Adaptive inexact Newton methods and their application to multi-phase flows

Martin Vohralík

INRIA Paris-Rocquencourt

in collaboration with Clément Cancès, Daniele A. Di Pietro, Alexandre Ern, Eric Flauraud, I. Sorin Pop, Mary F. Wheeler, and Soleiman Yousef

Oberwolfach, September 24, 2014

Outline

Adaptive inexact Newton method

- A guaranteed a posteriori error estimate
- Stopping criteria and efficiency
- Application and numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- Application to multi-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- 5 Conclusions and future directions

Outline

Introduction

- Adaptive inexact Newton method
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Application and numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- Application to multi-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- 6 Conclusions and future directions

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

 Choose initial vector U⁰. Set k := 1.
 U^{k-1} ⇒ matrix A^{k-1} and vector F^{k-1}: find U^k s.t. A^{k-1}U^k ≈ F^{k-1}.

3 • Set $U^{k,0} := U^{k-1}$ and i := 1.

② Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

• Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

- Choose initial vector U^0 . Set k := 1.
 - U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1} and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.
 - • Set $U^{k,0} := U^{k-1}$ and i := 1.
 - 2 Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

- Onvergence? OK ⇒ U^k := U^{k,i}. KO ⇒ i := i + 1, back to 3.2.
-) Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

 Choose initial vector U⁰. Set k := 1.
 U^{k-1} ⇒ matrix A^{k-1} and vector F^{k-1}: find U^k s.t. A^{k-1}U^k ≈ F^{k-1}.

• • Set $U^{k,0} := U^{k-1}$ and i := 1.

2 Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

 $\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$

Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

) Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

• Choose initial vector U^0 . Set k := 1.

- $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.
- - Source Convergence? OK ⇒ U^k := U^{k,i}. KO ⇒ i := i + 1, back to 3.2.

) Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

• Choose initial vector U^0 . Set k := 1.

• $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.

• Set
$$U^{k,0} := U^{k-1}$$
 and $i := 1$.

3

2 Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

Sonvergence? OK ⇒ U^k := U^{k,i}. KO ⇒ i := i + 1, back to 3.2.

) Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

• Choose initial vector U^0 . Set k := 1.

• $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.

• • Set
$$U^{k,0} := U^{k-1}$$
 and $i := 1$

3

2 Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

) Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

• Choose initial vector U^0 . Set k := 1.

• $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$

Set
$$U^{k,0} := U^{k-1}$$
 and $i := 1$

2 Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

Onvergence? $OK \Rightarrow finish$. $KO \Rightarrow k := k + 1$, back to 2.

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$ umerical method

 underlying numerical method: the vector U^{k,i} is associated with a (piecewise polynomial) approximation u^{k,i}_h

Partial differential equation

• underlying PDE, *u* its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

 How big is the error ||u - u_h^{k,i}|| on Newton step k and algebraic solver step i, how is it distributed?

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$ Numerical method

 underlying numerical method: the vector U^{k,i} is associated with a (piecewise polynomial) approximation u^{k,i}_h

Partial differential equation

• underlying PDE, *u* its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

 How big is the error ||u - u_h^{k,i}|| on Newton step k and algebraic solver step i, how is it distributed?

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$

Numerical method

 underlying numerical method: the vector U^{k,i} is associated with a (piecewise polynomial) approximation u^{k,i}_h

Partial differential equation

• underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

 How big is the error ||u - u_h^{k,i}|| on Newton step k and algebraic solver step i, how is it distributed?

Martin Vohralík

Adaptive inexact Newton methods and multi-phase flows

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$

Numerical method

 underlying numerical method: the vector U^{k,i} is associated with a (piecewise polynomial) approximation u^{k,i}_h

Partial differential equation

• underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

 How big is the error ||u - u_h^{k,i}|| on Newton step k and algebraic solver step i, how is it distributed?

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$

Numerical method

 underlying numerical method: the vector U^{k,i} is associated with a (piecewise polynomial) approximation u^{k,i}_h

Partial differential equation

• underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

 How big is the error ||u - u_h^{k,i}|| on Newton step k and algebraic solver step i, how is it distributed?

Inexact Newton method

- Eisenstat and Walker (1990's) (conception, convergence, a priori error estimates)
- Moret (1989) (discrete a posteriori error estimates)

Adaptive inexact Newton method

- Bank and Rose (1982), combination with multigrid
- Hackbusch and Reusken (1989), damping and multigrid
- Deuflhard (1990's, 2004 book), adaptivity
- Stopping criteria for algebraic solvers
 - engineering literature, since 1950's
 - Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
 - Arioli (2000's), comparison of the algebraic and discretization errors

Inexact Newton method

- Eisenstat and Walker (1990's) (conception, convergence, a priori error estimates)
- Moret (1989) (discrete a posteriori error estimates)

Adaptive inexact Newton method

- Bank and Rose (1982), combination with multigrid
- Hackbusch and Reusken (1989), damping and multigrid
- Deuflhard (1990's, 2004 book), adaptivity

Stopping criteria for algebraic solvers

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
- Arioli (2000's), comparison of the algebraic and discretization errors

Inexact Newton method

- Eisenstat and Walker (1990's) (conception, convergence, a priori error estimates)
- Moret (1989) (discrete a posteriori error estimates)

Adaptive inexact Newton method

- Bank and Rose (1982), combination with multigrid
- Hackbusch and Reusken (1989), damping and multigrid
- Deuflhard (1990's, 2004 book), adaptivity

Stopping criteria for algebraic solvers

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
- Arioli (2000's), comparison of the algebraic and discretization errors

A posteriori error estimates for numerical discretizations of nonlinear problems

- Ladevèze (since 1990's), guaranteed upper bound
- Han (1994), general framework
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), guaranteed estimates
- Chaillou and Suri (2006, 2007), distinguishing discretization and linearization errors
- Kim (2007), guaranteed estimates, locally conservative methods

Outline

Introduction

Adaptive inexact Newton method

- A guaranteed a posteriori error estimate
- Stopping criteria and efficiency
- Application and numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- Application to multi-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- 6 Conclusions and future directions

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = f \qquad \text{in } \Omega, \\ \boldsymbol{u} = \mathbf{0} \qquad \text{on } \partial \Omega$$

• quasi-linear diffusion problem

$$\sigma(v, \boldsymbol{\xi}) = \underline{\mathbf{A}}(v) \boldsymbol{\xi} \qquad orall (v, \boldsymbol{\xi}) \in \mathbb{R} imes \mathbb{R}^d$$

• Leray–Lions problem

$$oldsymbol{\sigma}(oldsymbol{v},oldsymbol{\xi}) = oldsymbol{\underline{A}}(oldsymbol{\xi})oldsymbol{\xi} \in \mathbb{R}^d$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^q(\Omega)$$

Example

p-Laplacian: Leray–Lions setting with $\underline{A}(\xi) = |\xi|^{p-2}\underline{I}$ Nonlinear operator $A : V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = f \qquad \text{in } \Omega, \\ \boldsymbol{u} = \mathbf{0} \qquad \text{on } \partial \Omega$$

• quasi-linear diffusion problem

$$\sigma(\mathbf{v}, \mathbf{\xi}) = \mathbf{\underline{A}}(\mathbf{v})\mathbf{\xi} \qquad orall (\mathbf{v}, \mathbf{\xi}) \in \mathbb{R} imes \mathbb{R}^d$$

Leray–Lions problem

$$\sigma(v,\xi) = \underline{\mathbf{A}}(\xi) \xi \qquad orall \xi \in \mathbb{R}^d$$

•
$$p > 1$$
, $q := \frac{p}{p-1}$, $f \in L^q(\Omega)$

Example

p-Laplacian: Leray–Lions setting with $\underline{A}(\xi) = |\xi|^{p-2}\underline{I}$ Nonlinear operator $A : V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = f \qquad \text{in } \Omega, \\ \boldsymbol{u} = \mathbf{0} \qquad \text{on } \partial \Omega$$

quasi-linear diffusion problem

$$\sigma(\mathbf{v}, \mathbf{\xi}) = \mathbf{\underline{A}}(\mathbf{v})\mathbf{\xi} \qquad orall (\mathbf{v}, \mathbf{\xi}) \in \mathbb{R} imes \mathbb{R}^d$$

Leray–Lions problem

$$\sigma(\mathbf{v}, oldsymbol{\xi}) = \mathbf{\underline{A}}(oldsymbol{\xi}) oldsymbol{\xi} \in \mathbb{R}^d$$

• p > 1, $q := \frac{p}{p-1}$, $f \in L^q(\Omega)$

Example

p-Laplacian: Leray–Lions setting with $\underline{A}(\xi) = |\xi|^{p-2}\underline{I}$ Nonlinear operator $A : V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = f \qquad \text{in } \Omega, \\ \boldsymbol{u} = \mathbf{0} \qquad \text{on } \partial \Omega$$

quasi-linear diffusion problem

$$\sigma(\mathbf{v}, \mathbf{\xi}) = \mathbf{\underline{A}}(\mathbf{v})\mathbf{\xi} \qquad orall (\mathbf{v}, \mathbf{\xi}) \in \mathbb{R} imes \mathbb{R}^d$$

Leray–Lions problem

$$\sigma(\mathbf{v}, oldsymbol{\xi}) = \mathbf{\underline{A}}(oldsymbol{\xi}) oldsymbol{\xi} \in \mathbb{R}^d$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^{q}(\Omega)$$

Example

p-Laplacian: Leray–Lions setting with $\underline{A}(\xi) = |\xi|^{p-2}\underline{I}$ Nonlinear operator $A : V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Martin Vohralík

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$\begin{aligned}
-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) &= f & \text{in } \Omega, \\
\boldsymbol{u} &= \mathbf{0} & \text{on } \partial \Omega
\end{aligned}$$

quasi-linear diffusion problem

$$\sigma(\mathbf{v}, \mathbf{\xi}) = \mathbf{\underline{A}}(\mathbf{v})\mathbf{\xi} \qquad orall (\mathbf{v}, \mathbf{\xi}) \in \mathbb{R} imes \mathbb{R}^d$$

Leray–Lions problem

$$\sigma(\mathbf{v}, oldsymbol{\xi}) = \mathbf{\underline{A}}(oldsymbol{\xi}) oldsymbol{\xi} \in \mathbb{R}^d$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^q(\Omega)$$

Example

p-Laplacian: Leray–Lions setting with $\underline{\mathbf{A}}(\boldsymbol{\xi}) = |\boldsymbol{\xi}|^{p-2}\underline{\mathbf{I}}$ Nonlinear operator $A : V := W_0^{1,p}(\Omega) \to V'$ $\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Martin Vohralík

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$\begin{aligned}
-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) &= f & \text{in } \Omega, \\
\boldsymbol{u} &= \mathbf{0} & \text{on } \partial \Omega
\end{aligned}$$

quasi-linear diffusion problem

$$\sigma(\mathbf{v}, \mathbf{\xi}) = \mathbf{\underline{A}}(\mathbf{v})\mathbf{\xi} \qquad orall (\mathbf{v}, \mathbf{\xi}) \in \mathbb{R} imes \mathbb{R}^d$$

Leray–Lions problem

$$\sigma(m{v},m{\xi})=oldsymbol{\underline{A}}(m{\xi})m{\xi}\qquad orallm{\xi}\in\mathbb{R}^d$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^q(\Omega)$$

Example

p-Laplacian: Leray–Lions setting with $\underline{\mathbf{A}}(\xi) = |\xi|^{p-2}\underline{\mathbf{I}}$ Nonlinear operator $A : \mathbf{V} := W_0^{1,p}(\Omega) \to \mathbf{V}'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = \boldsymbol{f} \qquad \text{in } \Omega, \\ \boldsymbol{u} = \boldsymbol{0} \qquad \text{on } \partial \Omega$$

quasi-linear diffusion problem

$$\sigma(\mathbf{v}, \mathbf{\xi}) = \mathbf{\underline{A}}(\mathbf{v})\mathbf{\xi} \qquad orall (\mathbf{v}, \mathbf{\xi}) \in \mathbb{R} imes \mathbb{R}^d$$

Leray–Lions problem

$$\sigma(m{v},m{\xi})=oldsymbol{\underline{A}}(m{\xi})m{\xi}\qquad orallm{\xi}\in\mathbb{R}^d$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^q(\Omega)$$

Example

p-Laplacian: Leray–Lions setting with $\underline{\mathbf{A}}(\boldsymbol{\xi}) = |\boldsymbol{\xi}|^{p-2}\underline{\mathbf{I}}$ Nonlinear operator $A: V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation

Find $u \in V$ such that

$$A(u) = f$$
 in V'

Approximate solution

Error measure

$$\mathcal{J}_{u}(u_{h}^{k,i}) := \sup_{\varphi \in V; \|\nabla\varphi\|_{\rho} = 1} (\sigma(u, \nabla u) - \sigma(u_{h}^{k,i}, \nabla u_{h}^{k,i}), \nabla\varphi) + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$$
$$\mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i}) := \left\{ \sum_{K \in \mathcal{T}_{h}} \sum_{e \in \mathcal{E}_{K}} h_{e}^{1-q} \| [\![u - u_{h}^{k,i}]\!] \|_{q,e}^{q} \right\}^{\frac{1}{q}}$$

• dual norm of the residual + nonconformity

• there holds $\mathcal{J}_u(u_h^{k,i}) = 0$ if and only if $u = u_h^{k,i}$

• link: strong difference of the fluxes + nonconformity $\mathcal{J}_{u}(u_{h}^{k,i}) \leq \mathcal{J}_{u}^{\text{up}}(u_{h}^{k,i}) := \|\sigma(u, \nabla u) - \sigma(u_{h}^{k,i}, \nabla u_{h}^{k,i})\|_{q} + \mathcal{J}_{u,\text{NC}}(u_{h}^{k,i})$

Approximate solution

•
$$u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$$
 not necessarily in V

•
$$V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_{\mathcal{K}} \in W^{1,p}(\mathcal{K}) \quad \forall \mathcal{K} \in \mathcal{T}_h \}$$

Error measure

$$\mathcal{J}_{u}(u_{h}^{k,i}) := \sup_{\varphi \in V; \|\nabla\varphi\|_{\rho} = 1} (\sigma(u, \nabla u) - \sigma(u_{h}^{k,i}, \nabla u_{h}^{k,i}), \nabla\varphi) + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$$
$$\mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i}) := \left\{ \sum_{K \in \mathcal{T}_{h}} \sum_{e \in \mathcal{E}_{K}} h_{e}^{1-q} \| [\![u - u_{h}^{k,i}]\!] \|_{q,e}^{q} \right\}^{\frac{1}{q}}$$

• dual norm of the residual + nonconformity

• there holds $\mathcal{J}_u(u_h^{k,i}) = 0$ if and only if $u = u_h^{k,i}$

• link: strong difference of the fluxes + nonconformity $\mathcal{J}_{u}(u_{h}^{k,i}) \leq \mathcal{J}_{u}^{\text{up}}(u_{h}^{k,i}) := \|\sigma(u, \nabla u) - \sigma(u_{h}^{k,i}, \nabla u_{h}^{k,i})\|_{q} + \mathcal{J}_{u,\text{NC}}(u_{h}^{k,i})$

