A posteriori error estimates and adaptivity taking into account algebraic errors

Martin Vohralík

in collaboration with J. Blechta, M. Čermák, P. Daniel, A. Ern, F. Hecht, J. Málek, A. Miraçi, J. Papež, U. Rüde, Z. Strakoš, Z. Tang, B. Wohlmuth, & S. Yousef

Inria Paris & Ecole des Ponts

PDE FM 2021, June 16, 2021

Outline

- Guaranteed upper & lower bounds on total, algebraic, and discretization errors
 - Guaranteed upper and lower bounds
 - Stopping criteria and efficiency
 - Numerical illustration
- 3 *hp*-refinement with inexact solvers and guaranteed computable contraction
- Generalization to an arbitrary residual functional in $[W_0^{1,\alpha}(\Omega)]'$
- 6 Application to the Stokes flow
- 6 Application to a multi-phase multi-compositional porous media Darcy flow
- Conclusions and outlook

I Guaranteed bounds hp-refinement $[W_0^{1,\alpha}(\Omega)]'$ Stokes Multi-phase Darcy C

1. A coarse solution as an approximation to a fine one

Setting

•
$$-\Delta u = f$$
 in $\Omega := (0,1)^d$, $d = 1, 2, 3, u = 0$ on $\partial \Omega$

•
$$u = \sum_{i=1}^{a} x_i (1 - x_i)$$

- u_h : exact finite element solution on a regular simplicial mesh $\mathcal{T}_h = \operatorname{ref}(\mathcal{T}_H)$
- approximation of u_h given by u_H : exact finite element solution on \mathcal{T}_H

I Guaranteed bounds hp-refinement $[W_0^{1,\alpha}(\Omega)]'$ Stokes Multi-phase Darcy C

1. A coarse solution as an approximation to a fine one

Setting

•
$$-\Delta u = f$$
 in $\Omega := (0,1)^d$, $d = 1, 2, 3, u = 0$ on $\partial \Omega$

•
$$u = \sum_{i=1}^{a} x_i (1 - x_i)$$

- u_h : exact finite element solution on a regular simplicial mesh $T_h = ref(T_H)$
- approximation of u_h given by u_H : exact finite element solution on \mathcal{T}_H

Euclidean norm of the algebraic residual vector is highly misleading

Euclidean norm of the algebraic residual vector is highly misleading

Euclidean norm of the algebraic residual vector is highly misleading

J. Papež, M. Vohralík, Numerical Algorithms (2020), DOI 10.1007/s11075-021-01118-5

I Guaranteed bounds hp-refinement $[W_0^{1,\alpha}(\Omega)]'$ Stokes Multi-phase Darcy C

2. Slowly-converging Gauss–Seidel solver

Setting

- L-shape problem, *d* = 2
- regular triangular mesh
- random initial guess
- an algebraic estimate based on local Dirichlet FE problems
 - on the finest level
 - on a mesh hierarchy
- effectivity index

$$\frac{\|\nabla(u_h^{\text{ex}} - u_h)\|}{\text{algebraic estimate}} \geq 1$$

Precision of the finest-level-only estimator deteriorates with *i* and *h*

Precision of the finest-level-only estimator deteriorates with *i* and *h*

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Comput. Methods Appl. Mech. Engrg. 371 (2020), 1132A

A posteriori estimates taking into account algebraic errors 5 / 34

Outline

- Guaranteed upper and lower bounds
- Stopping criteria and efficiency
- Numerical illustration
- 3 *hp*-refinement with inexact solvers and guaranteed computable contraction
- 4 Generalization to an arbitrary residual functional in $[W_0^{1,\alpha}(\Omega)]'$
- 5 Application to the Stokes flow
- 6 Application to a multi-phase multi-compositional porous media Darcy flow
- Conclusions and outlook

Outline

Introduction: two warning examples

- Guaranteed upper & lower bounds on total, algebraic, and discretization errors
 - Guaranteed upper and lower bounds
 - Stopping criteria and efficiency
 - Numerical illustration
- 3 *hp*-refinement with inexact solvers and guaranteed computable contraction
- (4) Generalization to an arbitrary residual functional in $[W_0^{1,lpha}(\Omega)]'$
- 5 Application to the Stokes flow
- 6 Application to a multi-phase multi-compositional porous media Darcy flow
- Conclusions and outlook

Upper and lower bounds Stop. crit. & efficiency Numerics

Setting: $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$, $\Omega \subset \mathbb{R}^d$, $d \ge 1$

Exact solution Find $u \in H_0^1(\Omega)$ such that

$$(
abla oldsymbol{u},
abla oldsymbol{v}) = (f, oldsymbol{v}) \qquad orall oldsymbol{v} \in H^1_0(\Omega)$$

Finite element approximation Find $u_h \in V_h := \mathbb{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega), p \ge 1$, such th

 $(\nabla u_h, \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h$

Linear algebraic system Find $U_h \in \mathbb{R}^N$, $N = |V_h|$, such that

$$\mathbb{A}_h U_h = F_h$$

Algebraic solver (iterative)

$$\mathbb{A}_h U_h^i = F_h - R_h^i \qquad (\mathbf{R}_h^i := F_h - \mathbb{A}_h U_h^i)$$

Upper and lower bounds Stop. crit. & efficiency Numerics

Setting: $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$, $\Omega \subset \mathbb{R}^d$, $d \ge 1$

Exact solution Find $u \in H_0^1(\Omega)$ such that

 $(\nabla \boldsymbol{u}, \nabla \boldsymbol{v}) = (f, \boldsymbol{v}) \qquad \forall \boldsymbol{v} \in H_0^1(\Omega)$

Finite element approximation

Find $u_h \in V_h := \mathbb{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \ge 1$, such that

 $(\nabla \boldsymbol{u}_h, \nabla \boldsymbol{v}_h) = (f, \boldsymbol{v}_h) \qquad \forall \boldsymbol{v}_h \in \boldsymbol{V}_h$

Linear algebraic system Find $U_h \in \mathbb{R}^N$, $N = |V_h|$, such that

$$\mathbb{A}_h U_h = F_h$$

Algebraic solver (iterative)

$$\mathbb{A}_h U_h^i = F_h - R_h^i \qquad (\mathbf{R}_h^i := F_h - \mathbb{A}_h U_h^i)$$

Upper and lower bounds Stop. crit. & efficiency Numerics

Setting: $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$, $\Omega \subset \mathbb{R}^d$, $d \ge 1$

Exact solution Find $u \in H_0^1(\Omega)$ such that

 $(\nabla \boldsymbol{u}, \nabla \boldsymbol{v}) = (\boldsymbol{f}, \boldsymbol{v}) \qquad \forall \boldsymbol{v} \in H^1_0(\Omega)$

Finite element approximation

Find $u_h \in V_h := \mathbb{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega), p \ge 1$, such that

$$(\nabla \boldsymbol{u}_h, \nabla \boldsymbol{v}_h) = (f, \boldsymbol{v}_h) \qquad \forall \boldsymbol{v}_h \in \boldsymbol{V}_h$$

Linear algebraic system Find $U_h \in \mathbb{R}^N$, $N = |V_h|$, such that

$$\mathbb{A}_h U_h = F_h$$

Algebraic solver (iterative)

On each iteration $i \ge 1$: $U_h^i \in \mathbb{R}^N \Leftrightarrow$ inexact FE approximation $u_h^i \in V_h$

 $\mathbb{A}_h U_h^i = F_h - R_h^i \qquad (\mathbf{R}_h^i := F_h - \mathbb{A}_h U_h^i)$

Upper and lower bounds Stop. crit. & efficiency Numerics

Setting: $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$, $\Omega \subset \mathbb{R}^d$, $d \ge 1$

Exact solution Find $u \in H_0^1(\Omega)$ such that

$$(
abla {f u},
abla {f v}) = (f, {f v}) \qquad orall {f v} \in H^1_0(\Omega)$$

Finite element approximation

Find $u_h \in V_h := \mathbb{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega), p \ge 1$, such that

$$(\nabla \boldsymbol{u}_h, \nabla \boldsymbol{v}_h) = (f, \boldsymbol{v}_h) \qquad \forall \boldsymbol{v}_h \in \boldsymbol{V}_h$$

Linear algebraic system Find $U_h \in \mathbb{R}^N$, $N = |V_h|$, such that

$$\mathbb{A}_h U_h = F_h$$

Algebraic solver (iterative)

$$\mathbb{A}_h U_h^i = F_h - R_h^i \qquad (\mathbf{R}_h^i := F_h - \mathbb{A}_h U_h^i)$$

Upper and lower bounds Stop. crit. & efficiency Numerics

Setting: $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$, $\Omega \subset \mathbb{R}^d$, $d \ge 1$

Exact solution Find $u \in H_0^1(\Omega)$ such that

 $(
abla oldsymbol{u},
abla oldsymbol{v}) = (f, oldsymbol{v}) \qquad orall oldsymbol{v} \in H^1_0(\Omega)$

Finite element approximation

Find $u_h \in V_h := \mathbb{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega), p \ge 1$, such that

$$(\nabla \boldsymbol{u}_h, \nabla \boldsymbol{v}_h) = (f, \boldsymbol{v}_h) \qquad \forall \boldsymbol{v}_h \in \boldsymbol{V}_h$$

Linear algebraic system Find $U_h \in \mathbb{R}^N$, $N = |V_h|$, such that

$$\mathbb{A}_h U_h = F_h$$

Algebraic solver (iterative)

$$\mathbb{A}_h U_h^i = F_h - R_h^i \qquad (R_h^i := F_h - \mathbb{A}_h U_h^i)$$

Upper and lower bounds Stop. crit. & efficiency Numerics

Setting: $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$, $\Omega \subset \mathbb{R}^d$, $d \ge 1$

Exact solution Find $u \in H_0^1(\Omega)$ such that

$$(\nabla \boldsymbol{u}, \nabla \boldsymbol{v}) = (f, \boldsymbol{v}) \qquad \forall \boldsymbol{v} \in H^1_0(\Omega)$$

Finite element approximation

Find $u_h \in V_h := \mathbb{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega), p \ge 1$, such that

$$(\nabla \boldsymbol{u}_h, \nabla \boldsymbol{v}_h) = (f, \boldsymbol{v}_h) \qquad \forall \boldsymbol{v}_h \in \boldsymbol{V}_h$$

Linear algebraic system Find $U_h \in \mathbb{R}^N$, $N = |V_h|$, such that

$$\mathbb{A}_h U_h = F_h$$

Algebraic solver (iterative)

$$\mathbb{A}_h U_h^i = F_h - R_h^i \qquad (R_h^i := F_h - \mathbb{A}_h U_h^i)$$

Context

Total error

$$\|\nabla(u-u_h^i)\|$$

Guarante	ed bounds	hp-refinement	$[W_0^{1,\alpha}(\Omega)]'$	Stokes	Multi-phase Darcy	С	Upper and lower bounds	Stop. crit. & efficiency	Numerics	
Cont	Context									
Tot	al erro	or								
$\ abla(u-u_h^i)\ $										
Alg	jebrai	c error								
$\ abla(u_h - u_h^i)\ $										

l Gu	aranteed bounds	hp-refinement	$[W_0^{1,\alpha}(\Omega)]'$	Stokes	Multi-phase Darcy	С	Upper and lower bounds	Stop. crit. & efficiency	Numerics
С	ontext								
	Total erro	or							
	$\ abla(u-u_h^i)\ $								
	Algebrai	error							
	$\ abla(u_h-u_h^i)\ $								
	Discretiz	ation err	or						
					$\ abla(u -$	<i>u_h</i>)	l		

