A posteriori error estimates robust with respect to nonlinearities and final time

Martin Vohralík

in collaboration with André Harnist, Koondanibha Mitra, and Ari Rappaport

Inria Paris & Ecole des Ponts

Meknès, October 17, 2023

Outline

Introduction

- Equilibrated flux reconstruction
- 3 Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance
- 4 Steady nonlinear problems
 - Gradient-dependent nonlinearities
 - A posteriori error estimates for an augmented energy difference
 - Numerical experiments
 - Gradient-independent nonlinearities
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- 5 Unsteady linear problems
 - The Richards equation (unsteady nonlinear degenerate parabolic problems
- Conclusions

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 1 / 53

Modelling flow of water and air through soil

The Richards equation

Find $u: \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K}_{\kappa}(S(u))(\nabla u + \mathbf{g})] = f \quad \text{in } \Omega \times (0, T),$ $u = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \quad \text{in } \Omega.$

Modelling flow of water and air through soil

The Richards equation

Find $u: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K}_{\mathbf{K}}(S(u))(\nabla u + \mathbf{g})] = f \text{ in } \Omega \times (0, T),$ $u = 0 \text{ on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \text{ in } \Omega.$

Setting

- U: pressure
- s = S(u): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \leq d \leq 3$, open bounded polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor *K*, source term *f*, gravity *g*, initial saturation *s*₀
- nonlinear (degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $u: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K}_{\mathbf{K}}(S(u))(\nabla u + \mathbf{g})] = f \text{ in } \Omega \times (0, T),$ $u = 0 \text{ on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \text{ in } \Omega.$

Setting

- U: pressure
- s = S(u): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open bounded polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor K, source term f, gravity g, initial saturation s_0
- nonlinear (degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $u: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K}_{\mathbf{K}}(S(u))(\nabla u + \mathbf{g})] = f \text{ in } \Omega \times (0, T),$ $u = 0 \text{ on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \text{ in } \Omega.$

Setting

- U: pressure
- s = S(u): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open bounded polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor K, source term f, gravity g, initial saturation s_0
- nonlinear (degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $u: \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t \mathbf{S}(u) - \nabla \cdot [\mathbf{K}_{\kappa}(\mathbf{S}(u))(\nabla u + \mathbf{g})] = f \text{ in } \Omega \times (0, T),$ u = 0 on $\partial \Omega \times (0, T)$, $(S(u))(0) = s_0 \text{ in } \Omega.$

Nonlinear (degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $u: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K}_{\mathcal{K}}(S(u))(\nabla u + \mathbf{g})] = f \quad \text{in } \Omega \times (0, T),$ $u = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \quad \text{in } \Omega.$

Degeneracies

• parabolic-hyperbolic: $\kappa(0) = 0$ leads to

 $\partial_t S(u) = f$

Modelling flow of water and air through soil

The Richards equation

Find $u: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [K\kappa(S(u))(\nabla u + g)] = f \text{ in } \Omega \times (0, T),$ $u = 0 \text{ on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \text{ in } \Omega.$

Degeneracies

• parabolic-hyperbolic: $\kappa(0) = 0$ leads to

$$\partial_t S(u) = f$$

• parabolic–elliptic: S'(u) = 0 for $u > u_M$ leads to

 $-\nabla \cdot [\boldsymbol{K} \kappa(\boldsymbol{S}(\boldsymbol{u}))(\nabla \boldsymbol{u} + \boldsymbol{g})] = f$

A posteriori error estimates

Purpose

- provide sharp **computable bounds** on the unknown error between the unavailable exact solution and its numerical approximation
- predict the error localization (in space and in time)
- adapt the regularization parameters, linear solver, nonlinear solver, space mesh, time mesh ...

A posteriori error estimates

Purpose

- provide sharp **computable bounds** on the unknown error between the unavailable exact solution and its numerical approximation
- predict the error localization (in space and in time)
- **adapt** the regularization parameters, linear solver, nonlinear solver, space mesh, time mesh . . .

A posteriori error estimates

Purpose

- provide sharp **computable bounds** on the unknown error between the unavailable exact solution and its numerical approximation
- predict the error localization (in space and in time)
- **adapt** the regularization parameters, linear solver, nonlinear solver, space mesh, time mesh . . .

Nonlinear problems

a posteriori error estimates

$$|||u-u_{\ell}||| \leq \eta(u_{\ell})$$

Nonlinear problems

Guaranteed a posteriori error estimates

$$|||u-u_{\ell}||| \leq \eta(u_{\ell})$$

Nonlinear problems

Guaranteed a posteriori error estimates

efficient

$$|||u - u_\ell||| \le \eta(u_\ell) \le C_{\mathsf{eff}}|||u - u_\ell|||,$$

Nonlinear problems

Guaranteed a posteriori error estimates respect to the **strength of nonlinearities**.

efficient and robust with

 $|||u - u_{\ell}||| \le \eta(u_{\ell}) \le C_{\text{eff}} |||u - u_{\ell}|||, \quad C_{\text{eff}} \text{ independent of nonlinearities}$

Ínnía

Nonlinear problems

Guaranteed a posteriori error estimates respect to the **strength of nonlinearities**.

$$|||u-u_\ell||| \leq \left\{\sum_{\textbf{K}\in\mathcal{T}_\ell}\eta_{\textbf{K}}(u_\ell)^2\right\}^{1/2} \leq C_{\text{eff}}|||u-u_\ell|||,$$

efficient and robust with

Nonlinear problems

Guaranteed a posteriori error estimates **locally efficient** and **robust** with respect to the **strength of nonlinearities**.

$$\eta_{\mathcal{K}}(u_{\ell}) \leq C_{\mathsf{eff}} |||u - u_{\ell}|||_{\omega_{\mathcal{K}}}, \quad \text{ for all } \mathcal{K} \in \mathcal{T}_{\ell}$$

Nonlinear problems

Guaranteed a posteriori error estimates **locally efficient** and **robust** with respect to the **strength of nonlinearities**.

$$\eta_{\mathcal{K}}(u_{\ell}) \leq C_{\mathsf{eff}} |||u - u_{\ell}|||_{\omega_{\mathcal{K}}}, \quad \text{ for all } \mathcal{K} \in \mathcal{T}_{\ell}$$

Unsteady problems

Guaranteed a posteriori error estimates

$$\int_0^T |||u-u_\ell|||^2 \leq \sum_{n=1}^N \sum_{K \in \mathcal{T}_\ell^n} \eta_K^n(u_\ell)^2$$

Nonlinear problems

Guaranteed a posteriori error estimates **locally efficient** and **robust** with respect to the **strength of nonlinearities**.

$$\eta_{\mathcal{K}}(u_{\ell}) \leq C_{\mathsf{eff}} |||u - u_{\ell}|||_{\omega_{\mathcal{K}}}, \quad \text{ for all } \mathcal{K} \in \mathcal{T}_{\ell}$$

Unsteady problems

Guaranteed a posteriori error estimates

efficient

$$\int_0^T |||u - u_\ell|||^2 \le \sum_{n=1}^N \sum_{K \in \mathcal{T}_\ell^n} \eta_K^n (u_\ell)^2 \le C_{\mathsf{eff}}^2 \int_0^T |||u - u_\ell|||^2,$$

Nonlinear problems

Guaranteed a posteriori error estimates **locally efficient** and **robust** with respect to the **strength of nonlinearities**.

$$\eta_{\mathcal{K}}(u_{\ell}) \leq C_{\mathsf{eff}} |||u - u_{\ell}|||_{\omega_{\mathcal{K}}}, \quad \text{ for all } \mathcal{K} \in \mathcal{T}_{\ell}$$

Unsteady problems

Guaranteed a posteriori error estimates **robust** with respect to the **final time**.

efficient and

Ingia

$$\int_0^T |||u-u_\ell|||^2 \leq \sum_{n=1}^N \sum_{K \in \mathcal{T}_\ell^n} \eta_K^n(u_\ell)^2 \leq \frac{C_{\text{eff}}^2}{\int_0^T |||u-u_\ell|||^2}, \ C_{\text{eff}} \text{ independent of } \mathcal{T}$$

Nonlinear problems

Guaranteed a posteriori error estimates **locally efficient** and **robust** with respect to the **strength of nonlinearities**.

$$\eta_{m{\kappa}}(u_\ell) \leq C_{\mathsf{eff}} |||u - u_\ell|||_{\omega_{m{\kappa}}}, \qquad ext{for all } m{\kappa} \in \mathcal{T}_\ell$$

Unsteady problems

Guaranteed a posteriori error estimates **locally space-time efficient** and **robust** with respect to the **final time**.

$$\eta^n_K(u_\ell)^2 \leq C^2_{ ext{eff}} \int_{t^{n-1}}^{t^n} |||u-u_\ell|||^2_{\omega_K}, ext{ for all } n ext{ and } K \in \mathcal{T}^r_\ell$$

Outline

1

6

- Introduction
- Equilibrated flux reconstruction
- Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance
- 4 Steady nonlinear problems
 - Gradient-dependent nonlinearities
 - A posteriori error estimates for an augmented energy difference
 - Numerical experiments
 - Gradient-independent nonlinearities
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- 5 Unsteady linear problems

The Richards equation (unsteady nonlinear degenerate parabolic problems)

Conclusions

Outline

Equilibrated flux reconstruction

- Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance
- 4 Steady nonlinear problems
 - Gradient-dependent nonlinearities
 - A posteriori error estimates for an augmented energy difference
 - Numerical experiments
 - Gradient-independent nonlinearities
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- 5 Unsteady linear problems
 - The Richards equation (unsteady nonlinear degenerate parabolic problems
- Conclusions

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 4 / 53

Partition of unity

$$\sum_{\pmb{a}\in\mathcal{V}_\ell}\psi^{\pmb{a}}=\pmb{1}$$

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 5 / 53

Ínría

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 6 / 53

M. Vohralík

Innia

Innia

Ínaía

Equilibrated flux reconstruction

Use

• a posteriori error estimates

- comparison of the original & reconstructed flux $\|\nabla u_{\ell} + \sigma_{\ell}\|$: discretization error
- error component fluxes: linearization and algebraic errors
- recovery of mass conservative fluxes
 - local on patches of mesh elements from FE-type approximations
 - Iocal on elements from FV- & DG-type approximations
 - inexact nonlinear solvers (still local)
 - inexact linear solvers (price of one MG iteration)

land.

Equilibrated flux reconstruction

Use

• a posteriori error estimates

- comparison of the original & reconstructed flux $\|\nabla u_{\ell} + \sigma_{\ell}\|$: discretization error
- error component fluxes: linearization and algebraic errors
- recovery of mass conservative fluxes
 - local on patches of mesh elements from FE-type approximations
 - local on elements from FV- & DG-type approximations
 - inexact nonlinear solvers (still local)
 - inexact linear solvers (price of one MG iteration)

land.