Approximate solution

•
$$u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$$
 not necessarily in V

•
$$V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \}$$

Error measure

$$\mathcal{J}_{u}(u_{h}^{k,i}) := \sup_{\varphi \in V; \, \|\nabla\varphi\|_{p}=1} (\sigma(u,\nabla u) - \sigma(u_{h}^{k,i},\nabla u_{h}^{k,i}), \nabla\varphi) + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$$
$$\mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i}) := \left\{ \sum_{K \in \mathcal{T}_{h}} \sum_{e \in \mathcal{E}_{K}} h_{e}^{1-q} \| \llbracket u - u_{h}^{k,i} \rrbracket \|_{q,e}^{q} \right\}^{\frac{1}{q}}$$

• dual norm of the residual + nonconformity

• there holds $\mathcal{J}_u(u_h^{k,i}) = 0$ if and only if $u = u_h^{k,i}$

• link: strong difference of the fluxes + nonconformity $\mathcal{J}_{u}(u_{h}^{k,i}) \leq \mathcal{J}_{u}^{\mathrm{up}}(u_{h}^{k,i}) := \|\sigma(u, \nabla u) - \sigma(u_{h}^{k,i}, \nabla u_{h}^{k,i})\|_{q} + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$

Approximate solution

•
$$u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$$
 not necessarily in V

•
$$V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \}$$

Error measure

$$\mathcal{J}_{u}(u_{h}^{k,i}) := \sup_{\varphi \in V; \, \|\nabla\varphi\|_{\rho} = 1} (\sigma(u, \nabla u) - \sigma(u_{h}^{k,i}, \nabla u_{h}^{k,i}), \nabla\varphi) + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$$
$$\mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i}) := \left\{ \sum_{K \in \mathcal{T}_{h}} \sum_{e \in \mathcal{E}_{K}} h_{e}^{1-q} \| \llbracket u - u_{h}^{k,i} \rrbracket \|_{q,e}^{q} \right\}^{\frac{1}{q}}$$

• dual norm of the residual + nonconformity

• there holds $\mathcal{J}_u(u_h^{k,i}) = 0$ if and only if $u = u_h^{k,i}$

• link: strong difference of the fluxes + nonconformity $\mathcal{J}_{u}(u_{h}^{k,i}) \leq \mathcal{J}_{u}^{\mathrm{up}}(u_{h}^{k,i}) := \|\sigma(u, \nabla u) - \sigma(u_{h}^{k,i}, \nabla u_{h}^{k,i})\|_{q} + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$

Approximate solution

•
$$u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$$
 not necessarily in V

•
$$V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \}$$

Error measure

$$\mathcal{J}_{u}(u_{h}^{k,i}) := \sup_{\varphi \in V; \, \|\nabla\varphi\|_{\rho} = 1} (\sigma(u, \nabla u) - \sigma(u_{h}^{k,i}, \nabla u_{h}^{k,i}), \nabla\varphi) + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$$
$$\mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i}) := \left\{ \sum_{K \in \mathcal{T}_{h}} \sum_{e \in \mathcal{E}_{K}} h_{e}^{1-q} \| \llbracket u - u_{h}^{k,i} \rrbracket \|_{q,e}^{q} \right\}^{\frac{1}{q}}$$

- dual norm of the residual + nonconformity
- there holds $\mathcal{J}_u(u_h^{k,i}) = 0$ if and only if $u = u_h^{k,i}$

• link: strong difference of the fluxes + nonconformity $\mathcal{J}_{u}(u_{h}^{k,i}) \leq \mathcal{J}_{u}^{\text{up}}(u_{h}^{k,i}) := \|\sigma(u, \nabla u) - \sigma(u_{h}^{k,i}, \nabla u_{h}^{k,i})\|_{q} + \mathcal{J}_{u,\text{NC}}(u_{h}^{k,i})$

Approximate solution

•
$$u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$$
 not necessarily in V

•
$$V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_{\mathcal{K}} \in W^{1,p}(\mathcal{K}) \quad \forall \mathcal{K} \in \mathcal{T}_h \}$$

Error measure

$$\mathcal{J}_{u}(u_{h}^{k,i}) := \sup_{\varphi \in V; \, \|\nabla\varphi\|_{\rho} = 1} (\sigma(u, \nabla u) - \sigma(u_{h}^{k,i}, \nabla u_{h}^{k,i}), \nabla\varphi) + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$$
$$\mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i}) := \left\{ \sum_{K \in \mathcal{T}_{h}} \sum_{e \in \mathcal{E}_{K}} h_{e}^{1-q} \| \llbracket u - u_{h}^{k,i} \rrbracket \|_{q,e}^{q} \right\}^{\frac{1}{q}}$$

- dual norm of the residual + nonconformity
- there holds $\mathcal{J}_u(u_h^{k,i}) = 0$ if and only if $u = u_h^{k,i}$

• link: strong difference of the fluxes + nonconformity $\mathcal{J}_{u}(u_{h}^{k,i}) \leq \mathcal{J}_{u}^{\mathrm{up}}(u_{h}^{k,i}) := \|\sigma(u, \nabla u) - \sigma(u_{h}^{k,i}, \nabla u_{h}^{k,i})\|_{q} + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$

Outline

- Adaptive inexact Newton method
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Application and numerical results
- - A guaranteed a posteriori error estimate
 - Application and numerical results
- - A guaranteed a posteriori error estimate
 - Application and numerical results

A posteriori error estimate

Assumption A (Total quasi-equilibrated flux reconstruction)

There exists a flux reconstruction $\mathbf{t}_{h}^{k,i} \in \mathbf{H}^{q}(\operatorname{div}, \Omega)$ and an algebraic remainder $\rho_{h}^{k,i} \in L^{q}(\Omega)$ such that

$$\nabla \cdot \mathbf{t}_h^{k,i} = f_h - \rho_h^{k,i},$$

with the data approximation f_h s.t. $(f_h, 1)_K = (f, 1)_K \ \forall K \in \mathcal{T}_h$.

Theorem (A guaranteed a posteriori error estimate)

Let

- $u \in V$ be the weak solution,
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumption A hold.

Then there holds

$\mathcal{J}_{u}(u_{h}^{k,i}) \leq \overline{\eta}^{k,i},$

where $\overline{\eta}^{k,i}$ is fully computable from $u_h^{k,i}$, $\mathbf{t}_h^{k,i}$, and $\rho_h^{k,i}$.

A posteriori error estimate

Assumption A (Total guasi-equilibrated flux reconstruction)

There exists a flux reconstruction $\mathbf{t}_{h}^{k,i} \in \mathbf{H}^{q}(\operatorname{div},\Omega)$ and an algebraic remainder $\rho_{h}^{k,i} \in L^{q}(\Omega)$ such that

$$\nabla \cdot \mathbf{t}_h^{k,i} = f_h - \rho_h^{k,i},$$

with the data approximation f_h s.t. $(f_h, 1)_K = (f, 1)_K \ \forall K \in \mathcal{T}_h$.

Theorem (A guaranteed a posteriori error estimate)

Let

- $u \in V$ be the weak solution.
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumption A hold.

$$\mathcal{J}_u(u_h^{k,i}) \leq \overline{\eta}^{k,i}$$

where $\overline{\eta}^{k,i}$ is fully computable from $u_{b}^{k,i}$, $\mathbf{t}_{b}^{k,i}$, and $\rho_{b}^{k,i}$.

A posteriori error estimate

Assumption A (Total guasi-equilibrated flux reconstruction)

There exists a flux reconstruction $\mathbf{t}_{h}^{k,i} \in \mathbf{H}^{q}(\operatorname{div},\Omega)$ and an algebraic remainder $\rho_{h}^{k,i} \in L^{q}(\Omega)$ such that

$$\nabla \cdot \mathbf{t}_h^{k,i} = f_h - \rho_h^{k,i},$$

with the data approximation f_h s.t. $(f_h, 1)_K = (f, 1)_K \ \forall K \in \mathcal{T}_h$.

Theorem (A guaranteed a posteriori error estimate)

Let

- $u \in V$ be the weak solution.
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumption A hold.

Then there holds

$$\mathcal{J}_{u}(u_{h}^{k,i}) \leq \overline{\eta}^{k,i},$$

where $\overline{\eta}^{k,i}$ is fully computable from $u_{h}^{k,i}$, $\mathbf{t}_{h}^{k,i}$, and $\rho_{h}^{k,i}$.

ematic

Distinguishing error components

Assumption B (Discretization, linearization, and algebraic errors)

- There exist fluxes $\mathbf{d}_{h}^{k,i}, \mathbf{l}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$ such that (i) $\mathbf{d}_{h}^{k,i} + \mathbf{l}_{h}^{k,i} + \mathbf{a}_{h}^{k,i} = \mathbf{t}_{h}^{k,i};$
- (ii) as the linear solver converges, $\|\mathbf{a}_{h}^{k,i}\|_{q} \rightarrow 0$;

(iii) as the nonlinear solver converges, $\|\mathbf{I}_{h}^{k,i}\|_{q} \rightarrow 0$.

Comments

- **d**^{*k*,*i*}: *discretization* flux reconstruction
- I_h^{k,i}: linearization error flux reconstruction
- **a**_h^{k,i}: algebraic **error** flux reconstruction

Distinguishing error components

Assumption B (Discretization, linearization, and algebraic errors)

- There exist fluxes $\mathbf{d}_{h}^{k,i}, \mathbf{l}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$ such that (i) $\mathbf{d}_{h}^{k,i} + \mathbf{l}_{h}^{k,i} + \mathbf{a}_{h}^{k,i} = \mathbf{t}_{h}^{k,i}$;
- (ii) as the linear solver converges, $\|\mathbf{a}_{h}^{k,i}\|_{q} \rightarrow 0$;

(iii) as the nonlinear solver converges, $\|\mathbf{I}_{h}^{k,i}\|_{q} \to 0$.

Comments

- **d**^{*k*,*i*}: *discretization* flux reconstruction
- I_h^{k,i}: linearization error flux reconstruction
- **a**_h^{k,i}: algebraic error flux reconstruction

Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let

- $u \in V$ be the weak solution.
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumptions A and B hold.

Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let

- $u \in V$ be the weak solution.
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumptions A and B hold.

Then there holds

$$\mathcal{J}_{\boldsymbol{u}}(\boldsymbol{u}_{\boldsymbol{h}}^{\boldsymbol{k},i}) \leq \eta^{\boldsymbol{k},i} := \eta_{\text{disc}}^{\boldsymbol{k},i} + \eta_{\text{lin}}^{\boldsymbol{k},i} + \eta_{\text{alg}}^{\boldsymbol{k},i} + \eta_{\text{rem}}^{\boldsymbol{k},i} + \eta_{\text{quad}}^{\boldsymbol{k},i} + \eta_{\text{osc}}^{\boldsymbol{k},i}.$$

Estimators

discretization estimator

$$\eta_{\mathrm{disc},K}^{k,i} := 2^{\frac{1}{p}} \left(\|\overline{\boldsymbol{\sigma}}_{h}^{k,i} + \mathbf{d}_{h}^{k,i}\|_{q,K} + \left\{ \sum_{\boldsymbol{e} \in \mathcal{E}_{K}} h_{\boldsymbol{e}}^{1-q} \| \llbracket \boldsymbol{u}_{h}^{k,i} \rrbracket \|_{q,\boldsymbol{e}}^{q} \right\}^{\frac{1}{q}} \right)$$

Inearization estimator

$$\eta_{\mathrm{lin},K}^{k,i} := \|\mathbf{I}_h^{k,i}\|_{q,K}$$

algebraic estimator

$$\eta_{\mathrm{alg},\mathcal{K}}^{k,i} := \|\mathbf{a}_{h}^{k,i}\|_{q,\mathcal{K}}$$

- algebraic remainder estimator $\eta_{\text{rem }K}^{k,i} := h_{\Omega} \|\rho_{h}^{k,i}\|_{q,K}$
- quadrature estimator $\eta_{\text{auad},K}^{k,i} := \|\sigma(u_h^{k,i}, \nabla u_h^{k,i}) \overline{\sigma}_h^{k,i}\|_{q,K}$
- data oscillation estimator

$$\eta_{\text{osc},K}^{K,i} := C_{P,\rho} h_K \| f - f_h \|_{q,K}$$

• $\eta_{\cdot}^{K,i} := \left\{ \sum_{K \in \mathcal{T}_h} (\eta_{\cdot,K}^{K,i})^q \right\}^{1/q}$

Outline

Introduction

- Adaptive inexact Newton method
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Application and numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- Application to multi-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- 6 Conclusions and future directions

Stopping criteria

Global stopping criteria

• stop whenever:

$$\begin{split} \eta_{\text{rem}}^{k,i} &\leq \gamma_{\text{rem}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}, \eta_{\text{alg}}^{k,i}\},\\ \eta_{\text{alg}}^{k,i} &\leq \gamma_{\text{alg}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}\},\\ \eta_{\text{lin}}^{k,i} &\leq \gamma_{\text{lin}} \eta_{\text{disc}}^{k,i} \end{split}$$

• $\gamma_{\rm rem}, \gamma_{\rm alg}, \gamma_{\rm lin} \approx 0.1$

- Local stopping criteria
 - stop whenever:

$$\begin{split} \eta_{\text{rem},K}^{k,i} &\leq \gamma_{\text{rem},K} \max\{\eta_{\text{disc},K}^{k,i}, \eta_{\text{lin},K}^{k,i}, \eta_{\text{alg},K}^{k,i}\} \quad \forall K \in \mathcal{T}_h, \\ \eta_{\text{alg},K}^{k,i} &\leq \gamma_{\text{alg},K} \max\{\eta_{\text{disc},K}^{k,i}, \eta_{\text{lin},K}^{k,i}\} \quad \forall K \in \mathcal{T}_h, \\ \eta_{\text{lin},K}^{k,i} &\leq \gamma_{\text{lin},K} \eta_{\text{disc},K}^{k,i} \quad \forall K \in \mathcal{T}_h \end{split}$$

Adaptive inexact Newton methods and multi-phase flows

Stopping criteria

Global stopping criteria

• stop whenever:

$$\begin{split} \eta_{\text{rem}}^{k,i} &\leq \gamma_{\text{rem}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}, \eta_{\text{alg}}^{k,i}\},\\ \eta_{\text{alg}}^{k,i} &\leq \gamma_{\text{alg}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}\},\\ \eta_{\text{lin}}^{k,i} &\leq \gamma_{\text{lin}} \eta_{\text{disc}}^{k,i} \end{split}$$

• $\gamma_{\rm rem}, \gamma_{\rm alg}, \gamma_{\rm lin} \approx 0.1$

Local stopping criteria

stop whenever:

$$\begin{split} \eta_{\text{rem},K}^{k,i} &\leq \gamma_{\text{rem},K} \max\{\eta_{\text{disc},K}^{k,i}, \eta_{\text{lin},K}^{k,i}, \eta_{\text{alg},K}^{k,i}\} \quad \forall K \in \mathcal{T}_h, \\ \eta_{\text{alg},K}^{k,i} &\leq \gamma_{\text{alg},K} \max\{\eta_{\text{disc},K}^{k,i}, \eta_{\text{lin},K}^{k,i}\} \quad \forall K \in \mathcal{T}_h, \\ \eta_{\text{lin},K}^{k,i} &\leq \gamma_{\text{lin},K} \eta_{\text{disc},K}^{k,i} \quad \forall K \in \mathcal{T}_h \\ \gamma_{\text{rem},K}, \gamma_{\text{alg},K}, \gamma_{\text{lin},K} \approx 0.1 \end{split}$$

Assumption for efficiency

Assumption C (Approximation property)

For all $K \in T_h$, there holds

$$\|\overline{\sigma}_{h}^{k,i} + \mathbf{d}_{h}^{k,i}\|_{q,K} \lesssim \eta_{\sharp,\mathfrak{T}_{K}}^{k,i} + \eta_{\mathrm{osc},\mathfrak{T}_{K}}^{k,i},$$

where $\eta_{\sharp,\mathfrak{T}_{K}}^{k,i} := \left\{ \sum_{K'\in\mathfrak{T}_{K}} h_{K'}^{q} \|f_{h} + \nabla \cdot \overline{\sigma}_{h}^{k,i}\|_{q,K'}^{q} + \sum_{e\in\mathfrak{C}_{K}^{int}} h_{e} \|\llbracket\overline{\sigma}_{h}^{k,i} \cdot \mathbf{n}_{e}]\!\!\|_{q,e}^{q} + \sum_{e\in\mathcal{E}_{K}} h_{e}^{1-q} \|\llbracket\boldsymbol{u}_{h}^{k,i}]\!\|_{q,e}^{q} \right\}^{\frac{1}{q}}.$

Martin Vohralík Adaptive inexact Newton methods and multi-phase flows

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criteria hold. Recall that $\mathcal{J}_u(u_h^{k,i}) \leq \eta^{k,i}$. Then, under Assumption C,

$$\eta^{k,i} \lesssim \mathcal{J}_{u}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}^{k,i},$$

where \leq means up to a constant independent of σ and q.