Total error

$$\|\nabla(u-u_h^i)\|$$

Algebraic error

$$\|\nabla(u_h - u_h^i)\| = \|U_h - U_h^i\|_{\mathbb{A}_h} = \|R_h^i\|_{\mathbb{A}_h^{-1}}$$

Discretization error

$$\|\nabla(u-u_h)\|$$

Guaranteed bounds hp-refinement $[W_0^{1,\alpha}(\Omega)]'$ Stokes Multi-phase Darcy C Upper and lower bounds Stop. crit. & efficiency Numerics

Context & goals: a posteriori estimates for any $i \ge 1$

Total error

$$\underline{\eta}_{\mathsf{tot}}^{i} \leq \|\nabla(\boldsymbol{u} - \boldsymbol{u}_{h}^{i})\| \leq \eta_{\mathsf{tot}}^{i}$$

Algebraic error

$$\underline{\eta}_{\mathsf{alg}}^{i} \leq \|\nabla(\boldsymbol{u_h} - \boldsymbol{u_h^{i}})\| = \|\boldsymbol{U_h} - \boldsymbol{U_h^{i}}\|_{\mathbb{A}_h} = \|\boldsymbol{R}_h^{i}\|_{\mathbb{A}_h^{-1}} \leq \eta_{\mathsf{alg}}^{i}$$

Discretization error

 $\underline{\eta}_{\mathsf{dis}}^{i} \leq \|\nabla(\boldsymbol{u} - \boldsymbol{u}_{h})\| \leq \eta_{\mathsf{dis}}^{i}$

Guaranteed bounds hp-refinement $[W_0^{1,\alpha}(\Omega)]'$ Stokes Multi-phase Darcy C Upper and lower bounds Stop. crit. & efficiency Numerics

Context & goals: a posteriori estimates for any i >

Total error

$$\underline{\eta}_{\mathsf{tot}}^{i} \leq \|\nabla(\boldsymbol{u} - \boldsymbol{u}_{h}^{i})\| \leq \eta_{\mathsf{tot}}^{i}$$

Algebraic error

$$\underline{\eta}_{\mathsf{alg}}^{i} \leq \|\nabla(\boldsymbol{u}_{\boldsymbol{h}} - \boldsymbol{u}_{\boldsymbol{h}}^{i})\| = \|\boldsymbol{U}_{\boldsymbol{h}} - \boldsymbol{U}_{\boldsymbol{h}}^{i}\|_{\mathbb{A}_{\boldsymbol{h}}} = \|\boldsymbol{R}_{\boldsymbol{h}}^{i}\|_{\mathbb{A}_{\boldsymbol{h}}^{-1}} \leq \eta_{\mathsf{alg}}^{i}$$

Discretization error

$$\eta_{\mathsf{dis}}^{i} \leq \|
abla(oldsymbol{u} - oldsymbol{u}_{oldsymbol{h}})\| \leq \eta_{\mathsf{dis}}^{i}$$

Further goals

- prove (local) efficiency & p-robustness
- design safe (local) stopping criteria
- estimate the distribution of the errors

M Vohralík

- design adaptive algorithms
- study convergence and cost

Algebraic residual representer

• $r_{b}^{i} \in \mathbb{P}_{p}(\mathcal{T}_{b})$ discontinuous piecewise polynomial $\leftarrow -R_{b}^{i}$

Algebraic residual representer

• $r_h^i \in \mathbb{P}_p(\mathcal{T}_h)$ discontinuous piecewise polynomial $\leftarrow -R_h^i$

Algebraic residual representer

- $r_h^i \in \mathbb{P}_p(\mathcal{T}_h)$ discontinuous piecewise polynomial $\leftarrow -R_h^i$
- $(r_h^i, \psi_l) = (R_h^i)_l$ for all basis functions l = 1, ..., N

Algebraic residual representer

- $r_h^i \in \mathbb{P}_p(\mathcal{T}_h)$ discontinuous piecewise polynomial $\leftarrow R_h^i$
- $(r_h^i, \psi_l) = (R_h^i)_l$ for all basis functions l = 1, ..., N
- gives equivalent form of the residual equation: $u_h^i \in V_h$ s.t.

$$(\nabla u_h^i, \nabla v_h) = (f, v_h) - (r_h^i, v_h) \quad \forall v_h \in V_h \quad \Leftarrow \quad \mathbb{A}_h U_h^i = F_h - R_h^i$$

Algebraic residual representer

- $r_h^i \in \mathbb{P}_p(\mathcal{T}_h)$ discontinuous piecewise polynomial $\leftarrow -R_h^i$
- $(\vec{r}_h^i, \psi_l) = (R_h^i)_l$ for all basis functions l = 1, ..., N
- gives equivalent form of the residual equation: $u_h^i \in V_h$ s.t.

$$(
abla oldsymbol{u}_h^i,
abla oldsymbol{v}_h) = (f, oldsymbol{v}_h) - (r_h^i, oldsymbol{v}_h) \qquad orall oldsymbol{v}_h \in oldsymbol{V}_h \quad \Leftarrow \quad \mathbb{A}_h oldsymbol{U}_h^i = oldsymbol{F}_h - oldsymbol{R}_h^i$$

1D h/H example: $R_{h} := F_{h} - \mathbb{A}_{h}U_{H} = \begin{pmatrix} 2h \\ -2h \\ 2h \\ -2h \\ \vdots \\ 2h \end{pmatrix}$ 0 h1 -h

Algebraic residual representer

- $r_h^i \in \mathbb{P}_p(\mathcal{T}_h)$ discontinuous piecewise polynomial $\leftarrow -R_h^i$
- $(\vec{r}_h^i, \psi_l) = (R_h^i)_l$ for all basis functions l = 1, ..., N
- gives equivalent form of the residual equation: $u_h^i \in V_h$ s.t.

$$(
abla oldsymbol{u}_h^i,
abla oldsymbol{v}_h) = (f, oldsymbol{v}_h) - (r_h^i, oldsymbol{v}_h) \qquad orall oldsymbol{v}_h \in oldsymbol{V}_h \quad \Leftarrow \quad \mathbb{A}_h oldsymbol{U}_h^i = oldsymbol{F}_h - oldsymbol{R}_h^i$$

Tools

Algebraic residual representer

- $r_h^i \in \mathbb{P}_p(\mathcal{T}_h)$ discontinuous piecewise polynomial $\leftarrow R_h^i$
- $(r_h^i, \psi_l) = (R_h^i)_l$ for all basis functions l = 1, ..., N
- gives equivalent form of the residual equation: $u_h^i \in V_h$ s.t.

$$(\nabla u_h^i, \nabla v_h) = (f, v_h) - (r_h^i, v_h) \quad \forall v_h \in V_h \quad \Leftarrow \quad \mathbb{A}_h U_h^i = F_h - R_h^i$$

• flux and potential reconstructions,

$$abla \cdot oldsymbol{\sigma}_{h, \mathsf{alg}} = oldsymbol{r}_h^i$$

Algebraic residual representer

- $r_h^i \in \mathbb{P}_p(\mathcal{T}_h)$ discontinuous piecewise polynomial $\leftarrow R_h^i$
- $(r_h^i, \psi_l) = (R_h^i)_l$ for all basis functions l = 1, ..., N
- gives equivalent form of the residual equation: $u_h^i \in V_h$ s.t.

$$(\nabla \boldsymbol{u}_h^i, \nabla \boldsymbol{v}_h) = (f, \boldsymbol{v}_h) - (r_h^i, \boldsymbol{v}_h) \quad \forall \boldsymbol{v}_h \in \boldsymbol{V}_h \quad \Leftarrow \quad \mathbb{A}_h \boldsymbol{U}_h^i = \boldsymbol{F}_h - \boldsymbol{R}_h^i$$

Tools

• flux and potential reconstructions, $\nabla \sigma_{h,alg} = r_h^i$

- separate components for algebraic & discretization errors
- multilevel hierarchy (algebraic components)

Previous contributions

Linear problems

- Becker, Johnson, and Rannacher (1995), multigrid stopping criteria
- Repin (since 1997), guaranteed bounds including algebraic error
- Arioli (2000's), general stopping criteria
- Stevenson (2005) / Becker and Mao (2008), convergence and optimal rate
- Burstedde and Kunoth (2008), wavelets & inexact CG
- Meidner, Rannacher, Vihharev (2009), goal-oriented error control
- Silvester and Simoncini (2011), inexact mixed approximations

o . . .

Nonlinear problems

- Hackbusch and Reusken (1989) / Deuflhard (1990), adaptive Newton damping
- Ern and Vohralík (2013) / Congreve and Wihler (2017), adaptive inexact
- Gantner, Haberl, Praetorius, Stiftner (2018), convergence and optimal rate

Previous contributions

Linear problems

- Becker, Johnson, and Rannacher (1995), multigrid stopping criteria
- Repin (since 1997), guaranteed bounds including algebraic error
- Arioli (2000's), general stopping criteria
- Stevenson (2005) / Becker and Mao (2008), convergence and optimal rate
- Burstedde and Kunoth (2008), wavelets & inexact CG
- Meidner, Rannacher, Vihharev (2009), goal-oriented error control
- Silvester and Simoncini (2011), inexact mixed approximations

o . . .

Nonlinear problems

- Hackbusch and Reusken (1989) / Deuflhard (1990), adaptive Newton damping
- Ern and Vohralík (2013) / Congreve and Wihler (2017), adaptive inexact Newton methods
- Gantner, Haberl, Praetorius, Stiftner (2018), convergence and optimal rate

o . . .

