A space-time multiscale mortar mixed finite element method for parabolic equations

Manu Jayadharan, Michel Kern, Martin Vohralík, and Ivan Yotov

Inria Paris \& Ecole des Ponts

Oberwolfach, February 7, 2022
erc

Outline

(9) Introduction
(2) Space-time multiscale mortar mixed finite element method

- Continuous setting
- Discrete setting
- Space-time multiscale mortar mixed finite element method
- Existence, uniqueness, and stability
(3) Reduction to an interface problem
(4) Numerical experiments
(5) Conclusions and future directions

A space-time multiscale mortar mixed finite element method

Concepts

- computational domain Ω (polytope)
- partition of Ω into non-overlapping polytopal subdomains $\bar{\Omega}$

A space-time multiscale mortar mixed finite element method

- $\mathcal{T}_{h, i}$: individual mesh of Ω_{i} (parallelepipeds or simplices)

Concepts

- computational domain Ω (polytope)
- partition of Ω into non-overlapping polytopal subdomains $\bar{\Omega}=\cup \bar{\Omega}_{i}$

A space-time multiscale mortar mixed finite element method

Concepts

- computational domain Ω (polytope)
- partition of Ω into non-overlapping polytopal subdomains $\bar{\Omega}=\cup \bar{\Omega}_{i}$
- $\mathcal{T}_{h, i}$: individual mesh of Ω_{i} (parallelepipeds or simplices)
- $\mathcal{T}_{i} \Delta t$: individual mesh of $(0, T)$ on Ω_{i}

A space-time multiscale mortar mixed finite element method

Concepts

- computational domain Ω (polytope)
- partition of Ω into non-overlapping polytopal subdomains $\bar{\Omega}=\cup \bar{\Omega}_{i}$
- $\mathcal{T}_{h, i}$: individual mesh of Ω_{i} (parallelepipeds or simplices)
- $\mathcal{T}_{i}{ }^{\Delta t}$: individual mesh of $(0, T)$ on Ω_{i}
- interfaces
partition of $\Gamma_{i j}$ into
d-1)-parallelepipeds or simplices

A space-time multiscale mortar mixed finite element method

Concepts

- computational domain Ω (polytope)
- partition of Ω into non-overlapping polytopal subdomains $\bar{\Omega}=\cup \bar{\Omega}_{i}$
- $\mathcal{T}_{h, i}$: individual mesh of Ω_{i} (parallelepipeds or simplices)
- $\mathcal{T}_{i}{ }^{\Delta t}$: individual mesh of $(0, T)$ on Ω_{i}
- interfaces $\Gamma_{i j}:=\partial \Omega_{i} \cap \partial \Omega_{j}, \Gamma_{i}:=\partial \Omega_{i} \backslash \partial \Omega$
- $\mathcal{T}_{H, i j}$ partition of $\Gamma_{i j}$ into ($d-1$)-parallelepipeds or simplices - $\mathcal{T}_{i j}^{\Delta T}$ partition of $(0, T)$ on $\Gamma_{i j}$ - $H, \Delta T$: coarser interface grids wrt the subdomain grids,

A space-time multiscale mortar mixed finite element method

- computational domain Ω (polytope)
- partition of Ω into non-overlapping polytopal subdomains $\bar{\Omega}=U \bar{\Omega}_{i}$
- $\mathcal{T}_{h, i}$: individual mesh of Ω_{i} (parallelepipeds or simplices)
- $\mathcal{T}_{i}{ }^{\Delta t}$: individual mesh of $(0, T)$ on Ω_{i}
- interfaces $\Gamma_{i j}:=\partial \Omega_{i} \cap \partial \Omega_{j}, \Gamma_{i}:=\partial \Omega_{i} \backslash \partial \Omega$
- $\mathcal{T}_{H, i j}$ partition of $\Gamma_{i j}$ into
($d-1$)-parallelepipeds or simplices
- $\mathcal{T}_{i j}^{\Delta T}$ partition of $(0, T)$ on $\Gamma_{i j}$
- H, $\triangle T$: coarser interface grids wrt the subdomain grids,
degrees \Rightarrow multiscale approximation

A space-time multiscale mortar mixed finite element method

Concepts

- computational domain Ω (polytope)
- partition of Ω into non-overlapping polytopal subdomains $\bar{\Omega}=\cup \bar{\Omega}_{i}$
- $\mathcal{T}_{h, i}$: individual mesh of Ω_{i} (parallelepipeds or simplices)
- $\mathcal{T}_{i}{ }^{\Delta t}$: individual mesh of $(0, T)$ on Ω_{i}
- interfaces $\Gamma_{i j}:=\partial \Omega_{i} \cap \partial \Omega_{j}, \Gamma_{i}:=\partial \Omega_{i} \backslash \partial \Omega$
- $\mathcal{T}_{H, i j}$ partition of $\Gamma_{i j}$ into ($d-1$)-parallelepipeds or simplices
- $\mathcal{T}_{i j}^{\Delta T}$ partition of $(0, T)$ on $\Gamma_{i j}$
- $H, \Delta T$: coarser interface grids wrt the subdomain grids m, s higher polynomial degrees \Rightarrow multiscale approximation

A space-time multiscale mortar mixed finite element method

- $\mathcal{T}_{h, i}$: individual mesh of Ω_{i} (parallelepipeds or simplices)
- $\mathcal{T}_{i}{ }^{\Delta t}$: individual mesh of $(0, T)$ on Ω_{i}
- interfaces $\Gamma_{i j}:=\partial \Omega_{i} \cap \partial \Omega_{j}, \Gamma_{i}:=\partial \Omega_{i} \backslash \partial \Omega$
- $\mathcal{T}_{H, i j}$ partition of $\Gamma_{i j}$ into $(d-1)$-parallelepipeds or simplices
- $\mathcal{T}_{i j}^{\Delta T}$ partition of $(0, T)$ on $\Gamma_{i j}$
- $H, \Delta T$: coarser interface grids wrt the subdomain grids, m, s higher polynomial degrees \Rightarrow multiscale approximation

A space-time multiscale mortar mixed finite element method

A space-time multiscale mortar mixed finite element method

- $\mathcal{T}_{h, i}$: individual mesh of Ω_{i} (parallelepipeds or simplices)
- $\mathcal{T}_{i}^{\Delta t}$: individual mesh of $(0, T)$ on Ω_{i}
- interfaces $\Gamma_{i j}:=\partial \Omega_{i} \cap \partial \Omega_{j}, \Gamma_{i}:=\partial \Omega_{i} \backslash \partial \Omega$
- $\mathcal{T}_{H, i j}$ partition of $\Gamma_{i j}$ into ($d-1$)-parallelepipeds or simplices
- $\mathcal{T}_{i j}^{\Delta T}$ partition of $(0, T)$ on $\Gamma_{i j}$
- $H, \Delta T$: coarser interface grids wrt the subdomain grids, m, s higher polynomial degrees \Rightarrow multiscale approximation different space and time discretizations on subdomains (local time stepping), coupling through multiscale space-time mortars, \qquad

A space-time multiscale mortar mixed finite element method

 different space and time discretizations on subdomains (local time stepping), coupling through multiscale space-time mortars, space-time DD

I Space-time MMFEM Reduction to interface problem Numerical experiments C

Context - steady case

Hybridized formulation of mixed finite element methods

- Fraeijs de Veubeke (1960's)
- Arnold and Brezzi (1985)
- Arbogast and Chen (1995)
- interface mesh given by the neighboring subdomains
- interface: same mesh and same polynomial degree as in the subdomains
- hybridized and initial problems equivalent

```
Multiscale mortar mixed finite element method
    - Arbogast, Pencheva, Wheeler, and Yotov (2007)
    - independent interface mesh
    - typically coarser but one employs polynomials of higher degree
    - (multiscale) weak continuity of the normal flux component over the interfaces
        between subdomains
    - efficient parallelization via a non-overlapping domain decomposition algorithm
        reducing to an interface problem
```

 - ... related to numerous other multiscale approaches

Context - steady case

Hybridized formulation of mixed finite element methods

- Fraeijs de Veubeke (1960's)
- Arnold and Brezzi (1985)
- Arbogast and Chen (1995)
- interface mesh given by the neighboring subdomains
- interface: same mesh and same polynomial degree as in the subdomains
- hybridized and initial problems equivalent

