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Research in France: CNRS

National Centre for Scientific Research

Institutes of Chemistry, Ecology and Environment, Physics,
Nuclear and Particle Physics, Biological Sciences,
Humanities and Social Sciences, Computer Sciences,
Engineering and Systems Sciences, Mathematical
Sciences, Earth Sciences and Astronomy
26.000 permanent employees

research scientists (chargés de recherche)
research directors (directeurs de recherche)
engineers, technicians
administrative staff

6.000 temporary workers
www.cnrs.fr
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Research in France: INRIA

INRIA, Institute for Research in Computer Science and
Control

theoretical and applied research in computer science
1.300 research scientists & research directors
1000 Ph.D. students, 500 post-docs
8 research centers
organization by project-teams
www.inria.fr
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Higher education in France

Public universities

81 universities
no entrance examination

Grandes écoles

highly selective admission based on national ranking in
competitive written and oral exams
two years of dedicated preparatory classes
small number of students

Private universities

a few smaller institutions
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Exchange opportunities

Exchange opportunities

ERASMUS
european programs
Institut Français Prague
Research in Paris, research scholarships
. . .
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Partial differential equations

Example of a partial differential equation (PDE)
Let Ω ⊂ Rd , d = 1,2,3. Find u : Ω→ R such that

−∇·(K∇u) = f in Ω,

u = 0 on ∂Ω,

where
K : Ω→ Rd×d is a diffusion tensor,
f : Ω→ R is a source term.

Form in 1D
Let Ω be an interval, Ω =]a,b[, a,b two real numbers, a < b.
Let k :]a,b[→ R and f :]a,b[→ R be two given functions. Find
u :]a,b[→ R such that

−(ku′)′ = f ,
u(a) = u(b) = 0.
Martin Vohralík Modeling, simulation, and a posteriori estimates



INRIA I PDEs & numerics A posteriori estimates O

Partial differential equations

Example of a partial differential equation (PDE)
Let Ω ⊂ Rd , d = 1,2,3. Find u : Ω→ R such that

−∇·(K∇u) = f in Ω,

u = 0 on ∂Ω,

where
K : Ω→ Rd×d is a diffusion tensor,
f : Ω→ R is a source term.

Form in 1D
Let Ω be an interval, Ω =]a,b[, a,b two real numbers, a < b.
Let k :]a,b[→ R and f :]a,b[→ R be two given functions. Find
u :]a,b[→ R such that

−(ku′)′ = f ,
u(a) = u(b) = 0.
Martin Vohralík Modeling, simulation, and a posteriori estimates



INRIA I PDEs & numerics A posteriori estimates O

Partial differential equations

Example of a partial differential equation (PDE)
Let Ω ⊂ Rd , d = 1,2,3. Find u : Ω→ R such that

−∇·(K∇u) = f in Ω,

u = 0 on ∂Ω,

where
K : Ω→ Rd×d is a diffusion tensor,
f : Ω→ R is a source term.

Form in 1D
Let Ω be an interval, Ω =]a,b[, a,b two real numbers, a < b.
Let k :]a,b[→ R and f :]a,b[→ R be two given functions. Find
u :]a,b[→ R such that

−(ku′)′ = f ,
u(a) = u(b) = 0.
Martin Vohralík Modeling, simulation, and a posteriori estimates



INRIA I PDEs & numerics A posteriori estimates O

Partial differential equations

Example of a partial differential equation (PDE)
Let Ω ⊂ Rd , d = 1,2,3. Find u : Ω→ R such that

−∇·(K∇u) = f in Ω,

u = 0 on ∂Ω,

where
K : Ω→ Rd×d is a diffusion tensor,
f : Ω→ R is a source term.