Outline

- Guaranteed upper & lower bounds on total, algebraic, and discretization errors
 - Guaranteed upper and lower bounds
 - Stopping criteria and efficiency
 - Numerical illustration
- 3 *hp*-refinement with inexact solvers and guaranteed computable contraction
- (4) Generalization to an arbitrary residual functional in $[W_0^{1,lpha}(\Omega)]'$
- 6 Application to the Stokes flow
- 6 Application to a multi-phase multi-compositional porous media Darcy flow
- Conclusions and outlook

Proof.

$$\begin{aligned} \|\nabla(u_h - u_h^i)\| &= \sup_{v_h \in V_h, \|\nabla v_h\| = 1} (\nabla(u_h - u_h^i), \nabla v_h); \\ (\nabla(u_h - u_h^i), \nabla v_h) &= (\mathbf{r}_h^i, v_h) = (\nabla \cdot \boldsymbol{\sigma}_{h, \text{alg}}^i, v_h) = -(\boldsymbol{\sigma}_{h, \text{alg}}^i, \nabla v_h) \leq \|\boldsymbol{\sigma}_{h, \text{alg}}^i\|\|\nabla v_h\|. \end{aligned}$$

Previous cheap constructions of $\sigma_{h,\text{alg}}^{i}$

• sequential sweep trough T_h , local min. (JSV (2010))

approximate by precomputing ν iterations (EV (2013))

Proof.

$$\begin{aligned} \|\nabla(u_h - u_h^i)\| &= \sup_{\boldsymbol{v}_h \in \boldsymbol{V}_h, \|\nabla \boldsymbol{v}_h\| = 1} (\nabla(u_h - u_h^i), \nabla \boldsymbol{v}_h); \\ (\nabla(u_h - u_h^i), \nabla \boldsymbol{v}_h) &= (\boldsymbol{r}_h^i, \boldsymbol{v}_h) = (\nabla \cdot \boldsymbol{\sigma}_{h, \text{alg}}^i, \boldsymbol{v}_h) = -(\boldsymbol{\sigma}_{h, \text{alg}}^i, \nabla \boldsymbol{v}_h) \leq \|\boldsymbol{\sigma}_{h, \text{alg}}^i\|\|\nabla \boldsymbol{v}_h\|. \end{aligned}$$

Previous cheap constructions of σ_{hald}^{i}

- **()** sequential sweep trough \mathcal{T}_h , local min. (JSV (2010))
- approximate by precomputing ν iterations (EV (2013))

Proof.

$$\begin{aligned} \|\nabla(u_h - u_h^i)\| &= \sup_{\boldsymbol{v}_h \in \boldsymbol{V}_h, \|\nabla \boldsymbol{v}_h\| = 1} (\nabla(u_h - u_h^i), \nabla \boldsymbol{v}_h); \\ (\nabla(u_h - u_h^i), \nabla \boldsymbol{v}_h) &= (\boldsymbol{r}_h^i, \boldsymbol{v}_h) = (\nabla \cdot \boldsymbol{\sigma}_{h, \text{alg}}^i, \boldsymbol{v}_h) = -(\boldsymbol{\sigma}_{h, \text{alg}}^i, \nabla \boldsymbol{v}_h) \leq \|\boldsymbol{\sigma}_{h, \text{alg}}^i\|\|\nabla \boldsymbol{v}_h\|. \end{aligned}$$

Previous cheap constructions of $\sigma_{h,alg}^{i}$

- sequential sweep trough T_h , local min. (JSV (2010))
- 2 approximate by precomputing ν iterations (EV (2013))

Algebraic error flux reconstruction, two-level setting

Definition (Coarse grid solve)

$$\begin{array}{l} \text{Find } \rho_{H,\text{alg}}^{i} \in V_{H} := \mathbb{P}_{1}(\mathcal{T}_{H}) \cap H_{0}^{1}(\Omega) \text{ s.t.} \\ (\nabla \rho_{H,\text{alg}}^{i}, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (\mathbf{r}_{h}^{i}, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_{H} \end{array}$$

• \mathbb{P}_1 FE solve on coarse mesh \mathcal{T}_H

$$\boldsymbol{\sigma}_{h,\text{alg}}^{\mathbf{a},i} := \arg \min_{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \nabla \cdot \mathbf{v}_h = \Pi_{\mathcal{Q}_h}(\psi_{\mathbf{a}} r_h^i - \nabla \psi_{\mathbf{a}} \cdot \nabla \rho_{H,\text{alg}}^i)} \|\mathbf{v}_h\|_{\omega_{\mathbf{a}}}$$
$$\boldsymbol{\sigma}_{h,\text{alg}}^i := \sum_{\mathbf{a} \in \mathcal{V}_h} \boldsymbol{\sigma}_{h,\text{alg}}^{\mathbf{a},i} \in \mathbf{V}_h \subset \mathbf{H}(\text{div}, \Omega)$$

- local homogeneous MFE Neumann pbs

•
$$\nabla \cdot \sigma_{h,\text{alg}}^{i} = \sum_{\mathbf{a} \in \mathcal{V}_{H}} \nabla \cdot \sigma_{h,\text{alg}}^{\mathbf{a},i} = \Pi_{Q_{h}} r_{h}^{i} = r_{h}^{i}$$

Algebraic error flux reconstruction, two-level setting

Definition (Coarse grid solve)

Find
$$\rho_{H,\text{alg}}^{i} \in V_{H} := \mathbb{P}_{1}(\mathcal{T}_{H}) \cap H_{0}^{1}(\Omega)$$
 s.t.
 $(\nabla \rho_{H,\text{alg}}^{i}, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (\mathbf{r}_{h}^{i}, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_{H}$

• \mathbb{P}_1 FE solve on coarse mesh \mathcal{T}_H

Definition (Algebraic error flux reconstruction)

$$\begin{split} \boldsymbol{\sigma}_{h,\text{alg}}^{\mathbf{a},i} &:= \arg\min_{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \, \nabla \cdot \mathbf{v}_h = \Pi_{\mathcal{Q}_h}(\psi_{\mathbf{a}} r_h^i - \nabla \psi_{\mathbf{a}} \cdot \nabla \rho_{H,\text{alg}}^i)} \|\mathbf{v}_h\|_{\omega_{\mathbf{a}}} \\ \boldsymbol{\sigma}_{h,\text{alg}}^i &:= \sum_{\mathbf{a} \in \mathcal{V}_H} \boldsymbol{\sigma}_{h,\text{alg}}^{\mathbf{a},i} \in \mathbf{V}_h \subset \mathbf{H}(\text{div}, \Omega) \end{split}$$

- local homogeneous MFE Neumann pbs ۲
- fine meshes of coarse patches ω_a

•
$$\nabla \cdot \sigma_{h,\text{alg}}^{i} = \sum_{\mathbf{a} \in \mathcal{V}_{H}} \nabla \cdot \sigma_{h,\text{alg}}^{\mathbf{a},i} = \Pi_{Q_{h}} r_{h}^{i} = r_{h}^{i}$$

Algebraic error flux reconstruction, two-level setting

Definition (Coarse grid solve)

Find
$$\rho_{H,\text{alg}}^{i} \in V_{H} := \mathbb{P}_{1}(\mathcal{T}_{H}) \cap H_{0}^{1}(\Omega)$$
 s.t.
 $(\nabla \rho_{H,\text{alg}}^{i}, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (\mathbf{r}_{h}^{i}, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_{H}$

• \mathbb{P}_1 FE solve on coarse mesh \mathcal{T}_H

Definition (Algebraic error flux reconstruction)

$$\begin{split} \boldsymbol{\sigma}_{h,\mathrm{alg}}^{\mathbf{a},i} &:= \arg\min_{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \nabla \cdot \mathbf{v}_h = \Pi_{\mathcal{Q}_h}(\psi_{\mathbf{a}} r_h^i - \nabla \psi_{\mathbf{a}} \cdot \nabla \rho_{\mathcal{H},\mathrm{alg}}^i)} \|\mathbf{v}_h\|_{\omega_{\mathbf{a}}}, \\ \boldsymbol{\sigma}_{h,\mathrm{alg}}^i &:= \sum_{\mathbf{a} \in \mathcal{V}_H} \boldsymbol{\sigma}_{h,\mathrm{alg}}^{\mathbf{a},i} \in \mathbf{V}_h \subset \mathbf{H}(\mathrm{div},\Omega) \end{split}$$

- local homogeneous MFE Neumann pbs
- fine meshes of coarse patches ω_a

•
$$\nabla \cdot \sigma_{h,\text{alg}}^{i} = \sum_{\mathbf{a} \in \mathcal{V}_{H}} \nabla \cdot \sigma_{h,\text{alg}}^{\mathbf{a},i} = \Pi_{Q_{h}} r_{h}^{i} = r_{h}^{i}$$

Guaranteed bounds hp-refinement $[W_0^{1,\alpha}(\Omega)]'$ Stokes Multi-phase Darcy C Upper and lower bound

Upper and lower bounds Stop. crit. & efficiency Numerics

Algebraic error flux reconstruction, two-level setting

Definition (Coarse grid solve)

Find
$$\rho_{H,\text{alg}}^{i} \in V_{H} := \mathbb{P}_{1}(\mathcal{T}_{H}) \cap H_{0}^{1}(\Omega)$$
 s.t.
 $(\nabla \rho_{H,\text{alg}}^{i}, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (\mathbf{r}_{h}^{i}, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_{H}$

• \mathbb{P}_1 FE solve on coarse mesh \mathcal{T}_H

Definition (Algebraic error flux reconstruction)

$$\sigma_{h,\text{alg}}^{\mathbf{a},i} := \arg\min_{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \nabla \cdot \mathbf{v}_h = \Pi_{\mathcal{Q}_h}(\psi_{\mathbf{a}} r_h^i - \nabla \psi_{\mathbf{a}} \cdot \nabla \rho_{\mathcal{H},\text{alg}}^i)} \|\mathbf{v}_h\|_{\omega_{\mathbf{a}}},$$
$$\sigma_{h,\text{alg}}^i := \sum_{\mathbf{a} \in \mathcal{V}_H} \sigma_{h,\text{alg}}^{\mathbf{a},i} \in \mathbf{V}_h \subset \mathbf{H}(\text{div}, \Omega)$$

- local homogeneous MFE Neumann pbs
- fine meshes of coarse patches ω_a

•
$$\nabla \cdot \sigma_{h,\text{alg}}^{i} = \sum_{\mathbf{a} \in \mathcal{V}_{H}} \nabla \cdot \sigma_{h,\text{alg}}^{\mathbf{a},i} = \Pi_{Q_{h}} r_{h}^{i} = r_{h}^{i}$$

A posteriori estimates taking into account algebraic errors 12/34

Algebraic error flux reconstruction, two-level setting

Definition (Coarse grid solve)

Find
$$\rho_{H,\text{alg}}^{i} \in V_{H} := \mathbb{P}_{1}(\mathcal{T}_{H}) \cap H_{0}^{1}(\Omega) \text{ s.t.}$$

 $(\nabla \rho_{H,\text{alg}}^{i}, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (\mathbf{r}_{h}^{i}, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_{H}$

• \mathbb{P}_1 FE solve on coarse mesh \mathcal{T}_H

Definition (Algebraic error flux reconstruction)

$$\sigma_{h,\text{alg}}^{\mathbf{a},i} := \arg\min_{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \, \nabla \cdot \mathbf{v}_h = \Pi_{\mathcal{Q}_h}(\psi_{\mathbf{a}} r_h^i - \nabla \psi_{\mathbf{a}} \cdot \nabla \rho_{\mathcal{H},\text{alg}}^i)} \|\mathbf{v}_h\|_{\omega_{\mathbf{a}}},$$

$$\sigma_{h,\text{alg}}^i := \sum_{\mathbf{a} \in \mathcal{V}_H} \sigma_{h,\text{alg}}^{\mathbf{a},i} \in \mathbf{V}_h \subset \mathbf{H}(\text{div}, \Omega)$$

- local homogeneous MFE Neumann pbs
- fine meshes of coarse patches $\omega_{\mathbf{a}}$

•
$$\nabla \cdot \boldsymbol{\sigma}_{h, \text{alg}}^{i} = \sum_{\mathbf{a} \in \mathcal{V}_{H}} \nabla \cdot \boldsymbol{\sigma}_{h, \text{alg}}^{\mathbf{a}, i} = \Pi_{\mathcal{Q}_{h}} \boldsymbol{r}_{h}^{i} = \boldsymbol{r}_{h}^{i}$$