Equilibrated flux reconstruction

Use

• a posteriori error estimates

- comparison of the original & reconstructed flux $\|\nabla u_{\ell} + \sigma_{\ell}\|$: discretization error
- error component fluxes: linearization and algebraic errors
- recovery of mass conservative fluxes
 - local on patches of mesh elements from FE-type approximations
 - local on elements from FV- & DG-type approximations
 - inexact nonlinear solvers (still local)
 - inexact linear solvers (price of one MG iteration)

Use

• a posteriori error estimates

- comparison of the original & reconstructed flux $\|\nabla u_{\ell} + \sigma_{\ell}\|$: discretization error
- error component fluxes: linearization and algebraic errors

recovery of mass conservative fluxes

- local on patches of mesh elements from FE-type approximations
- local on elements from FV- & DG-type approximations
- inexact nonlinear solvers (still local)
- inexact linear solvers (price of one MG iteration)

In-1-

Use

• a posteriori error estimates

- comparison of the original & reconstructed flux $\|\nabla u_{\ell} + \sigma_{\ell}\|$: discretization error
- error component fluxes: linearization and algebraic errors
- recovery of mass conservative fluxes
 - local on patches of mesh elements from FE-type approximations
 - local on elements from FV- & DG-type approximations
 - inexact nonlinear solvers (still local)
 - inexact linear solvers (price of one MG iteration)

Use

• a posteriori error estimates

- comparison of the original & reconstructed flux $\|\nabla u_{\ell} + \sigma_{\ell}\|$: discretization error
- error component fluxes: linearization and algebraic errors
- recovery of mass conservative fluxes
 - local on patches of mesh elements from FE-type approximations
 - local on elements from FV- & DG-type approximations
 - inexact nonlinear solvers (still local)
 - inexact linear solvers (price of one MG iteration)

Use

• a posteriori error estimates

- comparison of the original & reconstructed flux $\|\nabla u_{\ell} + \sigma_{\ell}\|$: discretization error
- error component fluxes: linearization and algebraic errors
- recovery of mass conservative fluxes
 - local on patches of mesh elements from FE-type approximations
 - local on elements from FV- & DG-type approximations
 - inexact nonlinear solvers (still local)
 - inexact linear solvers (price of one MG iteration)

Outline

- Introductio
- Equilibrated flux reconstruction
- 3 Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance
- 4 Steady nonlinear problems
 - Gradient-dependent nonlinearities
 - A posteriori error estimates for an augmented energy difference
 - Numerical experiments
 - Gradient-independent nonlinearities
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- 5 Unsteady linear problems
 - The Richards equation (unsteady nonlinear degenerate parabolic problems
- Conclusions

M. Vohralík

Outline

- Introductio
 - Equilibrated flux reconstruction
- 3 Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance
- 4 Steady nonlinear problems
 - Gradient-dependent nonlinearities
 - A posteriori error estimates for an augmented energy difference
 - Numerical experiments
 - Gradient-independent nonlinearities
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- 5 Unsteady linear problems
 - The Richards equation (unsteady nonlinear degenerate parabolic problems
- Conclusions

M. Vohralík

$h_\ell pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	р	relative error estimate $\frac{\eta(u_{\ell})}{\ \nabla u_{\ell}\ }$	relative error $\frac{\ \nabla(u-u_{\ell})\ }{\ \nabla u_{\ell}\ }$	effectivity index $\frac{\eta(u_{\ell})}{\ \nabla(u-u_{\ell})\ }$
h_0	1	28%	24%	1.17
$\approx h_0/2$	2		9.2 × 10 ⁻¹ %	
$\approx h_0/4$	3	5.9 × 1075%	5.9×10^{-3} %	
$\approx h_0/8$	4		5.8 × 10 ⁻⁶ %	

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Íngia

$h_\ell pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	р	relative error estimate $\frac{\eta(u_{\ell})}{\ \nabla u_{\ell}\ }$	relative error $\frac{\ \nabla(u-u_{\ell})\ }{\ \nabla u_{\ell}\ }$	effectivity index $\frac{\eta(u_{\ell})}{\ \nabla(u-u_{\ell})\ }$
h_0	1	28%	24%	1.17
$\approx h_0/2$	2	9.5×10^{-1} %	9.2 × 10 ⁻¹ 96	
$\approx h_0/4$	3	5.9×10^{-3} %	5.9×10^{-3} %	
$pprox h_0/8$	4	5.9×10^{-6} %	5.8 × 10 ⁻⁹ 96	

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Ínaía

$h_\ell pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	р	relative error estimate $\frac{\eta(u_{\ell})}{\ \nabla u_{\ell}\ }$	relative error $\frac{\ \nabla(u-u_{\ell})\ }{\ \nabla u_{\ell}\ }$	effectivity index $\frac{\eta(u_{\ell})}{\ \nabla(u-u_{\ell})\ }$
h_0	1	28%	24%	1.17
		14%	13%	1.09
$\approx h_0/2$	2	9.5×10^{-1} %	$9.2 imes 10^{-1}$ %	
$\approx h_0/4$	3	5.9×10^{-3} %	$5.9 imes 10^{-3}$ %	n dat n
$\approx h_0/8$	4	5.9×10^{-6} %	$5.8 imes 10^{-6}$ %	n dat n

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Doleiši, A. Em, M. Vohralik, SIAM Journal on Scientific Computing (2016)

$h_\ell pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	р	relative error estimate $\frac{\eta(u_{\ell})}{\ \nabla u_{\ell}\ }$	relative error $\frac{\ \nabla(u-u_{\ell})\ }{\ \nabla u_{\ell}\ }$	effectivity index $\frac{\eta(u_{\ell})}{\ \nabla(u-u_{\ell})\ }$
h_0	1	28%	24%	1.17
$pprox h_0/2$		14%	13%	1.09
$\approx h_0/2$	2	9.5×10^{-1} %	$9.2 imes 10^{-1}$ %	1.04
$\approx h_0/4$	3	$5.9 imes 10^{-3}$ %	$5.9 imes 10^{-3}$ %	1.01
$pprox h_0/8$	4	5.9×10^{-6} %	$5.8 imes 10^{-6}\%$	1.01

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) A. Em, M. Vohralik, SIAM Journal on Scientific Commuting (2010)

(2016) 2016) A. Ern, M. Vonralik, SIAM Journal on Scientific Computing

Ínaía

$h_\ell pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	р	relative error estimate $\frac{\eta(u_{\ell})}{\ \nabla u_{\ell}\ }$	relative error $\frac{\ \nabla(u-u_{\ell})\ }{\ \nabla u_{\ell}\ }$	effectivity index $\frac{\eta(u_{\ell})}{\ \nabla(u-u_{\ell})\ }$
h_0	1	28%	24%	1.17
$pprox h_0/2$		14%	13%	1.09
$\approx h_0/4$		7.0%	6.6%	1.06
$pprox h_0/2$	2	$9.5 imes 10^{-1}$ %	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$	3	$5.9 imes 10^{-3}$ %	$5.9 imes 10^{-3}$ %	1.01
$pprox h_0/8$	4	5.9×10^{-6} %	$5.8 imes 10^{-6}\%$	1.01

A. Em, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Malaisti A. Em. M. Vohralik, SIAM Journal on Numerical Analysis (2019)

2016) Dolejsi, A. Em, M. Vonralik, SIAM Journal on Scientific Computing

Ínaía

$h_\ell pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	р	relative error estimate $\frac{\eta(u_{\ell})}{\ \nabla u_{\ell}\ }$	relative error $\frac{\ \nabla(u-u_{\ell})\ }{\ \nabla u_{\ell}\ }$	effectivity index $\frac{\eta(u_{\ell})}{\ \nabla(u-u_{\ell})\ }$
h_0	1	28%	24%	1.17
$pprox h_0/2$		14%	13%	1.09
$\approx h_0/4$		7.0%	6.6%	1.06
$pprox h_0/8$		3.3%	3.1%	1.04
$pprox h_0/2$	2	$9.5 imes 10^{-1}\%$	$9.2 imes 10^{-1}$ %	1.04
$pprox h_0/4$	3	$5.9 imes 10^{-3}\%$	$5.9 imes10^{-3}\%$	1.01
$pprox h_0/8$	4	$5.9 imes 10^{-6}\%$	$5.8 imes 10^{-6}$ %	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolaidi A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2018)

$h_\ell pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	р	relative error estimate $\frac{\eta(u_{\ell})}{\ \nabla u_{\ell}\ }$	relative error $\frac{\ \nabla(u-u_{\ell})\ }{\ \nabla u_{\ell}\ }$	effectivity index $\frac{\eta(u_{\ell})}{\ \nabla(u-u_{\ell})\ }$
h_0	1	28%	24%	1.17
$pprox h_0/2$		14%	13%	1.09
$\approx h_0/4$		7.0%	6.6%	1.06
$\approx h_0/8$		3.3%	3.1%	1.04
$pprox h_0/2$	2	$9.5 imes 10^{-1}\%$	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$	3	$5.9 imes 10^{-3}$ %	$5.9 imes10^{-3}\%$	1.01
$pprox h_0/8$	4	$5.9 imes10^{-6}\%$	$5.8 imes 10^{-6}$ %	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) Dolejší, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

Ínaía

$h_\ell pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	р	relative error estimate $\frac{\eta(u_{\ell})}{\ \nabla u_{\ell}\ }$	relative error $\frac{\ \nabla(u-u_{\ell})\ }{\ \nabla u_{\ell}\ }$	effectivity index $\frac{\eta(u_{\ell})}{\ \nabla(u-u_{\ell})\ }$
h_0	1	28%	24%	1.17
$pprox h_0/2$		14%	13%	1.09
$\approx h_0/4$		7.0%	6.6%	1.06
$\approx h_0/8$		3.3%	3.1%	1.04
$\approx h_0/2$	2	$9.5 imes 10^{-1}\%$	$9.2 imes 10^{-1}\%$	1.04
$pprox h_0/4$	3	$5.9 imes 10^{-3}\%$	$5.9 imes 10^{-3}\%$	1.01
$\approx h_0/8$	4	$5.9 imes 10^{-6}$ %	$5.8 imes 10^{-6}$ %	1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015) . Dolejší, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)

$h_\ell pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	р	relative error estimate $\frac{\eta(u_{\ell})}{\ \nabla u_{\ell}\ }$	relative error $\frac{\ \nabla(u-u_{\ell})\ }{\ \nabla u_{\ell}\ }$	effectivity index $\frac{\eta(u_{\ell})}{\ \nabla(u-u_{\ell})\ }$
h_0	1	28%	24%	1.17
$pprox h_0/2$		14%	13%	1.09
$\approx h_0/4$		7.0%	6.6%	1.06
$\approx h_0/8$		3.3%	3.1%	1.04
$pprox h_0/2$	2	$9.5 imes 10^{-1}\%$	$9.2 imes 10^{-1}\%$	1.04
$\approx h_0/4$	3	$5.9 imes 10^{-3}\%$	$5.9 imes10^{-3}\%$	1.01
$pprox h_0/8$	4	$5.9 imes 10^{-6}$ %	$5.8 imes 10^{-6}\%$	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015) J. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

Ínaía

$h_\ell pprox 1/ \mathcal{T}_\ell ^{rac{1}{2}}$	р	relative error estimate $\frac{\eta(u_{\ell})}{\ \nabla u_{\ell}\ }$	relative error $\frac{\ \nabla(u-u_{\ell})\ }{\ \nabla u_{\ell}\ }$	effectivity index $\frac{\eta(u_{\ell})}{\ \nabla(u-u_{\ell})\ }$
h_0	1	28%	24%	1.17
$pprox h_0/2$		14%	13%	1.09
$\approx h_0/4$		7.0%	6.6%	1.06
$\approx h_0/8$		3.3%	3.1%	1.04
$pprox h_0/2$	2	$9.5 imes 10^{-1}\%$	$9.2 imes 10^{-1}\%$	1.04
$pprox h_0/4$	3	$5.9 imes 10^{-3}\%$	$5.9 imes10^{-3}\%$	1.01
$pprox h_0/8$	4	$5.9 imes10^{-6}$ %	$5.8 imes10^{-6}\%$	1.01

A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2015) V. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Scientific Computing (2016)

Ínnía -

Where (in space) is the error localized? (steady linear Darcy)

I Flux Steady linear Steady nonlinear Unsteady linear Richards C A posteriori estimates Recovering mass balance

Estimated local error $\eta_{\mathcal{K}}(u_{\ell}) = \|\nabla u_{\ell} + \sigma_{\ell}\|_{\mathcal{K}}$