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criteria hold. Recall that $\mathcal{J}_u(u_h^{k,i}) \leq \eta^{k,i}$. Then, under Assumption *C*,

$$\eta^{k,i} \lesssim \mathcal{J}_{u}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}^{k,i},$$

where \leq means up to a constant independent of σ and q.

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criteria hold. Recall that $\mathcal{J}_u(u_h^{k,i}) \leq \eta^{k,i}$. Then, under Assumption C,

$$\eta^{k,i} \lesssim \mathcal{J}_{u}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}^{k,i},$$

where \leq means up to a constant independent of σ and q.

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criteria hold. Recall that $\mathcal{J}_u(u_h^{k,i}) \leq \eta^{k,i}$. Then, under Assumption C,

$$\eta^{k,i} \lesssim \mathcal{J}_{u}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}^{k,i},$$

where \leq means up to a constant independent of σ and q.

Local efficiency

Theorem (Local efficiency)

Let the mesh T_h be shape-regular and let the local stopping criteria hold. Then, under Assumption C,

$$\eta_{\mathrm{disc},K}^{k,i} + \eta_{\mathrm{lin},K}^{k,i} + \eta_{\mathrm{alg},K}^{k,i} + \eta_{\mathrm{rem},K}^{k,i}$$
$$\lesssim \mathcal{J}_{u,\mathfrak{T}_{K}}^{\mathrm{up}}(u_{h}^{k,i}) + \eta_{\mathrm{quad},\mathfrak{T}_{K}}^{k,i} + \eta_{\mathrm{osc},\mathfrak{T}_{K}}^{k,i}$$

for all $K \in \mathcal{T}_h$.

 robustness and local efficiency for an upper bound on the dual norm

Martin Vohralík Adaptive inexact Newton methods and multi-phase flows

Local efficiency

Theorem (Local efficiency)

Let the mesh T_h be shape-regular and let the local stopping criteria hold. Then, under Assumption C,

$$\eta_{\mathrm{disc},K}^{k,i} + \eta_{\mathrm{lin},K}^{k,i} + \eta_{\mathrm{alg},K}^{k,i} + \eta_{\mathrm{rem},K}^{k,i}$$
$$\lesssim \mathcal{J}_{\boldsymbol{u},\mathfrak{T}_{K}}^{\mathrm{up}}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\mathrm{quad},\mathfrak{T}_{K}}^{k,i} + \eta_{\mathrm{osc},\mathfrak{T}_{K}}^{k,i}$$

for all $K \in \mathcal{T}_h$.

 robustness and local efficiency for an upper bound on the dual norm

Martin Vohralík Adaptive inexact Newton methods and multi-phase flows

Local efficiency

Theorem (Local efficiency)

Let the mesh T_h be shape-regular and let the local stopping criteria hold. Then, under Assumption C,

$$\eta_{\mathrm{disc},K}^{k,i} + \eta_{\mathrm{lin},K}^{k,i} + \eta_{\mathrm{alg},K}^{k,i} + \eta_{\mathrm{rem},K}^{k,i}$$
$$\lesssim \mathcal{J}_{\boldsymbol{u},\mathfrak{T}_{K}}^{\mathrm{up}}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\mathrm{quad},\mathfrak{T}_{K}}^{k,i} + \eta_{\mathrm{osc},\mathfrak{T}_{K}}^{k,i}$$

for all $K \in \mathcal{T}_h$.

 robustness and local efficiency for an upper bound on the dual norm

Outline

Introduction

Adaptive inexact Newton method

A guaranteed a posteriori error estimate
Stopping criteria and efficiency

• Application and numerical results

- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- Application to multi-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- 6 Conclusions and future directions

Algebraic error flux reconstruction and remainder

Construction of $\mathbf{a}_{h}^{k,i}$ and $\rho_{h}^{k,i}$

• On linearization step k and algebraic step i, we have

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

• Do ν additional steps of the algebraic solver, yielding

$$\mathbb{A}^{k-1}U^{k,i+\nu}=F^{k-1}-R^{k,i+\nu}.$$

- Construct the function $\rho_h^{k,i}$ from the algebraic residual vector $\mathbf{R}^{k,i+\nu}$ (lifting into appropriate discrete space).
- Suppose we can obtain discretization and linearization flux reconstructions $\mathbf{d}_{h}^{k,i}, \mathbf{I}_{h}^{k,i}$ on each algebraic step. Then set

$$\mathbf{a}_h^{k,i} := (\mathbf{d}_h^{k,i+\nu} + \mathbf{I}_h^{k,i+\nu}) - (\mathbf{d}_h^{k,i} + \mathbf{I}_h^{k,i}).$$

Algebraic error flux reconstruction and remainder

Construction of $\mathbf{a}_{h}^{k,i}$ and $\rho_{h}^{k,i}$

• On linearization step k and algebraic step i, we have

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

• Do ν additional steps of the algebraic solver, yielding

$$\mathbb{A}^{k-1}U^{k,i+\nu}=F^{k-1}-R^{k,i+\nu}$$

- Construct the function $\rho_h^{k,i}$ from the algebraic residual vector $R^{k,i+\nu}$ (lifting into appropriate discrete space).
- Suppose we can obtain discretization and linearization flux reconstructions d^{k,i}_h, l^{k,i}_h on each algebraic step. Then set

 $\mathbf{a}_h^{k,i} := (\mathbf{d}_h^{k,i+\nu} + \mathbf{I}_h^{k,i+\nu}) - (\mathbf{d}_h^{k,i} + \mathbf{I}_h^{k,i}).$

Algebraic error flux reconstruction and remainder

Construction of $\mathbf{a}_{h}^{k,i}$ and $\rho_{h}^{k,i}$

• On linearization step k and algebraic step i, we have

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

• Do ν additional steps of the algebraic solver, yielding

$$\mathbb{A}^{k-1}U^{k,i+\nu} = F^{k-1} - R^{k,i+\nu}$$

- Construct the function $\rho_h^{k,i}$ from the algebraic residual vector $\mathbb{R}^{k,i+\nu}$ (lifting into appropriate discrete space).
- Suppose we can obtain discretization and linearization flux reconstructions $\mathbf{d}_{h}^{k,i}, \mathbf{I}_{h}^{k,i}$ on each algebraic step. Then set

$$\mathbf{a}_h^{k,i} := (\mathbf{d}_h^{k,i+\nu} + \mathbf{I}_h^{k,i+\nu}) - (\mathbf{d}_h^{k,i} + \mathbf{I}_h^{k,i}).$$

Algebraic error flux reconstruction and remainder

Construction of $\mathbf{a}_{h}^{k,i}$ and $\rho_{h}^{k,i}$

• On linearization step k and algebraic step i, we have

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

• Do ν additional steps of the algebraic solver, yielding

$$\mathbb{A}^{k-1}U^{k,i+\nu} = F^{k-1} - R^{k,i+\nu}$$

- Construct the function $\rho_h^{k,i}$ from the algebraic residual vector $\mathbb{R}^{k,i+\nu}$ (lifting into appropriate discrete space).
- Suppose we can obtain discretization and linearization flux reconstructions d^{k,i}_h, l^{k,i}_h on each algebraic step. Then set

$$\mathbf{a}_h^{k,i} := (\mathbf{d}_h^{k,i+\nu} + \mathbf{I}_h^{k,i+\nu}) - (\mathbf{d}_h^{k,i} + \mathbf{I}_h^{k,i}).$$

Algebraic error flux reconstruction and remainder

Construction of $\mathbf{a}_{h}^{k,i}$ and $\rho_{h}^{k,i}$

• On linearization step k and algebraic step i, we have

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

• Do ν additional steps of the algebraic solver, yielding

$$\mathbb{A}^{k-1}U^{k,i+\nu} = F^{k-1} - R^{k,i+\nu}$$

- Construct the function $\rho_h^{k,i}$ from the algebraic residual vector $\mathbb{R}^{k,i+\nu}$ (lifting into appropriate discrete space).
- Suppose we can obtain discretization and linearization flux reconstructions d^{k,i}_h, l^{k,i}_h on each algebraic step. Then set

$$\mathbf{a}_{h}^{k,i} := (\mathbf{d}_{h}^{k,i+\nu} + \mathbf{I}_{h}^{k,i+\nu}) - (\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i}).$$

Algebraic error flux reconstruction and remainder

Construction of $\mathbf{a}_{h}^{k,i}$ and $\rho_{h}^{k,i}$

• On linearization step k and algebraic step i, we have

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

• Do ν additional steps of the algebraic solver, yielding

$$\mathbb{A}^{k-1}U^{k,i+\nu} = F^{k-1} - R^{k,i+\nu}$$

- Construct the function $\rho_h^{k,i}$ from the algebraic residual vector $\mathbb{R}^{k,i+\nu}$ (lifting into appropriate discrete space).
- Suppose we can obtain discretization and linearization flux reconstructions d^{k,i}_h, l^{k,i}_h on each algebraic step. Then set

$$\mathbf{a}_{h}^{k,i} := (\mathbf{d}_{h}^{k,i+\nu} + \mathbf{I}_{h}^{k,i+\nu}) - (\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i}).$$

Nonconforming finite elements for the *p*-Laplacian

Discretization Find $u_h \in V_h$ such that

$$(\sigma(\nabla u_h), \nabla v_h) = (f_h, v_h) \quad \forall v_h \in V_h.$$

•
$$\sigma(\nabla u_h) = |\nabla u_h|^{p-2} \nabla u_h$$

- V_h the Crouzeix–Raviart space
- $f_h := \prod_0 f$
- leads to the system of nonlinear algebraic equations

$$\mathcal{A}(U) = F$$

Nonconforming finite elements for the *p*-Laplacian

Discretization

Find $u_h \in V_h$ such that

$$(\sigma(\nabla u_h), \nabla v_h) = (f_h, v_h) \quad \forall v_h \in V_h.$$

•
$$\sigma(\nabla u_h) = |\nabla u_h|^{p-2} \nabla u_h$$

- V_h the Crouzeix–Raviart space
- $f_h := \Pi_0 f$
- leads to the system of nonlinear algebraic equations

$$\mathcal{A}(U) = F$$

Linearization

Linearization

Find $u_h^k \in V_h$ such that

$$(\boldsymbol{\sigma}^{k-1}(\nabla \boldsymbol{u}_h^k), \nabla \psi_{\boldsymbol{e}}) = (f_h, \psi_{\boldsymbol{e}}) \qquad \forall \boldsymbol{e} \in \mathcal{E}_h^{\mathrm{int}}.$$

- $u_h^0 \in V_h$ yields the initial vector U^0
- fixed-point linearization

$$\boldsymbol{\sigma}^{k-1}(\boldsymbol{\xi}) := |\nabla \boldsymbol{u}_h^{k-1}|^{p-2}\boldsymbol{\xi}$$

Newton linearization

$$\sigma^{k-1}(\boldsymbol{\xi}) := |\nabla u_h^{k-1}|^{p-2} \boldsymbol{\xi} + (p-2) |\nabla u_h^{k-1}|^{p-4} (\nabla u_h^{k-1} \otimes \nabla u_h^{k-1}) (\boldsymbol{\xi} - \nabla u_h^{k-1})$$

leads to the system of linear algebraic equations

$$\mathbb{A}^{k-1}U^k = F^{k-1}$$

Linearization

Linearization

Find $u_h^k \in V_h$ such that

$$(\boldsymbol{\sigma}^{k-1}(\nabla \boldsymbol{u}_h^k), \nabla \psi_{\boldsymbol{e}}) = (f_h, \psi_{\boldsymbol{e}}) \qquad \forall \boldsymbol{e} \in \mathcal{E}_h^{\mathrm{int}}.$$

- $u_h^0 \in V_h$ yields the initial vector U^0
- fixed-point linearization

$$\sigma^{k-1}(\boldsymbol{\xi}) := |\nabla u_h^{k-1}|^{p-2}\boldsymbol{\xi}$$

Newton linearization

$$\sigma^{k-1}(\xi) := |\nabla u_h^{k-1}|^{p-2} \xi + (p-2) |\nabla u_h^{k-1}|^{p-4} (\nabla u_h^{k-1} \otimes \nabla u_h^{k-1}) (\xi - \nabla u_h^{k-1})$$

leads to the system of linear algebraic equations

$$\mathbb{A}^{k-1}U^k = F^{k-1}$$

Algebraic solution

Algebraic solution Find $u_h^{k,i} \in V_h$ such that

$$(\boldsymbol{\sigma}^{k-1}(\nabla \boldsymbol{u}_h^{k,i}), \nabla \psi_{\boldsymbol{e}}) = (f_h, \psi_{\boldsymbol{e}}) - \boldsymbol{R}_{\boldsymbol{e}}^{k,i} \qquad \forall \boldsymbol{e} \in \mathcal{E}_h^{\text{int}}.$$

- algebraic residual vector $R^{k,i} = \{R_e^{k,i}\}_{e \in \mathcal{E}_h^{\text{int}}}$
- discrete system

$$\mathbb{A}^{k-1}\boldsymbol{U}^k = \boldsymbol{F}^{k-1} - \boldsymbol{R}^{k,i}$$