Multiscale mortar mixed finite element method

- Arbogast, Pencheva, Wheeler, and Yotov (2007)
- independent interface mesh
- typically coarser but one employs polynomials of higher degree
- (multiscale) weak continuity of the normal flux component over the interfaces between subdomains
- efficient parallelization via a non-overlapping domain decomposition algorithm reducing to an interface problem
arc

Context - steady case

Hybridized formulation of mixed finite element methods

- Fraeijs de Veubeke (1960's)
- Arnold and Brezzi (1985)
- Arbogast and Chen (1995)
- interface mesh given by the neighboring subdomains
- interface: same mesh and same polynomial degree as in the subdomains
- hybridized and initial problems equivalent

Multiscale mortar mixed finite element method

- Arbogast, Pencheva, Wheeler, and Yotov (2007)
- independent interface mesh
- typically coarser but one employs polynomials of higher degree
- (multiscale) weak continuity of the normal flux component over the interfaces between subdomains
- efficient parallelization via a non-overlapping domain decomposition algorithm reducing to an interface problem
- ... related to numerous other multiscale approaches

Context - unsteady case

Local time stepping for parabolic problems

- Ewing, Lazarov, and Vassilevski (1990), Delpopolo Carciopolo, Cusini, Formaggia, and Hajibeygi (2020),

```
Domain decomposition methods with local time stepping
    - Dawson, Du, and Dupont (1991), Yu (2001), Gaiffe, Glowinski, and Masson
        (2002), Faucher and Combescure (2003), Gander and Halpern (2007),
    Nakshatrala, Nakshatrala, and Tortorelli (2009), Hager, Hauret, Le Tallec, and
    Wohlmuth (2012), Kheriji, Masson, and A. Moncorgé (2015), Krause and
    Krause (2016), Arshad, Park, and Shin (2021),
```

Space-time domain decomposition
- Halpern, Japhet, and Szeftel (2012), Hoang, Jaffré, Japhet, Kern, and
Roberts (2013), Gander, Kwok, and Mandal (2016)

Context - unsteady case

Local time stepping for parabolic problems

- Ewing, Lazarov, and Vassilevski (1990), Delpopolo Carciopolo, Cusini, Formaggia, and Hajibeygi (2020),

Domain decomposition methods with local time stepping

- Dawson, Du, and Dupont (1991), Yu (2001), Gaiffe, Glowinski, and Masson (2002), Faucher and Combescure (2003), Gander and Halpern (2007), Nakshatrala, Nakshatrala, and Tortorelli (2009), Hager, Hauret, Le Tallec, and Wohlmuth (2012), Kheriji, Masson, and A. Moncorgé (2015), Krause and Krause (2016), Arshad, Park, and Shin (2021), ...
Space-time domain decomposition
- Halpern, Japhet, and Szeftel (2012), Hoang, Jaffré, Japhet, Kern, and Roberts (2013), Gander, Kwok, and Mandal (2016)
Parareal algorithm \& multigrid in time
- Lions, Maday, and Turinici (2001), Gander and Vandewalle (2007), Falgout Friedhoff Kolev Mad achlan and Schroder (2014) Gander and

Context - unsteady case

Local time stepping for parabolic problems

- Ewing, Lazarov, and Vassilevski (1990), Delpopolo Carciopolo, Cusini, Formaggia, and Hajibeygi (2020),

Domain decomposition methods with local time stepping

- Dawson, Du, and Dupont (1991), Yu (2001), Gaiffe, Glowinski, and Masson (2002), Faucher and Combescure (2003), Gander and Halpern (2007), Nakshatrala, Nakshatrala, and Tortorelli (2009), Hager, Hauret, Le Tallec, and Wohlmuth (2012), Kheriji, Masson, and A. Moncorgé (2015), Krause and Krause (2016), Arshad, Park, and Shin (2021), ...

Space-time domain decomposition

- Halpern, Japhet, and Szeftel (2012), Hoang, Jaffré, Japhet, Kern, and Roberts (2013), Gander, Kwok, and Mandal (2016), ...
Parareal algorithm \& multigrid in time
- Lions, Maday, and Turinici (2001), Gander and Vandewalle (2007), Falgout, Friedhoff, Kolev, MacLachlan, and Schroder (2014), Gander and Neumüller (2016)

Context - unsteady case

Local time stepping for parabolic problems

- Ewing, Lazarov, and Vassilevski (1990), Delpopolo Carciopolo, Cusini, Formaggia, and Hajibeygi (2020), ...

Domain decomposition methods with local time stepping

- Dawson, Du, and Dupont (1991), Yu (2001), Gaiffe, Glowinski, and Masson (2002), Faucher and Combescure (2003), Gander and Halpern (2007), Nakshatrala, Nakshatrala, and Tortorelli (2009), Hager, Hauret, Le Tallec, and Wohlmuth (2012), Kheriji, Masson, and A. Moncorgé (2015), Krause and Krause (2016), Arshad, Park, and Shin (2021), ...

Space-time domain decomposition

- Halpern, Japhet, and Szeftel (2012), Hoang, Jaffré, Japhet, Kern, and Roberts (2013), Gander, Kwok, and Mandal (2016), ...

Parareal algorithm \& multigrid in time

- Lions, Maday, and Turinici (2001), Gander and Vandewalle (2007), Falgout, Friedhoff, Kolev, MacLachlan, and Schroder (2014), Gander and Neumüller (2016),

Outline

(9) Introduction
(2) Space-time multiscale mortar mixed finite element method

- Continuous setting
- Discrete setting
- Space-time multiscale mortar mixed finite element method
- Existence, uniqueness, and stability
(3) Reduction to an interface problem

4 Numerical experiments
(5) Conclusions and future directions

Outline

(1) Introduction
(2) Space-time multiscale mortar mixed finite element method

- Continuous setting
- Discrete setting
- Space-time multiscale mortar mixed finite element method
- Existence, uniqueness, and stabilityReduction to an interface problem

Numerical experiments

Conclusions and future directions
Outline

(1) Introduction
(2) Space-time multiscale mortar mixed finite element method - Continuous setting

- Discrete setting
- Space-time multiscale mortar mixed finite element method
- Existence, uniqueness, and stability
(3) Reduction to an interface problem

4 Numerical experiments
(3) Conclusions and future directions

Setting

The heat equation
Find $p: \Omega \times[0, T] \rightarrow \mathbb{R}$ and $u: \Omega \times[0, T] \rightarrow \mathbb{R}^{d}$ such that

$$
\begin{aligned}
\frac{\partial p}{\partial t}+\nabla \cdot \mathbf{u} & =q & & \text { in } \Omega \times(0, T], \\
\mathbf{u} & =-K \nabla p & & \text { in } \Omega \times(0, T], \\
p & =0 & & \text { on } \partial \Omega \times(0, T], \\
p & =p_{0}(x) & & \text { on } \Omega .
\end{aligned}
$$

- $q \in L^{2}\left(0, T ; L^{2}(\Omega)\right), p_{0} \in H_{0}^{1}(\Omega), \nabla \cdot K \nabla p_{0} \in L^{2}(\Omega)$
- K : time-independent, uniformly bounded, symmetric, and positive definite

Weak solution

Find $\mathbf{u} \in L^{2}(0, T ; \mathbf{H}(\operatorname{div} ; \Omega)), p \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$ s.t. $p(\cdot, 0)=p_{0}$ \& a.e. in $(0, T)$,

- actually also u \in

Setting

The heat equation
Find $p: \Omega \times[0, T] \rightarrow \mathbb{R}$ and $u: \Omega \times[0, T] \rightarrow \mathbb{R}^{d}$ such that

$$
\begin{aligned}
\frac{\partial p}{\partial t}+\nabla \cdot \mathbf{u} & =q & & \text { in } \Omega \times(0, T], \\
\mathbf{u} & =-K \nabla p & & \text { in } \Omega \times(0, T], \\
p & =0 & & \text { on } \partial \Omega \times(0, T], \\
p & =p_{0}(x) & & \text { on } \Omega .
\end{aligned}
$$

- $q \in L^{2}\left(0, T ; L^{2}(\Omega)\right), p_{0} \in H_{0}^{1}(\Omega), \nabla \cdot K \nabla p_{0} \in L^{2}(\Omega)$
- K : time-independent, uniformly bounded, symmetric, and positive definite