Exact local error $\|\nabla(u - u_{\ell})\|_{\kappa}$

P. Daniel, A. Ern, I. Smears, M. Vohralík, Computers & Mathematics with Applications (2018)

A posteriori error estimates robust wrt nonlinearities & final time 9 / 53

Flux Steady linear Steady nonlinear Unsteady linear Richards C A posteriori estimates Recovering mass balance

How **large** is the total error and its components? $(\mathbb{A}_{\ell} \mathsf{U}_{\ell}^{\dagger} \neq \mathsf{F}_{\ell})$

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Computer Methods in Applied Mechanics and Engineering (2020)

Flux Steady linear Steady nonlinear Unsteady linear Richards C A posteriori estimates Recovering mass balance

How large is the total error and its components? $(\mathbb{A}_{\ell} U'_{\ell} \neq F_{\ell})$

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Computer Methods in Applied Mechanics and Engineering (2020)

Where (in space) is the algebraic error **localized**? ($\mathbb{A}_{\ell} U_{\ell}^{i} \neq F_{\ell}$)

Flux Steady linear Steady nonlinear Unsteady linear Richards C A posteriori estimates Recovering mass balance

Estimated local algebraic errors $\eta_{\text{alg},\mathcal{K}}(u_{\ell}^{i}) = \|\sigma_{\text{alg},\ell}^{i}\|_{\mathcal{K}}$

Exact local algebraic errors $\|\nabla(u_{\ell} - u_{\ell}^{i})\|_{\mathcal{K}}$

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Computer Methods in Applied Mechanics and Engineering (2020)

A posteriori error estimates robust wrt nonlinearities & final time 11 / 53

Where (in space) is the total error **localized**? ($\mathbb{A}_{\ell} U_{\ell}^{i} \neq F_{\ell}$)

I Flux Steady linear Steady nonlinear Unsteady linear Richards C A posteriori estimates Recovering mass balance

Estimated local total errors

$$\eta_{\mathsf{K}}(\mathsf{U}^{i}_{\ell}) = \|\nabla \mathsf{U}_{\ell} + \boldsymbol{\sigma}^{i}_{\ell}\|_{\mathsf{K}}$$

Exact local total errors $\|\nabla(u - u_{\ell}^{i})\|_{\mathcal{K}}$

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Computer Methods in Applied Mechanics and Engineering (2020)

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 12 / 53

Outline

- Introduction
- Equilibrated flux reconstruction
- Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance
- 4 Steady nonlinear problems
 - Gradient-dependent nonlinearities
 - A posteriori error estimates for an augmented energy difference
 - Numerical experiments
 - Gradient-independent nonlinearities
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- 5 Unsteady linear problems
 - The Richards equation (unsteady nonlinear degenerate parabolic problems
- Conclusions

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 12 / 53

Two-phase flow, water saturation

M. Vohralík, M. Wheeler, Computational Geosciences (2013)

A posteriori estimates Recovering mass balance

Recovering mass balance: two-phase flow (inexact solver, water)

original mass balance misfit (m²s⁻¹)

Setting

- fully implicit discretization of a two-phase oil-water flow
- cell-centered finite volumes on a square mesh
- time step 260, 1st Newton linearization, GMRes iteration 195

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Computer Methods in Applied Mechanics and Engineering (2020)

A posteriori error estimates robust wrt nonlinearities & final time 14 / 53

corrected mass balance misfit (m^2s^{-1})

Recovering mass balance: two-phase flow (inexact solver, oil)

corrected mass balance misfit (m²s⁻¹)

Setting

- fully implicit discretization of a two-phase oil-water flow
- cell-centered finite volumes on a square mesh
- time step 260, 1st Newton linearization, GMRes iteration 195

J. Papež, U. Rüde, M. Vohralík, B. Wohlmuth, Computer Methods in Applied Mechanics and Engineering (2020)

A posteriori error estimates robust wrt nonlinearities & final time 14 / 53

Outline

- Introduction
- 2 Equilibrated flux reconstruction
- 3 Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance
- Steady nonlinear problems
 - Gradient-dependent nonlinearities
 - A posteriori error estimates for an augmented energy difference
 - Numerical experiments
 - Gradient-independent nonlinearities
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- Unsteady linear problems
 - The Richards equation (unsteady nonlinear degenerate parabolic problems
- Conclusions

Outline

- Introduction
- Equilibrated flux reconstruction
- 3 Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance
- 4 Steady nonlinear problems
 - Gradient-dependent nonlinearities
 - A posteriori error estimates for an augmented energy difference
 - Numerical experiments
 - Gradient-independent nonlinearities
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- 5 Unsteady linear problems
 - The Richards equation (unsteady nonlinear degenerate parabolic problems
- Conclusions

Ínría-

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 14 / 53

A model steady nonlinear problem

Nonlinear elliptic problem

Find $u: \Omega \to \mathbb{R}$ such that

$$-\nabla \cdot (\mathbf{a}(|\nabla u|)\nabla u) = f \quad \text{in} \quad \Omega,$$
$$u = 0 \quad \text{on} \quad \partial\Omega.$$

• $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open bounded polytope with Lipschitz boundary $\partial \Omega$ • f piecewise polynomial for simplicity

A model steady nonlinear problem

Nonlinear elliptic problem

Find $\mu : \Omega \to \mathbb{R}$ such that

$$-\nabla \cdot (\mathbf{a}(|\nabla u|)\nabla u) = f \quad \text{in} \quad \Omega,$$
$$u = 0 \quad \text{on} \quad \partial\Omega.$$

• $\Omega \subset \mathbb{R}^d$, 1 < d < 3, open bounded polytope with Lipschitz boundary $\partial \Omega$ • f piecewise polynomial for simplicity

Assumption (Nonlinear function a)

Function $a: [0, \infty) \to (0, \infty)$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

$$|a(|\mathbf{x}|)\mathbf{x} - a(|\mathbf{y}|)\mathbf{y}| \le a_{c}|\mathbf{x} - \mathbf{y}| \qquad \text{(Lipschitz continuity),}$$
$$a(|\mathbf{x}|)\mathbf{x} - a(|\mathbf{y}|)\mathbf{y}) \cdot (\mathbf{x} - \mathbf{y}) \ge a_{m}|\mathbf{x} - \mathbf{y}|^{2} \qquad \text{(strong monotonicity)}$$

A model steady nonlinear problem

Nonlinear elliptic problem

Find $\mu : \Omega \to \mathbb{R}$ such that

$$-\nabla \cdot (\mathbf{a}(|\nabla u|)\nabla u) = f \quad \text{in} \quad \Omega,$$
$$u = 0 \quad \text{on} \quad \partial\Omega.$$

• $\Omega \subset \mathbb{R}^d$, 1 < d < 3, open bounded polytope with Lipschitz boundary $\partial \Omega$ • f piecewise polynomial for simplicity

Assumption (Nonlinear function a)

Function $a: [0, \infty) \to (0, \infty)$, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

$$|a(|\mathbf{x}|)\mathbf{x} - a(|\mathbf{y}|)\mathbf{y}| \le a_{c}|\mathbf{x} - \mathbf{y}|$$
 (Lipschitz continuity),

$$(a(|\pmb{x}|)\pmb{x} - a(|\pmb{y}|)\pmb{y}) \cdot (\pmb{x} - \pmb{y}) \geq a_{\mathsf{m}}|\pmb{x} - \pmb{y}|^2$$

•
$$a_{\mathsf{m}} \leq a(r) \leq a_{\mathsf{c}}, a_{\mathsf{m}} \leq (a(r)r)' \leq a_{\mathsf{c}}$$

(strong monotonicity).

Example of the nonlinear function a

Example (Mean curvature nonlinearity)

$$a(r):=a_{\mathrm{m}}+rac{a_{\mathrm{c}}-a_{\mathrm{m}}}{\sqrt{1+r^2}}.$$

Example of the nonlinear function a

Example (Mean curvature nonlinearity)

$$a(r):=a_{\mathsf{m}}+rac{a_{\mathsf{c}}-a_{\mathsf{m}}}{\sqrt{1+r^2}}.$$

A posteriori error estimates robust wrt nonlinearities & final time 16 / 53

Example of the nonlinear function a

Weak solution

Definition (Weak solution)

 $u \in H_0^1(\Omega)$ such that

$$(a(|\nabla u|)\nabla u, \nabla v) = (f, v) \qquad \forall v \in H^1_0(\Omega).$$

Íngia

Energy

Definition (Energy functional)

$$\mathcal{J}: H_0^1(\Omega) \to \mathbb{R}$$
$$\mathcal{J}(\boldsymbol{v}) := \int_{\Omega} \phi(|\nabla \boldsymbol{v}|) - (f, \boldsymbol{v}), \quad \boldsymbol{v} \in H_0^1(\Omega),$$
with function $\phi : [0, \infty) \to [0, \infty)$ such that, for all $r \in [0, \infty)$,
$$\phi(r) := \int_{-\infty}^r a(s)s \, \mathrm{d}s.$$

$$\phi(r) := \int_0^r a(s) s \, \mathrm{d} s$$

Equivalently

$$u = \arg\min_{v \in H_0^1(\Omega)} \mathcal{J}(v)$$

Energy

Definition (Energy functional)

$$egin{aligned} \mathcal{J} : H^1_0(\Omega) &
ightarrow \mathbb{R} \ &\mathcal{J}(m{v}) := \int_\Omega \phi(|
abla m{v}|) - (f,m{v}), \quad m{v} \in H^1_0(\Omega), \end{aligned}$$
 with function $\phi : [0,\infty)
ightarrow [0,\infty)$ such that, for all $r \in [0,\infty),$

$$\phi(r) := \int_0^r a(s) s \, \mathrm{d} s$$

$$u = \arg\min_{v \in H_0^1(\Omega)} \mathcal{J}(v)$$

Flux Steady linear Steady nonlinear Unsteady linear Richards C

Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

Finite element approximation

Definition (Finite element approximation)

 $u_\ell \in \mathit{V}^{\mathcal{P}}_\ell$ such that

$$(a(|\nabla u_\ell|)\nabla u_\ell, \nabla v_\ell) = (f, v_\ell) \quad \forall v_\ell \in V_\ell^p.$$

- \mathcal{T}_{ℓ} simplicial mesh of Ω
- $p \ge 1$ polynomial degree
- $V^p_\ell := \mathcal{P}_p(\mathcal{T}_\ell) \cap H^1_0(\Omega)$
- conforming finite elements

$$U_{\ell} = \arg\min_{v_{\ell} \in V_{\ell}^p} \mathcal{J}(v_{\ell})$$

Flux Steady linear Steady nonlinear Unsteady linear Richards C

Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

Finite element approximation

Definition (Finite element approximation)

 $u_\ell \in \mathit{V}^{\mathcal{P}}_\ell$ such that

$$(a(|\nabla u_\ell|)\nabla u_\ell, \nabla v_\ell) = (f, v_\ell) \quad \forall v_\ell \in V_\ell^p.$$

- \mathcal{T}_{ℓ} simplicial mesh of Ω
- $p \ge 1$ polynomial degree
- $V_{\ell}^{p} := \mathcal{P}_{p}(\mathcal{T}_{\ell}) \cap H_{0}^{1}(\Omega)$
- conforming finite elements

$$u_\ell = rg\min_{v_\ell \in V_\ell^p} \, \mathcal{J}(v_\ell)$$

Flux Steady linear Steady nonlinear Unsteady linear Richards C

Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

Finite element approximation

Definition (Finite element approximation)

 $u_\ell \in \mathit{V}^{\mathcal{P}}_\ell$ such that

$$(a(|\nabla u_\ell|)\nabla u_\ell, \nabla v_\ell) = (f, v_\ell) \quad \forall v_\ell \in V_\ell^p.$$