Algebraic solution

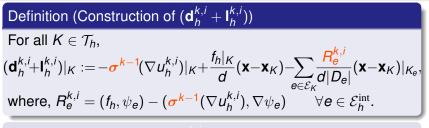
Algebraic solution Find $u_{h}^{k,i} \in V_{h}$ such that

$$(\sigma^{k-1}(\nabla u_h^{k,i}), \nabla \psi_e) = (f_h, \psi_e) - R_e^{k,i} \qquad \forall e \in \mathcal{E}_h^{\text{int}}.$$

- algebraic residual vector $R^{k,i} = \{R_e^{k,i}\}_{e \in \mathcal{E}_h^{int}}$
- discrete system

$$\mathbb{A}^{k-1}U^k = F^{k-1} - R^{k,i}$$

Flux reconstructions



Definition (Construction of $\mathbf{d}_{h}^{K,I}$

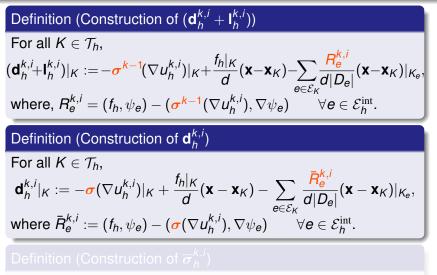
For all $K \in \mathcal{T}_h$, $\mathbf{d}_h^{k,i}|_K := -\boldsymbol{\sigma}(\nabla u_h^{k,i})|_K + \frac{f_h|_K}{d}(\mathbf{x} - \mathbf{x}_K) - \sum_{e \in \mathcal{E}_K} \frac{\overline{R}_e^{k,i}}{d|D_e|}(\mathbf{x} - \mathbf{x}_K)|_{K_e},$ where $\overline{R}_e^{k,i} := (f_h, \psi_e) - (\boldsymbol{\sigma}(\nabla u_h^{k,i}), \nabla \psi_e) \quad \forall e \in \mathcal{E}_h^{\text{int}}.$

Definition (Construction of $\overline{\sigma}_h^{\kappa,\iota}$

Set $\overline{\sigma}_h^{k,i} := \sigma(\nabla u_h^{k,i})$. Consequently, $\eta_{\text{quad},K}^{k,i} = 0$ for all $K \in \mathcal{T}_h$.

Adaptive inexact Newton methods and multi-phase flows

Flux reconstructions



Set $\overline{\sigma}_h^{k,i} := \sigma(\nabla u_h^{k,i})$. Consequently, $\eta_{\text{quad},K}^{k,i} = 0$ for all $K \in \mathcal{T}_h$.

Flux reconstructions

$$\begin{array}{l} \textbf{Definition} \ (\textbf{Construction of } (\textbf{d}_{h}^{k,i} + \textbf{I}_{h}^{k,i})) \\ \textbf{For all } \mathcal{K} \in \mathcal{T}_{h}, \\ (\textbf{d}_{h}^{k,i} + \textbf{I}_{h}^{k,i})|_{\mathcal{K}} := -\boldsymbol{\sigma}^{k-1} (\nabla u_{h}^{k,i})|_{\mathcal{K}} + \frac{f_{h}|_{\mathcal{K}}}{d} (\textbf{x} - \textbf{x}_{\mathcal{K}}) - \sum_{e \in \mathcal{E}_{\mathcal{K}}} \frac{\mathcal{R}_{e}^{k,i}}{d|D_{e}|} (\textbf{x} - \textbf{x}_{\mathcal{K}})|_{\mathcal{K}_{e}}, \\ \textbf{where, } \mathcal{R}_{e}^{k,i} = (f_{h}, \psi_{e}) - (\boldsymbol{\sigma}^{k-1} (\nabla u_{h}^{k,i}), \nabla \psi_{e}) \quad \forall e \in \mathcal{E}_{h}^{\text{int}}. \\ \textbf{Definition} \ (\textbf{Construction of } \textbf{d}_{h}^{k,i}) \\ \textbf{For all } \mathcal{K} \in \mathcal{T}_{h}, \\ \textbf{d}_{h}^{k,i}|_{\mathcal{K}} := -\boldsymbol{\sigma} (\nabla u_{h}^{k,i})|_{\mathcal{K}} + \frac{f_{h}|_{\mathcal{K}}}{d} (\textbf{x} - \textbf{x}_{\mathcal{K}}) - \sum_{e \in \mathcal{E}_{\mathcal{K}}} \frac{\overline{\mathcal{R}}_{e}^{k,i}}{d|D_{e}|} (\textbf{x} - \textbf{x}_{\mathcal{K}})|_{\mathcal{K}_{e}}, \\ \textbf{where } \overline{\mathcal{R}}_{e}^{k,i} := (f_{h}, \psi_{e}) - (\boldsymbol{\sigma} (\nabla u_{h}^{k,i}), \nabla \psi_{e}) \quad \forall e \in \mathcal{E}_{h}^{\text{int}}. \\ \\ \textbf{Definition} \ (\textbf{Construction of } \overline{\boldsymbol{\sigma}}_{h}^{k,i}) \\ \textbf{Set } \overline{\boldsymbol{\sigma}}_{h}^{k,i} := \boldsymbol{\sigma} (\nabla u_{h}^{k,i}). \ \textbf{Consequently}, \eta_{\text{quad},\mathcal{K}}^{k,i} = 0 \ \textbf{for all } \mathcal{K} \in \mathcal{T}_{h}. \end{array}$$

Verification of the assumptions – upper bound

Lemma (Assumptions A and B)

Assumptions A and B hold.

Comments

- $\|\mathbf{a}_{h}^{k,i}\|_{q,K} \rightarrow 0$ as the linear solver converges by definition.
- ||I_h^{k,i}||_{q,K}→0 as the nonlinear solver converges by the construction of I_h^{k,i}.
- Both $(\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i})$ and $\mathbf{d}_{h}^{k,i}$ belong to $\mathbf{RTN}_{0}(\mathcal{S}_{h}) \Rightarrow \mathbf{a}_{h}^{k,i} \in \mathbf{RTN}_{0}(\mathcal{S}_{h})$ and $\mathbf{t}_{h}^{k,i} \in \mathbf{RTN}_{0}(\mathcal{S}_{h})$.

Verification of the assumptions – upper bound

Lemma (Assumptions A and B)

Assumptions A and B hold.

Comments

- $\|\mathbf{a}_{h}^{k,i}\|_{q,K} \rightarrow 0$ as the linear solver converges by definition.
- ||I_h^{k,i}||_{q,K}→0 as the nonlinear solver converges by the construction of I_h^{k,i}.
- Both $(\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i})$ and $\mathbf{d}_{h}^{k,i}$ belong to $\mathbf{RTN}_{0}(\mathcal{S}_{h}) \Rightarrow \mathbf{a}_{h}^{k,i} \in \mathbf{RTN}_{0}(\mathcal{S}_{h})$ and $\mathbf{t}_{h}^{k,i} \in \mathbf{RTN}_{0}(\mathcal{S}_{h})$.

Verification of the assumptions – efficiency

Lemma (Assumption C)

Assumption C holds.

Comments

•
$$\mathbf{d}_h^{k,i}$$
 close to $\sigma(\nabla u_h^{k,i})$

 approximation properties of Raviart–Thomas–Nédélec spaces

Verification of the assumptions – efficiency

Lemma (Assumption C)

Assumption C holds.

Comments

- $\mathbf{d}_h^{k,i}$ close to $\sigma(\nabla u_h^{k,i})$
- approximation properties of Raviart–Thomas–Nédélec spaces

Discretization methods

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin
- various finite volumes
- mixed finite elements

Linearizations

- fixed point
- Newton
- Linear solvers
 - independent of the linear solver
- ... all Assumptions A to C verified

Discretization methods

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin
- various finite volumes
- mixed finite elements

Linearizations

- fixed point
- Newton

Linear solvers

- independent of the linear solver
- ... all Assumptions A to C verified

Discretization methods

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin
- various finite volumes
- mixed finite elements

Linearizations

- fixed point
- Newton

Linear solvers

- independent of the linear solver
- ... all Assumptions A to C verified

Discretization methods

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin
- various finite volumes
- mixed finite elements

Linearizations

- fixed point
- Newton

Linear solvers

- independent of the linear solver
- ... all Assumptions A to C verified

Numerical experiment I

Model problem

• p-Laplacian

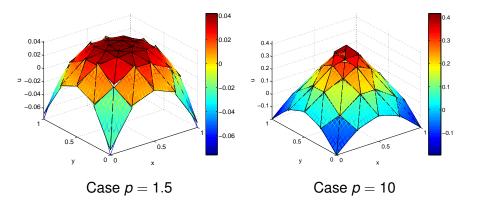
$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega,$$
$$u = u_{\text{D}} \quad \text{on } \partial \Omega$$

• weak solution (used to impose the Dirichlet BC)

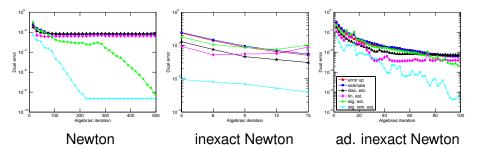
$$u(x,y) = -\frac{p-1}{p} \left((x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 \right)^{\frac{p}{2(p-1)}} + \frac{p-1}{p} \left(\frac{1}{2} \right)^{\frac{p}{p-1}}$$

- tested values *p* = 1.5 and 10
- nonconforming finite elements

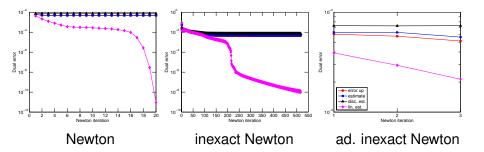
Analytical and approximate solutions



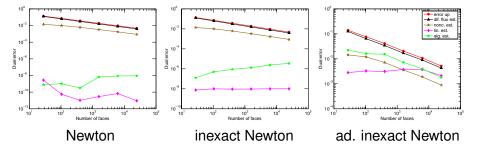
Error and estimators as a function of CG iterations, p = 1.5, 6th level mesh, 1st Newton step.



Error and estimators as a function of Newton iterations, p = 1.5, 6th level mesh

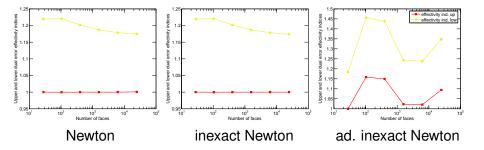


Error and estimators, p = 1.5

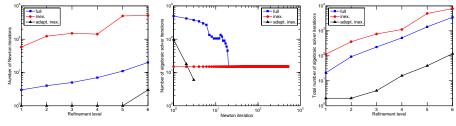


Estimate Stoping criteria & efficiency Appl. & num. res.

Effectivity indices, p = 1.5



Newton and algebraic iterations, p = 1.5



Newton it. / refinement alg. it. / Newton step

alg. it. / refinement

Numerical experiment II

Model problem

p-Laplacian

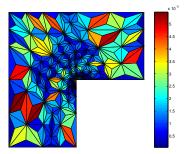
$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega,$$
$$u = u_{\text{D}} \quad \text{on } \partial \Omega$$

• weak solution (used to impose the Dirichlet BC)

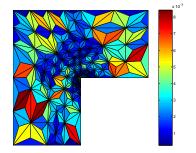
$$u(r,\theta)=r^{\frac{7}{8}}\sin(\theta^{\frac{7}{8}})$$

- p = 4, L-shape domain, singularity in the origin (Carstensen and Klose (2003))
- nonconforming finite elements

Error distribution on an adaptively refined mesh

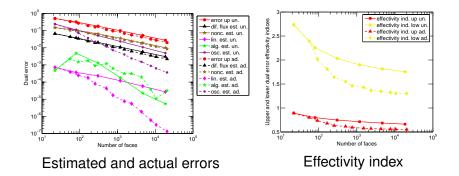


Estimated error distribution

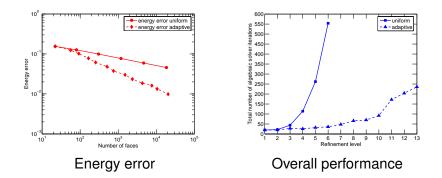


Exact error distribution

Estimated and actual errors and the effectivity index



Energy error and overall performance



Outline

Introduction

- 2 Adaptive inexact Newton method
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Application and numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- Application to multi-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- 6 Conclusions and future directions

Two-phase flow in porous media

Two-phase flow in porous media

$$egin{aligned} &\partial_t(\phi oldsymbol{s}_lpha) +
abla \cdot oldsymbol{u}_lpha &= oldsymbol{q}_lpha, & lpha \in \{\mathrm{n},\mathrm{w}\}, \ &-\lambda_lpha(oldsymbol{s}_\mathrm{w}) \underline{\mathsf{K}}(
abla oldsymbol{p}_lpha +
ho_lpha oldsymbol{g}
abla oldsymbol{z}) &= oldsymbol{u}_lpha, & lpha \in \{\mathrm{n},\mathrm{w}\}, \ &\mathbf{s}_\mathrm{n} + oldsymbol{s}_\mathrm{w} = oldsymbol{1}, & \ &\mathbf{s}_\mathrm{n} + oldsymbol{s}_\mathrm{w} = oldsymbol{1}, & \ &\mathbf{p}_\mathrm{n} - oldsymbol{p}_\mathrm{w} = oldsymbol{p}_\mathrm{c}(oldsymbol{s}_\mathrm{w}) \end{aligned}$$

+ boundary & initial conditions

Mathematical issues

- oupled system
- unsteady, nonlinear
- elliptic-degenerate parabolic type
- odominant advection

Two-phase flow in porous media

Two-phase flow in porous media

$$egin{aligned} &\partial_t(\phi m{s}_lpha) +
abla \cdot m{u}_lpha &= m{q}_lpha, & lpha \in \{\mathrm{n},\mathrm{w}\}, \ &-\lambda_lpha(m{s}_\mathrm{w}) \underline{\mathbf{K}}(
abla m{p}_lpha +
ho_lpha m{g}
abla m{z}) &= m{u}_lpha, & lpha \in \{\mathrm{n},\mathrm{w}\}, \ &\mathbf{s}_\mathrm{n} + m{s}_\mathrm{w} = m{1}, \ &\mathbf{p}_\mathrm{n} - m{p}_\mathrm{w} = m{p}_\mathrm{c}(m{s}_\mathrm{w}) \end{aligned}$$

+ boundary & initial conditions

Mathematical issues

- coupled system
- unsteady, nonlinear
- elliptic-degenerate parabolic type
- o dominant advection

Global and complementary pressures

Global pressure

$$\mathfrak{p}(\boldsymbol{s}_{\mathrm{w}}, \boldsymbol{
ho}_{\mathrm{w}}) := \boldsymbol{
ho}_{\mathrm{w}} + \int_{0}^{\boldsymbol{s}_{\mathrm{w}}} rac{\lambda_{\mathrm{n}}(\boldsymbol{a})}{\lambda_{\mathrm{w}}(\boldsymbol{a}) + \lambda_{\mathrm{n}}(\boldsymbol{a})} \boldsymbol{
ho}_{\mathrm{c}}'(\boldsymbol{a}) \mathrm{d}\boldsymbol{a}$$

