrete, approximate flux reconstruction
o, which would be continuous as the exact flux o is

use o, in order to devise nx(up)
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Approximate solution and postprocessed flux

Approximate solution up, is A flux reconstruction o, which
continuous is continuous
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Model problem

—u" = n?sin(zx) in]0,1],

u = 0 in0,1
Exact solution
u(x) = sin(mx)
Discretization by the finite element method
N given, h=1/(N+1), xx = kh, k=0,..., N + 1 = piecewise
affine up
Choice of o,
Uh(Xk %) = fU%(Xk‘%) k=0,..., N,

O'h(Xk o 7(U;7‘]Xk,1AX;([ Jr u;’]‘]xk4xk+1|i)/2 k o 1 """ N

)
Uh(XO) o 7u;7hXOAX1['
)

/
*uhhx XN [ nformatis P mathematc
N> XN-+1 ‘ -

T h(XN-41
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Numerical experiment in 1D

Model problem

—u" = =Psin(rx) in]0,1],

u = 0 in0,1

Exact solution
u(x) = sin(mx)
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Numerical experiment in 1D

Model problem

—u" = =Psin(rx) in]0,1],

u = 0 in0,1
Exact solution
u(x) = sin(mx)
Discretization by the finite element method
N given, h=1/(N+1), xx = kh, k =0,..., N + 1 = piecewise
affine up,
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Numerical experiment in 1D

Model problem

—u" = =Psin(rx) in]0,1],

u = 0 in0,1

Exact solution
u(x) = sin(mx)
Discretization by the finite element method
N given, h=1/(N+1), xx = kh, k =0,..., N + 1 = piecewise
affine up,
Choice of o},

ah(xk+%) = —u;,(xk+%) k=0,...,N,
on(Xk) _(UM]quka["i_ um]Xk,Xkﬂ[)/z k=1,...,N,
on(X) = —Uhliewl

Th(XN+1) = —Uhlixwosl s’ S
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Exact and approximate solution and fluxes

— exact solution derivative
——~ approximate solution derivative

-~ -postprocessed flux

Plot of u and up, Plot of /, u},, and —op,
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Estimate and its efficiency

T R R R R T 1. T T T

Estimated and actual error Ratio estimate/error
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Numerical experiment in 2D

Model nonlinear problem

@ p-Laplacian

V-(|VuP2vVu)=f inQ,
u=uy onoQ

@ weak solution (used to impose the Dirichlet BC)
u(r,0) = rs sin(63)

@ p = 4, L-shape domain, singularity at the origin
@ the nonconforming finite element method used

L d

informatics gZmathematics
VX 77

Martin Vohralik Modeling, simulation, and a posteriori estimates



INRIA | PDEs & numerics A posteriori estimates O

Error distribution on an adaptively refined mesh
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Adaptive versus uniform performance
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Conclusions

Smart algorithms in numerical simulations

@ control of the error between the unknown exact solution
and know numerical approximation:
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Conclusions

Smart algorithms in numerical simulations

@ control of the error between the unknown exact solution
and know numerical approximation: a given precision can
be attained at the end of the simulation
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Conclusions

Smart algorithms in numerical simulations

@ control of the error between the unknown exact solution
and know numerical approximation: a given precision can
be attained at the end of the simulation

@ efficiency: as small as possible amount of computational
work is needed
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Conclusions

Smart algorithms in numerical simulations

@ control of the error between the unknown exact solution
and know numerical approximation: a given precision can
be attained at the end of the simulation

@ efficiency: as small as possible amount of computational
work is needed

@ achieved via a posteriori error estimates and adaptivity
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