Form in 1D
Let Ω be an interval, Ω =]a,b[, a,b two real numbers, a < b.
Let k :]a,b[→ R and f :]a,b[→ R be two given functions. Find
u :]a,b[→ R such that

−(ku′)′ = f ,
u(a) = u(b) = 0.
Martin Vohralík Modeling, simulation, and a posteriori estimates



INRIA I PDEs & numerics A posteriori estimates O

Partial differential equations

Example of a partial differential equation (PDE)
Let Ω ⊂ Rd , d = 1,2,3. Find u : Ω→ R such that

−∇·(K∇u) = f in Ω,

u = 0 on ∂Ω,

where
K : Ω→ Rd×d is a diffusion tensor,
f : Ω→ R is a source term.

Form in 1D
Let Ω be an interval, Ω =]a,b[, a,b two real numbers, a < b.
Let k :]a,b[→ R and f :]a,b[→ R be two given functions. Find
u :]a,b[→ R such that

−(ku′)′ = f ,
u(a) = u(b) = 0.
Martin Vohralík Modeling, simulation, and a posteriori estimates



INRIA I PDEs & numerics A posteriori estimates O

Partial differential equations

Example of a partial differential equation (PDE)
Let Ω ⊂ Rd , d = 1,2,3. Find u : Ω→ R such that

−∇·(K∇u) = f in Ω,

u = 0 on ∂Ω,

where
K : Ω→ Rd×d is a diffusion tensor,
f : Ω→ R is a source term.

Form in 1D
Let Ω be an interval, Ω =]a,b[, a,b two real numbers, a < b.
Let k :]a,b[→ R and f :]a,b[→ R be two given functions. Find
u :]a,b[→ R such that

−(ku′)′ = f ,
u(a) = u(b) = 0.
Martin Vohralík Modeling, simulation, and a posteriori estimates



INRIA I PDEs & numerics A posteriori estimates O

Partial differential equations

Example of a partial differential equation (PDE)
Let Ω ⊂ Rd , d = 1,2,3. Find u : Ω→ R such that

−∇·(K∇u) = f in Ω,

u = 0 on ∂Ω,

where
K : Ω→ Rd×d is a diffusion tensor,
f : Ω→ R is a source term.

Form in 1D
Let Ω be an interval, Ω =]a,b[, a,b two real numbers, a < b.
Let k :]a,b[→ R and f :]a,b[→ R be two given functions. Find
u :]a,b[→ R such that

−(ku′)′ = f ,
u(a) = u(b) = 0.
Martin Vohralík Modeling, simulation, and a posteriori estimates



INRIA I PDEs & numerics A posteriori estimates O

Partial differential equations

Example of a partial differential equation (PDE)
Let Ω ⊂ Rd , d = 1,2,3. Find u : Ω→ R such that

−∇·(K∇u) = f in Ω,

u = 0 on ∂Ω,

where
K : Ω→ Rd×d is a diffusion tensor,
f : Ω→ R is a source term.

Form in 1D
Let Ω be an interval, Ω =]a,b[, a,b two real numbers, a < b.
Let k :]a,b[→ R and f :]a,b[→ R be two given functions. Find
u :]a,b[→ R such that

−(ku′)′ = f ,
u(a) = u(b) = 0.
Martin Vohralík Modeling, simulation, and a posteriori estimates



INRIA I PDEs & numerics A posteriori estimates O

Example: elastic string

bqqqqqqq qqqq qqqqq qqqqqqq qqqqqqqq qqqqqqqqq qqqqqqqqqq qqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqq qqqqqqqqqqqq qqqqqqqqqqq qqqqqqqqqq qqqqqqqqq qqqqqqqq qqqqqq qqqqq qqqq qqqqqqa

?
u

f

1

Elastic string with displacement u and weight f

Martin Vohralík Modeling, simulation, and a posteriori estimates



INRIA I PDEs & numerics A posteriori estimates O

Example: heat flow

f > 0

�

A room with a heater of f > 0 and temperature u
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Example: underground water flow

f > 0

�

Underground with a water well of f > 0 and pressure head u
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Comments on partial differential equations