Complementary pressure

$$\mathfrak{q}(s_{\mathrm{w}}):=-\int_{0}^{s_{\mathrm{w}}}rac{\lambda_{\mathrm{w}}(a)\lambda_{\mathrm{n}}(a)}{\lambda_{\mathrm{w}}(a)+\lambda_{\mathrm{n}}(a)}p_{\mathrm{c}}'(a)\mathrm{d}a$$

Comments

- necessary for the correct definition of the weak solution
- equivalent Darcy velocities expressions

$$\begin{split} \mathbf{u}_{\mathrm{w}}(s_{\mathrm{w}}, p_{\mathrm{w}}) &:= -\underline{\mathbf{K}} \big(\lambda_{\mathrm{w}}(s_{\mathrm{w}}) \nabla \mathfrak{p}(s_{\mathrm{w}}, p_{\mathrm{w}}) + \nabla \mathfrak{q}(s_{\mathrm{w}}) + \lambda_{\mathrm{w}}(s_{\mathrm{w}}) \rho_{\mathrm{w}} g \nabla z \big), \\ \mathbf{u}_{\mathrm{n}}(s_{\mathrm{w}}, p_{\mathrm{w}}) &:= -\underline{\mathbf{K}} \big(\lambda_{\mathrm{n}}(s_{\mathrm{w}}) \nabla \mathfrak{p}(s_{\mathrm{w}}, p_{\mathrm{w}}) - \nabla \mathfrak{q}(s_{\mathrm{w}}) + \lambda_{\mathrm{n}}(s_{\mathrm{w}}) \rho_{\mathrm{n}} g \nabla z \big) \end{split}$$

Global and complementary pressures

Global pressure

$$\mathfrak{p}(\pmb{s}_{\mathrm{w}},\pmb{
ho}_{\mathrm{w}}):=\pmb{
ho}_{\mathrm{w}}+\int_{0}^{\pmb{s}_{\mathrm{w}}}rac{\lambda_{\mathrm{n}}(\pmb{a})}{\lambda_{\mathrm{w}}(\pmb{a})+\lambda_{\mathrm{n}}(\pmb{a})}\pmb{
ho}_{\mathrm{c}}'(\pmb{a})\mathrm{d}\pmb{a}$$

Complementary pressure

$$\mathfrak{q}(\pmb{s}_{\mathrm{w}}):=-\int_{0}^{\pmb{s}_{\mathrm{w}}}rac{\lambda_{\mathrm{w}}(\pmb{a})\lambda_{\mathrm{n}}(\pmb{a})}{\lambda_{\mathrm{w}}(\pmb{a})+\lambda_{\mathrm{n}}(\pmb{a})}\pmb{p}_{\mathrm{c}}'(\pmb{a})\mathrm{d}\pmb{a}$$

Comments

- necessary for the correct definition of the weak solution
- equivalent Darcy velocities expressions

$$\begin{split} \mathbf{u}_{\mathrm{w}}(s_{\mathrm{w}}, p_{\mathrm{w}}) &:= -\underline{\mathbf{K}} \big(\lambda_{\mathrm{w}}(s_{\mathrm{w}}) \nabla \mathfrak{p}(s_{\mathrm{w}}, p_{\mathrm{w}}) + \nabla \mathfrak{q}(s_{\mathrm{w}}) + \lambda_{\mathrm{w}}(s_{\mathrm{w}}) \rho_{\mathrm{w}} g \nabla z \big), \\ \mathbf{u}_{\mathrm{n}}(s_{\mathrm{w}}, p_{\mathrm{w}}) &:= -\underline{\mathbf{K}} \big(\lambda_{\mathrm{n}}(s_{\mathrm{w}}) \nabla \mathfrak{p}(s_{\mathrm{w}}, p_{\mathrm{w}}) - \nabla \mathfrak{q}(s_{\mathrm{w}}) + \lambda_{\mathrm{n}}(s_{\mathrm{w}}) \rho_{\mathrm{n}} g \nabla z \big) \end{split}$$

Global and complementary pressures

Global pressure

$$\mathfrak{p}(s_{\mathrm{w}}, p_{\mathrm{w}}) := p_{\mathrm{w}} + \int_{0}^{s_{\mathrm{w}}} rac{\lambda_{\mathrm{n}}(a)}{\lambda_{\mathrm{w}}(a) + \lambda_{\mathrm{n}}(a)} p_{\mathrm{c}}'(a) \mathrm{d}a$$

Complementary pressure

$$\mathfrak{q}(\pmb{s}_{\mathrm{w}}):=-\int_{0}^{\pmb{s}_{\mathrm{w}}}rac{\lambda_{\mathrm{w}}(\pmb{a})\lambda_{\mathrm{n}}(\pmb{a})}{\lambda_{\mathrm{w}}(\pmb{a})+\lambda_{\mathrm{n}}(\pmb{a})}p_{\mathrm{c}}'(\pmb{a})\mathrm{d}\pmb{a}$$

Comments

- necessary for the correct definition of the weak solution
- equivalent Darcy velocities expressions

$$\begin{split} \mathbf{u}_{\mathrm{w}}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}) &:= - \underline{\mathbf{K}} \big(\lambda_{\mathrm{w}}(\boldsymbol{s}_{\mathrm{w}}) \nabla \mathfrak{p}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}) + \nabla \mathfrak{q}(\boldsymbol{s}_{\mathrm{w}}) + \lambda_{\mathrm{w}}(\boldsymbol{s}_{\mathrm{w}}) \rho_{\mathrm{w}} \boldsymbol{g} \nabla \boldsymbol{z} \big), \\ \mathbf{u}_{\mathrm{n}}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}) &:= - \underline{\mathbf{K}} \big(\lambda_{\mathrm{n}}(\boldsymbol{s}_{\mathrm{w}}) \nabla \mathfrak{p}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}) - \nabla \mathfrak{q}(\boldsymbol{s}_{\mathrm{w}}) + \lambda_{\mathrm{n}}(\boldsymbol{s}_{\mathrm{w}}) \rho_{\mathrm{n}} \boldsymbol{g} \nabla \boldsymbol{z} \big) \end{split}$$

Estimate Application and numerical results

Weak formulation

Energy space

 $X := L^2((0, T); H^1_D(\Omega))$

Weak formulation

Energy space

$$X := L^2((0,T); H^1_D(\Omega))$$

Definition (Weak solution (Chen 2001)) Find (s_w, p_w) such that, with $s_n := 1 - s_w$, $s_{w} \in C([0, T]; L^{2}(\Omega)), s_{w}(\cdot, 0) = s_{w}^{0},$ $\partial_t \mathbf{s}_{\mathrm{w}} \in L^2((0, T); (H^1_{\mathrm{D}}(\Omega))'),$ $\mathfrak{p}(s_w, p_w) \in X.$ $q(s_{w}) \in X$, $\int_0^t \left\{ \langle \partial_t(\phi \boldsymbol{s}_\alpha), \varphi \rangle - (\mathbf{u}_\alpha(\boldsymbol{s}_{\mathrm{w}}, \boldsymbol{\rho}_{\mathrm{w}}), \nabla \varphi) - (\boldsymbol{q}_\alpha, \varphi) \right\} \mathrm{d}t = \mathbf{0}$ $\forall \varphi \in \mathbf{X}, \ \alpha \in \{\mathbf{n}, \mathbf{w}\}.$

Outline

- - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Application and numerical results
- Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- - A guaranteed a posteriori error estimate
 - Application and numerical results

Link energy-type error – dual norm of the residual

Dual norm of the residual on the time interval I_n

$$\begin{aligned} \mathcal{J}_{\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}}^{n}(\boldsymbol{s}_{\mathrm{w},h\tau},\boldsymbol{\rho}_{\mathrm{w},h\tau}) &:= \left\{ \sum_{\alpha \in \{\mathrm{n},\mathrm{w}\}} \left\{ \sup_{\varphi \in \boldsymbol{X}|_{I_{n}}, \, \|\varphi\|_{\boldsymbol{X}|_{I_{n}}} = 1} \int_{I_{n}}^{I} \left\{ \langle \partial_{t}(\phi \boldsymbol{s}_{\alpha}) - \partial_{t}(\phi \boldsymbol{s}_{\alpha,h\tau}), \varphi \rangle \right. \right. \\ \left. - \left(\boldsymbol{\mathsf{u}}_{\alpha}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}) - \boldsymbol{\mathsf{u}}_{\alpha}(\boldsymbol{s}_{\mathrm{w},h\tau},\boldsymbol{\rho}_{\mathrm{w},h\tau}), \nabla \varphi \right) \right\} \mathrm{d}t \right\}^{2} \right\}^{\frac{1}{2}} \end{aligned}$$

Let (s_{w}, p_{w}) be the weak solution. Let $(s_{w,h\tau}, p_{w,h\tau})$ be arbitrary such that $\mathfrak{p}(\mathbf{s}_{w,h\tau}, \mathbf{p}_{w,h\tau}) \in X$ and $\mathfrak{q}(\mathbf{s}_{w,h\tau}) \in X$ (and satisfying the initial and boundary conditions for simplicity). Then

$$\begin{split} \| s_{\mathrm{w}} - s_{\mathrm{w},h\tau} \|_{L^{2}((0,T);H^{-1}(\Omega))} + \| \mathfrak{q}(s_{\mathrm{w}}) - \mathfrak{q}(s_{\mathrm{w},h\tau}) \|_{L^{2}(\Omega \times (0,T))} \\ + \| \mathfrak{p}(s_{\mathrm{w}},p_{\mathrm{w}}) - \mathfrak{p}(s_{\mathrm{w},h\tau},p_{\mathrm{w},h\tau}) \|_{L^{2}((0,T);H^{1}_{0}(\Omega))} \\ & \leq C \Biggl\{ \sum_{n=1}^{N} \mathcal{J}^{n}_{s_{\mathrm{w}},p_{\mathrm{w}}}(s_{\mathrm{w},h\tau},p_{\mathrm{w},h\tau})^{2} \Biggr\}^{\frac{1}{2}} \end{split}$$

Martin Vohralík

Adaptive inexact Newton methods and multi-phase flows

Link energy-type error – dual norm of the residual

Dual norm of the residual on the time interval I_n

$$\mathcal{J}_{s_{\mathrm{w}},p_{\mathrm{w}}}^{n}(s_{\mathrm{w},h\tau},p_{\mathrm{w},h\tau}) := \left\{ \sum_{\alpha \in \{\mathrm{n},\mathrm{w}\}} \left\{ \sup_{\varphi \in X|_{I_{n}}, \|\varphi\|_{X|_{I_{n}}}=1} \int_{I_{n}}^{I} \left\{ \langle \partial_{t}(\phi s_{\alpha}) - \partial_{t}(\phi s_{\alpha,h\tau}), \varphi \rangle \right. \right. \\ \left. - \left(\mathbf{u}_{\alpha}(s_{\mathrm{w}},p_{\mathrm{w}}) - \mathbf{u}_{\alpha}(s_{\mathrm{w},h\tau},p_{\mathrm{w},h\tau}), \nabla \varphi \right) \right\} \mathrm{d}t \right\}^{2} \right\}^{\frac{1}{2}}$$

Theorem (Link energy-type error – dual norm of the residual)

Let (s_w, p_w) be the weak solution. Let $(s_{w,h\tau}, p_{w,h\tau})$ be arbitrary

$$\begin{split} & \| s_{\mathrm{w}} - s_{\mathrm{w},h\tau} \|_{L^{2}((0,T);H^{-1}(\Omega))} + \| \mathfrak{q}(s_{\mathrm{w}}) - \mathfrak{q}(s_{\mathrm{w},h\tau}) \|_{L^{2}(\Omega \times (0,T))} \\ & + \| \mathfrak{p}(s_{\mathrm{w}},p_{\mathrm{w}}) - \mathfrak{p}(s_{\mathrm{w},h\tau},p_{\mathrm{w},h\tau}) \|_{L^{2}((0,T);H^{1}_{0}(\Omega))} \end{split}$$

$$\leq Ciggl\{ \sum_{n=1}^{N} \mathcal{J}_{\mathcal{S}_{\mathrm{W}},\mathcal{P}_{\mathrm{W}}}^{n}(m{s}_{\mathrm{W},h au},m{p}_{\mathrm{W},h au})^{2}iggr\}$$

Martin Vohralík

Adaptive inexact Newton methods and multi-phase flows

Link energy-type error – dual norm of the residual

Dual norm of the residual on the time interval I_n

$$\begin{aligned} \mathcal{J}_{\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}}^{n}(\boldsymbol{s}_{\mathrm{w},h\tau},\boldsymbol{\rho}_{\mathrm{w},h\tau}) &:= \left\{ \sum_{\alpha \in \{\mathrm{n},\mathrm{w}\}} \left\{ \sup_{\varphi \in \boldsymbol{X}|_{I_{n}}, \, \|\varphi\|_{\boldsymbol{X}|_{I_{n}}} = 1} \int_{I_{n}}^{I} \left\{ \langle \partial_{t}(\phi \boldsymbol{s}_{\alpha}) - \partial_{t}(\phi \boldsymbol{s}_{\alpha,h\tau}), \varphi \rangle \right. \right. \\ \left. - \left(\boldsymbol{\mathsf{u}}_{\alpha}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}) - \boldsymbol{\mathsf{u}}_{\alpha}(\boldsymbol{s}_{\mathrm{w},h\tau},\boldsymbol{\rho}_{\mathrm{w},h\tau}), \nabla\varphi \right) \right\} \mathrm{d}t \right\}^{2} \right\}^{\frac{1}{2}} \end{aligned}$$

Theorem (Link energy-type error – dual norm of the residual)

Let (s_w, p_w) be the weak solution. Let $(s_{w,h\tau}, p_{w,h\tau})$ be arbitrary such that $\mathfrak{p}(\mathbf{s}_{w,h\tau}, \mathbf{p}_{w,h\tau}) \in X$ and $\mathfrak{q}(\mathbf{s}_{w,h\tau}) \in X$ (and satisfying the initial and boundary conditions for simplicity). Then

$$\begin{split} \|s_{w} - s_{w,h\tau}\|_{L^{2}((0,T);H^{-1}(\Omega))} + \|\mathfrak{q}(s_{w}) - \mathfrak{q}(s_{w,h\tau})\|_{L^{2}(\Omega \times (0,T))} \\ + \|\mathfrak{p}(s_{w},p_{w}) - \mathfrak{p}(s_{w,h\tau},p_{w,h\tau})\|_{L^{2}((0,T);H^{1}_{0}(\Omega))} \end{split}$$

$$\leq Ciggl\{ \sum_{n=1}^N \mathcal{J}^n_{\mathcal{S}_{\mathrm{w}}, \mathcal{P}_{\mathrm{w}}}(s_{\mathrm{w}, h au}, \mathcal{P}_{\mathrm{w}, h au})^2$$