12/34

A posteriori estimates taking into account algebraic errors

I Guaranteed bounds hp-refinement $[W_0^{1,\alpha}(\Omega)]'$ Stokes Multi-phase Darcy C Upper and lower b

Upper and lower bounds Stop. crit. & efficiency Numerics

Algebraic error flux reconstruction, two-level setting

M. Vohralík

A posteriori estimates taking into account algebraic errors 12 / 34

0.4

0.6

0.8

Discretization flux reconstruction

Definition (Discretization flux reconstruction, Destuynder & Métivet (1999), Braess & Schöberl (2008), EV (2013))

$$\sigma_{h,\text{dis}}^{\mathbf{a},i} := \arg \min_{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \, \nabla \cdot \mathbf{v}_h = \Pi_{\mathcal{Q}_h}(f\psi^{\mathbf{a}} - \nabla u_h^i \cdot \nabla \psi_{\mathbf{a}} - r_h^i \psi^{\mathbf{a}})} \|\psi^{\mathbf{a}} \nabla u_h^i + \mathbf{v}_h\|_{\omega_{\mathbf{a}}},$$

$$\sigma_{h,\text{dis}}^i := \sum_{\mathbf{a} \in \mathcal{V}_h} \sigma_{h,\text{dis}}^{\mathbf{a},i} \qquad \nabla \cdot \sigma_{h,\text{dis}}^i = \sum_{\mathbf{a} \in \mathcal{V}_h} \nabla \cdot \sigma_{h,\text{dis}}^{\mathbf{a},i} = \Pi_{\mathcal{Q}_h} f - r_h^i$$

Discretization flux reconstruction

Definition (Discretization flux reconstruction, Destuynder & Métivet (1999), Braess & Schöberl (2008), EV (2013))

$$\boldsymbol{\sigma}_{h,\text{dis}}^{\mathbf{a},i} := \arg \min_{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \, \nabla \cdot \mathbf{v}_h = \Pi_{\mathcal{Q}_h}(f\psi^{\mathbf{a}} - \nabla u_h^i \cdot \nabla \psi_{\mathbf{a}} - r_h^i \psi^{\mathbf{a}})} \|\psi^{\mathbf{a}} \nabla u_h^i + \mathbf{v}_h\|_{\omega_{\mathbf{a}}},$$

$$\boldsymbol{\sigma}_{h,\text{dis}}^i := \sum_{\mathbf{a} \in \mathcal{V}_h} \boldsymbol{\sigma}_{h,\text{dis}}^{\mathbf{a},i} \qquad \nabla \cdot \boldsymbol{\sigma}_{h,\text{dis}}^i = \sum_{\mathbf{a} \in \mathcal{V}_h} \nabla \cdot \boldsymbol{\sigma}_{h,\text{dis}}^{\mathbf{a},i} = \Pi_{\mathcal{Q}_h} f - r_h^i$$

Discretization flux reconstruction

Definition (Discretization flux reconstruction, Destuynder & Métivet (1999), Braess & Schöberl (2008), EV (2013))

$$\sigma_{h,\text{dis}}^{\mathbf{a},i} := \arg \min_{\mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \, \nabla \cdot \mathbf{v}_h = \Pi_{Q_h}(f\psi^{\mathbf{a}} - \nabla u_h^i \cdot \nabla \psi_{\mathbf{a}} - r_h^i \psi^{\mathbf{a}})} \|\psi^{\mathbf{a}} \nabla u_h^i + \mathbf{v}_h\|_{\omega_{\mathbf{a}}},$$

$$\sigma_{h,\text{dis}}^i := \sum_{\mathbf{a} \in \mathcal{V}_h} \sigma_{h,\text{dis}}^{\mathbf{a},i} \qquad \nabla \cdot \sigma_{h,\text{dis}}^i = \sum_{\mathbf{a} \in \mathcal{V}_h} \nabla \cdot \sigma_{h,\text{dis}}^{\mathbf{a},i} = \Pi_{Q_h} f - r_h^i$$

M. Vohralík

Reconstructions

A posteriori estimates taking into account algebraic errors 14/34

Reconstructions

Upper bound on the total error

Theorem (Total error upper bound)

On each iteration i > 1, there holds

$$\underbrace{\|\nabla(u-u_h^i)\|}_{\text{total error}} \leq \underbrace{\|\nabla u_h^i + \sigma_{h,\text{dis}}^i\|}_{\text{discretization est.}} + \underbrace{\|\sigma_{h,\text{alg}}^i\|}_{\text{algebraic est.}} + \underbrace{\left\{\sum_{K\in\mathcal{T}_h}\frac{h_K^2}{\pi^2}\|f - \Pi_{Q_h}f\|_K^2\right\}^{\gamma}}_{\text{data osc. est.}}.$$

$$\|\nabla(u-u_h^i)\| = \sup_{v \in H_0^1(\Omega), \, \|\nabla v\|=1} (\nabla(u-u_h^i), \nabla v)$$

$$(\nabla(u - u_h^i), \nabla v) = (f, v) - (\nabla u_h^i, \nabla v) = (f - \nabla \cdot (\boldsymbol{\sigma}_{h, \text{alg}}^i + \boldsymbol{\sigma}_{h, \text{dis}}^i), v) - (\boldsymbol{\sigma}_{h, \text{alg}}^i + \boldsymbol{\sigma}_{h, \text{dis}}^i + \nabla u_h^i, \nabla v)$$

Upper bound on the total error

Theorem (Total error upper bound)

On each iteration i > 1, there holds

$$\underbrace{\|\nabla(u-u_h^i)\|}_{\text{total error}} \leq \underbrace{\|\nabla u_h^i + \sigma_{h,\text{dis}}^i\|}_{\text{discretization est.}} + \underbrace{\|\sigma_{h,\text{alg}}^i\|}_{\text{algebraic est.}} + \underbrace{\left\{\sum_{K\in\mathcal{T}_h}\frac{h_K^2}{\pi^2}\|f - \Pi_{\mathcal{O}_h}f\|_K^2\right\}^{1/2}}_{\text{data osc. est.}}$$

Proof.

$$\|\nabla(u-u_h^i)\| = \sup_{v\in H_0^1(\Omega), \, \|\nabla v\|=1} (\nabla(u-u_h^i), \nabla v)$$

$$(\nabla(u - u_h^i), \nabla v) = (f, v) - (\nabla u_h^i, \nabla v) = (f - \nabla \cdot (\boldsymbol{\sigma}_{h, \text{alg}}^i + \boldsymbol{\sigma}_{h, \text{dis}}^i), v) - (\boldsymbol{\sigma}_{h, \text{alg}}^i + \boldsymbol{\sigma}_{h, \text{dis}}^i + \nabla u_h^i, \nabla v)$$

Upper bound on the total error

Theorem (Total error upper bound)

On each iteration i > 1, there holds

$$\underbrace{\|\nabla(u-u_h^i)\|}_{\text{total error}} \leq \underbrace{\|\nabla u_h^i + \sigma_{h,\text{dis}}^i\|}_{\text{discretization est.}} + \underbrace{\|\sigma_{h,\text{alg}}^i\|}_{\text{algebraic est.}} + \underbrace{\left\{\sum_{K\in\mathcal{T}_h}\frac{h_K^2}{\pi^2}\|f - \Pi_{\mathcal{O}_h}f\|_K^2\right\}^{1/2}}_{\text{data osc. est.}}$$

Proof.

$$\|
abla(u-u_h^i)\| = \sup_{v\in H_0^1(\Omega), \, \|
abla v\|=1} (
abla(u-u_h^i),
abla v)$$

$$(\nabla(u - u_h^i), \nabla v) = (f, v) - (\nabla u_h^i, \nabla v) = (f - \nabla \cdot (\sigma_{h, \text{alg}}^i + \sigma_{h, \text{dis}}^i), v) - (\sigma_{h, \text{alg}}^i + \sigma_{h, \text{dis}}^i + \nabla u_h^i, \nabla v)$$

Upper bound on the total error

Theorem (Total error upper bound)

On each iteration i > 1, there holds

$$\underbrace{\|\nabla(u-u_h^i)\|}_{\text{total error}} \leq \underbrace{\|\nabla u_h^i + \sigma_{h,\text{dis}}^i\|}_{\text{discretization est.}} + \underbrace{\|\sigma_{h,\text{alg}}^i\|}_{\text{algebraic est.}} + \underbrace{\left\{\sum_{K\in\mathcal{T}_h}\frac{h_K^2}{\pi^2}\|f - \Pi_{Q_h}f\|_K^2\right\}^{1/2}}_{\text{data osc. est.}}$$

Proof.

$$\begin{aligned} \|\nabla(u-u_h^i)\| &= \sup_{v \in H_0^1(\Omega), \|\nabla v\|=1} (\nabla(u-u_h^i), \nabla v) \\ (\nabla(u-u_h^i), \nabla v) &= (f, v) - (\nabla u_h^i, \nabla v) = (f - \overbrace{\nabla \cdot (\sigma_{h,\text{alg}}^i + \sigma_{h,\text{dis}}^i)}^{=r_h^i + \prod_{Q_h} f - r_h^i}, v) \\ &- (\sigma_{h,\text{alg}}^i + \sigma_{h,\text{dis}}^i + \nabla u_h^i, \nabla v) \end{aligned}$$

Outline

Introduction: two warning examples

- Guaranteed upper & lower bounds on total, algebraic, and discretization errors
 - Guaranteed upper and lower bounds
 - Stopping criteria and efficiency
 - Numerical illustration
- 3 *hp*-refinement with inexact solvers and guaranteed computable contraction
- (4) Generalization to an arbitrary residual functional in $[W_0^{1,lpha}(\Omega)]'$
- 6 Application to the Stokes flow
- 6 Application to a multi-phase multi-compositional porous media Darcy flow
- Conclusions and outlook

Galerkin orthogonality

Discretization error upper and lower bounds

- $\bullet\,$ lower bound on total error & upper bound on algebraic error $\Rightarrow\,$ lower bound on the discretization error
- upper bound on total error & lower bound on algebraic error ⇒ upper bound on the discretization error

Safe stopping criterion ($\gamma_{alg} \approx 0.1$)

algebraic error $\leq \gamma_{alg}$ discretization error

Galerkin orthogonality

$$\underbrace{\|\nabla(u - u_h^{i})\|^2}_{\text{total error}} = \underbrace{\|\nabla(u - u_h)\|^2}_{\text{discretization error}} + \underbrace{\|\nabla(u_h - u_h^{i})\|^2}_{\text{algebraic error}}$$

Discretization error upper and lower bounds

- lower bound on total error & upper bound on algebraic error ⇒ lower bound on the discretization error
- upper bound on total error & lower bound on algebraic error ⇒ upper bound on the discretization error

Safe stopping criterion ($\gamma_{alg} \approx 0.1$)

algebraic error $\leq \gamma_{alg}$ discretization error

Galerkin orthogonality

$$\underbrace{\|\nabla(u - u_h^{i})\|^2}_{\text{total error}} = \underbrace{\|\nabla(u - u_h)\|^2}_{\text{discretization error}} + \underbrace{\|\nabla(u_h - u_h^{i})\|^2}_{\text{algebraic error}}$$