Weak solution

Find $\mathbf{u} \in L^{2}(0, T ; \mathbf{H}(\operatorname{div} ; \Omega)), p \in H^{1}\left(0, T ; L^{2}(\Omega)\right)$ s.t. $p(\cdot, 0)=p_{0} \&$ ae. in $(0, T)$,

$$
\begin{aligned}
& \left(K^{-1} \mathbf{u}, \mathbf{v}\right)_{\Omega}-(p, \nabla \cdot \mathbf{v})_{\Omega}=0 \quad \forall \mathbf{v} \in \mathbf{H}(\operatorname{div} ; \Omega) \\
& \left(\partial_{t} p, w\right)_{\Omega}+(\nabla \cdot \mathbf{u}, w)_{\Omega}=(q, w)_{\Omega} \quad \forall w \in L^{2}(\Omega) .
\end{aligned}
$$

- actually also $\mathbf{u} \in L^{\infty}\left(0, T ; \mathbf{L}^{2}(\Omega)\right)$ and $p \in H^{1}\left(0, T ; H_{0}^{1}(\Omega)\right)$

Outline

(1) Introduction
(2) Space-time multiscale mortar mixed finite element method

- Continuous setting
- Discrete setting
- Space-time multiscale mortar mixed finite element method
- Existence, uniqueness, and stability
(3) Reduction to an interface problem
(4) Numerical experiments
(5) Conclusions and future directions

Space-time subdomains, forms, and spaces

Space-time subdomains

$$
\Omega^{T}:=\Omega \times(0, T), \Omega_{i}^{T}:=\Omega_{i} \times(0, T), \Gamma_{i}^{T}:=\Gamma_{i} \times(0, T), \Gamma_{i j}^{T}:=\Gamma_{i j} \times(0, T)
$$

Space-time bilinear forms

Tensor product space-time spaces on each space-time subdomain Ω_{i}^{T}

Space-time subdomains, forms, and spaces

Space-time subdomains

$$
\Omega^{T}:=\Omega \times(0, T), \Omega_{i}^{T}:=\Omega_{i} \times(0, T), \Gamma_{i}^{T}:=\Gamma_{i} \times(0, T), \Gamma_{i j}^{T}:=\Gamma_{i j} \times(0, T)
$$

Space-time bilinear forms

$$
\begin{aligned}
& a^{T}(\mathbf{u}, \mathbf{v}):=\int_{0}^{T} \sum_{i}\left(K^{-1} \mathbf{u}, \mathbf{v}\right)_{\Omega_{i}}, \quad b^{T}(\mathbf{v}, w):=-\int_{0}^{T} \sum_{i}(\nabla \cdot \mathbf{v}, w)_{\Omega_{i}} \\
& b_{\Gamma}^{T}(\mathbf{v}, \mu):=\int_{0}^{T} \sum_{i}\left\langle\mathbf{v} \cdot \mathbf{n}_{i}, \mu\right\rangle_{\Gamma_{i}}
\end{aligned}
$$

Tensor product space-time spaces on each space-time subdomain Ω_{i}^{T}

Space-time subdomains, forms, and spaces

Space-time subdomains

$$
\Omega^{T}:=\Omega \times(0, T), \Omega_{i}^{T}:=\Omega_{i} \times(0, T), \Gamma_{i}^{T}:=\Gamma_{i} \times(0, T), \Gamma_{i j}^{T}:=\Gamma_{i j} \times(0, T)
$$

Space-time bilinear forms

$$
\begin{aligned}
& a^{T}(\mathbf{u}, \mathbf{v}):=\int_{0}^{T} \sum_{i}\left(K^{-1} \mathbf{u}, \mathbf{v}\right)_{\Omega_{i}}, \quad b^{T}(\mathbf{v}, w):=-\int_{0}^{T} \sum_{i}(\nabla \cdot \mathbf{v}, w)_{\Omega_{i}} \\
& b_{\Gamma}^{T}(\mathbf{v}, \mu):=\int_{0}^{T} \sum_{i}\left\langle\mathbf{v} \cdot \mathbf{n}_{i}, \mu\right\rangle_{\Gamma_{i}}
\end{aligned}
$$

Tensor product space-time spaces on each space-time subdomain Ω_{i}^{T}

$$
\mathbf{V}_{h, i}^{\Delta t}:=\underbrace{\mathbf{V}_{h, i}}_{\text {MFE spaces }} \otimes \underbrace{W_{i}^{\Delta t}}_{\text {discontinuous pw polynomials in time }}, \quad W_{h, i}^{\Delta t}:=\underbrace{W_{h, i}}_{\text {discontinuous pw polynomials in space }}
$$

$$
\Lambda_{H, i j}^{\Delta T}:=\underbrace{\Lambda_{H, i j} \otimes \Lambda_{i j}^{\Delta T}}_{\text {continuous or discontinuous pw polynomials in space and in time }}
$$

Global spaces and time stepping

Global space-time finite element spaces

$$
\mathbf{V}_{h}^{\Delta t}:=\bigoplus \mathbf{V}_{h, i}^{\Delta t}, \quad W_{h}^{\Delta t}:=\bigoplus W_{h, i}^{\Delta t}, \quad \Lambda_{H}^{\Delta T}:=\bigoplus \Lambda_{H, i j}^{\Delta T}
$$

Space of velocities with space-time weakly continuous normal components

Discontinuous Galerkin time stepping

Global spaces and time stepping

Global space-time finite element spaces

$$
\mathbf{V}_{h}^{\Delta t}:=\bigoplus \mathbf{V}_{h, i}^{\Delta t}, \quad W_{h}^{\Delta t}:=\bigoplus W_{h, i}^{\Delta t}, \quad \Lambda_{H}^{\Delta T}:=\bigoplus \Lambda_{H, i j}^{\Delta T}
$$

Space of velocities with space-time weakly continuous normal components

$$
\mathbf{V}_{h, 0}^{\Delta t}=\left\{\mathbf{v} \in \mathbf{V}_{h}^{\Delta t}: b_{\Gamma}^{T}(\mathbf{v}, \mu)=0 \quad \forall \mu \in \Lambda_{H}^{\Delta T}\right\}
$$

Discontinuous Galerkin time stepping

with

Global spaces and time stepping

Global space-time finite element spaces

$$
\mathbf{V}_{h}^{\Delta t}:=\bigoplus \mathbf{V}_{h, i}^{\Delta t}, \quad W_{h}^{\Delta t}:=\bigoplus W_{h, i}^{\Delta t}, \quad \Lambda_{H}^{\Delta T}:=\bigoplus \Lambda_{H, i j}^{\Delta T}
$$

Space of velocities with space-time weakly continuous normal components

$$
\mathbf{V}_{h, 0}^{\Delta t}=\left\{\mathbf{v} \in \mathbf{V}_{h}^{\Delta t}: b_{\Gamma}^{T}(\mathbf{v}, \mu)=0 \quad \forall \mu \in \Lambda_{H}^{\Delta T}\right\}
$$

Discontinuous Galerkin time stepping

$$
\int_{0}^{T} \tilde{\partial}_{t} \varphi \phi=\sum_{k=1}^{N_{i}} \int_{t_{i}^{k-1}}^{t_{i}^{k}} \partial_{t} \varphi \phi+\sum_{k=1}^{N_{i}}[\varphi]_{k-1} \phi_{k-1}^{+},
$$

with

$$
[\varphi]_{k}=\varphi_{k}^{+}-\varphi_{k}^{-}, \quad \varphi_{k}^{+}=\lim _{t \rightarrow t_{i}^{k,+}} \varphi, \quad \varphi_{k}^{-}=\lim _{t \rightarrow t_{i}^{t,-}} \varphi
$$

Outline

(1) Introduction

(2) Space-time multiscale mortar mixed finite element method

- Continuous setting
- Discrete setting
- Space-time multiscale mortar mixed finite element method
- Existence, uniqueness, and stability
(3) Reduction to an interface problemNumerical experiments
(5) Conclusions and future directions