- \mathcal{T}_{ℓ} simplicial mesh of Ω
- $p \ge 1$ polynomial degree
- $V^{\mathcal{P}}_{\ell} := \mathcal{P}_{\mathcal{P}}(\mathcal{T}_{\ell}) \cap H^{1}_{0}(\Omega)$
- conforming finite elements

$$u_\ell = rg \min_{oldsymbol{v}_\ell \in oldsymbol{V}_\ell^p} \, \mathcal{J}(oldsymbol{v}_\ell)$$

Energy difference

Energy difference

$$\mathcal{J}(u_\ell) - \mathcal{J}(u)$$

- $\mathcal{J}(u_{\ell}) \mathcal{J}(u) \geq 0$, $\mathcal{J}(u_{\ell}) \mathcal{J}(u) = 0$ if and only if $u_{\ell} = u$
- physically-based error measure

Energy difference (not robust wrt $\frac{\partial c}{\partial r}$)

$$\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \leq \eta(u_{\ell})^2 \leq \frac{\textit{C}_{\mathsf{eff}}^2}{\textit{a}_{\mathsf{m}}^2} \big(\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \big)$$

$$\|a_{\mathsf{m}}\| \nabla (u_{\ell} - u)\| \leq \eta(u_{\ell}) \leq C_{\mathsf{eff}} a_{\mathsf{c}} \| \nabla (u_{\ell} - u)\|$$

A posteriori error estimates robust wrt nonlinearities & final time 21 / 53

Energy difference (not robust wrt $\frac{a_c}{a_m}$)

$$\mathcal{J}(u_\ell) - \mathcal{J}(u) \leq \eta(u_\ell)^2 \leq \frac{\textit{C}_{\mathsf{eff}}^2}{a_{\mathsf{m}}^2} \big(\mathcal{J}(u_\ell) - \mathcal{J}(u) \big)$$

Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening

$$a_{\mathsf{m}} \| \nabla (u_{\ell} - u) \| \leq \eta(u_{\ell}) \leq C_{\mathsf{eff}} a_{\mathsf{c}} \| \nabla (u_{\ell} - u) \|$$

Energy difference (not robust wrt $\frac{a_c}{a_m}$)

$$\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \leq \eta(u_{\ell})^{2} \leq \frac{\textit{C}_{\mathsf{eff}}^{2}}{a_{\mathsf{m}}^{2}} \big(\mathcal{J}(u_{\ell}) - \mathcal{J}(u)\big)$$

 Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening & Kreuzer (2008), Bartels & Milicevic (2020), ...

Sobolev norm (not robust wrt

 $a_{\mathsf{m}} \| \nabla (u_{\ell} - u) \| \leq \eta(u_{\ell}) \leq C_{\mathsf{eff}} a_{\mathsf{c}} \| \nabla (u_{\ell} - u) \|$

 Pousin & Rappaz (1994), Verfürth (1994), Klin (2007), Houston, Süll, & Wihler (2008), Garau, Morin, & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020),

Dual norm of the residual

 $\|\|\mathcal{R}(u_\ell)\|\|_{-1} \leq \eta(u_\ell) \leq C_{\mathsf{eff}} \||\mathcal{R}(u_\ell)\|\|_{-1}$

Energy difference (not robust wrt $\frac{a_c}{a_m}$)

$$\mathcal{J}(u_\ell) - \mathcal{J}(u) \leq \eta(u_\ell)^2 \leq \frac{\mathcal{O}_{\mathsf{eff}}^2}{a_{\mathsf{m}}^2} \big(\mathcal{J}(u_\ell) - \mathcal{J}(u) \big)$$

• Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening & Kreuzer (2008), Bartels & Milicevic (2020), ...

Sobolev norm (not robust wrt $\frac{a_0}{2}$)

$\|a_{\mathrm{m}}\|\nabla(u_{\ell}-u)\| \leq \eta(u_{\ell}) \leq C_{\mathrm{eff}}a_{\mathrm{c}}\|\nabla(u_{\ell}-u)\|$

Energy difference (not robust wrt $\frac{a_c}{a_m}$)

$$\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \leq \eta(u_{\ell})^{2} \leq \frac{C_{\mathsf{eff}}^{2}}{a_{\mathsf{m}}^{2}} \big(\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \big)$$

 Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening & Kreuzer (2008), Bartels & Milicevic (2020), ...

Sobolev norm (not robust wrt $\frac{a_c}{a_w}$)

$a_{\mathrm{m}} \| \nabla (u_{\ell} - u) \| \leq n(u_{\ell}) \leq C_{\mathrm{off}} a_{\mathrm{c}} \| \nabla (u_{\ell} - u) \|$

Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler

Energy difference (not robust wrt $\frac{a_c}{a_m}$)

$$\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \leq \eta(u_{\ell})^{2} \leq \frac{C_{\mathsf{eff}}^{2}}{a_{\mathsf{m}}^{2}} \big(\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \big)$$

 Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening & Kreuzer (2008), Bartels & Milicevic (2020), ...

Sobolev norm (not robust wrt $\frac{a_c}{a_w}$)

 $\|a_{\mathsf{m}}\|\nabla(u_{\ell}-u)\| \leq \eta(u_{\ell}) \leq C_{\mathsf{eff}}a_{\mathsf{c}}\|\nabla(u_{\ell}-u)\|$

 Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler (2008). Garau, Morin. & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020), ...

Dual norm of the residual (robust wrt

Energy difference (not robust wrt $\frac{a_c}{a_m}$)

$$\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \leq \eta(u_{\ell})^{2} \leq \frac{C_{\mathsf{eff}}^{2}}{a_{\mathsf{m}}^{2}} \big(\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \big)$$

• Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening & Kreuzer (2008), Bartels & Milicevic (2020)....

Sobolev norm (not robust wrt $\frac{a_c}{a_w}$)

 $\|a_{\mathsf{m}}\|\nabla(u_{\ell}-u)\| \leq \eta(u_{\ell}) \leq C_{\mathsf{eff}}a_{\mathsf{c}}\|\nabla(u_{\ell}-u)\|$

 Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler (2008). Garau, Morin. & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020), ...

Dual norm of the residual (robust wrt a), "bypasses" the nonlinearity

 $\|\|\mathcal{R}(u_{\ell})\|\|_{-1} \leq \eta(u_{\ell}) \leq C_{\text{eff}} \|\|\mathcal{R}(u_{\ell})\|\|_{-1}$

Energy difference (not robust wrt $\frac{a_c}{a_m}$)

$$\mathcal{J}(u_\ell) - \mathcal{J}(u) \leq \eta(u_\ell)^2 \leq \frac{\mathcal{O}_{\mathsf{eff}}^2}{a_{\mathsf{m}}^2} \big(\mathcal{J}(u_\ell) - \mathcal{J}(u) \big)$$

• Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening & Kreuzer (2008), Bartels & Milicevic (2020), ...

Sobolev norm (not robust wrt $\frac{a_c}{a_w}$)

M. Vohralík

 $a_{\mathrm{m}} \| \nabla (u_{\ell} - u) \| \leq n(u_{\ell}) \leq C_{\mathrm{off}} a_{\mathrm{c}} \| \nabla (u_{\ell} - u) \|$

 Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler (2008). Garau, Morin. & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020), ...

Dual norm of the residual (robust wrt $\frac{a_c}{a_m}$), "bypasses" the nonlinearity

 $\|\|\mathcal{R}(u_{\ell})\|\|_{-1} \leq \eta(u_{\ell}) \leq C_{\text{eff}} \|\|\mathcal{R}(u_{\ell})\|\|_{-1}$

A posteriori error estimates robust wrt nonlinearities & final time

Ímaía

21/53

Energy difference (not robust wrt $\frac{a_c}{a_m}$)

$$\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \leq \eta(u_{\ell})^{2} \leq \frac{C_{\mathsf{eff}}^{2}}{a_{\mathsf{m}}^{2}} \big(\mathcal{J}(u_{\ell}) - \mathcal{J}(u) \big)$$

• Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening & Kreuzer (2008), Bartels & Milicevic (2020), ...

Sobolev norm (not robust wrt $\frac{a_c}{a_w}$)

 $a_{\mathrm{m}} \| \nabla (u_{\ell} - u) \| \leq n(u_{\ell}) \leq C_{\mathrm{off}} a_{\mathrm{c}} \| \nabla (u_{\ell} - u) \|$

 Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler (2008). Garau, Morin, & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020), ...

Dual norm of the residual (robust wrt $\frac{a_c}{a_m}$), "bypasses" the nonlinearity

 $\|\|\mathcal{R}(u_{\ell})\|\|_{-1} \leq \eta(u_{\ell}) \leq C_{\text{eff}} \|\|\mathcal{R}(u_{\ell})\|\|_{-1}$

El Alaoui, Ern. & Vohralík (2011), Blechta, Málek, & Vohralík (2020).

A posteriori error estimates robust wrt nonlinearities & final time 21/53

Incla

Energy difference (not robust wrt $\frac{a_c}{a_m}$)

$$\mathcal{J}(u_\ell) - \mathcal{J}(u) \leq \eta(u_\ell)^2 \leq \frac{C_{\mathsf{eff}}^2}{a_{\mathsf{m}}^2} \big(\mathcal{J}(u_\ell) - \mathcal{J}(u) \big)$$

• Zeidler (1992), Han (1994), Repin (1997), Ladevèze & Moës (1997), Diening & Kreuzer (2008), Bartels & Milicevic (2020), ...

Sobolev norm (not robust wrt $\frac{a_c}{a_w}$)

 $\|a_{\mathsf{m}}\|\nabla(u_{\ell}-u)\| \leq \eta(u_{\ell}) \leq C_{\mathsf{eff}}a_{\mathsf{c}}\|\nabla(u_{\ell}-u)\|$

 Pousin & Rappaz (1994), Verfürth (1994), Kim (2007), Houston, Süli, & Wihler (2008). Garau, Morin. & Zuppa (2011), Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2020),

Dual norm of the residual (robust wrt $\frac{a_c}{a_m}$), "bypasses" the nonlinearity

 $\|\|\mathcal{R}(u_{\ell})\|\|_{-1} \leq \eta(u_{\ell}) \leq C_{\text{eff}} \|\|\mathcal{R}(u_{\ell})\|\|_{-1}$

• El Alaoui, Ern, & Vohralík (2011), Blechta, Málek, & Vohralík (2020), ... Innío-

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 21 / 53

Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

Iterative linearization

Need to **solve** a **nonlinear system**

 $\mathcal{A}_\ell(\mathsf{U}_\ell)=\mathsf{F}_\ell$

Ínnía -

Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

Iterative linearization

Need to solve a nonlinear system $\mathcal{A}_{\ell}(U_{\ell}) = F_{\ell}$

Definition (Linearized finite element approximation)

 $u^k_\ell \in V^p_\ell$ such that

$$(\boldsymbol{A}_{\ell}^{k-1}\nabla \boldsymbol{U}_{\ell}^{k},\nabla \boldsymbol{v}_{\ell})=(f,\boldsymbol{v}_{\ell})+(\boldsymbol{b}_{\ell}^{k-1},\nabla \boldsymbol{v}_{\ell})\qquad\forall\boldsymbol{v}_{\ell}\in\boldsymbol{V}_{\ell}^{\boldsymbol{p}}.$$

Ínaía

I Flux Steady linear Steady nonlinear Unsteady linear Richards C Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

Iterative linearization

Need to solve a nonlinear system $\mathcal{A}_{\ell}(\mathsf{U}_{\ell}) = \mathsf{F}_{\ell}$

Definition (Linearized finite element approximation)