Martin Vohralík

Adaptive inexact Newton methods and multi-phase flows

Link energy-type error – dual norm of the residual

Dual norm of the residual on the time interval I_n

$$\mathcal{J}_{\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}}^{\boldsymbol{n}}(\boldsymbol{s}_{\mathrm{w},h\tau},\boldsymbol{\rho}_{\mathrm{w},h\tau}) := \left\{ \sum_{\alpha \in \{\mathrm{n},\mathrm{w}\}} \left\{ \sup_{\varphi \in \boldsymbol{X}|_{I_{n}}, \, \|\varphi\|_{\boldsymbol{X}|_{I_{n}}} = 1} \int_{I_{n}}^{I} \left\{ \langle \partial_{t}(\phi \boldsymbol{s}_{\alpha}) - \partial_{t}(\phi \boldsymbol{s}_{\alpha,h\tau}), \varphi \rangle \right. \right. \\ \left. - \left(\boldsymbol{\mathsf{u}}_{\alpha}(\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}) - \boldsymbol{\mathsf{u}}_{\alpha}(\boldsymbol{s}_{\mathrm{w},h\tau},\boldsymbol{\rho}_{\mathrm{w},h\tau}), \nabla\varphi \right) \right\} \mathrm{d}t \right\}^{2} \right\}^{\frac{1}{2}}$$

Theorem (Link energy-type error – dual norm of the residual)

Let (s_w, p_w) be the weak solution. Let $(s_{w,h\tau}, p_{w,h\tau})$ be arbitrary such that $\mathfrak{p}(\mathbf{s}_{w,h\tau}, \mathbf{p}_{w,h\tau}) \in X$ and $\mathfrak{q}(\mathbf{s}_{w,h\tau}) \in X$ (and satisfying the initial and boundary conditions for simplicity). Then

$$\begin{split} \| \boldsymbol{s}_{w} - \boldsymbol{s}_{w,h\tau} \|_{L^{2}((0,T);H^{-1}(\Omega))} + \| \mathfrak{q}(\boldsymbol{s}_{w}) - \mathfrak{q}(\boldsymbol{s}_{w,h\tau}) \|_{L^{2}(\Omega \times (0,T))} \\ + \| \mathfrak{p}(\boldsymbol{s}_{w},\boldsymbol{p}_{w}) - \mathfrak{p}(\boldsymbol{s}_{w,h\tau},\boldsymbol{p}_{w,h\tau}) \|_{L^{2}((0,T);H^{1}_{0}(\Omega))} \\ & \leq C \Biggl\{ \sum_{n=1}^{N} \mathcal{J}^{n}_{\boldsymbol{s}_{w},\boldsymbol{p}_{w}}(\boldsymbol{s}_{w,h\tau},\boldsymbol{p}_{w,h\tau})^{2} \Biggr\}^{\frac{1}{2}} \end{split}$$

Distinguishing the error components

Theorem (Distinguishing the error components)

Consider a vertex-centered finite volume / backward Euler approximation. Let

- n be the time step,
- k be the linearization step,
- i be the algebraic solver step,

with the approximations $(s_{w,h\tau}^{n,k,i}, p_{w,h\tau}^{n,k,i})$. Then

$$\mathcal{J}^{\boldsymbol{n}}_{\boldsymbol{s}_{\mathrm{w}},\boldsymbol{\rho}_{\mathrm{w}}}(\boldsymbol{s}^{\boldsymbol{n},\boldsymbol{k},i}_{\mathrm{w},\boldsymbol{h}\tau},\boldsymbol{p}^{\boldsymbol{n},\boldsymbol{k},i}_{\mathrm{w},\boldsymbol{h}\tau}) \leq \eta^{\boldsymbol{n},\boldsymbol{k},i}_{\mathrm{sp}} + \eta^{\boldsymbol{n},\boldsymbol{k},i}_{\mathrm{tm}} + \eta^{\boldsymbol{n},\boldsymbol{k},i}_{\mathrm{lin}} + \eta^{\boldsymbol{n},\boldsymbol{k},i}_{\mathrm{alg}}.$$

Error components

- $\eta_{sp}^{n,k,i}$: spatial discretization
- $\eta_{tm}^{n,k,i}$: temporal discretization
- $\eta_{\lim_{k \to \infty}}^{n,k,i}$: linearization
- $\eta_{\text{alg}}^{\overline{n,k},i}$: algebraic solver

Distinguishing the error components

Theorem (Distinguishing the error components)

Consider a vertex-centered finite volume / backward Euler approximation. Let

- n be the time step,
- k be the linearization step,
- i be the algebraic solver step,

with the approximations $(s_{w h_{\tau}}^{n,k,i}, p_{w h_{\tau}}^{n,k,i})$. Then

$$\mathcal{J}_{s_{\mathrm{w}},p_{\mathrm{w}}}^{n}(\boldsymbol{s}_{\mathrm{w},h\tau}^{n,k,i},\boldsymbol{p}_{\mathrm{w},h\tau}^{n,k,i}) \leq \eta_{\mathrm{sp}}^{n,k,i} + \eta_{\mathrm{tm}}^{n,k,i} + \eta_{\mathrm{lin}}^{n,k,i} + \eta_{\mathrm{alg}}^{n,k,i}.$$

Error components

- $\eta_{sp}^{n,k,i}$: spatial discretization
- $\eta_{\text{tn}}^{n,k,i}$: temporal discretization $\eta_{\text{lin}}^{n,k,i}$: linearization $\eta_{\text{lin}}^{n,k,i}$: algebraic solver

Outline

Introduction

- 2 Adaptive inexact Newton method
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Application and numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- Application to multi-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- 6 Conclusions and future directions

Iteratively coupled vertex-centered finite volumes

Vertex-centered finite volumes

- simplicial meshes \mathcal{T}_h^n , dual meshes \mathcal{D}_h^n
- discrete saturations and pressures continuous and piecewise affine on Tⁿ_h

Implicit pressure equation on step k

$$- \left(\left(\lambda_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \lambda_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \right) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k} \cdot \mathbf{n}_{D} \\ + \lambda_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \overline{\boldsymbol{p}}_{\mathrm{c}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \cdot \mathbf{n}_{D}, 1 \right)_{\partial D \setminus \partial \Omega} = \mathbf{0} \quad \forall D \in \mathcal{D}_{h}^{\mathrm{int},n}$$

Explicit saturation equation on step k

$$\boldsymbol{s}_{\mathrm{w},D}^{n,k} := \frac{\tau^n}{\phi|D|} \big(\lambda_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k} \cdot \mathbf{n}_D, 1 \big)_{\partial D \setminus \partial \Omega} + \boldsymbol{s}_{\mathrm{w},D}^{n-1} \quad \forall D \in \mathcal{D}_h^{\mathrm{int},n}$$

Iteratively coupled vertex-centered finite volumes

Vertex-centered finite volumes

- simplicial meshes \mathcal{T}_h^n , dual meshes \mathcal{D}_h^n
- discrete saturations and pressures continuous and piecewise affine on Tⁿ_h

Implicit pressure equation on step k

$$\begin{aligned} &-\big(\big(\lambda_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \lambda_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\big)\underline{\mathbf{K}}\nabla\boldsymbol{\rho}_{\mathrm{w},h}^{n,k}\cdot\mathbf{n}_{D} \\ &+\lambda_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla\overline{\boldsymbol{\rho}}_{\mathrm{c}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\cdot\mathbf{n}_{D},1\big)_{\partial D\setminus\partial\Omega} = \mathbf{0} \quad \forall D\in\mathcal{D}_{h}^{\mathrm{int},n} \end{aligned}$$

Explicit saturation equation on step k

$$\boldsymbol{s}_{\mathrm{w},D}^{n,k} := \frac{\tau^n}{\phi|D|} \big(\lambda_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k} \cdot \mathbf{n}_D, 1 \big)_{\partial D \setminus \partial \Omega} + \boldsymbol{s}_{\mathrm{w},D}^{n-1} \quad \forall D \in \mathcal{D}_h^{\mathrm{int},n}$$

Iteratively coupled vertex-centered finite volumes

Vertex-centered finite volumes

- simplicial meshes \mathcal{T}_h^n , dual meshes \mathcal{D}_h^n
- discrete saturations and pressures continuous and piecewise affine on Tⁿ_h

Implicit pressure equation on step k

$$\begin{aligned} &-\big(\big(\lambda_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \lambda_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\big)\underline{\mathbf{K}}\nabla\boldsymbol{\rho}_{\mathrm{w},h}^{n,k}\cdot\mathbf{n}_{D} \\ &+\lambda_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla\overline{\boldsymbol{\rho}}_{\mathrm{c}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\cdot\mathbf{n}_{D},1\big)_{\partial D\setminus\partial\Omega} = \mathbf{0} \quad \forall D\in\mathcal{D}_{h}^{\mathrm{int},n} \end{aligned}$$

Explicit saturation equation on step k

$$\boldsymbol{s}_{\mathrm{w},D}^{n,k} := \frac{\tau^n}{\phi|D|} \big(\lambda_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathsf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k} \cdot \mathbf{n}_D, 1\big)_{\partial D \setminus \partial \Omega} + \boldsymbol{s}_{\mathrm{w},D}^{n-1} \quad \forall D \in \mathcal{D}_h^{\mathrm{int},n}$$

Linearization and algebraic solution

Iterative coupling step k and algebraic step i

$$-((\lambda_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \lambda_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}))\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathrm{w},h}^{n,k,i}\cdot\mathbf{n}_{D} \\ + \lambda_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla\overline{\boldsymbol{p}}_{\mathrm{c}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\cdot\mathbf{n}_{D}, 1)_{\partial D\setminus\partial\Omega} = -\boldsymbol{R}_{\mathrm{t,D}}^{n,k,i} \quad \forall D \in \mathcal{D}_{h}^{\mathrm{int},n}$$

$$\boldsymbol{s}_{\mathrm{w},D}^{n,k,i} := \frac{\tau^n}{\phi|D|} \big(\lambda_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_D, 1 \big)_{\partial D \setminus \partial \Omega} + \boldsymbol{s}_{\mathrm{w},D}^{n-1}$$

Linearization and algebraic solution

Iterative coupling step k and algebraic step i

$$-((\lambda_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \lambda_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}))\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathrm{w},h}^{n,k,i}\cdot\mathbf{n}_{D} \\ + \lambda_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla\overline{\boldsymbol{p}}_{\mathrm{c}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\cdot\mathbf{n}_{D}, 1)_{\partial D\setminus\partial\Omega} = -\boldsymbol{R}_{\mathrm{t,D}}^{n,k,i} \quad \forall D \in \mathcal{D}_{h}^{\mathrm{int},n}$$

$$\boldsymbol{s}_{\mathrm{w},D}^{n,k,i} := \frac{\tau^n}{\phi |\boldsymbol{D}|} \big(\lambda_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_D, \mathbf{1} \big)_{\partial D \setminus \partial \Omega} + \boldsymbol{s}_{\mathrm{w},D}^{n-1}$$

Velocities reconstructions

Total phase velocities reconstructions

$$\begin{aligned} (\mathbf{d}_{t,h}^{n,k,i} \cdot \mathbf{n}_{D}, \mathbf{1})_{e} &:= -\left(\left(\lambda_{r,w}(\boldsymbol{s}_{w,h}^{n,k,i}) + \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k,i})\right)\underline{\mathbf{K}}\nabla \boldsymbol{p}_{w,h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k,i})\underline{\mathbf{K}}\nabla \overline{\boldsymbol{p}}_{c}(\boldsymbol{s}_{w,h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1}\right)_{e}, \\ (\mathbf{d}_{t,h}^{n,k,i} + \mathbf{l}_{t,h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1})_{e} &:= -\left(\left(\lambda_{r,w}(\boldsymbol{s}_{w,h}^{n,k-1}) + \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k-1})\right)\underline{\mathbf{K}}\nabla \boldsymbol{p}_{w,h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k-1})\underline{\mathbf{K}}\nabla \overline{\boldsymbol{p}}_{c}(\boldsymbol{s}_{w,h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1}\right)_{e}, \\ &+ \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k,i+\nu} + \mathbf{l}_{t,h}^{n,k,i+\nu} - (\mathbf{d}_{t,h}^{n,k,i} + \mathbf{l}_{t,h}^{n,k,i}) \end{aligned}$$

Wetting phase velocities reconstructions

$$\begin{aligned} (\mathbf{d}_{\mathbf{w},h}^{n,k,i} \cdot \mathbf{n}_D, \mathbf{1})_e &:= - \left(\lambda_{\mathbf{r},\mathbf{w}}(\boldsymbol{s}_{\mathbf{w},h}^{n,k,i})\underline{\mathbf{K}}\nabla \boldsymbol{p}_{\mathbf{w},h}^{n,k,i} \cdot \mathbf{n}_D, \mathbf{1}\right)_e, \\ ((\mathbf{d}_{\mathbf{w},h}^{n,k,i} + \mathbf{I}_{\mathbf{w},h}^{n,k,i}) \cdot \mathbf{n}_D, \mathbf{1})_e &:= - \left(\lambda_{\mathbf{r},\mathbf{w}}(\boldsymbol{s}_{\mathbf{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla \boldsymbol{p}_{\mathbf{w},h}^{n,k,i} \cdot \mathbf{n}_D, \mathbf{1}\right)_e, \\ \mathbf{a}_{\mathbf{w},h}^{n,k,i} &:= \mathbf{0} \end{aligned}$$

Nonwetting phase and total velocities reconstructions

•
$$\mathbf{d}_{n,h}^{n,k,i} := \mathbf{d}_{t,h}^{n,k,i} - \mathbf{d}_{w,h}^{n,k,i}, \mathbf{l}_{n,h}^{n,k,i} := \mathbf{l}_{t,h}^{n,k,i} - \mathbf{l}_{w,h}^{n,k,i}, \mathbf{a}_{n,h}^{n,k,i} := \mathbf{a}_{t,h}^{n,k,i} - \mathbf{a}_{w,h}^{n,k,i}$$

• $\mathbf{t}_{i,h}^{n,k,i} := \mathbf{d}_{i,h}^{n,k,i} + \mathbf{l}_{i,h}^{n,k,i} + \mathbf{a}_{i,h}^{n,k,i}$

Velocities reconstructions

Total phase velocities reconstructions

$$\begin{aligned} (\mathbf{d}_{t,h}^{n,k,i} \cdot \mathbf{n}_{D}, \mathbf{1})_{e} &:= -\left(\left(\lambda_{r,w}(\boldsymbol{s}_{w,h}^{n,k,i}) + \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k,i})\right)\underline{\mathbf{K}}\nabla \boldsymbol{p}_{w,h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k,i})\underline{\mathbf{K}}\nabla \overline{\boldsymbol{p}}_{c}(\boldsymbol{s}_{w,h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1}\right)_{e}, \\ (\mathbf{d}_{t,h}^{n,k,i} + \mathbf{l}_{t,h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1})_{e} &:= -\left(\left(\lambda_{r,w}(\boldsymbol{s}_{w,h}^{n,k-1}) + \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k-1})\right)\underline{\mathbf{K}}\nabla \boldsymbol{p}_{w,h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k-1})\underline{\mathbf{K}}\nabla \overline{\boldsymbol{p}}_{c}(\boldsymbol{s}_{w,h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1}\right)_{e}, \\ &+ \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k,i+\nu} - (\mathbf{d}_{w,h}^{n,k,i} + \mathbf{l}_{t,h}^{n,k,i}) \end{aligned}$$