Space-time multiscale mortar mixed finite element method

Definition (Space-time multiscale mortar mixed finite element method)
Find $\mathrm{u}_{h}^{\Delta t} \in \mathbf{V}_{h}^{\Delta t}, p_{h}^{\Delta t} \in W_{h}^{\Delta t}$, and $\lambda_{H} \Delta^{T} \in \Lambda_{H}^{\Delta T}$ such that

$$
\begin{aligned}
a^{T}\left(\mathbf{u}_{h}^{\Delta t}, \mathbf{v}\right)+b^{T}\left(\mathbf{v}, p_{h}^{\Delta t}\right)+b_{\Gamma}^{T}\left(\mathbf{v}, \lambda_{H}^{\Delta T}\right) & =0 & & \forall \mathbf{v} \in \mathbf{V}_{h}^{\Delta t} \\
\left(\tilde{\partial}_{t} p_{h}^{\Delta t}, w\right)_{\Omega^{T}}-b^{T}\left(\mathbf{u}_{h}^{\Delta t}, w\right) & =(q, w)_{\Omega^{T}} & & \forall w \in W_{h}^{\Delta t} \\
b_{\Gamma}^{T}\left(\mathbf{u}_{h}^{\Delta t}, \mu\right) & =0 & & \forall \mu \in \Lambda_{H}^{\Delta T}
\end{aligned}
$$

Outline

(1) Introduction
(2) Space-time multiscale mortar mixed finite element method

- Continuous setting
- Discrete setting
- Space-time multiscale mortar mixed finite element method
- Existence, uniqueness, and stability
(3) Reduction to an interface problem

4 Numerical experiments
(3) Conclusions and future directions

Assumptions

Assumption (Mortar grids)

For C independent of the spatial mesh sizes h and H as well as of the temporal mesh sizes Δt and ΔT, there holds

$$
\begin{aligned}
& \forall \mu \in \wedge_{H}, \forall i, j, \quad\|\mu\|_{\Gamma_{i j}} \leq C\left(\left\|\mathcal{Q}_{h, i} \mu\right\|_{\Gamma_{i j}}+\left\|\mathcal{Q}_{n, j} \mu\right\|_{\Gamma_{i j}}\right), \\
& \forall i, j, \quad \wedge_{i j}^{\Delta T} \subset W_{i}^{\Delta t} \cap W_{j}^{\Delta t} .
\end{aligned}
$$

Comments

- \wedge_{H}
- $\mathcal{Q}_{h, i}: L^{2}\left(\partial \Omega_{i}\right) \rightarrow \mathrm{V}_{h, i} \cdot \mathrm{n}_{i}$ is the L^{2}-orthogonal projection
- the spatial mortar assumption as previously: in particular satisfied with $C=\frac{1}{2}$ when $T_{H, j}$ is a coarsening of both $T_{h, i}$ and $T_{h, j}$ on $\Gamma_{i j}$ \& the space $\Lambda_{H, i j}$ consists of discontinuous pw polynomials contained in $\mathbf{V}_{h, i} \cdot \mathbf{n}_{i}$ and $\mathbf{V}_{h, j} \cdot \mathbf{n}_{j}$ on $\Gamma_{i j}$; in general, it requests the mortar space Λ_{H} to be sufficiently coarse
- the temporal mortar assumption: control of the mortar by the subdomain time discretizations; mortar time discretization is a coarsening of each subdomain

Assumptions

Assumption (Mortar grids)

For C independent of the spatial mesh sizes h and H as well as of the temporal mesh sizes Δt and ΔT, there holds

$$
\begin{aligned}
& \forall \mu \in \Lambda_{H}, \forall i, j, \quad\|\mu\|_{\Gamma_{i j}} \leq C\left(\left\|\mathcal{Q}_{h, i} \mu\right\|_{\Gamma_{i j}}+\left\|\mathcal{Q}_{h, j} \mu\right\|_{\Gamma_{i j}}\right), \\
& \forall i, j, \quad \Lambda_{i j}^{\Delta T} \subset W_{i}^{\Delta t} \cap W_{j}^{\Delta t} .
\end{aligned}
$$

Comments

- $\Lambda_{H}:=\bigoplus \Lambda_{H, i j}$
- $\mathcal{Q}_{h, i}: L^{2}\left(\partial \Omega_{i}\right) \rightarrow \mathbf{V}_{h, i} \cdot \mathbf{n}_{i}$ is the L^{2}-orthogonal projection
- the spatial mortar assumption as previously: in particular satisfied with $C=\frac{1}{2}$ when $\mathcal{T}_{H, i j}$ is a coarsening of both $\mathcal{T}_{h, i}$ and $\mathcal{T}_{h, j}$ on $\Gamma_{i j}$ \& the space $\Lambda_{H, i j}$ consists of discontinuous pw polynomials contained in $\mathbf{V}_{h, i} \cdot \mathbf{n}_{i}$ and $\mathbf{V}_{h, j} \cdot \mathbf{n}_{j}$ on $\Gamma_{i j}$; in general, it requests the mortar space Λ_{H} to be sufficiently coarse
- the temporal mortar assumption: control of the mortar by the subdomain time discretizations; mortar time discretization is a coarsening of each subdomain

Two inf-sup inequalities

Lemma (Discrete divergence inf-sup condition on $\mathbf{V}_{h, 0}^{\Delta t}$)

Let the mortar assumptions hold. Then

$$
\forall w \in W_{h}^{\Delta t}, \quad \sup _{0 \neq \mathbf{v} \in \mathbf{V}_{h, 0}^{\Delta t}} \frac{b^{T}(\mathbf{v}, w)}{\|\mathbf{v}\|_{L^{2}\left(0, T ; T_{i} ; \mathbf{H}\left(\mathrm{div} ; \Omega_{i}\right)\right)} \geq \beta\|w\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} ~}
$$

Lemma (Discrete mortar inf-sup condition on $V^{\Delta t}$)

Let the mortar assumptions hold. Then

Two inf-sup inequalities

Lemma (Discrete divergence inf-sup condition on $\mathbf{V}_{h, 0}^{\Delta t}$)

Let the mortar assumptions hold. Then

$$
\forall w \in W_{h}^{\Delta t}, \quad \sup _{0 \neq \mathbf{v} \in \mathbf{V}_{h, 0}^{\Delta t}} \frac{b^{T}(\mathbf{v}, w)}{\left.\|\mathbf{v}\|_{L^{2}(0, T ; \Pi ;} \mathbf{H}\left(\mathrm{div} ; \Omega_{i}\right)\right)} \geq \beta\|w\|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)} .
$$

Lemma (Discrete mortar inf-sup condition on $\mathbf{V}_{h} \Delta t$)
Let the mortar assumptions hold. Then

$$
\forall \mu \in \Lambda_{H}^{\Delta T}, \quad \sup _{0 \neq \mathbf{v} \in \mathbf{V}_{h}^{\Delta t}} \frac{b_{\Gamma}^{T}(\mathbf{v}, \mu)}{\left.\|\mathbf{v}\|_{L^{2}(0, T ; \Pi ;} \mathbf{H}\left(\operatorname{div} ; \Omega_{i}\right)\right)} \geq \beta_{\Gamma}\|\mu\|_{L^{2}\left(0, T ; L^{2}(\Gamma)\right)}
$$

Existence, uniqueness, and stability

Theorem (Existence and uniqueness of the discrete solution, stability wrt data)
Let the mortar assumptions hold. Then the space-time multiscale mortar MFE method has a unique solution. Moreover,

$$
\left\|p_{h}^{\Delta t}\right\|_{\mathrm{DG}}+\left\|\mathbf{u}_{h}^{\Delta t}\right\|_{\Omega^{T} T}+\left\|p_{h}^{\Delta t}\right\|_{\Omega^{T}}+\left\|\lambda_{H}^{\Delta T}\right\|_{\Gamma^{T}} \leq C\left(\|q\|_{\Omega^{T}}+\left\|\nabla \cdot K \nabla p_{0}\right\|_{\Omega}\right) .
$$

Comments

- $\|\varphi\|_{\mathrm{DG}}^{2}=\sum_{i}\left(\left\|\varphi_{N_{i}}\right\|_{\Omega_{i}}^{2}+\sum_{k=1}^{N_{i}}\left\|[\varphi]_{k-1}\right\|_{\Omega_{i}}^{2}\right)$
- no control of divergence (shown later in a simplified setting)

Existence, uniqueness, and stability

Theorem (Existence and uniqueness of the discrete solution, stability wrt data)

Let the mortar assumptions hold. Then the space-time multiscale mortar MFE method has a unique solution. Moreover,

$$
\left\|p_{h}^{\Delta t}\right\|_{\mathrm{DG}}+\left\|\mathbf{u}_{h}^{\Delta t}\right\|_{\Omega^{T}}+\left\|p_{h}^{\Delta t}\right\|_{\Omega^{T}}+\left\|\lambda_{H}^{\Delta T}\right\|_{\Gamma^{T}} \leq C\left(\|q\|_{\Omega^{T}}+\left\|\nabla \cdot K \nabla p_{0}\right\|_{\Omega}\right) .
$$