 $u_{\ell}^{k} \in V_{\ell}^{p}$ such that

$$(\boldsymbol{A}_{\ell}^{k-1}\nabla \boldsymbol{u}_{\ell}^{k},\nabla \boldsymbol{v}_{\ell})=(f,\boldsymbol{v}_{\ell})+(\boldsymbol{b}_{\ell}^{k-1},\nabla \boldsymbol{v}_{\ell}) \qquad \forall \boldsymbol{v}_{\ell}\in \boldsymbol{V}_{\ell}^{\boldsymbol{p}}.$$

- $u_{\ell}^{0} \in V_{\ell}^{p}$ a given initial guess
- iterative linearization index k > 1
- **linearization**: $\boldsymbol{A}_{\ell}^{k-1}: \Omega \to \mathbb{R}^{d \times d}$ matrix, $\boldsymbol{b}_{\ell}^{k-1}: \Omega \to \mathbb{R}^{d}$ vector constructed from u_{ℓ}^{k-1}

Examples

Example (Picard (fixed-point))

$$\mathbf{A}_{\ell}^{k-1} = \mathbf{a}(|\nabla u_{\ell}^{k-1}|)\mathbf{I}_{d}, \quad \mathbf{b}_{\ell}^{k-1} = \mathbf{0}.$$

$$\boldsymbol{A}_{\ell}^{k-1} = \gamma \boldsymbol{I}_{\boldsymbol{d}}, \quad \boldsymbol{b}_{\ell}^{k-1} = \left(\gamma - \boldsymbol{a}(|\nabla u_{\ell}^{k-1}|)\right) \nabla u_{\ell}^{k-1},$$

$$\mathbf{A}_{\ell}^{k-1} = \mathbf{a}(|\nabla u_{\ell}^{k-1}|)\mathbf{I}_{d} + \frac{\mathbf{a}'(|\nabla u_{\ell}^{k-1}|)}{|\nabla u_{\ell}^{k-1}|}\nabla u_{\ell}^{k-1} \otimes \nabla u_{\ell}^{k-1}, \\
 \mathbf{b}_{\ell}^{k-1} = \mathbf{a}'(|\nabla u_{\ell}^{k-1}|)|\nabla u_{\ell}^{k-1}|\nabla u_{\ell}^{k-1}.$$

M. Vohralík

Examples

Example (Picard (fixed-point))

$$oldsymbol{A}_{\ell}^{k-1} = oldsymbol{a}(|
abla u_{\ell}^{k-1}|)oldsymbol{I}_{d}, \quad oldsymbol{b}_{\ell}^{k-1} = oldsymbol{0}.$$

Example (Zarantonello)

$$\boldsymbol{A}_{\ell}^{k-1} = \gamma \boldsymbol{I}_{\boldsymbol{d}}, \quad \boldsymbol{b}_{\ell}^{k-1} = \big(\gamma - \boldsymbol{a}(|\nabla \boldsymbol{u}_{\ell}^{k-1}|)\big) \nabla \boldsymbol{u}_{\ell}^{k-1},$$

with
$$\gamma \geq rac{a_{
m c}^2}{a_{
m m}}$$
 a constant parameter.

$$\mathbf{A}_{\ell}^{k-1} = \mathbf{a}(|\nabla u_{\ell}^{k-1}|)\mathbf{I}_{d} + \frac{\mathbf{a}'(|\nabla u_{\ell}^{k-1}|)}{|\nabla u_{\ell}^{k-1}|} \nabla u_{\ell}^{k-1} \otimes \nabla u_{\ell}^{k-1}, \\
 \mathbf{b}_{\ell}^{k-1} = \mathbf{a}'(|\nabla u_{\ell}^{k-1}|) |\nabla u_{\ell}^{k-1}| \nabla u_{\ell}^{k-1}.$$

Examples

Example (Picard (fixed-point))

$$oldsymbol{A}_{\ell}^{k-1} = oldsymbol{a}(|
abla u_{\ell}^{k-1}|)oldsymbol{I}_{d}, \quad oldsymbol{b}_{\ell}^{k-1} = oldsymbol{0}.$$

Example (Zarantonello)

$$\boldsymbol{A}_{\ell}^{k-1} = \gamma \boldsymbol{I}_{\boldsymbol{d}}, \quad \boldsymbol{b}_{\ell}^{k-1} = \big(\gamma - \boldsymbol{a}(|\nabla \boldsymbol{u}_{\ell}^{k-1}|)\big) \nabla \boldsymbol{u}_{\ell}^{k-1},$$

with $\gamma \geq \frac{a_c^2}{a_m}$ a constant parameter.

Example (Newton)

$$\begin{split} \boldsymbol{A}_{\ell}^{k-1} &= \boldsymbol{a}(|\nabla u_{\ell}^{k-1}|)\boldsymbol{I}_{d} + \frac{\boldsymbol{a}'(|\nabla u_{\ell}^{k-1}|)}{|\nabla u_{\ell}^{k-1}|} \nabla u_{\ell}^{k-1} \otimes \nabla u_{\ell}^{k-1}, \\ \boldsymbol{b}_{\ell}^{k-1} &= \boldsymbol{a}'(|\nabla u_{\ell}^{k-1}|) |\nabla u_{\ell}^{k-1} |\nabla u_{\ell}^{k-1}. \end{split}$$

Main idea

Observation

None of the known approaches employs in the analysis, to define norms, the **iterative linearization**, i.e., how do we solve the nonlinear system $\mathcal{A}_{\ell}(U_{\ell}) = F_{\ell}$.

Main idea

Observation

None of the known approaches employs in the analysis, to define norms, the iterative linearization, i.e., how do we solve the nonlinear system $A_{\ell}(U_{\ell}) = F_{\ell}$.

$$\begin{split} & \begin{array}{l} \textbf{Definition (Linearized energy functional)} \\ & \mathcal{J}_{\ell}^{k-1}: H_0^1(\Omega) \rightarrow \mathbb{R} \\ & \quad \mathcal{J}_{\ell}^{k-1}(v) := \frac{1}{2} \left\| (\boldsymbol{A}_{\ell}^{k-1})^{\frac{1}{2}} \nabla v \right\|^2 - (f,v) - (\boldsymbol{b}_{\ell}^{k-1}, \nabla v), \quad v \in H_0^1(\Omega). \end{split}$$

Main idea

Observation

None of the known approaches employs in the analysis, to define norms, the iterative linearization, i.e., how do we solve the nonlinear system $A_{\ell}(U_{\ell}) = F_{\ell}$.

Definition (Linearized energy functional)

$$egin{aligned} \mathcal{J}_\ell^{k-1} &: H_0^1(\Omega) o \mathbb{R} \ & \mathcal{J}_\ell^{k-1}(v) := rac{1}{2} \left\| (oldsymbol{A}_\ell^{k-1})^{rac{1}{2}}
abla v
ight\|^2 - (f,v) - (oldsymbol{b}_\ell^{k-1},
abla v), \quad v \in H_0^1(\Omega). \end{aligned}$$

Equivalently

$$u_\ell^k := \arg\min_{v_\ell \in V_\ell^p} \, \mathcal{J}_\ell^{k-1}(v_\ell)$$

Ínría torester

Outline

- Introduction
- Equilibrated flux reconstruction
- 3 Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance
- 4 Steady nonlinear problems
 - Gradient-dependent nonlinearities
 - A posteriori error estimates for an augmented energy difference
 - Numerical experiments
 - Gradient-independent nonlinearities
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- 5 Unsteady linear problems
 - The Richards equation (unsteady nonlinear degenerate parabolic problems
- Conclusions

M. Vohralík

I Flux Steady linear Steady nonlinear Unsteady linear Richards C Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

A posteriori error estimates for an augmented energy difference

 $\mathcal{E}_{\ell}^{k} \leq \eta_{\ell}^{k}.$

Theorem (A posteriori estimate of augmented energy)

For all linearization steps k > 1,

I Flux Steady linear Steady nonlinear Unsteady linear Richards C Gradient-dep, Estimates Numerics Gradient-indep, Estimates Numerics

A posteriori error estimates for an augmented energy difference

Theorem (A posteriori estimate of augmented energy)

For all linearization steps $k \ge 1$, $\mathcal{E}_{\ell}^k < \eta_{\ell}^k$. Moreover, for k satisfying a stopping criterion, there holds

 $\eta_{\ell}^{k} < C_{\text{eff}}(d, \kappa_{T}) C_{\ell}^{k} \mathcal{E}_{\ell}^{k} + quadrature error terms,$

I Flux Steady linear Steady nonlinear Unsteady linear Richards C Gradient-dep, Estimates Numerics Gradient-indep, Estimates Numerics A posteriori error estimates for an augmented energy difference Theorem (A posteriori estimate of augmented energy) For all linearization steps $k \geq 1$, $\mathcal{E}_{\ell}^{k} < \eta_{\ell}^{k}$. Moreover, for k satisfying a stopping criterion, there holds $\eta_{\ell}^{k} \leq C_{\text{eff}}(d, \kappa_{T}) C_{\ell}^{k} \mathcal{E}_{\ell}^{k} + quadrature \ error \ terms,$ where Zarantonello C^k_{ℓ}

I Flux Steady linear Steady nonlinear Unsteady linear Richards C Gradient-dep, Estimates Numerics Gradient-indep, Estimates Numerics A posteriori error estimates for an augmented energy difference Theorem (A posteriori estimate of augmented energy) For all linearization steps $k \geq 1$, $\mathcal{E}_{\ell}^{k} < \eta_{\ell}^{k}$. Moreover, for k satisfying a stopping criterion, there holds $\eta_{\ell}^{k} \leq C_{\text{eff}}(d, \kappa_{T}) C_{\ell}^{k} \mathcal{E}_{\ell}^{k} + quadrature \ error \ terms,$ where Zarantonello C^k_{ℓ}

✓ $C_{\ell}^{k} = 1$ for Zarantonello \implies robustness wrt the strength of nonlinearities

✓ $C_{\ell}^{k} = 1$ for Zarantonello \implies robustness wrt the strength of nonlinearities

Theorem (A posteriori estimate of augmented energy)

For all linearization steps $k \ge 1$, $\mathcal{E}_{\ell}^{k} \le \eta_{\ell}^{k}$. Moreover, for k satisfying a stopping criterion, there holds

 $\eta_{\ell}^{k} \leq C_{\text{eff}}(d, \kappa_{\mathcal{T}}) C_{\ell}^{k} \mathcal{E}_{\ell}^{k} + quadrature \ error \ terms,$

where

Zarantonello

✓ $C_{\ell}^{k} = 1$ for Zarantonello ⇒ robustness wrt the strength of nonlinearities ✓ C_{ℓ}^{k} given by local conditioning of the linearization matrix A_{ℓ}^{k-1} :

Theorem (A posteriori estimate of augmented energy) For all linearization steps $k \ge 1$, $\mathcal{E}_{\ell}^{k} < \eta_{\ell}^{k}$. Moreover, for k satisfying a stopping criterion, there holds $\eta_{\ell}^{k} < C_{\text{eff}}(d, \kappa_{T}) C_{\ell}^{k} \mathcal{E}_{\ell}^{k} + quadrature error terms,$ where Zarantonello $C_{\ell}^{k} := \max_{\boldsymbol{a} \in \mathcal{V}_{\ell}} \left(\frac{\max. eig. \boldsymbol{A}_{\ell}^{k-1}|_{\boldsymbol{\omega}_{\ell}^{\boldsymbol{a}}}}{\min. eig. \boldsymbol{A}_{\ell}^{k-1}|_{\boldsymbol{\omega}_{\ell}^{\boldsymbol{a}}}} \right) \begin{cases} = 1 & \text{Zarantonen} \\ \leq \frac{\max. eig. \boldsymbol{A}_{\ell}^{k-1}|_{\Omega}}{\min. eig. \boldsymbol{A}_{\ell}^{k-1}|_{\Omega}} \leq \frac{a_{c}}{a_{m}} & \text{in general.} \end{cases}$