Wetting phase velocities reconstructions

$$\begin{array}{l} (\mathbf{d}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D},1)_{e} := -\left(\lambda_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i})\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D},1\right)_{e}, \\ ((\mathbf{d}_{\mathrm{w},h}^{n,k,i} + \mathbf{l}_{\mathrm{w},h}^{n,k,i}) \cdot \mathbf{n}_{D},1)_{e} := -\left(\lambda_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D},1\right)_{e}, \\ \mathbf{a}_{\mathrm{w},h}^{n,k,i} := 0 \end{array}$$

Nonwetting phase and total velocities reconstructions

•
$$\mathbf{d}_{n,h}^{n,k,i} := \mathbf{d}_{t,h}^{n,k,i} - \mathbf{d}_{w,h}^{n,k,i}, \mathbf{I}_{n,h}^{n,k,i} := \mathbf{I}_{t,h}^{n,k,i} - \mathbf{I}_{w,h}^{n,k,i}, \mathbf{a}_{n,h}^{n,k,i} := \mathbf{a}_{t,h}^{n,k,i} - \mathbf{a}_{w,h}^{n,k,i}$$

• $\mathbf{t}_{\cdot,h}^{n,k,i} := \mathbf{d}_{\cdot,h}^{n,k,i} + \mathbf{I}_{\cdot,h}^{n,k,i} + \mathbf{a}_{\cdot,h}^{n,k,i}$

Velocities reconstructions

Total phase velocities reconstructions

$$\begin{aligned} (\mathbf{d}_{t,h}^{n,k,i} \cdot \mathbf{n}_{D}, \mathbf{1})_{e} &:= -\left(\left(\lambda_{r,w}(\boldsymbol{s}_{w,h}^{n,k,i}) + \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k,i})\right)\underline{\mathbf{K}}\nabla \boldsymbol{p}_{w,h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k,i})\underline{\mathbf{K}}\nabla \overline{\boldsymbol{p}}_{c}(\boldsymbol{s}_{w,h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1}\right)_{e}, \\ (\mathbf{d}_{t,h}^{n,k,i} + \mathbf{l}_{t,h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1})_{e} &:= -\left(\left(\lambda_{r,w}(\boldsymbol{s}_{w,h}^{n,k-1}) + \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k-1})\right)\underline{\mathbf{K}}\nabla \boldsymbol{p}_{w,h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k-1})\underline{\mathbf{K}}\nabla \overline{\boldsymbol{p}}_{c}(\boldsymbol{s}_{w,h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1}\right)_{e}, \\ &+ \lambda_{r,n}(\boldsymbol{s}_{w,h}^{n,k,i+\nu} - \left(\mathbf{d}_{t,h}^{n,k,i} + \mathbf{l}_{t,h}^{n,k,i}\right) \end{aligned}$$

Wetting phase velocities reconstructions

$$\begin{array}{l} (\mathbf{d}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D},1)_{\boldsymbol{e}} := \ - \left(\lambda_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i})\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D},1\right)_{\boldsymbol{e}}, \\ ((\mathbf{d}_{\mathrm{w},h}^{n,k,i} + \mathbf{I}_{\mathrm{w},h}^{n,k,i}) \cdot \mathbf{n}_{D},1)_{\boldsymbol{e}} := \ - \left(\lambda_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D},1\right)_{\boldsymbol{e}}, \\ \mathbf{a}_{\mathrm{w},h}^{n,k,i} := 0 \end{array}$$

Nonwetting phase and total velocities reconstructions

•
$$\mathbf{d}_{n,h}^{n,k,i} := \mathbf{d}_{t,h}^{n,k,i} - \mathbf{d}_{w,h}^{n,k,i}, \mathbf{I}_{n,h}^{n,k,i} := \mathbf{I}_{t,h}^{n,k,i} - \mathbf{I}_{w,h}^{n,k,i}, \mathbf{a}_{n,h}^{n,k,i} := \mathbf{a}_{t,h}^{n,k,i} - \mathbf{a}_{w,h}^{n,k,i}$$

• $\mathbf{t}_{\cdot,h}^{n,k,i} := \mathbf{d}_{\cdot,h}^{n,k,i} + \mathbf{I}_{\cdot,h}^{n,k,i} + \mathbf{a}_{\cdot,h}^{n,k,i}$

Model problem

Horizontal flow

$$egin{aligned} \partial_t(\phi m{s}_lpha) -
abla \cdot \left(rac{k_{\mathrm{r},lpha}(m{s}_\mathrm{w})}{\mu_lpha}m{K}
abla m{p}_lpha
ight) &= m{0}, \ m{s}_\mathrm{n} + m{s}_\mathrm{w} &= m{1}, \ m{p}_\mathrm{n} - m{p}_\mathrm{w} &= m{p}_\mathrm{c}(m{s}_\mathrm{w}) \end{aligned}$$

Brooks–Corey model

relative permeabilities

$$k_{r,w}(s_w) = s_e^4, \quad k_{r,n}(s_w) = (1 - s_e)^2 (1 - s_e^2)$$

capillary pressure

$$p_{\rm c}(s_{\rm w})=p_{\rm d}s_{\rm e}^{-\frac{1}{2}}$$

$$s_{\mathrm{e}} := rac{s_{\mathrm{w}} - s_{\mathrm{rw}}}{1 - s_{\mathrm{rw}} - s_{\mathrm{rn}}}$$

Model problem

Horizontal flow

$$egin{aligned} \partial_t(\phi oldsymbol{s}_lpha) -
abla \cdot \left(rac{k_{\mathrm{r},lpha}(oldsymbol{s}_\mathrm{w})}{\mu_lpha} oldsymbol{\underline{K}}
abla oldsymbol{
ho}_lpha
ight) &= oldsymbol{0}, \ oldsymbol{s}_\mathrm{n} + oldsymbol{s}_\mathrm{w} &= oldsymbol{1}, \ oldsymbol{
ho}_\mathrm{n} - oldsymbol{
ho}_\mathrm{w} &= oldsymbol{
ho}_\mathrm{c}(oldsymbol{s}_\mathrm{w}) \end{aligned}$$

Brooks–Corey model

relative permeabilities

$$k_{r,w}(s_w) = s_e^4, \quad k_{r,n}(s_w) = (1 - s_e)^2(1 - s_e^2)$$

capillary pressure

$$p_{\rm c}(s_{\rm w})=p_{\rm d}s_{\rm e}^{-\frac{1}{2}}$$

$$s_{\mathrm{e}} := rac{s_{\mathrm{w}} - s_{\mathrm{rw}}}{1 - s_{\mathrm{rw}} - s_{\mathrm{rm}}}$$

Adapt. inex. Newton Two-phase flow Multi-phase flow C Estimate Application and numerical results

Data from Klieber & Rivière (2006)

Data

$$\begin{split} \Omega &= (0, 300) \mathsf{m} \times (0, 300) \mathsf{m}, \quad T = 4 \cdot 10^6 \mathsf{s}, \\ \phi &= 0.2, \quad \underline{\mathsf{K}} = 10^{-11} \underline{\mathsf{I}} \, \mathrm{m}^2, \\ \mu_{\mathrm{w}} &= 5 \cdot 10^{-4} \mathsf{kg} \, \mathsf{m}^{-1} \mathsf{s}^{-1}, \quad \mu_{\mathrm{n}} = 2 \cdot 10^{-3} \mathsf{kg} \, \mathsf{m}^{-1} \mathsf{s}^{-1}, \\ s_{\mathrm{rw}} &= s_{\mathrm{rn}} = 0, \quad p_{\mathrm{d}} = 5 \cdot 10^3 \mathsf{kg} \, \mathsf{m}^{-1} \mathsf{s}^{-2} \end{split}$$

Initial condition (K 18m × 18m lower left corner block)

$$egin{aligned} & m{s}_{\mathrm{w}}^{\mathrm{0}} = \mathrm{0.2} \ \mathrm{on} \ K \in \mathcal{T}_{h}, \ K
ot\in \widetilde{K}, \ & m{s}_{\mathrm{w}}^{\mathrm{0}} = \mathrm{0.95} \ \mathrm{on} \ K \in \mathcal{T}_{h}, \ K \in \widetilde{K} \end{aligned}$$

Boundary conditions (\hat{K} 18m × 18m upper right corner block)

- no flow Neumann boundary conditions everywhere except of $\partial \widetilde{K} \cap \partial \Omega$ and $\partial \widehat{K} \cap \partial \Omega$
- \tilde{K} injection well: $s_{\rm w} = 0.95$, $p_{\rm w} = 3.45 \cdot 10^6$ kg m⁻¹s⁻²
- \hat{K} production well: $s_{\rm w} = 0.2$, $p_{\rm w} = 2.41 \cdot 10^6$ kg m⁻¹

Adapt. inex. Newton Two-phase flow Multi-phase flow C Estimate Application and numerical results

Data from Klieber & Rivière (2006)

Data

$$\begin{split} \Omega &= (0, 300) \mathsf{m} \times (0, 300) \mathsf{m}, \quad T = 4 \cdot 10^6 \mathsf{s}, \\ \phi &= 0.2, \quad \underline{\mathsf{K}} = 10^{-11} \underline{\mathsf{I}} \, \mathsf{m}^2, \\ \mu_{\mathrm{w}} &= 5 \cdot 10^{-4} \mathsf{kg} \, \mathsf{m}^{-1} \mathsf{s}^{-1}, \quad \mu_{\mathrm{n}} = 2 \cdot 10^{-3} \mathsf{kg} \, \mathsf{m}^{-1} \mathsf{s}^{-1}, \\ s_{\mathrm{rw}} &= s_{\mathrm{rn}} = 0, \quad p_{\mathrm{d}} = 5 \cdot 10^3 \mathsf{kg} \, \mathsf{m}^{-1} \mathsf{s}^{-2} \end{split}$$

Initial condition (\tilde{K} 18m × 18m lower left corner block)

$$egin{aligned} m{s}_{\mathrm{w}}^{\mathrm{0}} &= \mathrm{0.2} \ \mathrm{on} \ K \in \mathcal{T}_{h}, \ K
ot\in \widetilde{K}, \ m{s}_{\mathrm{w}}^{\mathrm{0}} &= \mathrm{0.95} \ \mathrm{on} \ K \in \mathcal{T}_{h}, \ K \in \widetilde{K} \end{aligned}$$

Boundary conditions (\hat{K} 18m × 18m upper right corner block)

- no flow Neumann boundary conditions everywhere except of ∂K̃ ∩ ∂Ω and ∂K̃ ∩ ∂Ω
- \tilde{K} injection well: $s_{\rm w} = 0.95$, $p_{\rm w} = 3.45 \cdot 10^6$ kg m⁻¹s⁻²
- \hat{K} production well: $s_w = 0.2$, $p_w = 2.41 \cdot 10^6 \text{ kg m}^{-1}$

Data from Klieber & Rivière (2006)

Data

$$\begin{split} \Omega &= (0, 300) \mathsf{m} \times (0, 300) \mathsf{m}, \quad T = 4 \cdot 10^6 \mathsf{s}, \\ \phi &= 0.2, \quad \underline{\mathsf{K}} = 10^{-11} \underline{\mathsf{I}} \, \mathrm{m}^2, \\ \mu_{\mathrm{w}} &= 5 \cdot 10^{-4} \mathsf{kg} \, \mathsf{m}^{-1} \mathsf{s}^{-1}, \quad \mu_{\mathrm{n}} = 2 \cdot 10^{-3} \mathsf{kg} \, \mathsf{m}^{-1} \mathsf{s}^{-1}, \\ s_{\mathrm{rw}} &= s_{\mathrm{rn}} = 0, \quad p_{\mathrm{d}} = 5 \cdot 10^3 \mathsf{kg} \, \mathsf{m}^{-1} \mathsf{s}^{-2} \end{split}$$

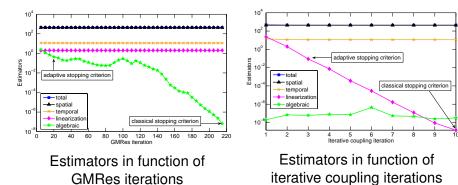
Initial condition (\tilde{K} 18m × 18m lower left corner block)

$$egin{aligned} egin{scret} m{s}_{\mathrm{w}}^{0} &= 0.2 \text{ on } K \in \mathcal{T}_{h}, \, K
otin \widetilde{K}, \ m{s}_{\mathrm{w}}^{0} &= 0.95 \text{ on } K \in \mathcal{T}_{h}, \, K \in \widetilde{K} \end{aligned}$$

Boundary conditions (\hat{K} 18m × 18m upper right corner block)

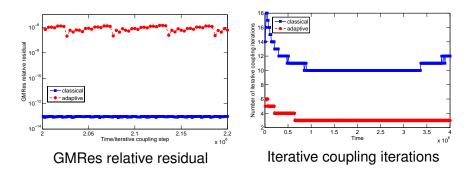
- no flow Neumann boundary conditions everywhere except of ∂K̃ ∩ ∂Ω and ∂K̂ ∩ ∂Ω
- \tilde{K} injection well: $s_{\rm w} = 0.95$, $p_{\rm w} = 3.45 \cdot 10^6$ kg m⁻¹s⁻²
- \hat{K} production well: $s_{\rm w} = 0.2$, $p_{\rm w} = 2.41 \cdot 10^6 \, {\rm kg \, m^{-1} \, s^{-2}}$

Estimators and stopping criteria

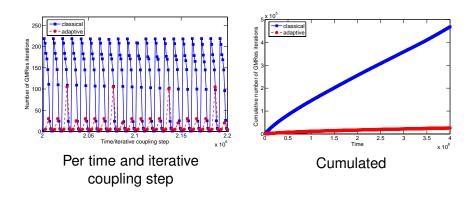


Adapt. inex. Newton Two-phase flow Multi-phase flow C Estimate Application and numerical results

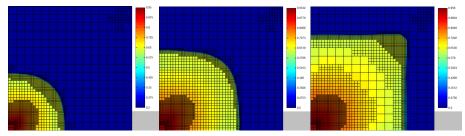
GMRes relative residual/iterative coupling iterations



GMRes iterations



Space/time/nonlinear solver/linear solver adaptivity



Fully adaptive computation

Outline

Introduction

- 2 Adaptive inexact Newton method
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Application and numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- Application to multi-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- 5 Conclusions and future directions

Adapt. inex. Newton Two-phase flow Multi-phase flow C Estimate Application and numerical results