Discretization error upper and lower bounds

- lower bound on total error & upper bound on algebraic error ⇒ lower bound on the discretization error
- upper bound on total error & lower bound on algebraic error ⇒ upper bound on the discretization error

Safe stopping criterion ($\gamma_{alg} \approx 0.1$) algebraic error $\leq \gamma_{alg}$ discretization error

Galerkin orthogonality

$$\underbrace{\|\nabla(u - u_h^{i})\|^2}_{\text{total error}} = \underbrace{\|\nabla(u - u_h)\|^2}_{\text{discretization error}} + \underbrace{\|\nabla(u_h - u_h^{i})\|^2}_{\text{algebraic error}}$$

Discretization error upper and lower bounds

- lower bound on total error & upper bound on algebraic error ⇒ lower bound on the discretization error
- upper bound on total error & lower bound on algebraic error ⇒ upper bound on the discretization error

Safe stopping criterion ($\gamma_{alg} \approx 0.1$)

algebraic error $\leq \gamma_{alg}$ discretization error

Galerkin orthogonality

$$\underbrace{\|\nabla(u - u_h^i)\|^2}_{\text{total error}} = \underbrace{\|\nabla(u - u_h)\|^2}_{\text{discretization error}} + \underbrace{\|\nabla(u_h - u_h^i)\|^2}_{\text{algebraic error}}$$

Discretization error upper and lower bounds

- lower bound on total error & upper bound on algebraic error ⇒ lower bound on the discretization error
- upper bound on total error & lower bound on algebraic error ⇒ upper bound on the discretization error

Safe stopping criterion ($\gamma_{alg} \approx 0.1$)

upper algebraic **estimate** $\leq \gamma_{alg}$ lower discretization **estimate**

Efficiency and polynomial-degree-robustness

Theorem (Efficiency & p-robustness, Braess, Pillwein, & Schöberl (2009), EV (2016))

Let the algebraic estimate be below the discretization estimate. Let $f \in \mathbb{P}_p(\mathcal{T}_h)$. Then

$$\nabla u_h^i + \sigma_{h,\text{dis}}^i \| + \| \sigma_{h,\text{alg}}^i \| \lesssim \underbrace{\| \nabla (u - u_h^i) \|}_{\cdot}.$$

total estimate

total error

Theorem (Local efficiency & p-robustness, Braess, Pillwein, & Schöberl (2009), EV (2016))

Let patchwise the algebraic estimate be below the discretization estimate. Let $f \in \mathbb{P}_p(\mathcal{T}_h)$. Then

$$\underbrace{\|\nabla u_h^i + \sigma_{h,\text{dis}}^i\|_{\mathcal{K}} + \|\sigma_{h,\text{alg}}^i\|_{\mathcal{K}}}_{\text{element total estimate}} \lesssim \underbrace{\sum_{\mathbf{a} \in \mathcal{V}_h, \mathbf{a} \subset \partial \mathcal{K}}}_{\text{patch total error}} \|\nabla (u - u_h^i)\|_{\omega_{\mathbf{a}}} \quad \forall \mathcal{K} \in \mathcal{T}_h$$

cal stopping criterion \Rightarrow local efficiency & *p*-robustness

Efficiency and polynomial-degree-robustness

Theorem (Efficiency & p-robustness, Braess, Pillwein, & Schöberl (2009), EV (2016))

Let the algebraic estimate be below the discretization estimate. Let $f \in \mathbb{P}_p(\mathcal{T}_h)$. Then

$$\nabla u_h^i + \sigma_{h,\text{dis}}^i \| + \| \sigma_{h,\text{alg}}^i \| \lesssim \underbrace{\| \nabla (u - u_h^i) \|}_{\bullet}.$$

total estimate

Theorem (Local efficiency & p-robustness, Braess, Pillwein, & Schöberl (2009), EV (2016))

Let patchwise the algebraic estimate be below the discretization estimate. Let $f \in \mathbb{P}_p(\mathcal{T}_h)$. Then

$$\underbrace{\|\nabla u_h^i + \sigma_{h,\text{dis}}^i\|_{K} + \|\sigma_{h,\text{alg}}^i\|_{K}}_{\text{element total estimate}} \lesssim \underbrace{\sum_{\mathbf{a}\in\mathcal{V}_h, \mathbf{a}\subset\partial K}}_{\text{patch total error}} \|\nabla (u - u_h^i)\|_{\omega_{\mathbf{a}}} \quad \forall K\in\mathcal{T}_h.$$

local stopping criterion \Rightarrow local efficiency & *p*-robustness

Efficiency and polynomial-degree-robustness

Theorem (Efficiency & p-robustness, Braess, Pillwein, & Schöberl (2009), EV (2016))

Let the algebraic estimate be below the discretization estimate. Let $f \in \mathbb{P}_p(\mathcal{T}_h)$. Then

$$\nabla u_h^i + \sigma_{h,\text{dis}}^i \| + \| \sigma_{h,\text{alg}}^i \| \lesssim \underbrace{\| \nabla (u - u_h^i) \|}_{\cdot}.$$

total estimate

Theorem (Local efficiency & p-robustness, Braess, Pillwein, & Schöberl (2009), EV (2016))

Let patchwise the algebraic estimate be below the discretization estimate. Let $f \in \mathbb{P}_p(\mathcal{T}_h)$. Then

$$\underbrace{\|\nabla u_h^i + \sigma_{h,\text{dis}}^i\|_{\mathcal{K}} + \|\sigma_{h,\text{alg}}^i\|_{\mathcal{K}}}_{\text{element total estimate}} \lesssim \underbrace{\sum_{\mathbf{a}\in\mathcal{V}_h, \mathbf{a}\subset\partial\mathcal{K}}}_{\text{patch total error}} \|\nabla(u - u_h^i)\|_{\omega_{\mathbf{a}}} \quad \forall \mathcal{K}\in\mathcal{T}_h.$$

local stopping criterion \Rightarrow local efficiency & *p*-robustness

Efficiency and polynomial-degree-robustness

Theorem (Efficiency & p-robustness, Braess, Pillwein, & Schöberl (2009), EV (2016))

Let the algebraic estimate be below the discretization estimate. Let $f \in \mathbb{P}_p(\mathcal{T}_h)$. Then

$$\nabla u_h^i + \sigma_{h,\text{dis}}^i \| + \| \sigma_{h,\text{alg}}^i \| \lesssim \underbrace{\| \nabla (u - u_h^i) \|}_{\cdot}.$$

total estimate

Theorem (Local efficiency & p-robustness, Braess, Pillwein, & Schöberl (2009), EV (2016))

Let patchwise the algebraic estimate be below the discretization estimate. Let $f \in \mathbb{P}_p(\mathcal{T}_h)$. Then

$$\underbrace{\|\nabla u_h^i + \sigma_{h,\text{dis}}^i\|_{\mathcal{K}} + \|\sigma_{h,\text{alg}}^i\|_{\mathcal{K}}}_{\text{element total estimate}} \lesssim \underbrace{\sum_{\mathbf{a}\in\mathcal{V}_h, \mathbf{a}\subset\partial\mathcal{K}}}_{\text{patch total error}} \|\nabla(u - u_h^i)\|_{\omega_{\mathbf{a}}} \quad \forall \mathcal{K}\in\mathcal{T}_h.$$

local stopping criterion \Rightarrow local efficiency & *p*-robustness

Outline

Introduction: two warning examples

Guaranteed upper & lower bounds on total, algebraic, and discretization errors

- Guaranteed upper and lower bounds
- Stopping criteria and efficiency
- Numerical illustration
- 3 *hp*-refinement with inexact solvers and guaranteed computable contraction
- Generalization to an arbitrary residual functional in $[W_0^{1,lpha}(\Omega)]'$
- 5 Application to the Stokes flow
- 6 Application to a multi-phase multi-compositional porous media Darcy flow
- Conclusions and outlook

Peak

$$\begin{split} \Omega &= (0,1) \times (0,1), \\ u(x,y) &= x(x-1)y(y-1)e^{-100(x-0.5)^2 - 100(y-117/1000)^2} \\ \Omega &= (-1,1) \times (-1,1) \setminus \ [0,1] \times [-1,0], \\ u(r,\theta) &= r^{2/3} \sin(2\theta/3) \end{split}$$

L-shape

Discretization

- conforming finite elements, *p* = 1,...,4
- unstructured triangular meshes
- 4 uniform refinements

Multigrid

- geometric multigrid V-cycle
- 5 pre-smoothing steps of Gauss-Seidel

PCG

• incomplete Cholesky with drop-off tolerance 1e-4

Peak

L-shape

$$\begin{split} \Omega &= (0,1) \times (0,1), \\ u(x,y) &= x(x-1)y(y-1)e^{-100(x-0.5)^2 - 100(y-117/1000)^2} \\ \Omega &= (-1,1) \times (-1,1) \setminus [0,1] \times [-1,0], \\ u(r,\theta) &= r^{2/3} \sin(2\theta/3) \end{split}$$

Discretization

- conforming finite elements, $p = 1, \ldots, 4$
- unstructured triangular meshes
- 4 uniform refinements

Multigrid

- geometric multigrid V-cycle
- 5 pre-smoothing steps of Gauss-Seidel

PCG

• incomplete Cholesky with drop-off tolerance 1e-4

Peak

L-shape

$$\begin{split} \Omega &= (0,1) \times (0,1), \\ u(x,y) &= x(x-1)y(y-1)e^{-100(x-0.5)^2 - 100(y-117/1000)^2} \\ \Omega &= (-1,1) \times (-1,1) \setminus [0,1] \times [-1,0], \\ u(r,\theta) &= r^{2/3} \sin(2\theta/3) \end{split}$$

Discretization

- conforming finite elements, $p = 1, \ldots, 4$
- unstructured triangular meshes
- 4 uniform refinements

Multigrid

- geometric multigrid V-cycle
- 5 pre-smoothing steps of Gauss-Seidel

PCG

• incomplete Cholesky with drop-off tolerance 1e-4

Peak

L-shape

$$\begin{split} \Omega &= (0,1) \times (0,1), \\ u(x,y) &= x(x-1)y(y-1)e^{-100(x-0.5)^2 - 100(y-117/1000)^2} \\ \Omega &= (-1,1) \times (-1,1) \setminus [0,1] \times [-1,0], \\ u(r,\theta) &= r^{2/3} \sin(2\theta/3) \end{split}$$

Discretization

- conforming finite elements, $p = 1, \ldots, 4$
- unstructured triangular meshes
- 4 uniform refinements