Comments

PDEs describe a huge number of environmental and
physical phenomena
it is almost never possible to find analytical, exact solutions
(not even Einstein could solve PDEs . . . )
still we need to approximate their solutions as precisely as
possible so as to build bridges and dams, construct cars
and planes, forecast the weather, drill oil and natural gas,
depollute soils and oceans, concept medications, devise
advanced health care techniques, predict population
dynamics, steer economic and financial markets . . .
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Numerical approximations of PDEs

Numerical methods

mathematically-based algorithms
evaluated with the aid of computers
deliver approximate solutions

Crucial questions

How large is the overall error between the exact and
approximate solutions?
Where in space and in time is the error localized?
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Properties of the exact solution
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Solution u (displacement,
temperature, pressure . . . ) is

continuous
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Solution gradient ∇u (derivative
u′ in 1D) is not necessarily

continuous
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1D) is continuous
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Approximate solution and approximate flux
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A posteriori error estimates
A posteriori error estimate
An a posteriori error estimate is an inequality of the form

|||u − uh||| ≤

∑
K∈Th

η2
K


1/2

,

where
u is the unknown exact solution;
uh is the known numerical approximation;
||| · ||| is some suitable norm;
Th is the computational mesh of the numerical method;
ηK = ηK (uh) is a quantity linked to the mesh element K ,
computable from uh, called an element estimator.

Magic
We do not know u but we can estimate the error between u and
uh!!!
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A posteriori error estimates

Construction of ηK (uh)

recall that the exact flux σ = −K∇u is continuous
recall that the approximate flux −K∇uh is not continuous
main idea: build a discrete, approximate flux reconstruction
σh which would be continuous as the exact flux σ is
use σh in order to devise ηK (uh)
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Approximate solution and postprocessed flux
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Numerical experiment in 1D

Model problem

−u′′ = π2sin(πx) in ]0,1[,

u = 0 in 0,1

Exact solution
u(x) = sin(πx)

Discretization by the finite element method
N given, h = 1/(N + 1), xk = kh, k = 0, . . . ,N + 1⇒ piecewise
affine uh
Choice of σh

σh(xk+ 1
2
) = −u′h(xk+ 1

2
) k = 0, . . . ,N,

σh(xk ) = −(u′h|]xk−1,xk [ + u′h|]xk ,xk+1[)/2 k = 1, . . . ,N,
σh(x0) = −u′h|]x0,x1[,

σh(xN+1) = −u′h|]xN ,xN+1[
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N given, h = 1/(N + 1), xk = kh, k = 0, . . . ,N + 1⇒ piecewise
affine uh
Choice of σh

σh(xk+ 1
2
) = −u′h(xk+ 1

2
) k = 0, . . . ,N,

σh(xk ) = −(u′h|]xk−1,xk [ + u′h|]xk ,xk+1[)/2 k = 1, . . . ,N,
σh(x0) = −u′h|]x0,x1[,

σh(xN+1) = −u′h|]xN ,xN+1[
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Exact and approximate solution and fluxes
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Estimate and its efficiency
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Numerical experiment in 2D

Model nonlinear problem

p-Laplacian

∇·(|∇u|p−2∇u) = f in Ω,

u = u0 on ∂Ω

weak solution (used to impose the Dirichlet BC)

u(r , θ) = r
7
8 sin(θ 7

8)

p = 4, L-shape domain, singularity at the origin
the nonconforming finite element method used
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Error distribution on an adaptively refined mesh
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Adaptive versus uniform performance
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Adaptive mesh refinement–steady case

movie
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Adaptive mesh refinement–unsteady case

movie
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Conclusions

Smart algorithms in numerical simulations

control of the error between the unknown exact solution
and know numerical approximation: a given precision can
be attained at the end of the simulation
efficiency: as small as possible amount of computational
work is needed
achieved via a posteriori error estimates and adaptivity
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