Comments

- $\|\varphi\|_{\mathrm{DG}}^{2}=\sum_{i}\left(\left\|\varphi_{\bar{N}_{i}}\right\|_{\Omega_{i}}^{2}+\sum_{k=1}^{N_{i}}\left\|[\varphi]_{k-1}\right\|_{\Omega_{i}}^{2}\right)$
- no control of divergence (shown later in a simplified setting)

A priori error estimate

Theorem (A priori error estimate)

Let the mortar assumptions hold and let the weak solution be sufficiently smooth. Let the space and time meshes $\mathcal{T}_{h, i}$ and $\mathcal{T}_{i}^{\Delta t}$ be quasi-uniform and let $h \leq C h_{i}$ and $\Delta t \leq C \Delta t_{i}$ for all i. Then

$$
\begin{aligned}
& \left\|p-p_{h}^{\Delta t}\right\|_{\mathrm{DG}}+\left\|\mathbf{u}-\mathbf{u}_{h}^{\Delta t}\right\|_{\Omega^{T}}+\left\|p-p_{h}^{\Delta t}\right\|_{\Omega^{T}}+\left\|\lambda-\lambda_{H}^{\Delta T}\right\|_{\Gamma^{T}} \\
& \leq C\left(\sum_{i}\|\mathbf{u}\|_{H^{r}\left(0, T ; H^{r_{k}}\left(\Omega_{i}\right)\right)}\left(h^{r_{k}}+\Delta t^{r_{q}}\right)+\|\mathbf{u}\|_{H^{r^{\prime}\left(0, T ; H^{\tilde{r}_{k}+\frac{1}{2}}(\Omega)\right)}}\left(h^{\tilde{r}_{k}} H^{\frac{1}{2}}+\Delta t^{r_{q}}\right)\right. \\
& \left.+\sum_{i}\|p\|_{W^{r^{\prime}, \infty}\left(0, T ; H^{r_{l}}\left(\Omega_{i}\right)\right)} \Delta t^{-\frac{1}{2}}\left(h^{r_{l}}+\Delta t^{r_{q}}\right)+\sum_{i, j}\|\lambda\|_{H^{r_{s}}\left(0, T ; H^{r m}\left(\Gamma_{i j}\right)\right)} h^{-\frac{1}{2}}\left(H^{r_{m}}+\Delta T^{r_{s}}\right)\right), \\
& \underbrace{0<r_{k} \text { or } \tilde{r}_{k} \leq k+1}_{\text {MFE space }}, \underbrace{0 \leq r_{l} \leq I+1}_{\text {pw pols space }}, \underbrace{0 \leq r_{q} \leq q+1}_{\text {pw pols time }}, \underbrace{0 \leq r_{m} \leq m+1}_{\text {mortars space }}, \underbrace{0 \leq r_{s} \leq s+1}_{\text {mortars time }} .
\end{aligned}
$$

A priori error estimate

Comments

- the term $h^{-\frac{1}{2}}\left(H^{r_{m}}+\Delta T^{r_{s}}\right)$ appears from the discrete trace (inverse) inequality and is suboptimal; can be made comparable to the other error terms by choosing m and s sufficiently large (if the solution is sufficiently smooth)
- the term $\Delta t^{-\frac{1}{2}}\left(h^{r_{l}}+\Delta t^{r_{q}}\right)$ is suboptimal
- both improved if a bound on $\left\|\nabla \cdot\left(\mathbf{u}-\mathbf{u}_{h}^{\Delta t}\right)\right\|_{\Omega_{i}^{T}}$ is available, using the normal trace inequality for $\mathbf{H}\left(\mathrm{div} ; \Omega_{i}\right)$

Improved stability

Radau reconstruction operator

- for $\varphi(x, \cdot) \in W^{\Delta t}, \mathcal{I} \varphi(x, \cdot) \in H^{1}(0, T),\left.\mathcal{I} \varphi(x, \cdot)\right|_{\left(t^{k-1}, t^{k}\right)} \in P_{q+1}$, such that

$$
\int_{t^{k-1}}^{t^{k}} \partial_{t} \mathcal{I} \varphi \phi=\int_{t^{k-1}}^{t^{k}} \partial_{t} \varphi \phi+[\varphi]_{k-1} \phi_{k-1}^{+} \quad \forall \phi(x, \cdot) \in W^{\Delta t}
$$

- thus equivalently, $\tilde{\partial}_{t} p_{h}^{\Delta t}$ replaced by $\partial_{t} \mathcal{I} p_{h}^{\Delta t}$:

$$
\left(\partial_{t} I p_{h}^{\Delta t}, w\right)_{\Omega^{T}}-b^{T}\left(\mathbf{u}_{h}^{\Delta t}, w\right)=(q, w)_{\Omega^{T}} \quad \forall w \in W_{h}^{\Delta t}
$$

Theorem (Control of divergence)
Let $W \Delta t=\Lambda \Delta T=W \Delta t$ (same time discretization everywhere) hold. Then

Improved stability

Radau reconstruction operator

- for $\varphi(x, \cdot) \in W^{\Delta t}, \mathcal{I} \varphi(x, \cdot) \in H^{1}(0, T),\left.\mathcal{I} \varphi(x, \cdot)\right|_{\left(t^{k-1}, t^{k}\right)} \in P_{q+1}$, such that

$$
\int_{t^{k-1}}^{t^{k}} \partial_{t} \mathcal{I} \varphi \phi=\int_{t^{k-1}}^{t^{k}} \partial_{t} \varphi \phi+[\varphi]_{k-1} \phi_{k-1}^{+} \quad \forall \phi(x, \cdot) \in W^{\Delta t}
$$

- thus equivalently, $\tilde{\partial}_{t} p_{h}^{\Delta t}$ replaced by $\partial_{t} \mathcal{I} p_{h}^{\Delta t}$:

$$
\left(\partial_{t} I p_{h}^{\Delta t}, w\right)_{\Omega^{T}}-b^{T}\left(\mathbf{u}_{h}^{\Delta t}, w\right)=(q, w)_{\Omega^{T}} \quad \forall w \in W_{h}^{\Delta t}
$$

Theorem (Control of divergence)

Let $W_{i}^{\Delta t}=\Lambda_{i j}^{\Delta T}=W_{j}^{\Delta t}$ (same time discretization everywhere) hold. Then

$$
\left\|\partial_{t} \mathcal{I} p_{h}^{\Delta t}\right\|_{\Omega^{T}}+\left\|\nabla_{h} \cdot \mathbf{u}_{h}^{\Delta t}\right\|_{\Omega^{T}}+\left\|\mathbf{u}_{h}^{\Delta t}\right\|_{\mathrm{DG}} \leq C\left(\|q\|_{\Omega^{T}}+\left\|\nabla \cdot K \nabla p_{0}\right\|_{\Omega}\right)
$$

Improved a priori error estimate

Theorem (Improved a priori error estimate)

Let the mortar space assumption and $W_{i}^{\Delta t}=\Lambda_{i j}^{\Delta T}=W_{j}^{\Delta t}$ hold and let the weak solution be sufficiently smooth. Then