✓ $C_{\ell}^{k} = 1$ for Zarantonello ⇒ robustness wrt the strength of nonlinearities ✓ C_{ℓ}^{k} given by local conditioning of the linearization matrix A_{ℓ}^{k-1} :

Flux Steady linear Steady nonlinear Unsteady linear Bichards C

Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

Theorem (A posteriori estimate of augmented energy) For all linearization steps k > 1, $\mathcal{E}_{\ell}^{k} < \eta_{\ell}^{k}$. Moreover, for k satisfying a stopping criterion, there holds $\eta_{\ell}^{k} < C_{\text{eff}}(d, \kappa_{T}) C_{\ell}^{k} \mathcal{E}_{\ell}^{k} + quadrature error terms,$ where Zarantonello $C_{\ell}^{k} := \max_{\boldsymbol{a} \in \mathcal{V}_{\ell}} \left(\frac{\max. eig. \boldsymbol{A}_{\ell}^{k-1}|_{\boldsymbol{\omega}_{\ell}^{\boldsymbol{a}}}}{\min. eig. \boldsymbol{A}_{\ell}^{k-1}|_{\boldsymbol{\omega}_{\ell}^{\boldsymbol{a}}}} \right) \begin{cases} = 1 & \text{Zarantonent} \\ \leq \frac{\max. eig. \boldsymbol{A}_{\ell}^{k-1}|_{\Omega}}{\min. eig. \boldsymbol{A}_{\ell}^{k-1}|_{\Omega}} \leq \frac{a_{c}}{a_{m}} & \text{in general.} \end{cases}$

✓ C^k_ℓ = 1 for Zarantonello ⇒ robustness wrt the strength of nonlinearities
 ✓ C^k_ℓ given by local conditioning of the linearization matrix A^{k-1}_ℓ: typically much better than a_c/a_m,

Elux Steady linear Steady nonlinear Unsteady linear Bichards C

Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

Theorem (A posteriori estimate of augmented energy) For all linearization steps $k \ge 1$, $\mathcal{E}_{\ell}^{k} \le \eta_{\ell}^{k}$. Moreover, for k satisfying a stopping criterion, there holds $\eta_{\ell}^{k} \le C_{\text{eff}}(d, \kappa_{T})C_{\ell}^{k}\mathcal{E}_{\ell}^{k}$ +quadrature error terms,

where

$$C_{\ell}^{k} := \max_{\boldsymbol{a} \in \mathcal{V}_{\ell}} \left(\frac{\max. eig. \boldsymbol{A}_{\ell}^{k-1}|_{\boldsymbol{\omega}_{\ell}^{\boldsymbol{a}}}}{\min. eig. \boldsymbol{A}_{\ell}^{k-1}|_{\boldsymbol{\omega}_{\ell}^{\boldsymbol{a}}}} \right) \begin{cases} = 1 & Zarantonello \\ \leq \frac{\max. eig. \boldsymbol{A}_{\ell}^{k-1}|_{\Omega}}{\min. eig. \boldsymbol{A}_{\ell}^{k-1}|_{\Omega}} \leq \frac{a_{c}}{a_{m}} & in general. \end{cases}$$

✓ $C_{\ell}^{k} = 1$ for Zarantonello \implies robustness wrt the strength of nonlinearities

✓ C_{ℓ}^{k} given by local conditioning of the linearization matrix A_{ℓ}^{k-1} : typically much better than a_{c}/a_{m} , improves with mesh refinement

Theorem (A posteriori estimate of augmented energy)

For all linearization steps $k \ge 1$, $\mathcal{E}_{\ell}^{k} \le \eta_{\ell}^{k}$. Moreover, for k satisfying a stopping criterion, there holds

 $\eta_{\ell}^{k} \leq C_{\text{eff}}(d, \kappa_{\mathcal{T}}) C_{\ell}^{k} \mathcal{E}_{\ell}^{k} + quadrature \ error \ terms,$

where

$$C_{\ell}^{k} := \max_{\mathbf{a} \in \mathcal{V}_{\ell}} \left(\frac{\max. eig. \mathbf{A}_{\ell}^{k-1}|_{\omega_{\ell}^{\mathbf{a}}}}{\min. eig. \mathbf{A}_{\ell}^{k-1}|_{\omega_{\ell}^{\mathbf{a}}}} \right) \begin{cases} = 1 & Zarantonello \\ \leq \frac{\max. eig. \mathbf{A}_{\ell}^{k-1}|_{\Omega}}{\min. eig. \mathbf{A}_{\ell}^{k-1}|_{\Omega}} \leq \frac{a_{c}}{a_{m}} & in general. \end{cases}$$

✓ $C_{\ell}^{k} = 1$ for Zarantonello \implies robustness wrt the strength of nonlinearities

- ✓ C_{ℓ}^{k} given by local conditioning of the linearization matrix A_{ℓ}^{k-1} : typically much better than a_{c}/a_{m} , improves with mesh refinement
- ✓ C_{ℓ}^{k} computable: we can affirm robustness *a posteriori*, for the given case

A posteriori error estimates for an augmented energy difference

Augmented energy difference

$$\mathcal{E}^k_\ell = rac{1}{2}$$
energy difference + $\lambda^k_\ell imes rac{1}{2}$ (linearized energy difference)
A posteriori error estimates for an augmented energy difference

Augmented energy difference

$$\mathcal{E}_{\ell}^{k} = \frac{1}{2}$$
energy difference + $\lambda_{\ell}^{k} \times \frac{1}{2}$ (linearized energy difference)

$$\mathcal{E}_{\ell}^{k} := \frac{1}{2} (\underbrace{\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}(u)}_{u_{\ell}})$$

energy difference

A posteriori error estimates for an augmented energy difference

$$\mathcal{E}_{\ell}^{k} = \frac{1}{2}$$
energy difference + $\lambda_{\ell}^{k} \times \frac{1}{2}$ (linearized energy difference)

$$\mathcal{E}_{\ell}^{k} := \frac{1}{2} (\underbrace{\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}(u)}_{\text{energy difference}}) + \lambda_{\ell}^{k} \frac{1}{2} (\underbrace{\mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k}) - \mathcal{J}_{\ell}^{k-1}(u_{\langle \ell \rangle}^{k})}_{\text{linearized en. diff.}})$$

I Flux Steady linear Steady nonlinear Unsteady linear Richards C

Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

A posteriori error estimates for an augmented energy difference

$$\mathcal{E}_{\ell}^{k} = \frac{1}{2}$$
energy difference + $\lambda_{\ell}^{k} \times \frac{1}{2}$ (linearized energy difference)

$$\mathcal{E}_{\ell}^{k} := \frac{1}{2} (\underbrace{\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}(u)}_{\text{energy difference}}) + \lambda_{\ell}^{k} \frac{1}{2} (\underbrace{\mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k}) - \mathcal{J}_{\ell}^{k-1}(u_{\langle \ell \rangle}^{k})}_{\text{linearized en. diff.}})$$

$$\eta_{\ell}^{k} := \frac{1}{2} \underbrace{(\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}^{*}(\boldsymbol{\sigma}_{\ell}^{k}))}_{\text{en. diff. estimate}}$$

I Flux Steady linear Steady nonlinear Unsteady linear Richards C

Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

A posteriori error estimates for an augmented energy difference

$$\mathcal{E}_{\ell}^{k} = \frac{1}{2}$$
energy difference + $\lambda_{\ell}^{k} \times \frac{1}{2}$ (linearized energy difference)

$$\mathcal{E}_{\ell}^{k} := \frac{1}{2} (\underbrace{\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}(u)}_{\text{energy difference}}) + \lambda_{\ell}^{k} \frac{1}{2} (\underbrace{\mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k}) - \mathcal{J}_{\ell}^{k-1}(u_{\langle \ell \rangle}^{k})}_{\text{linearized en. diff.}})$$

$$\eta_{\ell}^{k} := \frac{1}{2} (\underbrace{\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}^{*}(\sigma_{\ell}^{k})}_{\text{en. diff. estimate}}) + \lambda_{\ell}^{k} \frac{1}{2} (\underbrace{\mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k}) - \mathcal{J}_{\ell}^{*,k-1}(\sigma_{\ell}^{k})}_{\text{linearized en. diff. estimate}})$$

Flux Steady linear Steady nonlinear Unsteady linear Richards C

Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

A posteriori error estimates for an augmented energy difference

Augmented energy difference

$$\mathcal{E}_{\ell}^{k} = rac{1}{2}$$
energy difference + $\lambda_{\ell}^{k} imes rac{1}{2}$ (linearized energy difference)

$$\mathcal{E}_{\ell}^{k} := \frac{1}{2} (\underbrace{\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}(u)}_{\text{energy difference}}) + \lambda_{\ell}^{k} \frac{1}{2} (\underbrace{\mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k}) - \mathcal{J}_{\ell}^{k-1}(u_{\langle \ell \rangle}^{k})}_{\text{linearized en. diff.}})$$

$$\eta_{\ell}^{k} := \frac{1}{2} (\underbrace{\mathcal{J}(u_{\ell}^{k}) - \mathcal{J}^{*}(\sigma_{\ell}^{k})}_{\text{en. diff. estimate}}) + \lambda_{\ell}^{k} \frac{1}{2} (\underbrace{\mathcal{J}_{\ell}^{k-1}(u_{\ell}^{k}) - \mathcal{J}_{\ell}^{*,k-1}(\sigma_{\ell}^{k})}_{\text{linearized en. diff. estimate}})$$

• λ_{ℓ}^{k} computable weight to make the two components comparable

A posteriori error estimates for an augmented energy difference

$$\mathcal{E}_{\ell}^{k} = \frac{1}{2}$$
energy difference + $\lambda_{\ell}^{k} \times \frac{1}{2}$ (linearized energy difference)

A posteriori error estimates for an augmented energy difference

$$\mathcal{E}_{\ell}^{k} = \frac{1}{2}$$
energy difference + $\lambda_{\ell}^{k} \times \frac{1}{2}$ (linearized energy difference)

A posteriori error estimates for an augmented energy difference

Augmented energy difference

$$\mathcal{E}_{\ell}^{k} = \frac{1}{2}$$
energy difference + $\lambda_{\ell}^{k} \times \frac{1}{2}$ (linearized energy difference)

Practically $\mathcal{E}_{\ell}^{k} = \mathcal{J}(u_{\ell}^{k}) - \mathcal{J}(u)$ at convergence

Outline

- Introduction
- Equilibrated flux reconstruction
- 3 Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance

4 Steady nonlinear problems

- Gradient-dependent nonlinearities
- A posteriori error estimates for an augmented energy difference

Numerical experiments

- Gradient-independent nonlinearities
- A posteriori error estimates for an iteration-dependent norm
- Numerical experiments
- 5 Unsteady linear problems
 - The Richards equation (unsteady nonlinear degenerate parabolic problems
- Conclusions

Ínría-

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 26 / 53

Smooth solution

Settina

- unit square $\Omega = (0, 1)^2$
- known smooth solution u(x, y) := 10 x(x-1)y(y-1)
- *p* = 1
- effectivity indices

Flux Steady linear Steady nonlinear Unsteady linear Richards C Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics Gradient-indep. Estimates Numerics Gradient-indep. Estimates Numerics (a(r) = $a_m + \frac{a_c - a_m}{\sqrt{1 + r^2}}$)