Multiphase compositional flows

Governing partial differential equations

conservation of mass for components

$$\partial_t l_c + \nabla \cdot \Phi_c = q_c, \quad \forall c \in C$$

+ boundary & initial conditions

Constitutive laws

• phase pressures – reference pressure – capillary pressure

$$P_{p} := P + P_{c_{p}}(\boldsymbol{S})$$

• Darcy's law

$$\mathbf{u}_{\rho}(P_{\rho}, \boldsymbol{C}_{\rho}) := -\underline{\mathbf{K}} \left(\nabla P_{\rho} + \rho_{\rho}(P_{\rho}, \boldsymbol{C}_{\rho}) g \nabla z \right)$$

component fluxes

$$\boldsymbol{\Phi}_{c} := \sum_{\boldsymbol{p} \in \mathcal{P}_{c}} \boldsymbol{\Phi}_{\boldsymbol{p},c}, \quad \boldsymbol{\Phi}_{\boldsymbol{p},c} := \nu_{\boldsymbol{p}}(\boldsymbol{P}_{\boldsymbol{p}},\boldsymbol{S},\boldsymbol{C}_{\boldsymbol{p}})C_{\boldsymbol{p},c}\boldsymbol{u}_{\boldsymbol{p}}(\boldsymbol{P}_{\boldsymbol{p}},\boldsymbol{C}_{\boldsymbol{p}})$$

amount of moles of component c per unit volume

$$f_{c} := \phi \sum_{p \in \mathcal{P}_{c}} \zeta_{p}(P_{p}, \boldsymbol{C}_{p}) S_{p} C_{p,c}$$

Adapt. inex. Newton Two-phase flow Multi-phase flow C Estimate Application and numerical results

Multiphase compositional flows

Governing partial differential equations

• conservation of mass for components

$$\partial_t l_c + \nabla \cdot \Phi_c = q_c, \quad \forall c \in C$$

+ boundary & initial conditions

Constitutive laws

• phase pressures – reference pressure – capillary pressure

$$P_{p} := P + P_{c_{p}}(\boldsymbol{S})$$

Darcy's law

$$\mathbf{u}_{
ho}(P_{
ho}, \boldsymbol{C}_{
ho}) := -\underline{\mathbf{K}} \left(
abla P_{
ho} +
ho_{
ho}(P_{
ho}, \boldsymbol{C}_{
ho}) g
abla z
ight)$$

component fluxes

$$\Phi_c := \sum_{\rho \in \mathcal{P}_c} \Phi_{\rho,c}, \quad \Phi_{\rho,c} := \nu_\rho(P_\rho, \boldsymbol{S}, \boldsymbol{C}_\rho) C_{\rho,c} \mathbf{u}_\rho(P_\rho, \boldsymbol{C}_\rho)$$

amount of moles of component c per unit volume

$$I_{c} := \phi \sum_{\rho \in \mathcal{P}_{c}} \zeta_{\rho}(P_{\rho}, C_{\rho}) S_{\rho} C_{\rho, c}$$

Martin Vohralík

Multiphase compositional flows

Closure algebraic equations

- conservation of pore volume: $\sum_{p \in \mathcal{P}} S_p = 1$
- conservation of the quantity of the matter: ∑_{c∈C_p} C_{p,c} = 1 for all p ∈ P
- thermodynamic equilibrium
- **Mathematical issues**
 - coupled system
 - unsteady, nonlinear
 - elliptic–parabolic degenerate type
 - odminant advection

Multiphase compositional flows

Closure algebraic equations

- conservation of pore volume: $\sum_{p \in \mathcal{P}} S_p = 1$
- conservation of the quantity of the matter: ∑_{c∈C_p} C_{p,c} = 1 for all p ∈ P
- thermodynamic equilibrium

Mathematical issues

- coupled system
- unsteady, nonlinear
- elliptic-parabolic degenerate type
- o dominant advection

Outline

- Adaptive inexact Newton method
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Application and numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- Application to multi-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- 5 Conclusions and future directions

Weak solution

Energy spaces

 $X := L^2((0, T); H^1(\Omega)),$ $Y := H^1((0, T); L^2(\Omega))$

 $\int_0^t \{(\partial_t l_c, \varphi)(t) - (\mathbf{\Phi}_c, \nabla \varphi)(t)\} dt = \int_0^T (q_c, \varphi)(t) dt \quad \forall \varphi \in X, \, \forall c \in \mathcal{C},$

Weak solution

Energy spaces

$$\begin{split} X &:= L^2((0,T); H^1(\Omega)), \\ Y &:= H^1((0,T); L^2(\Omega)) \end{split}$$

Definition (Weak solution)

Find $(P, (S_p)_{p \in \mathcal{P}}, (C_{p,c})_{p \in \mathcal{P}, c \in \mathcal{C}_p}$ such that $I_c \in Y \qquad \forall c \in C,$ $P_p(P, \mathbf{S}) \in X \quad \forall p \in \mathcal{P},$ $\Phi_c \in [L^2((0,T); L^2(\Omega))]^d \qquad \forall c \in \mathcal{C},$ $\int_{0}^{T} \{(\partial_{t} I_{c}, \varphi)(t) - (\Phi_{c}, \nabla \varphi)(t)\} dt = \int_{0}^{T} (q_{c}, \varphi)(t) dt \quad \forall \varphi \in X, \forall c \in \mathcal{C},$

the initial condition holds,

the algebraic closure equations hold.

Adapt. inex. Newton Two-phase flow Multi-phase flow C Estimate Application and numerical results

Fully implicit cell-centered finite volume scheme

Fully implicit cell-centered finite volumes

Time step *n*, Newton iteration *k*, and linear solver iteration *i*: find $\mathcal{X}_{K}^{n,k,i} := (\mathcal{P}_{K}^{n,k,i}, (\mathcal{S}_{p,K}^{n,k,i})_{p \in \mathcal{P}}, (\mathcal{C}_{p,c,K}^{n,k,i})_{p \in \mathcal{P}, c \in \mathcal{C}_{p}}, K \in \mathcal{T}_{h}^{n}$, s. t.

$$\frac{|\mathcal{K}|}{\tau^{n}} \left(I_{c,\mathcal{K}} (\mathcal{X}_{h}^{n,k-1}) + \mathcal{L}_{c,\mathcal{K}}^{n,k,i} - I_{c,\mathcal{K}}^{n-1} \right) + \sum_{e \in \mathcal{E}_{\mathcal{K}}^{\text{int},n}} \mathcal{F}_{c,\mathcal{M},e}^{n,k,i} - |\mathcal{K}| q_{c,\mathcal{K}}^{n}$$
$$= \mathcal{R}_{c,\mathcal{K}}^{n,k,i} \qquad \forall c \in \mathcal{C}, \ \forall \mathcal{K} \in \mathcal{T}_{h}^{n},$$

where

$$\begin{split} F_{c,M,e}^{n,k,i} &:= \sum_{p \in \mathcal{P}_{c}} F_{p,c,M,e}^{n,k,i}, \\ F_{p,c,M,e}^{n,k,i} &:= F_{p,c,M,e} \big(\mathcal{X}_{h}^{n,k-1} \big) + \sum_{K' \in \mathcal{T}_{h}^{n}} \frac{\partial F_{p,c,M,e}}{\partial \mathcal{X}_{K'}^{n}} \big(\mathcal{X}_{h}^{n,k-1} \big) \cdot \big(\mathcal{X}_{K'}^{n,k,i} - \mathcal{X}_{K'}^{n,k-1} \big), \end{split}$$

and

$$\mathcal{L}_{c,K}^{n,k,i} := \sum_{K' \in \mathcal{T}_h^n} \frac{\partial I_{c,K}}{\partial \mathcal{X}_{K'}^n} (\mathcal{X}_h^{n,k-1}) \cdot (\mathcal{X}_{K'}^{n,k,i} - \mathcal{X}_{K'}^{n,k-1}) \cdot (\mathcal{I}_{K'}^{n,k,i} - \mathcal{I}_{K'}^{n,k-1}) \cdot (\mathcal{I}_{K'}^{n,k,i} - \mathcal{I}_{K'}^{n,k,i}) \cdot (\mathcal{I}_{K'}^{n,k,i}) \cdot ($$

Fully implicit cell-centered finite volume scheme

Fully implicit cell-centered finite volumes

Time step *n*, Newton iteration *k*, and linear solver iteration *i*: find $\mathcal{X}_{K}^{n,k,i} := (\mathcal{P}_{K}^{n,k,i}, (\mathcal{S}_{p,K}^{n,k,i})_{p \in \mathcal{P}}, (\mathcal{C}_{p,c,K}^{n,k,i})_{p \in \mathcal{P}, c \in \mathcal{C}_{p}}, K \in \mathcal{T}_{h}^{n}$, s. t.

$$\begin{aligned} \frac{|\mathcal{K}|}{\tau^{n}} \left(I_{c,\mathcal{K}} (\mathcal{X}_{h}^{n,k-1}) + \mathcal{L}_{c,\mathcal{K}}^{n,k,i} - I_{c,\mathcal{K}}^{n-1} \right) + \sum_{e \in \mathcal{E}_{\mathcal{K}}^{\text{int},n}} F_{c,\mathcal{M},e}^{n,k,i} - |\mathcal{K}| q_{c,\mathcal{K}}^{n} \end{aligned}$$
$$= R_{c,\mathcal{K}}^{n,k,i} \qquad \forall c \in \mathcal{C}, \, \forall \mathcal{K} \in \mathcal{T}_{h}^{n}, \end{aligned}$$

where

$$\begin{split} F_{c,M,e}^{n,k,i} &:= \sum_{p \in \mathcal{P}_c} F_{p,c,M,e}^{n,k,i}, \\ F_{p,c,M,e}^{n,k,i} &:= F_{p,c,M,e} \big(\mathcal{X}_h^{n,k-1} \big) + \sum_{K' \in \mathcal{T}_h^n} \frac{\partial F_{p,c,M,e}}{\partial \mathcal{X}_{K'}^n} \big(\mathcal{X}_h^{n,k-1} \big) \cdot \big(\mathcal{X}_{K'}^{n,k,i} - \mathcal{X}_{K'}^{n,k-1} \big), \end{split}$$

and

$$\mathcal{L}_{c,K}^{n,k,i} := \sum_{K' \in \mathcal{T}_h^n} \frac{\partial I_{c,K}}{\partial \mathcal{X}_{K'}^n} (\mathcal{X}_h^{n,k-1}) \cdot (\mathcal{X}_{K'}^{n,k,i} - \mathcal{X}_{K'}^{n,k-1}).$$

Estimate distinguishing different error components

Theorem (Estimate distinguishing different error components)

Consider

- time step n,
- Inearization step k,
- iterative algebraic solver step i,

and the corresponding approximations. Then

 $(dual\ error + nonconformity)_{I_n} \leq \eta_{sp}^{n,k,i} + \eta_{tm}^{n,k,i} + \eta_{lin}^{n,k,i} + \eta_{alg}^{n,k,i}.$

Error components

- $\eta_{sp}^{n,k,i}$: spatial discretization
- $\eta_{tm}^{n,k,i}$: temporal discretization
- $\eta_{\text{lin}}^{n,k,i}$: linearization
- $\eta_{\text{alg}}^{n,k,i}$: algebraic solver

Estimate distinguishing different error components

Theorem (Estimate distinguishing different error components)

Consider

- time step n,
- Iinearization step k,
- iterative algebraic solver step i,

and the corresponding approximations. Then

 $(dual \ error + nonconformity)_{I_n} \leq \eta_{sp}^{n,k,i} + \eta_{tm}^{n,k,i} + \eta_{lin}^{n,k,i} + \eta_{alg}^{n,k,i}.$

Error components

- $\eta_{sp}^{n,k,i}$: spatial discretization
- $\eta_{tm}^{n,k,i}$: temporal discretization
- $\eta_{\text{lin}}^{n,k,i}$: linearization
- $\eta_{\text{alg}}^{n,k,i}$: algebraic solver

Outline

- - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Application and numerical results
- - A guaranteed a posteriori error estimate
 - Application and numerical results
- Application to multi-phase flow in porous media A guaranteed a posteriori error estimate
 - Application and numerical results

Test case and numerical setting

Test case

- two-spot setting
- two phases and three components
- homogeneous/heterogeneous permeability distribution

Discretization and resolution

- fully implicit cell-centered finite volumes
- Newton linearization
- GMRes with ILU0 preconditioning algebraic solver

Test case and numerical setting

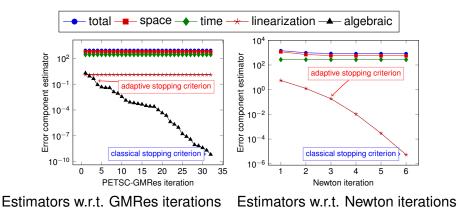
Test case

- two-spot setting
- two phases and three components
- homogeneous/heterogeneous permeability distribution

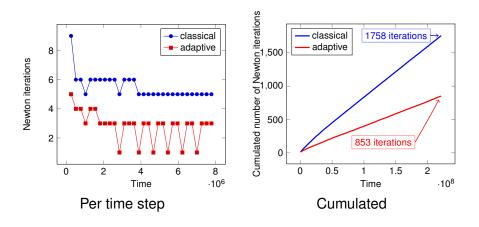
Discretization and resolution

- fully implicit cell-centered finite volumes
- Newton linearization
- GMRes with ILU0 preconditioning algebraic solver

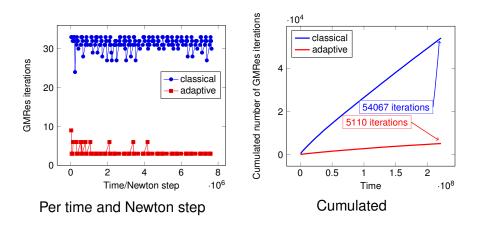
Estimators and stopping criteria



Newton iterations



GMRes iterations



Outline

Introduction

- 2 Adaptive inexact Newton method
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Application and numerical results
- 3 Application to two-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- Application to multi-phase flow in porous media
 - A guaranteed a posteriori error estimate
 - Application and numerical results
- 5 Conclusions and future directions

Conclusions and future directions

Entire adaptivity

- only a necessary number of algebraic/linearization solver iterations
- "online decisions": algebraic step / linearization step / space mesh refinement / time step modification
- important computational savings
- guaranteed and robust a posteriori error estimates

Future directions

- other coupled nonlinear systems
- convergence and optimality

Conclusions and future directions

Entire adaptivity

- only a necessary number of algebraic/linearization solver iterations
- "online decisions": algebraic step / linearization step / space mesh refinement / time step modification
- important computational savings
- guaranteed and robust a posteriori error estimates

Future directions

- other coupled nonlinear systems
- convergence and optimality

Bibliography

- ERN A., VOHRALÍK M., Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, *SIAM J. Sci. Comput.* **35** (2013), A1761–A1791.
- VOHRALÍK M., WHEELER M. F., A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows, *Comput. Geosci.* 17 (2013), 789–812.
- CANCÈS C., POP I. S., VOHRALÍK M., An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, *Math. Comp.* 83 (2014), 153–188.
- DI PIETRO D. A., FLAURAUD E., VOHRALÍK M., AND YOUSEF S., A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media, *J. Comput. Phys.* (2014), DOI 10.1016/j.jcp.2014.06.061.

Thank you for your attention!

Martin Vohralík