Multiarid

- geometric multigrid V-cycle
- 5 pre-smoothing steps of Gauss-Seidel

PCG

incomplete Cholesky with drop-off tolerance 1e-4

<mark>p</mark> (unknowns)	iter	alg. error	eff. UB	eff. LB	tot. error	eff. UB	eff. LB	disc. error	eff. UB	eff. LB
$1 (9.31 \times 10^3)$	1	$6.09 imes 10^{-3}$	1.13	1.02^{-1}	6.93×10^{-3}	1.61	1.21^{-1}	3.32×10^{-3}	2.84	
	2	$1.90 imes 10^{-4}$			$3.32 imes 10^{-3}$					
$2(3.76 \times 10^4)$	- 1	7.49×10^{-3}	1.13	1.00^{-1}	7.49×10^{-3}	1.61	1.23^{-1}	1.11×10^{-4}	8.53×10^{1}	
$3(8.48 imes 10^4)$	- 1	4.94×10^{-3}	1.10	1.00^{-1}	4.94×10^{-3}	1.40	1.44^{-1}	2.87×10^{-6}	1.68×10^{3}	
$4~(1.51 \times 10^5)$	- 1	4.45×10^{-3}	1.09	1.00^{-1}	4.45×10^{-3}	1.44	1.37^{-1}	$6.33 imes 10^{-8}$	7.28×10^{4}	
	6									

informatics mathematics

<mark>p</mark> (unknowns)	iter	alg. error	eff. UB	eff. LB	tot. error	eff. UB	eff. LB	disc. error	eff. UB	eff. LB
$1 (9.31 \times 10^3)$	1	$6.09 imes10^{-3}$	1.13	1.02^{-1}	6.93×10^{-3}	1.61	1.21^{-1}	3.32×10^{-3}	2.84	
	2	$1.90 imes 10^{-4}$	1.13	1.03^{-1}	$3.32 imes 10^{-3}$	1.10	1.03^{-1}		1.10	1.03^{-1}
$2(3.76 \times 10^4)$	- 1	$7.49 imes 10^{-3}$	1.13	1.00^{-1}	7.49×10^{-3}					
	3	8.11×10^{-6}	1.17	1.01^{-1}	1.12×10^{-4}					
$3(8.48 imes 10^4)$	1	$4.94 imes 10^{-3}$	1.10	1.00^{-1}	4.94×10^{-3}	1.40	1.44^{-1}	2.87×10^{-6}	1.68×10^{3}	
		$7.79 imes 10^{-9}$	1.17	1.00^{-1}						
$4 (1.51 \times 10^5)$	1	4.45×10^{-3}	1.09	1.00^{-1}	4.45×10^{-3}	1.44	1.37^{-1}	$6.33 imes 10^{-8}$	7.28×10^{4}	
	6	1.06×10^{-9}								

informatics mathematics

p (unknowns)	iter	alg. error	eff. UB	eff. LB	tot. error	eff. UB	eff. LB	disc. error	eff. UB	eff. LB
$1 (9.31 \times 10^3)$	1	$6.09 imes 10^{-3}$	1.13	1.02^{-1}	$6.93 imes 10^{-3}$	1.61	1.21^{-1}	3.32×10^{-3}	2.84	
	2	$1.90 imes 10^{-4}$	1.13	1.03^{-1}	$3.32 imes10^{-3}$	1.10	1.03^{-1}		1.10	1.03^{-1}
$2(3.76 \times 10^4)$	- 1	$7.49 imes 10^{-3}$	1.13	1.00^{-1}	7.49×10^{-3}	1.61	1.23^{-1}	1.11×10^{-4}	8.53×10^{1}	
	3	8.11×10^{-6}	1.17	1.01^{-1}	1.12×10^{-4}	1.10	1.03^{-1}			
$3 (8.48 \times 10^4)$	1	$4.94 imes 10^{-3}$	1.10	1.00^{-1}	4.94×10^{-3}	1.40	1.44^{-1}	2.87×10^{-6}	1.68×10^{3}	
		$7.79 imes10^{-9}$	1.17	1.00^{-1}	$2.87 imes 10^{-6}$	1.01	1.11^{-1}			
$4~(1.51 imes 10^5)$	1	$4.45 imes 10^{-3}$	1.09	1.00^{-1}	4.45×10^{-3}	1.44	1.37^{-1}	6.33×10^{-8}	7.28×10^{4}	
	6	1.06×10^{-9}			$6.33 imes10^{-8}$					

informatics mathematics

<mark>p</mark> (unknowns)	iter	alg. error	eff. UB	eff. LB	tot. error	eff. UB	eff. LB	disc. error	eff. UB	eff. LB
$1 (9.31 \times 10^3)$	1	$6.09 imes10^{-3}$	1.13	1.02^{-1}	$6.93 imes 10^{-3}$	1.61	1.21^{-1}	$3.32 imes10^{-3}$	2.84	_
	2	$1.90 imes 10^{-4}$	1.13	1.03^{-1}	$3.32 imes10^{-3}$	1.10	1.03^{-1}		1.10	1.03^{-1}
$2(3.76 \times 10^4)$	- 1	$7.49 imes 10^{-3}$	1.13	1.00^{-1}	7.49×10^{-3}	1.61	1.23^{-1}	1.11×10^{-4}	8.53×10^{1}	
	3	8.11×10^{-6}	1.17	1.01^{-1}	1.12×10^{-4}	1.10	1.03^{-1}		1.10	1.03^{-1}
$3(8.48 imes 10^4)$	- 1	$4.94 imes 10^{-3}$	1.10	1.00^{-1}	$4.94 imes 10^{-3}$	1.40	1.44^{-1}	$2.87 imes 10^{-6}$	1.68×10^{3}	
		$7.79 imes10^{-9}$	1.17	1.00^{-1}	$2.87 imes 10^{-6}$	1.01	1.11^{-1}		1.01	1.11^{-1}
$4 (1.51 \times 10^5)$	1	$4.45 imes 10^{-3}$	1.09	1.00^{-1}	4.45×10^{-3}	1.44	1.37^{-1}	$6.33 imes 10^{-8}$	$7.28 imes 10^4$	
	6	$1.06 imes 10^{-9}$			$6.33 imes10^{-8}$					

informatics mathematics
Peak problem, multigrid

<mark>p</mark> (unknowns)	iter	alg. error	eff. UB	eff. LB	tot. error	eff. UB	eff. LB	disc. error	eff. UB	eff. LB
$1 (9.31 \times 10^3)$	1	$6.09 imes 10^{-3}$	1.13	1.02^{-1}	$6.93 imes 10^{-3}$	1.61	1.21^{-1}	$3.32 imes10^{-3}$	2.84	_
	2	$1.90 imes10^{-4}$	1.13	1.03^{-1}	$3.32 imes10^{-3}$	1.10	1.03^{-1}		1.10	1.03^{-1}
$2(3.76 \times 10^4)$	1	$7.49 imes10^{-3}$	1.13	1.00^{-1}	$7.49 imes 10^{-3}$	1.61	1.23^{-1}	$1.11 imes 10^{-4}$	$8.53 imes 10^{1}$	_
	3	$8.11 imes10^{-6}$	1.17	1.01^{-1}	$1.12 imes 10^{-4}$	1.10	1.03^{-1}		1.10	1.03^{-1}
$3 (8.48 \times 10^4)$	1	$4.94 imes10^{-3}$	1.10	1.00^{-1}	$4.94 imes10^{-3}$	1.40	1.44^{-1}	$2.87 imes10^{-6}$	$1.68 imes10^3$	_
	5	$7.79 imes10^{-9}$	1.17	1.00^{-1}	$2.87 imes10^{-6}$	1.01	1.11^{-1}		1.01	1.11^{-1}
$4 (1.51 \times 10^5)$	1	$4.45 imes10^{-3}$	1.09	1.00^{-1}	$4.45 imes10^{-3}$	1.44	1.37^{-1}	$6.33 imes10^{-8}$	$7.28 imes10^4$	_
	6	$1.06 imes 10^{-9}$	1.11	1.00^{-1}	$6.33 imes10^{-8}$	1.02	1.15^{-1}		1.02	1.15^{-1}

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Comput. Methods Appl. Mech. Engrg. 371 (2020), 113243

p (unknowns)	iter	alg. error	eff. UB	eff. LB	tot. error	eff. UB	eff. LB	disc. error	eff. UB	eff. LB
$1 (2.50 \times 10^4)$	4	8.86×10^{-2}	1.02	1.00^{-1}	9.13×10^{-2}	1.26	4.33^{-1}	2.22×10^{-2}	3.35	
	8	$3.82 imes10^{-4}$			2.22×10^{-2}					
$2(1.01 \times 10^5)$	4	6.24×10^{-1}	1.01	1.00^{-1}	$6.24 imes 10^{-1}$	1.07	9.06^{-1}	8.93×10^{-3}	2.61×10^{1}	
	12									
$3(2.27 \times 10^5)$	7	1.02	1.00	1.00^{-1}	1.02	1.05	10.0^{-1}	5.29×10^{-3}	6.29×10^{1}	
	28									
$4 (4.04 \times 10^5)$	7	1.17	1.01	1.00^{-1}	1.17	1.08	7.56^{-1}	3.77×10^{-3}	1.30×10^{2}	
	28									

informatics mathematics

A posteriori estimates taking into account algebraic errors 20 / 34

<mark>p</mark> (unknowns)	iter	alg. error	eff. UB	eff. LB	tot. error	eff. UB	eff. LB	disc. error	eff. UB	eff. LB
1 (2.50 \times 10 ⁴)	4	$8.86 imes 10^{-2}$	1.02	1.00^{-1}	9.13×10^{-2}	1.26	4.33^{-1}	2.22×10^{-2}	3.35	
	8	$3.82 imes 10^{-4}$	1.01	1.00^{-1}	$2.22 imes 10^{-2}$					
$2(1.01 \times 10^5)$	4	$6.24 imes 10^{-1}$	1.01	1.00^{-1}	6.24×10^{-1}	1.07	9.06^{-1}	8.93×10^{-3}	2.61×10^{1}	
	12	$1.87 imes 10^{-4}$	1.01	1.00^{-1}						
$3(2.27 \times 10^5)$	7	1.02	1.00	1.00^{-1}	1.02	1.05	10.0^{-1}	5.29×10^{-3}	6.29×10^{1}	
	28	$9.58 imes10^{-5}$	1.00	1.00^{-1}						
$4 (4.04 \times 10^5)$	7	1.17	1.01	1.00^{-1}	1.17	1.08	7.56^{-1}	3.77×10^{-3}	1.30×10^{2}	
	28	$1.84 imes 10^{-4}$								

informatics mathematics

p (unknowns)	iter	alg. error	eff. UB	eff. LB	tot. error	eff. UB	eff. LB	disc. error	eff. UB	eff. LB
$1 (2.50 \times 10^4)$	4	$8.86 imes 10^{-2}$	1.02	1.00^{-1}	$9.13 imes 10^{-2}$	1.26	4.33^{-1}	2.22×10^{-2}	3.35	
	8	$3.82 imes 10^{-4}$	1.01	1.00^{-1}	$2.22 imes10^{-2}$	1.22	1.12^{-1}			
$2(1.01 \times 10^5)$	4	$6.24 imes 10^{-1}$	1.01	1.00^{-1}	6.24×10^{-1}	1.07	9.06^{-1}	8.93×10^{-3}	2.61×10^{1}	
	12	$1.87 imes10^{-4}$	1.01	1.00^{-1}	$8.93 imes10^{-3}$	1.33	1.28^{-1}			
$3(2.27 \times 10^5)$	- 7	1.02	1.00	1.00^{-1}	1.02	1.05	10.0^{-1}	5.29×10^{-3}	6.29×10^{1}	
	28	$9.58 imes10^{-5}$	1.00	1.00^{-1}	$5.29 imes10^{-3}$	1.46	1.41^{-1}			
$4 (4.04 \times 10^5)$	- 7	1.17	1.01	1.00^{-1}	1.17	1.08	7.56^{-1}	3.77×10^{-3}	1.30×10^{2}	
	28	$1.84 imes10^{-4}$			$3.77 imes10^{-3}$					