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 28 / 53

Flux Steady linear Steady nonlinear Unsteady linear Richards C Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics Gradient-indep. Estimates Numerics Gradient-indep. Estimates Numerics (a(r) = $a_m + \frac{a_c - a_m}{\sqrt{1 + r^2}}$)

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 28 / 53

How large is the error? Robustness wrt the nonlinearities $(a(r) = a_{\rm m} + \frac{a_{\rm c}-a_{\rm m}}{\sqrt{1+r^2}})$

A. Harnist, K. Mitra, A. Rappaport, M. Vohralík, preprint (2023)

Ínnía -

How large is the error? Robustness wrt the nonlinearities

 $(a(r) = a_{m} + (a_{c} - a_{m}) \frac{1 - e^{-\frac{3}{2}r^{2}}}{1 + 2e^{-\frac{3}{2}}}$

Flux Steady linear Steady nonlinear Unsteady linear Richards C Gradient-dep. Estimates Numerics Gradient-indep. Estimate

A. Harnist, K. Mitra, A. Rappaport, M. Vohralík, preprint (2023)

Singular solution

Setting

- L-shaped domain $\Omega = (-1,1)^2 \setminus ([0,1) \times (-1,0])$
- known singular solution $u(\rho, \theta) = \rho^{\frac{2}{3}} \sin(\frac{2}{3}\theta)$

•
$$a(r) = a_{\rm m} + (a_{\rm c} - a_{\rm m}) \frac{1 - e^{-\frac{3}{2}r^2}}{1 + 2e^{-\frac{3}{2}}}$$

• uniform or adaptive mesh refinement

How large is the error? Robustness wrt the nonlinearities

A. Harnist, K. Mitra, A. Rappaport, M. Vohralík, preprint (2023)

Outline

- Introduction
- 2 Equilibrated flux reconstruction
- 3 Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance

4 Steady nonlinear problems

- Gradient-dependent nonlinearities
- A posteriori error estimates for an augmented energy difference
- Numerical experiments

• Gradient-independent nonlinearities

- A posteriori error estimates for an iteration-dependent norm
- Numerical experiments
- 5 Unsteady linear problems
 - The Richards equation (unsteady nonlinear degenerate parabolic problems
- Conclusions

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 31 / 53

Observation

Observation

Not all nonlinear problems admit an energy minimization structure.

Ínaía

A model steady nonlinear problem

Nonlinear elliptic problem

Find $u: \Omega \to \mathbb{R}$ such that $-\nabla \cdot (\tau K(\mathbf{x})(\underbrace{\mathcal{D}(\mathbf{x}, u)}_{\text{diffusion}} \nabla u + \underbrace{\mathbf{q}(\mathbf{x}, u)}_{\text{advection}})) + \underbrace{\mathbf{f}(\mathbf{x}, u)}_{\text{reaction}} = 0 \text{ in } \Omega,$ $u = 0 \text{ on } \partial\Omega.$

 τ > 0 a parameter (time step size in transient problems: applies to Richards on each time step)

Assumption (Nonlinear functions \mathcal{D} , \boldsymbol{q} , and f)

$$\begin{split} |\mathcal{D}(\bm{x}_{1}, u_{1}) - \mathcal{D}(\bm{x}_{2}, u_{2})| &\leq \mathcal{D}_{\mathsf{M}}(|\bm{x}_{1} - \bm{x}_{2}| + |u_{1} - u_{2}|) \quad \forall \bm{x}_{1}, \bm{x}_{2} \in \Omega \text{ and } u_{1}, u_{2} \in \mathbb{R}, \\ 0 &\leq f(\bm{x}, u_{2}) - f(\bm{x}, u_{1}) \leq f_{\mathsf{M}}(u_{2} - u_{1}) \quad \forall \bm{x} \in \Omega \text{ and } u_{1}, u_{2} \in \mathbb{R}, u_{2} \geq u_{1}, \\ \bm{q} \text{ is "small" wrt } \mathcal{K}\mathcal{D}. \end{split}$$

A model steady nonlinear problem

Nonlinear elliptic problem

Find $\mu: \Omega \to \mathbb{R}$ such that $-\nabla \cdot \left(\tau \boldsymbol{K}(\boldsymbol{x})(\underline{\mathcal{D}}(\boldsymbol{x},\boldsymbol{u}) \nabla \boldsymbol{u} + \underline{\boldsymbol{q}}(\boldsymbol{x},\boldsymbol{u})\right)\right) + \underline{\boldsymbol{f}(\boldsymbol{x},\boldsymbol{u})} = \boldsymbol{0} \quad \text{in} \quad \Omega,$ diffusion reaction advection u = 0 on $\partial \Omega$.

• $\tau > 0$ a parameter (time step size in transient problems: applies to Richards on each time step)

Assumption (Nonlinear functions \mathcal{D} , *a*, and *f*)

$$\begin{split} |\mathcal{D}(\boldsymbol{x}_1, u_1) - \mathcal{D}(\boldsymbol{x}_2, u_2)| &\leq \mathcal{D}_{\mathsf{M}}(|\boldsymbol{x}_1 - \boldsymbol{x}_2| + |u_1 - u_2|) \quad \forall \boldsymbol{x}_1, \boldsymbol{x}_2 \in \Omega \text{ and } u_1, u_2 \in \mathbb{R}, \\ 0 &\leq f(\boldsymbol{x}, u_2) - f(\boldsymbol{x}, u_1) \leq f_{\mathsf{M}}(u_2 - u_1) \quad \forall \boldsymbol{x} \in \Omega \text{ and } u_1, u_2 \in \mathbb{R}, u_2 \geq u_1, \\ \boldsymbol{q} \text{ is "small" wrt } \boldsymbol{K}\mathcal{D}. \end{split}$$

Finite element discretization and iterative linearization

Definition (Linearized finite element approximation)

 $u_{\ell}^{k} \in V_{\ell}^{p}$ such that

$$((u_\ell^k - u_\ell^{k-1}, v_\ell))_{u_\ell^{k-1}} = -\langle \underbrace{\mathcal{R}(u_\ell^{k-1})}_{\text{residual}}, v_\ell \rangle \qquad \forall v_\ell \in V_\ell^p.$$

- covers most linearization schemes: Picard (fixed-point), L & M-schemes, ...

$$\bullet \ \left| \|v\|_{1,u_{\ell}^{k-1}}^2 := \left((v, v) \right)_{u_{\ell}^{k-1}} = \left\| (L_{\ell}^{k-1})^{1/2} v \right\|^2 + \left\| (\boldsymbol{A}_{\ell}^{k-1})^{1/2} \nabla v \right\|^2, \quad v \in H_0^1(\Omega)$$

M Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 34 / 53

Finite element discretization and iterative linearization

Definition (Linearized finite element approximation)

 $u_{\ell}^{k} \in V_{\ell}^{p}$ such that

$$((u_{\ell}^{k}-u_{\ell}^{k-1}, v_{\ell}))_{u_{\ell}^{k-1}} = -\langle \underbrace{\mathcal{R}(u_{\ell}^{k-1})}_{\text{residual}}, v_{\ell} \rangle \qquad \forall v_{\ell} \in V_{\ell}^{p}.$$

- covers most linearization schemes: Picard (fixed-point), L & M-schemes, ...
- linearization: reaction-diffusion scalar product

 $((w, v))_{u_{\ell}^{k-1}} := (\underbrace{L_{\ell}^{k-1}}_{\ell} \quad w, v) + (\underbrace{A_{\ell}^{k-1}}_{\ell} \quad \nabla w, \nabla v), \quad w, v \in H_0^1(\Omega)$

•
$$\|\|v\|\|_{1,u_{\ell}^{k-1}}^2 := ((v, v))_{u_{\ell}^{k-1}} = \|(L_{\ell}^{k-1})^{1/2}v\|^2 + \|(A_{\ell}^{k-1})^{1/2}\nabla v\|^2, \quad v \in H_0^1(\Omega)$$

Definition (Linearized finite element approximation)

Flux Steady linear Steady nonlinear Unsteady linear Richards C

 $u_{\ell}^{k} \in V_{\ell}^{p}$ such that

$$((u_\ell^k - u_\ell^{k-1}, v_\ell))_{u_\ell^{k-1}} = -\langle \underbrace{\mathcal{R}(u_\ell^{k-1})}_{ ext{residual}}, v_\ell
angle \qquad orall v_\ell \in V_\ell^{\mathcal{P}}.$$

- covers most linearization schemes: Picard (fixed-point), L & M-schemes, ...
- linearization: reaction-diffusion scalar product

$$((w, v))_{u_{\ell}^{k-1}} := (\underbrace{L_{\ell}^{k-1}}_{\text{reaction coef.}=0 \text{ if } f=f(x)} w, v) + (\underbrace{A_{\ell}^{k-1}}_{\text{diffusion coef.}=\tau K(x)\mathcal{D}(x, u_{\ell}^{k-1})} \nabla w, \nabla v), \quad w, v \in H_{0}^{1}(\Omega)$$

Iteration-dependent norm

•
$$|||v|||_{1,u_{\epsilon}^{k-1}}^2 := ((v, v))_{u_{\epsilon}^{k-1}} = ||(L_{\ell}^{k-1})^{1/2}v||^2 + ||(A_{\ell}^{k-1})^{1/2}\nabla v||^2, \quad v \in H_0^1(\Omega)$$

induced by the linearization scalar product

Definition (Linearized finite element approximation)

Flux Steady linear Steady nonlinear Unsteady linear Bichards C

 $u_{\ell}^{k} \in V_{\ell}^{p}$ such that

$$((u_\ell^k - u_\ell^{k-1}, v_\ell))_{u_\ell^{k-1}} = -\langle \underbrace{\mathcal{R}(u_\ell^{k-1})}_{ ext{residual}}, v_\ell
angle \qquad orall v_\ell \in V_\ell^{\mathcal{P}}.$$

- covers most linearization schemes: Picard (fixed-point), L & M-schemes, ...
- linearization: reaction-diffusion scalar product

$$((w, v))_{u_{\ell}^{k-1}} := (\underbrace{L_{\ell}^{k-1}}_{\text{reaction coef.}=0 \text{ if } f=f(x)} w, v) + (\underbrace{A_{\ell}^{k-1}}_{\text{offfusion coef.}=\tau \mathcal{K}(x)\mathcal{D}(x, u_{\ell}^{k-1})} \nabla w, \nabla v), \quad w, v \in H_{0}^{1}(\Omega)$$

Iteration-dependent norm

•
$$|||v|||_{1,u_{\ell}^{k-1}}^2 := ((v, v))_{u_{\ell}^{k-1}} = ||(L_{\ell}^{k-1})^{1/2}v||^2 + ||(A_{\ell}^{k-1})^{1/2}\nabla v||^2, \quad v \in H_0^1(\Omega)$$

induced by the linearization scalar product

Definition (Linearized finite element approximation)

Flux Steady linear Steady nonlinear Unsteady linear Richards C

 $u_{\ell}^{k} \in V_{\ell}^{p}$ such that

$$((u_\ell^k-u_\ell^{k-1},\,v_\ell))_{u_\ell^{k-1}}=-\langle \underbrace{\mathcal{R}(u_\ell^{k-1})}_{ ext{residual}},v_\ell
angle \qquad orall v_\ell\in V_\ell^{\mathcal{P}}.$$

- covers most linearization schemes: Picard (fixed-point), L & M-schemes, ...
- linearization: reaction-diffusion scalar product

$$((w, v))_{u_{\ell}^{k-1}} := (\underbrace{L_{\ell}^{k-1}}_{\text{reaction coef.}=0 \text{ if } f=f(\boldsymbol{x})} w, v) + (\underbrace{\boldsymbol{A}_{\ell}^{k-1}}_{\text{offlusion coef.}=\tau \boldsymbol{K}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, u_{\ell}^{k-1})} \nabla w, \nabla v), \quad w, v \in H_{0}^{1}(\Omega)$$