$$
\begin{aligned}
& \left\|\mathbf{u}\left(t^{N}\right)-\left(\mathbf{u}_{h}^{\Delta t}\right)_{N}\right\|_{\Omega}+\left\|\mathbf{u}-\mathbf{u}_{h}^{\Delta t}\right\|_{\Omega^{T}}+\left\|\nabla_{h} \cdot\left(\mathbf{U}-\mathbf{u}_{h}^{\Delta t}\right)\right\|_{\Omega^{T}} \\
& +\left\|p\left(t^{N}\right)-\left(p_{h}^{\Delta t}\right) \bar{N}\right\|_{\Omega}+\left\|p-p_{h}^{\Delta t}\right\|_{\Omega^{T}}+\left\|\lambda-\lambda_{H}^{\Delta}\right\|_{\Gamma^{T}} \\
& \leq C\left(\sum _ { i } \| \mathbf { u } \| W ^ { r _ { q } , \infty } \left(0, T ; \mathbf{H}^{\left.r_{k}\left(\Omega_{i}\right)\right)}\left(h^{r_{k}}+\Delta t^{r_{q}}\right)+\|\mathbf{u}\|_{W^{r_{q}, \infty}\left(0, T ; \mathbf{H}^{r_{k}}+\frac{1}{2}(\Omega)\right)}\left(\boldsymbol{h}^{\tilde{r}_{k}} \boldsymbol{H}^{\frac{1}{2}}+\Delta t^{r_{q}}\right)\right.\right. \\
& +\sum_{i}\|p\|_{W^{r_{q}, \infty}\left(0, T ; H_{l}^{r_{l}}\left(\Omega_{i}\right)\right)}\left(h^{r_{l}}+\Delta t^{r_{q}}\right)+\sum_{i, j}\|\lambda\|_{H^{r_{s}}\left(0, T ; H^{\left.r_{m}\left(\Gamma_{i j}\right)\right)}\left(H^{r_{m}-\frac{1}{2}}+\Delta T^{r_{s}}\right)\right.} \\
& \left.+\sum_{i}\|\mathbf{u}\|_{H^{1}\left(0, T ; \mathbf{H}^{\left.r_{k}\left(\Omega_{i}\right)\right)}\right.} h^{r_{k}}+\|\mathbf{u}\|_{H^{1}\left(0, T ; \mathbf{H}^{\tilde{r}_{k}+\frac{1}{2}}(\Omega)\right)} h^{\tilde{r}_{k}} H^{\frac{1}{2}}+\sum_{i, j}\|\lambda\|_{H^{1}\left(0, T ; H^{r} m\left(\Gamma_{i j}\right)\right)} H^{r_{m}-\frac{1}{2}}\right) \\
& \underbrace{0<r_{k} \text { or } \tilde{r}_{k} \leq k+1}_{\text {MFE space }}, \underbrace{0 \leq r_{l} \leq 1+1}_{\text {pw pols space }}, \underbrace{0 \leq r_{q} \leq q+1}_{\text {pw pols time }}, \underbrace{\frac{1}{2} \leq r_{m} \leq m+1}_{\text {mortars space }}, \underbrace{1 \leq r_{s} \leq s+1}_{\text {mortars time }}
\end{aligned}
$$

Outline

(1) Introduction

(3) Space-time multiscale mortar mixed finite element method

- Continuous setting
- Discrete setting
- Space-time multiscale mortar mixed finite element method
- Existence, uniqueness, and stability
(3) Reduction to an interface problem
(4) Numerical experiments
(5) Conclusions and future directions

Space-time MMFEM Reduction to interface problem

Decomposition of the solution

Decomposition of the solution

- $\mathbf{u}_{h}^{\Delta t}=\mathbf{u}_{h}^{\Delta t, *}\left(\lambda_{H}^{\Delta T}\right)+\overline{\mathbf{u}}_{h}^{\Delta t}, \quad p_{h}^{\Delta t}=p_{h}^{\Delta t, *}\left(\lambda_{H}^{\Delta T}\right)+\bar{p}_{h}^{\Delta t}$
- for each $\Omega_{i}^{T},\left.\overline{\mathbf{u}}_{h}^{\Delta t}\right|_{\Omega_{i}^{T}} \in \mathbf{V}_{h, i}^{\Delta t},\left.\bar{p}_{h}^{\Delta t}\right|_{\Omega_{i}^{T}} \in W_{h, i}^{\Delta t}$ is the solution to (zero Dirichlet data on the space-time interfaces and the prescribed source term q, initial data p_{0}, and 0 boundary data on the external boundary)

$$
\begin{aligned}
& a_{i}^{T}\left(\overline{\mathbf{u}}_{h}^{\Delta t}, \mathbf{v}\right)+b_{i}^{T}\left(\mathbf{v}, \bar{p}_{h}^{\Delta t}\right)=0 \quad \forall \mathbf{v} \in \mathbf{V}_{h, i}^{\Delta t} \\
& \left(\tilde{\partial}_{t} \bar{p}_{h}^{\Delta t}, w\right)_{\Omega_{i}^{T}}-b_{i}^{T}\left(\overline{\mathbf{u}}_{h}^{\Delta t}, w\right)=(q, w)_{\Omega_{i}^{T}} \quad \forall w \in W_{h, i}^{\Delta t}
\end{aligned}
$$

- for a given $\mu \in \Lambda_{H}^{\Delta T}$, for each $\Omega_{i}^{T},\left.\mathbf{u}_{h}^{\Delta t, *}(\mu)\right|_{\Omega_{i}^{T}} \in \mathbf{V}_{h, i}^{\Delta t},\left.p_{h}^{\Delta t, *}(\mu)\right|_{\Omega_{i}^{T}} \in W_{h, i}^{\Delta t}$ is the solution to (Dirichlet data μ, zero source term, initial data, and boundary data)

$$
\begin{aligned}
& a_{i}^{T}\left(\mathbf{u}_{h}^{\Delta t, *}(\mu), \mathbf{v}\right)+b_{i}^{T}\left(\mathbf{v}, p_{h}^{\Delta t, *}(\mu)\right)=-\left\langle\mathbf{v} \cdot \mathbf{n}_{i}, \mu\right\rangle_{\Gamma_{i}^{T}} \quad \forall \mathbf{v} \in \mathbf{V}_{h, i}^{\Delta t}, \\
& \left(\tilde{\partial}_{t} p_{h}^{\Delta t, *}(\mu), w\right)_{\Omega_{i}^{T}}-b_{i}^{T}\left(\mathbf{u}_{h}^{\Delta t, *}(\mu), w\right)=0 \quad \forall w \in W_{h, i}^{\Delta t}
\end{aligned}
$$

- both above problems are posed in the individual space-time subdomains Ω_{i}^{T} and can thus be solved in parallel (no synchronization on time stepsťría

I Space-time MMFEM Reduction to interface problem Numerical experiments C

Space-time Steklov-Poincaré operator

Lemma (Equivalence)

The MMMFE method is equivalent to: find $\lambda_{H}^{\Delta T} \in \Lambda_{H}^{\Delta T}$ such that

$$
-b_{\Gamma}^{T}\left(\mathbf{u}_{h}^{\Delta t, *}\left(\lambda_{H}^{\Delta T}\right), \mu\right)=b_{\Gamma}^{T}\left(\overline{\mathbf{u}}_{h}^{\Delta t}, \mu\right) \quad \forall \mu \in \Lambda_{H}^{\Delta T} .
$$

Space-time Steklov-Poincaré operator

- $S: \Lambda_{H} \Delta^{T} \rightarrow \Lambda_{H} \Delta^{T}$
- $g \in \Lambda_{H}^{\Delta T}$ is defined as $\langle g, \mu\rangle_{\Gamma^{T}}:=b_{\Gamma}\left(\overline{\mathbf{u}}_{h}^{\Delta t}, \mu\right) \quad \forall \mu \in \Lambda_{H}^{\Delta T}$

Lemma (Onerator form)
Equivalent operator form is: find $\lambda_{H}^{\Delta^{T}} \in \Lambda_{H}^{\Delta^{\top}}$ such that

Space-time Steklov-Poincaré operator

Lemma (Equivalence)

The MMMFE method is equivalent to: find $\lambda_{H}^{\Delta T} \in \Lambda_{H}^{\Delta T}$ such that

$$
-b_{\Gamma}^{T}\left(\mathbf{u}_{h}^{\Delta t, *}\left(\lambda_{H}^{\Delta T}\right), \mu\right)=b_{\Gamma}^{T}\left(\overline{\mathbf{u}}_{h}^{\Delta t}, \mu\right) \quad \forall \mu \in \Lambda_{H}^{\Delta T} .
$$

Space-time Steklov-Poincaré operator

- $S: \Lambda_{H}{ }^{T} \rightarrow \Lambda_{H}{ }^{T}$

$$
\langle S \lambda, \mu\rangle_{\Gamma^{T}}:=\sum_{i}\left\langle S_{i} \lambda, \mu\right\rangle_{\Gamma_{i}^{T}}, \quad\left\langle S_{i} \lambda, \mu\right\rangle_{\Gamma_{i}^{T}}:=-\left\langle\mathbf{u}_{h}^{\Delta t, *}(\lambda) \cdot \mathbf{n}_{i}, \mu\right\rangle_{\Gamma_{i}^{T}} \quad \forall \lambda, \mu \in \Lambda_{H}^{\Delta T}
$$