informatics mathematics

p (unknowns)	iter	alg. error	eff. UB	eff. LB	tot. error	eff. UB	eff. LB	disc. error	eff. UB	eff. LB
$1 (2.50 \times 10^4)$	4	$8.86 imes 10^{-2}$	1.02	1.00^{-1}	$9.13 imes 10^{-2}$	1.26	4.33^{-1}	$2.22 imes 10^{-2}$	3.35	_
	8	$3.82 imes 10^{-4}$	1.01	1.00^{-1}	$2.22 imes10^{-2}$	1.22	1.12^{-1}		1.22	1.12^{-1}
$2(1.01 \times 10^5)$	4	$6.24 imes 10^{-1}$	1.01	1.00^{-1}	6.24×10^{-1}	1.07	9.06^{-1}	$8.93 imes 10^{-3}$	2.61×10^{1}	
	12	$1.87 imes 10^{-4}$	1.01	1.00^{-1}	$8.93 imes 10^{-3}$	1.33	1.28^{-1}		1.33	1.28^{-1}
$3(2.27 \times 10^5)$	7	1.02	1.00	1.00^{-1}	1.02	1.05	10.0^{-1}	$5.29 imes 10^{-3}$	6.29×10^{1}	
	28	$9.58 imes 10^{-5}$	1.00	1.00^{-1}	$5.29 imes 10^{-3}$	1.46	1.41^{-1}		1.46	1.41^{-1}
$4 (4.04 \times 10^5)$	- 7	1.17	1.01	1.00^{-1}	1.17	1.08	7.56^{-1}	3.77×10^{-3}	1.30×10^{2}	
	28	$1.84 imes 10^{-4}$			$3.77 imes 10^{-3}$					

informatics mathematics

<mark>p</mark> (unknowns)	iter	alg. error	eff. UB	eff. LB	tot. error	eff. UB	eff. LB	disc. error	eff. UB	eff. LB
$1 (2.50 \times 10^4)$	4	$8.86 imes 10^{-2}$	1.02	1.00^{-1}	$9.13 imes 10^{-2}$	1.26	4.33^{-1}	$2.22 imes 10^{-2}$	3.35	_
	8	$3.82 imes 10^{-4}$	1.01	1.00^{-1}	$2.22 imes10^{-2}$	1.22	1.12^{-1}		1.22	1.12^{-1}
$2(1.01 \times 10^5)$	4	$6.24 imes 10^{-1}$	1.01	1.00^{-1}	$6.24 imes 10^{-1}$	1.07	9.06^{-1}	$8.93 imes10^{-3}$	2.61×10^{1}	—
	12	$1.87 imes10^{-4}$	1.01	1.00^{-1}	$8.93 imes10^{-3}$	1.33	1.28^{-1}		1.33	1.28^{-1}
$3(2.27 \times 10^5)$	7	1.02	1.00	1.00^{-1}	1.02	1.05	10.0^{-1}	$5.29 imes10^{-3}$	$6.29 imes 10^1$	—
	28	$9.58 imes10^{-5}$	1.00	1.00^{-1}	$5.29 imes10^{-3}$	1.46	1.41^{-1}		1.46	1.41^{-1}
$4 (4.04 \times 10^5)$	7	1.17	1.01	1.00^{-1}	1.17	1.08	7.56^{-1}	$3.77 imes10^{-3}$	1.30×10^{2}	_
	28	$1.84 imes 10^{-4}$	1.01	1.00^{-1}	$3.77 imes10^{-3}$	1.52	1.60^{-1}		1.52	1.60^{-1}

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Comput. Methods Appl. Mech. Engrg. 371 (2020), 113243

Guaranteed bounds hp-refinement $[W_0^{1,\alpha}(\Omega)]'$ Stokes Multi-phase Darcy C Upper and lower bounds Stop. crit. & efficiency Numerics

L-shape problem, p = 3, total error, 28th PCG iteration

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Comput. Methods Appl. Mech. Engrg. 371 (2020), 113243

Guaranteed bounds hp-refinement $[W_{0}^{1,\alpha}(\Omega)]'$ Stokes Multi-phase Darcy C Upper and lower bounds Stop. crit. & efficiency Numerics

L-shape problem, p = 3, alg. error, 28th PCG iteration

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Comput. Methods Appl. Mech. Engrg. 371 (2020), 113243

M. Vohralík

A posteriori estimates taking into account algebraic errors 22/34

Outline

- 2) Guaranteed upper & lower bounds on total, algebraic, and discretization errors
 - Guaranteed upper and lower bounds
 - Stopping criteria and efficiency
 - Numerical illustration

3 *hp*-refinement with inexact solvers and guaranteed computable contraction

- Generalization to an arbitrary residual functional in $[W_0^{1,\alpha}(\Omega)]'$
- 6 Application to the Stokes flow
- 6 Application to a multi-phase multi-compositional porous media Darcy flow
- Conclusions and outlook

hp-refinement with inexact algebraic solvers

Goal

• avoid the *unrealistic* exact solution of $\mathbb{A}_{\ell} U_{\ell}^{ex} = F_{\ell}$

• only *approximate* solution $\mathbb{A}_{\ell} U_{\ell} \approx F_{\ell}$ (corresponding $u_{\ell} \approx u_{\ell}^{ex}$)

Theorem (Guaranteed contraction under realistic stopping criteria)

For the safe stopping criteria with $\gamma_{alg} \approx 0.1$ and the hp-refinement decision, there are fully computable numbers $C_{\ell,red}$, $0 \leq C_{\ell,red} \leq C_{\theta,d,\kappa_T,p_{max}}$, where $C_{\theta,d,\kappa_T,p_{max}} < 1$ is generic constant, such that

$$\|
abla(u-u_{\ell+1})\|\leq C_{\ell,\mathrm{red}}\|
abla(u-u_{\ell})\|.$$

hp-refinement with inexact algebraic solvers

Goal

• avoid the *unrealistic* exact solution of $\mathbb{A}_{\ell} U_{\ell}^{ex} = F_{\ell}$

• only *approximate* solution $\mathbb{A}_{\ell} U_{\ell} \approx F_{\ell}$ (corresponding $u_{\ell} \approx u_{\ell}^{ex}$)

Theorem (Guaranteed contraction under realistic stopping criteria)

For the safe stopping criteria with $\gamma_{alg} \approx 0.1$ and the hp-refinement decision, there are fully computable numbers $C_{\ell,red}$, $0 \leq C_{\ell,red} \leq C_{\theta,d,\kappa_{T},\rho_{max}}$, where $C_{\theta,d,\kappa_{T},\rho_{max}} < 1$ is generic constant, such that

$$\|\nabla(u-u_{\ell+1})\| \leq C_{\ell,\mathrm{red}} \|\nabla(u-u_{\ell})\|.$$

hp-refinement with inexact algebraic solvers

Goal

• avoid the *unrealistic* exact solution of $\mathbb{A}_{\ell} U_{\ell}^{ex} = F_{\ell}$

• only *approximate* solution $\mathbb{A}_{\ell}U_{\ell} \approx F_{\ell}$ (corresponding $u_{\ell} \approx u_{\ell}^{e_{X}}$)

Theorem (Guaranteed contraction under realistic stopping criteria)

For the safe stopping criteria with $\gamma_{alg} \approx 0.1$ and the hp-refinement decision, there are fully computable numbers $C_{\ell,red}$, $0 \leq C_{\ell,red} \leq C_{\theta,d,\kappa_{\mathcal{T}},\rho_{max}}$, where $C_{\theta,d,\kappa_{\mathcal{T}},\rho_{max}} < 1$ is generic constant, such that

 $\|\nabla(u-u_{\ell+1})\| \leq C_{\ell, \text{red}} \|\nabla(u-u_{\ell})\|.$

erc

Errors and estimates for hp refinement

L-shape domain in 2D: $\Omega := (-1, 1) \times (-1, 1) \setminus [0, 1] \times [-1, 0], f = 0$

• singular exact solution: $u(r, \varphi) = r^{\frac{2}{3}} \sin \frac{2\varphi}{3}$

Errors and estimates for hp refinement

L-shape domain in 2D: $\Omega := (-1, \overline{1}) \times (-1, 1) \setminus [0, 1] \times [-1, 0], f = 0$

• singular exact solution: $u(r, \varphi) = r^{\frac{2}{3}} \sin \frac{2\varphi}{3}$

Inexact setting: V-cycle multigrid with Gauss-Seidel as a smoother

Errors and estimates for hp refinement

L-shape domain in 2D:
$$\Omega := (-1, 1) \times (-1, 1) \setminus [0, 1] \times [-1, 0], f = 0$$

• singular exact solution: $u(r, \varphi) = r^{\frac{2}{3}} \sin \frac{2\varphi}{3}$

Inexact setting: V-cycle multigrid with Gauss-Seidel as a smoother

Numerical exponential convergence with inexact solvers

P. Daniel, A. Ern, M. Vohralík, Computer Methods in Applied Mechanics and Engineering (2020)

Effectivity indices

Effectivity indices of the estimated error reduction factor $C_{\ell, \text{red}}$ and $\underline{\eta}_{\mathcal{M}_{\ell}^{\theta}}$

Effectivity indices

Effectivity indices of the estimated error reduction factor $C_{\ell, red}$ and $\underline{\eta}_{\mathcal{M}_{e}^{\theta}}$

Guaranteed bounds *hp-refinement* $[W_0^{1,\alpha}(\Omega)]'$ Stokes Multi-phase Darcy C **Effectivity indices**

P. Daniel, A. Ern, M. Vohralík, Computer Methods in Applied Mechanics and Engineering (2020)

Christer attheaster And Contract Contract

M. Vohralík

A posteriori estimates taking into account algebraic errors 26 / 34

Outline

- 2) Guaranteed upper & lower bounds on total, algebraic, and discretization errors
 - Guaranteed upper and lower bounds
 - Stopping criteria and efficiency
 - Numerical illustration

3) *hp*-refinement with inexact solvers and guaranteed computable contraction

4 Generalization to an arbitrary residual functional in $[W_0^{1,\alpha}(\Omega)]'$

- 5 Application to the Stokes flow
- 6 Application to a multi-phase multi-compositional porous media Darcy flow
- Conclusions and outlook

A steady nonlinear problem (FreeFem++ implementation Z. Tang)

Outline

- 2) Guaranteed upper & lower bounds on total, algebraic, and discretization errors
 - Guaranteed upper and lower bounds
 - Stopping criteria and efficiency
 - Numerical illustration
- 3 *hp*-refinement with inexact solvers and guaranteed computable contraction
- Generalization to an arbitrary residual functional in $[W_0^{1,lpha}(\Omega)]'$
- 5 Application to the Stokes flow
- 6 Application to a multi-phase multi-compositional porous media Darcy flow
- Conclusions and outlook

Adaptive inexact MinRes algorithm

Discretization error

Discretization estimator

Adaptive inexact MinRes algorithm

Algebraic error

Algebraic estimator

M. Čermák, F. Hecht, Z. Tang, M. Vohralík, Numerische Mathematik (2018)

A posteriori estimates taking into account algebraic errors 28 / 34

Outline

- 2) Guaranteed upper & lower bounds on total, algebraic, and discretization errors
 - Guaranteed upper and lower bounds
 - Stopping criteria and efficiency
 - Numerical illustration
- 3 *hp*-refinement with inexact solvers and guaranteed computable contraction
- Generalization to an arbitrary residual functional in $[W_0^{1,\alpha}(\Omega)]'$
- 5 Application to the Stokes flow
- 6 Application to a multi-phase multi-compositional porous media Darcy flow
- Conclusions and outlook

Industrial problem

Two-phase immiscible incompressible flow

$$egin{aligned} &\partial_t(\phi oldsymbol{s}_lpha) +
abla \cdot oldsymbol{u}_lpha &= oldsymbol{q}_lpha, & lpha \in \{oldsymbol{0}, oldsymbol{w}\}, \ &-\lambda_lpha(oldsymbol{s}_{\mathsf{W}}) \underline{\mathsf{K}}(
abla oldsymbol{p}_lpha +
ho_lpha oldsymbol{g}
abla
abla) &= oldsymbol{u}_lpha, & lpha \in \{oldsymbol{0}, oldsymbol{w}\}, \ &\mathbf{s}_{\mathsf{O}} + oldsymbol{s}_{\mathsf{W}} &= oldsymbol{1}, \ &\mathbf{s}_{\mathsf{O}} + oldsymbol{s}_{\mathsf{W}} = oldsymbol{1}, \ &\mathbf{p}_{\mathsf{O}} - oldsymbol{p}_{\mathsf{W}} &= oldsymbol{p}_{\mathsf{C}}(oldsymbol{s}_{\mathsf{W}}) \end{aligned}$$

+ boundary & initial conditions

Mathematical issues

- coupled system
- unsteady, nonlinear
- elliptic-degenerate parabolic type
- odminant advection

Industrial problem

Two-phase immiscible incompressible flow

$$egin{aligned} &\partial_t(\phi m{s}_lpha) +
abla \cdot m{u}_lpha &= m{q}_lpha, & lpha \in \{m{o},m{w}\}, \ &-\lambda_lpha(m{s}_m{w}) \underline{K}(
abla m{p}_lpha +
ho_lpha m{g}
abla m{z}) &= m{u}_lpha, & lpha \in \{m{o},m{w}\}, \ &\mathbf{s}_m{o} + m{s}_m{w} &= m{1}, \ &\mathbf{p}_m{o} - m{p}_m{w} &= m{p}_m{c}(m{s}_m{w}) \end{aligned}$$

+ boundary & initial conditions

Mathematical issues

- coupled system
- unsteady, nonlinear
- elliptic-degenerate parabolic type
- dominant advection

Distinguishing the error components

Theorem (Distinguishing the error components)

Let

- n be the time step,
- k be the linearization step,

• *i* be the algebraic solver step, with the approximations $(s_{w,h\tau}^{n,k,i}, p_{w,h\tau}^{n,k,i})$. Then

$$\mathcal{J}_{\boldsymbol{s_{w}},\boldsymbol{p_{w}}}^{n}(\boldsymbol{s}_{w,h\tau}^{n,k,i},\boldsymbol{p}_{w,h\tau}^{n,k,i}) \leq \eta_{\mathsf{sp}}^{n,k,i} + \eta_{\mathsf{tm}}^{n,k,i} + \eta_{\mathsf{lin}}^{n,k,i} + \eta_{\mathsf{alg}}^{n,k,i}$$

Error components

- $\eta_{sp}^{n,k,i}$: spatial discretization
- $\eta_{tm}^{n,k,i}$: temporal discretization
- $\eta_{\text{lin}}^{n,k,i}$: linearization
- $\eta_{alg}^{n,k,i}$: algebraic solver

Full adaptivity

- only a necessary number of all solver iterations
- "online decisions": algebraic step / linearization step / space mesh refinement / time step modification

M. Vohralík

Distinguishing the error components

Theorem (Distinguishing the error components)

Let

- n be the time step,
- k be the linearization step,

• *i* be the algebraic solver step, with the approximations $(s_{w,h\tau}^{n,k,i}, p_{w,h\tau}^{n,k,i})$. Then

$$\mathcal{J}_{\boldsymbol{s_{w}},\boldsymbol{p_{w}}}^{n}(\boldsymbol{s}_{w,h\tau}^{n,k,i},\boldsymbol{p}_{w,h\tau}^{n,k,i}) \leq \eta_{\mathsf{sp}}^{n,k,i} + \eta_{\mathsf{tm}}^{n,k,i} + \eta_{\mathsf{lin}}^{n,k,i} + \eta_{\mathsf{alg}}^{n,k,i}$$

Error components

- $\eta_{sp}^{n,k,i}$: spatial discretization
- $\eta_{tm}^{n,k,i}$: temporal discretization
- $\eta_{\text{lin}}^{n,k,i}$: linearization
- $\eta_{alg}^{n,k,i}$: algebraic solver

Full adaptivity

- only a necessary number of all solver iterations
- "online decisions": algebraic step / linearization step / space mesh refinement / time step modification

Distinguishing the error components

Theorem (Distinguishing the error components)

Let

- n be the time step,
- k be the linearization step,

• *i* be the algebraic solver step, with the approximations $(s_{w,h\tau}^{n,k,i}, p_{w,h\tau}^{n,k,i})$. Then

$$\mathcal{J}_{\boldsymbol{s_{w}},\boldsymbol{p_{w}}}^{n}(\boldsymbol{s}_{\mathsf{w},h\tau}^{n,k,i},\boldsymbol{p}_{\mathsf{w},h\tau}^{n,k,i}) \leq \eta_{\mathsf{sp}}^{n,k,i} + \eta_{\mathsf{tm}}^{n,k,i} + \eta_{\mathsf{lin}}^{n,k,i} + \eta_{\mathsf{alg}}^{n,k,i}$$

Error components

- $\eta_{sp}^{n,k,i}$ spatial discretization
- $\eta_{tm}^{n,k,i}$: temporal discretization
- $\eta_{\text{lin}}^{n,k,i}$: linearization
- $\eta_{\text{alg}}^{n,k,i}$: algebraic solver

Full adaptivity

- only a necessary number of all solver iterations
- "online decisions": algebraic step / linearization step / space mesh refinement / time step modification

Three-phases, three-components (black-oil) problem: permeability

A posteriori estimates taking into account algebraic errors 31 / 34

M. Vohralík

Three-phases, three-components (black-oil) problem: gas saturation and a posteriori estimate

Three-phases, three-components (black-oil) problem: algebraic solver & spatial mesh adaptivity

	Linear solver		AMR		
		time	time		factor
Standard resolution	66386	1023s	-	-	-
Adaptive resolution	20184	201s	42s	26s	

M. Vohralík

Three-phases, three-components (black-oil) problem: algebraic solver & spatial mesh adaptivity

	Linear solver steps	Resolution time	AMR time	Estimators evaluation	Gain factor
Standard resolution	66386	1023s	-	-	-
Adaptive resolution	20184	201s	42s	26s	3.8

Outline

- 2) Guaranteed upper & lower bounds on total, algebraic, and discretization errors
 - Guaranteed upper and lower bounds
 - Stopping criteria and efficiency
 - Numerical illustration
- 3 *hp*-refinement with inexact solvers and guaranteed computable contraction
- Generalization to an arbitrary residual functional in $[W_0^{1,\alpha}(\Omega)]'$
- 6 Application to the Stokes flow
- 6 Application to a multi-phase multi-compositional porous media Darcy flow
- 7 Conclusions and outlook

Conclusions and outlook

Conclusions

- guaranteed estimates on the algebraic and total errors
- hierarchical construction of the algebraic error estimate
- local efficiency and robustness wrt polynomial degree for model problems
- fully adaptive algorithms
- applications to complex problems

Outlook

- proofs of convergence and **optimal cost** for model nonlinear problems (with Alexander Haberl, Dirk Praetorius, and Stefan Schimanko)
- use of the reconstructions to design novel algorithms

Conclusions and outlook

Conclusions

- guaranteed estimates on the algebraic and total errors
- hierarchical construction of the algebraic error estimate
- local efficiency and robustness wrt polynomial degree for model problems
- fully adaptive algorithms
- applications to complex problems

Outlook

- proofs of convergence and **optimal cost** for model nonlinear problems (with Alexander Haberl, Dirk Praetorius, and Stefan Schimanko)
- use of the reconstructions to design novel algorithms

References

J. Blechta, J. Málek, M. Vohralík, *Localization of the W*^{-1,q} norm for local a posteriori efficiency, IMA J. Numer. Anal. **40** (2020), 914–950.

- M. Čermák, F. Hecht, Z. Tang, M. Vohralík, Adaptive inexact iterative algorithms based on polynomialdegree-robust a posteriori estimates for the Stokes problem, Numer. Math. **138** (2018), 1027–1065.
- P. Daniel, A. Ern, M. Vohralík, An adaptive hp-refinement strategy with inexact solvers and computable guaranteed bound on the error reduction factor, Comput. Methods Appl. Mech. Engrg. **359** (2020), 112607.
- A. Miraçi, J. Papež, M. Vohralík, A multilevel algebraic error estimator and the corresponding iterative solver with p-robust behavior, SIAM J. Numer. Anal. **58** (2020), 2856–2884.

- J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, *Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach*, Comput. Methods Appl. Mech. Engrg. **371** (2020), 113243.
- J. Papež, Z. Strakoš, M. Vohralík, *Estimating and localizing the algebraic and total numerical errors using flux reconstructions*, Numer. Math. **138** (2018), 681–721.
- M. Vohralík, S. Yousef, A simple a posteriori estimate on general polytopal meshes with applications to complex porous media flows, Comput. Methods Appl. Mech. Engrg. **331** (2018), 728–760.

Thank you for your attention!

References

J. Blechta, J. Málek, M. Vohralík, *Localization of the W*^{-1,q} norm for local a posteriori efficiency, IMA J. Numer. Anal. **40** (2020), 914–950.

- M. Čermák, F. Hecht, Z. Tang, M. Vohralík, Adaptive inexact iterative algorithms based on polynomialdegree-robust a posteriori estimates for the Stokes problem, Numer. Math. **138** (2018), 1027–1065.
- P. Daniel, A. Ern, M. Vohralík, An adaptive hp-refinement strategy with inexact solvers and computable guaranteed bound on the error reduction factor, Comput. Methods Appl. Mech. Engrg. **359** (2020), 112607.
- A. Miraçi, J. Papež, M. Vohralík, A multilevel algebraic error estimator and the corresponding iterative solver with p-robust behavior, SIAM J. Numer. Anal. **58** (2020), 2856–2884.
- - J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, *Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach*, Comput. Methods Appl. Mech. Engrg. **371** (2020), 113243.
- J. Papež, Z. Strakoš, M. Vohralík, *Estimating and localizing the algebraic and total numerical errors using flux reconstructions*, Numer. Math. **138** (2018), 681–721.
- M. Vohralík, S. Yousef, A simple a posteriori estimate on general polytopal meshes with applications to complex porous media flows, Comput. Methods Appl. Mech. Engrg. **331** (2018), 728–760.

Thank you for your attention!