- $g \in \Lambda_{H}^{\Delta T}$ is defined as $\langle g, \mu\rangle_{\Gamma^{T}}:=b_{\Gamma}\left(\overline{\mathbf{u}}_{h}^{\Delta t}, \mu\right) \quad \forall \mu \in \Lambda_{H}^{\Delta T}$

Lemma (Operator form)

Equivalent operator form is: find $\lambda_{H}^{\Delta T} \in \Lambda_{H}^{\Delta T}$ such that

Space-time Steklov-Poincaré operator

Lemma (Equivalence)

The MMMFE method is equivalent to: find $\lambda_{H}^{\Delta T} \in \Lambda_{H}^{\Delta T}$ such that

$$
-b_{\Gamma}^{T}\left(\mathbf{u}_{h}^{\Delta t, *}\left(\lambda_{H}^{\Delta}\right), \mu\right)=b_{\Gamma}^{T}\left(\overline{\mathbf{u}}_{h}^{\Delta t}, \mu\right) \quad \forall \mu \in \Lambda_{H}^{\Delta}{ }^{T} .
$$

Space-time Steklov-Poincaré operator

- $S: \Lambda_{H}^{\Delta T} \rightarrow \Lambda_{H}{ }^{T}$

$$
\langle S \lambda, \mu\rangle_{\Gamma^{T}}:=\sum_{i}\left\langle S_{i} \lambda, \mu\right\rangle_{\Gamma_{i}^{T}}, \quad\left\langle S_{i} \lambda, \mu\right\rangle_{\Gamma_{i}^{T}}:=-\left\langle\mathbf{u}_{h}^{\Delta t, *}(\lambda) \cdot \mathbf{n}_{i}, \mu\right\rangle_{\Gamma_{i}^{T}} \quad \forall \lambda, \mu \in \Lambda_{H}^{\Delta T}
$$

- $g \in \Lambda_{H}^{\Delta T}$ is defined as $\langle g, \mu\rangle_{\Gamma^{T}}:=b_{\Gamma}\left(\overline{\mathbf{u}}_{h}^{\Delta t}, \mu\right) \quad \forall \mu \in \Lambda_{H}^{\Delta T}$

Lemma (Operator form)

Equivalent operator form is: find $\lambda_{H} \Delta^{T} \in \Lambda_{H}^{\Delta T}$ such that

$$
S \lambda_{H}^{\Delta^{T}}=g .
$$

I Space-time MMFEM Reduction to interface problem Numerical experiments C

Spectral bound, space-time domain decomposition algorithm

Theorem (Spectral bound)

Let the mortar assumptions hold. Then the operator S is positive definite. Let moreover $\mathcal{T}_{h, i}$ be quasi-uniform and $h \leq C h_{i}$ for all i. Then the following spectral bound holds:

$$
\forall \mu \in \Lambda_{H}^{\Delta^{T}}, \quad C_{0}\|\mu\|_{\Gamma^{T}}^{2} \leq\langle S \mu, \mu\rangle_{\Gamma^{T}} \leq C_{1} h^{-1}\|\mu\|_{\Gamma^{T}}^{2} .
$$

Comments

- well-posed space-time interface problem
- leads to a space-time domain decomposition algorithm
- GMRES can be applied; convergence through the field-of-values estimates:
- on all iterations: problems posed in the individual space-time subdomains and solved in parallel (no synchronization on time steps)

Spectral bound, space-time domain decomposition algorithm

Theorem (Spectral bound)

Let the mortar assumptions hold. Then the operator S is positive definite. Let moreover $\mathcal{T}_{h, i}$ be quasi-uniform and $h \leq C h_{i}$ for all i. Then the following spectral bound holds:

$$
\forall \mu \in \Lambda_{H}^{\Delta T}, \quad C_{0}\|\mu\|_{\Gamma^{T}}^{2} \leq\langle S \mu, \mu\rangle_{\Gamma^{T}} \leq C_{1} h^{-1}\|\mu\|_{\Gamma^{T}}^{2}
$$

Comments

- well-posed space-time interface problem
- leads to a space-time domain decomposition algorithm
- GMRES can be applied; convergence through the field-of-values estimates:

$$
\left\|\mathbf{r}_{k}\right\| \leq\left(\sqrt{1-\left(C_{0} / C_{1}\right)^{2} h^{2}}\right)^{k}\left\|\mathbf{r}_{0}\right\|
$$

- on all iterations: problems posed in the individual space-time subdomains Ω_{i}^{T} and solved in parallel (no synchronization on time steps)

Outline

(1) Introduction

2 Space-time multiscale mortar mixed finite element method

- Continuous setting
- Discrete setting
- Space-time multiscale mortar mixed finite element method
- Existence, uniqueness, and stability
(3) Reduction to an interface problem

4 Numerical experiments
(5) Conclusions and future directions

Numerical experiments

Setting

- $d=2$
- $\mathbf{V}_{h, i} \times W_{h, i}$ on each Ω_{i} is the lowest-order Raviart-Thomas pair $R T_{0} \times D G Q_{0}$ $(k=I=0)$
- backward Euler time discretization in each $\Omega_{i}^{T}(q=0)$
- mortar finite element space $\Lambda_{H, i j}^{\Delta T}$: discontinuous bilinear $(m=s=1, H=2 h$ and $\Delta T=2 \Delta t$) and discontinuous biquadratic ($m=s=2, H=\sqrt{h}$ and $\Delta T=\sqrt{\Delta t}$) mortars
- GMRES without preconditioner for the space-time interface problem
- deal.Il package
- $\Delta t^{-\frac{1}{2}}$ loss in convergence rate in the theoretical bound not observed in the numerical results

Example 1, smooth solution, Ω^{T}

Pressure, bilinear mortars $m=s=1$, space-time grid at refinement 3 , whole Ω^{T}

Example 1

Example 1

x-velocity detail on $\Omega_{1}^{T} \cup \Omega_{4}^{T}$

x-velocity detail on $\Omega_{2}^{T} \cup \Omega_{3}^{T}$

Example 1

Ref.	Ω_{1}^{T}			Ω_{2}^{T}			Ω_{3}^{T}			Ω_{4}^{T}			$\Gamma^{T}(m=1)$			$\Gamma^{T}(m=2)$		
No.	n_{1}	N_{1}	\#DoF	n_{2}	N_{2}	\#DoF	n_{3}	N_{3}	\#DoF	n_{4}	N_{4}	\#DoF	n_{Γ}	N_{Γ}	\#DoF	n_{Γ}	N_{Γ}	\#DoF
0	3	3	33	2	2	16	4	4	56	3	3	33	1	1	16	1	1	36
1	6	6	120	4	4	56	8	8	208	6	6	120	2	2	64			
2	12	12	456	8	8	208	16	16	800	12	12	456	4	4	256	2	2	144
3	24	24	1776	16	16	800	32	32	3136	24	24	1776	8	8	1024			
4	48	48	7008	32	32	3136	64	64	12416	48	48	7008	16	16	4096	4	4	576

Meshes, polynomial degrees, and number of degrees of freedom

Example 1: $m=s=2$ better than $m=s=1$

Ref.	\# GMRES		$\left\\|\mathbf{u}-\mathbf{u}_{h}^{\Delta t}\right\\|_{L^{2}\left(0, T: L^{2}(\Omega)\right.}$		$\left\\|p-p_{h}^{\Delta t}\right\\|_{\text {DG }}$		$\left\\|p-p_{h}^{\Delta t}\right\\|_{L^{2}(0, T ; W)}$		$\left\\|\lambda-\lambda_{H}^{\Delta^{T}}\right\\|_{L^{2}\left(0, T ; \Lambda_{H}\right)}$	
0	11	Rate	$6.50 \mathrm{e}-01$	Rate	$1.21 \mathrm{e}+00$	Rate	7.91e-01	Rate	$7.98 \mathrm{e}-01$	Rate
1	23	-1.06	3.63e-01	0.84	7.21e-01	0.75	4.76e-01	0.73	5.11e-01	0.64
2	39	-0.76	$1.74 \mathrm{e}-01$	1.06	3.19e-01	1.18	2.46e-01	0.95	$2.34 \mathrm{e}-01$	1.13
3	59	-0.60	8.63e-02	1.02	1.46e-01	1.13	1.25e-01	0.98	1.20e-01	0.96
4	86	-0.54	$4.29 \mathrm{e}-02$	1.01	6.93e-02	1.08	6.25e-02	1.00	6.11e-02	0.97

Convergence with bilinear mortars $m=s=1$

Example 1: $m=s=2$ better than $m=s=1$

Ref.	$\\|$ GMRES		$\left\\|\mathbf{u}-\mathbf{u}_{h}^{\Delta t}\right\\|_{L^{2}\left(0, T ; \mathrm{L}^{2}(\Omega)\right)} \\|$	$\left\\|p-p_{h}^{\Delta t}\right\\|_{\text {DG }}$		$\left\\|p-p_{h}^{\Delta t}\right\\|_{L^{2}(0, T ; W)}\left\\|\lambda-\lambda_{H}^{\Delta^{T}}\right\\|_{L^{2}\left(0, T ; \Lambda_{H}\right)}$				
0	11	Rate	$6.50 \mathrm{e}-01$	Rate	$1.21 \mathrm{e}+00$	Rate	$7.91 \mathrm{e}-01$	Rate	$7.98 \mathrm{e}-01$	Rate
1	23	-1.06	$3.63 \mathrm{e}-01$	0.84	$7.21 \mathrm{e}-01$	0.75	$4.76 \mathrm{e}-01$	0.73	$5.11 \mathrm{e}-01$	0.64
2	39	-0.76	$1.74 \mathrm{e}-01$	1.06	$3.19 \mathrm{e}-01$	1.18	$2.46 \mathrm{e}-01$	0.95	$2.34 \mathrm{e}-01$	1.13
3	59	-0.60	$8.63 \mathrm{e}-02$	1.02	$1.46 \mathrm{e}-01$	1.13	$1.25 \mathrm{e}-01$	0.98	$1.20 \mathrm{e}-01$	0.96
4	86	-0.54	$4.29 \mathrm{e}-02$	1.01	$6.93 \mathrm{e}-02$	1.08	$6.25 \mathrm{e}-02$	1.00	$6.11 \mathrm{e}-02$	0.97

Convergence with bilinear mortars $m=s=1$

Ref.	\# GMRES		$\left\\|\mathbf{u}-\mathbf{u}_{h}^{\Delta t}\right\\|_{L^{2}\left(0, T_{;} \mathrm{L}^{2}(\Omega)\right)}$	$\left\\|p-p_{h}^{\Delta t}\right\\|_{\text {DG }}$	$\left\\|p-p_{h}^{\Delta t}\right\\|_{L^{2}(0, T ; W)}$		$\left\\|\lambda-\lambda_{H}^{\Delta T}\right\\|_{L^{2}\left(0, T ; \Lambda_{H}\right)}$			
0	18	Rate	$6.81 \mathrm{e}-01$	Rate	$1.35 \mathrm{e}+00$	Rate	$8.39 \mathrm{e}-01$	Rate	$2.13 \mathrm{e}+00$	Rate
2	34	-0.46	$1.70 \mathrm{e}-01$	1.00	$3.51 \mathrm{e}-01$	0.97	$2.51 \mathrm{e}-01$	0.87	$2.82 \mathrm{e}-01$	1.46
4	57	-0.37	$4.48 \mathrm{e}-02$	0.96	$8.59 \mathrm{e}-02$	1.02	$6.59 \mathrm{e}-02$	0.96	$9.20 \mathrm{e}-02$	0.81

Convergence with biquadratic mortars $m=s=2$

Space time MMFEM Reduction to intertaco problem Numerical experiments

Example 2, sharp boundary layer, discontinuous bilinear mortars

 $(m=s=1)$

Pressure, cut along the plane $x=0.25$

Example 2

Velocity magnitude, cut along the plane $x=0.25$

Example $2, \Omega^{\top}$

Pressure, mortar multiscale method

Pressure, fine-scale method

Example 2, Ω^{T}

Velocity magnitude, mortar multiscale method

Velocity magnitude, fine-scale method

Example 2

Method	\# GMRES	$\left\\|\mathbf{u}-\mathbf{u}_{h}^{\Delta t}\right\\|_{L^{2}\left(0, T ; \mathrm{L}^{2}(\Omega)\right)}$	$\left\\|p-p_{h}^{\Delta t}\right\\|_{\mathrm{DG}}$	$\left\\|p-p_{h}^{\Delta t}\right\\|_{L^{2}(0, T ; W)}$	$\left\\|\lambda-\lambda_{H}^{\Delta^{T}}\right\\|_{L^{2}\left(0, T ; \wedge_{H}\right)}$
multiscale	102	$5.657 \mathrm{e}-02$	$8.425 \mathrm{e}-02$	$6.319 \mathrm{e}-02$	$5.796 \mathrm{e}-02$
fine-scale	140	$1.524 \mathrm{e}-02$	$2.234 \mathrm{e}-02$	$2.154 \mathrm{e}-02$	$3.016 \mathrm{e}-02$

Errors and GMRES iterations for the multiscale and fine-scale methods
(1) Introduction

2 Space-time multiscale mortar mixed finite element method

- Continuous setting
- Discrete setting
- Space-time multiscale mortar mixed finite element method
- Existence, uniqueness, and stability
(3) Reduction to an interface problem
(4) Numerical experiments
(5) Conclusions and future directions

Space-time MMFEM Reduction to interface problem Numerical experiments

Conclusions and future directions

Conclusions

- standard building blocks: DG time stepping on individual subdomains
- mortar coupling: space-time interface problem
- mortars: coarse mesh / high polynomial degree: multiscale approximation
- leads to a space-time domain decomposition algorithm

Future directions

- developing a preconditioner for the space-time interface iterative solver
- dedicated a posteriori error analysis

References

- M. Jayadharan, M. Kern, M. Vohralík, I. Yotov, A space-time multiscale mortar mixed finite element method for parabolic equations, HAL Preprint 03355088, 2021
- S. AlI Hassan, C. JAPHET, M. VOHRALíK, A posteriori stopping criteria for
space-time domain decomposition for the heat equation in mixed formulations

Electron. Trans. Numer. Anal. 49 (2018), 151-181.
erc

Space-time MMFEM Reduction to interface problem Numerical experiments C

Conclusions and future directions

Conclusions

- standard building blocks: DG time stepping on individual subdomains
- mortar coupling: space-time interface problem
- mortars: coarse mesh / high polynomial degree: multiscale approximation
- leads to a space-time domain decomposition algorithm

Future directions

- developing a preconditioner for the space-time interface iterative solver
- dedicated a posteriori error analysis

References

- M. Jayadharan, M. Kern, M. Vohralík, I. Yotov, A space-time multiscale mortar mixed finite element method for parabolic equations, HAL Preprint 03355088, 2021
- S. Ali Hassan, C. Japhet, M. Vohralík, A posteriori stopping criteria for space-time domain decomposition for the heat equation in mixed formulations, Electron. Trans. Numer. Anal. 49 (2018), 151-181.

Space-time MMFEM Reduction to interface problem Numerical experiments C

Conclusions and future directions

Conclusions

- standard building blocks: DG time stepping on individual subdomains
- mortar coupling: space-time interface problem
- mortars: coarse mesh / high polynomial degree: multiscale approximation
- leads to a space-time domain decomposition algorithm

Future directions

- developing a preconditioner for the space-time interface iterative solver
- dedicated a posteriori error analysis

References

- M. Jayadharan, M. Kern, M. Vohralík, I. Yotov, A space-time multiscale mortar mixed finite element method for parabolic equations, HAL Preprint 03355088, 2021.
- S. Ali Hassan, C. Japhet, M. Vohralík, A posteriori stopping criteria for space-time domain decomposition for the heat equation in mixed formulations, Electron. Trans. Numer. Anal. 49 (2018), 151-181.

Space-time MMFEM Reduction to interface problem Numerical experiments C

Conclusions and future directions

Conclusions

- standard building blocks: DG time stepping on individual subdomains
- mortar coupling: space-time interface problem
- mortars: coarse mesh / high polynomial degree: multiscale approximation
- leads to a space-time domain decomposition algorithm

Future directions

- developing a preconditioner for the space-time interface iterative solver
- dedicated a posteriori error analysis

References

- M. Jayadharan, M. Kern, M. Vohralík, I. Yotov, A space-time multiscale mortar mixed finite element method for parabolic equations, HAL Preprint 03355088, 2021.
- S. Ali Hassan, C. Japhet, M. Vohralík, A posteriori stopping criteria for space-time domain decomposition for the heat equation in mixed formulations, Electron. Trans. Numer. Anal. 49 (2018), 151-181.