Iteration-dependent norm

•
$$|||v|||_{1,u_{\ell}^{k-1}}^2 := ((v, v))_{u_{\ell}^{k-1}} = ||(L_{\ell}^{k-1})^{1/2}v||^2 + ||(A_{\ell}^{k-1})^{1/2}\nabla v||^2, \quad v \in H_0^1(\Omega)$$

induced by the linearization scalar product

Definition (Linearized finite element approximation)

Flux Steady linear Steady nonlinear Unsteady linear Bichards C

 $u_{\ell}^{k} \in V_{\ell}^{p}$ such that

$$((u_\ell^k - u_\ell^{k-1}, v_\ell))_{u_\ell^{k-1}} = -\langle \underbrace{\mathcal{R}(u_\ell^{k-1})}_{ ext{residual}}, v_\ell \rangle \qquad orall v_\ell \in V_\ell^{\mathcal{P}}.$$

- covers most linearization schemes: Picard (fixed-point), L & M-schemes, ...
- linearization: reaction-diffusion scalar product

$$((w, v))_{u_{\ell}^{k-1}} := (\underbrace{L_{\ell}^{k-1}}_{\text{reaction coef.}=0 \text{ if } f=f(\boldsymbol{x})}_{\text{reaction coef.}=\tau \boldsymbol{K}(\boldsymbol{x}) \mathcal{D}(\boldsymbol{x}, u_{\ell}^{k-1})} \nabla w, \nabla v), \quad w, v \in H_0^1(\Omega)$$

Iteration-dependent norm

•
$$\left\| \| v \|_{1, u_{\ell}^{k-1}}^2 := ((v, v))_{u_{\ell}^{k-1}} = \left\| (L_{\ell}^{k-1})^{1/2} v \right\|^2 + \left\| (\mathbf{A}_{\ell}^{k-1})^{1/2} \nabla v \right\|^2, \quad v \in H_0^1(\Omega)$$

induced by the linearization scalar product

An orthogonal decomposition of the total residual/error

Theorem (Orthogonal decomposition of the total error into linearization and discretization components)

Flux Steady linear Steady nonlinear Unsteady linear Richards C Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

For all linearization steps $k \ge 1$, there holds

$$\underbrace{\|\|\mathcal{R}(u_{\ell}^{k-1})\|\|_{-1,u_{\ell}^{k-1}}^{2}}_{\substack{\text{total residual/error}\\ \|\|u_{\ell}^{k-1}-u_{\langle \ell \rangle}^{k}\|\|_{1,u_{\ell}^{k-1}}^{2}} = \underbrace{\|\|u_{\ell}^{k-1}-u_{\ell}^{k}\|\|_{1,u_{\ell}^{k-1}}^{2}}_{\substack{\text{linearization}\\ \text{error}}} + \underbrace{\|\|\mathcal{R}_{\text{disc}}^{u_{\ell}^{k-1}}(u_{\ell}^{k})\|\|_{-1,u_{\ell}^{k-1}}^{2}}_{\substack{\text{discretization residual/error}\\ \|\|u_{\ell}^{k}-u_{\langle \ell \rangle}^{k}\|\|_{1,u_{\ell}^{k-1}}^{2}}}$$

- orthogonal decomposition
- error components
- $u_{\langle \ell \rangle}^k \in H^1_0(\Omega)$ such that

 $\left(\left(u_{\langle\ell\rangle}^{k}-u_{\ell}^{k-1},\,v\right)\right)_{u_{\ell}^{k-1}}=-\langle \mathcal{R}(u_{\ell}^{k-1}),v\rangle \qquad \forall v\in H_{0}^{1}(\Omega)$

An orthogonal decomposition of the total residual/error

Theorem (Orthogonal decomposition of the total error into linearization and discretization components)

For all linearization steps $k \ge 1$, there holds

orthogonal decomposition

Flux Steady linear Steady nonlinear Unsteady linear Bichards C

• error components

• $u_{(\ell)}^k \in H_0^1(\Omega)$ such that

 $egin{aligned} & (u^k_{\ell \ell} - u^{k-1}_\ell, \, v) ig)_{u^{k-1}_\ell} = - \langle \mathcal{R}(u^{k-1}_\ell), v
angle & orall v \in H^1_0. \end{aligned}$

An orthogonal decomposition of the total residual/error

Theorem (Orthogonal decomposition of the total error into linearization and discretization components)

For all linearization steps $k \ge 1$, there holds

orthogonal decomposition

Flux Steady linear Steady nonlinear Unsteady linear Bichards C

- error components
- $u_{\langle \ell \rangle}^k \in H_0^1(\Omega)$ such that $((u_{\langle \ell \rangle}^k - u_{\ell}^{k-1}, v))_{u_{\ell}^{k-1}} = -\langle \underbrace{\mathcal{R}(u_{\ell}^{k-1})}_{\text{recidual}}, v \rangle \qquad \forall v \in H_0^1(\Omega)$

Outline

- Introduction
- 2 Equilibrated flux reconstruction
- 3 Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance

4 Steady nonlinear problems

- Gradient-dependent nonlinearities
- A posteriori error estimates for an augmented energy difference
- Numerical experiments
- Gradient-independent nonlinearities
- A posteriori error estimates for an iteration-dependent norm
- Numerical experiments
- 5 Unsteady linear problems
 - The Richards equation (unsteady nonlinear degenerate parabolic problems
- Conclusions

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 35 / 53

A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps $k \geq 1$,

$$\|\|\mathcal{R}(u_{\ell}^{k-1})\|\|_{-1,u_{\ell}^{k-1}} \leq \eta(u_{\ell}^{k}).$$

A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps $k \geq 1$,

$$\|\mathcal{R}(u_{\ell}^{k-1})\|\|_{-1,u_{\ell}^{k-1}} \leq \eta(u_{\ell}^{k}).$$

Moreover, for all linearization steps k > 1

. there holds

 $\eta(u_\ell^k) \leq oldsymbol{C}_{ ext{eff}}(oldsymbol{d}, \kappa_{\mathcal{T}} \mid \mid) C_\ell^k ||| \mathcal{R}(u_\ell^{k-1}) |||_{-1, u_k^{k-1}}$ +quadrature error terms.

A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps k > 1.

$$\|\mathcal{R}(u_{\ell}^{k-1})\|\|_{-1,u_{\ell}^{k-1}} \leq \eta(u_{\ell}^{k}).$$

Moreover, for all linearization steps $k \ge 1$ and for each element $K \in T_{\ell}$, there holds

 $\eta_{\mathcal{K}}(u_{\ell}^{k}) \leq C_{\text{eff}}(d, \kappa_{\mathcal{T}} \quad)C_{\mathcal{K}}^{k} |||\mathcal{R}(u_{\ell}^{k-1})|||_{-1, u_{\ell}^{k-1}, \omega_{\mathcal{K}}} + quadrature \ error \ terms,$

A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps $k \geq 1$,

$$\||\mathcal{R}(u_{\ell}^{k-1})||_{-1,u_{\ell}^{k-1}} \leq \eta(u_{\ell}^{k}).$$

Moreover, for all linearization steps k > 1 and for each element $K \in \mathcal{T}_{\ell}$, there holds

$$\eta_{\mathcal{K}}(u_{\ell}^{k}) \leq \frac{C_{\mathsf{eff}}(d,\kappa_{\mathcal{T}},p)C_{\mathcal{K}}^{k}|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1},\omega_{\mathcal{K}}} + quadrature \ error \ terms,$$

where

$$C_{\mathsf{K}}^{\mathsf{k}} := \left(\frac{\max.\ \operatorname{eig.}\ \boldsymbol{A}_{\ell}^{\mathsf{k}-1}|_{\boldsymbol{\omega}_{\mathsf{K}}}}{\min.\ \operatorname{eig.}\ \boldsymbol{A}_{\ell}^{\mathsf{k}-1}|_{\boldsymbol{\omega}_{\mathsf{K}}}}\right)^{1/2} + \left(\frac{\max.\ L_{\ell}^{\mathsf{k}-1}|_{\boldsymbol{\omega}_{\mathsf{K}}}}{\min.\ L_{\ell}^{\mathsf{k}-1}|_{\boldsymbol{\omega}_{\mathsf{K}}}}\right)^{1/2} \text{ if react. dom.}$$

A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps k > 1.

$$\|\mathcal{R}(u_{\ell}^{k-1})\||_{-1,u_{\ell}^{k-1}} \leq \eta(u_{\ell}^{k}).$$

Moreover, for all linearization steps k > 1 and for each element $K \in \mathcal{T}_{\ell}$, there holds

$$\eta_{\mathcal{K}}(u_{\ell}^{k}) \leq \frac{\mathcal{C}_{\mathsf{eff}}(d,\kappa_{\mathcal{T}},p)\mathcal{C}_{\mathcal{K}}^{k}|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1},\omega_{\mathcal{K}}} + quadrature \ error \ terms,$$

where

$$C_{\mathsf{K}}^{\mathsf{k}} := \left(\frac{\max. \ eig. \ \mathbf{A}_{\ell}^{\mathsf{k}-1}|_{\omega_{\mathsf{K}}}}{\min. \ eig. \ \mathbf{A}_{\ell}^{\mathsf{k}-1}|_{\omega_{\mathsf{K}}}}\right)^{1/2} + \left(\frac{\max. \ L_{\ell}^{\mathsf{k}-1}|_{\omega_{\mathsf{K}}}}{\min. \ L_{\ell}^{\mathsf{k}-1}|_{\omega_{\mathsf{K}}}}\right)^{1/2} \text{ if react. dom.}$$

 C_{k}^{k} given by **local conditioning** of the linearization matrix A_{ℓ}^{k-1} : typically much better than global conditioning (= worst-case scenario)
Flux Steady linear Steady nonlinear Unsteady linear Richards C Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps k > 1.

$$\|\mathcal{R}(u_{\ell}^{k-1})\|\|_{-1,u_{\ell}^{k-1}} \leq \eta(u_{\ell}^{k}).$$

Moreover, for all linearization steps k > 1 and for each element $K \in \mathcal{T}_{\ell}$, there holds

$$\eta_{\mathcal{K}}(u_{\ell}^{k}) \leq \frac{\mathcal{C}_{\mathsf{eff}}(d,\kappa_{\mathcal{T}},p)\mathcal{C}_{\mathcal{K}}^{k}|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1},\omega_{\mathcal{K}}} + quadrature \ error \ terms,$$

where

$$C_{\mathsf{K}}^{\mathsf{k}} := \left(\frac{\max. \ eig. \ \mathbf{A}_{\ell}^{\mathsf{k}-1}|_{\omega_{\mathsf{K}}}}{\min. \ eig. \ \mathbf{A}_{\ell}^{\mathsf{k}-1}|_{\omega_{\mathsf{K}}}}\right)^{1/2} + \left(\frac{\max. \ L_{\ell}^{\mathsf{k}-1}|_{\omega_{\mathsf{K}}}}{\min. \ L_{\ell}^{\mathsf{k}-1}|_{\omega_{\mathsf{K}}}}\right)^{1/2} \text{ if react. dom.}$$

 \checkmark C_k^k given by local conditioning of the linearization matrix A_ℓ^{k-1} : typically much better than global conditioning (= worst-case scenario) \checkmark C_{k}^{k} computable: we can affirm robustness *a posteriori*, for the given case

Flux Steady linear Steady nonlinear Unsteady linear Richards C Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

A posteriori error estimates for an iteration-dependent norm

Theorem (A posteriori estimate of iteration-dependent norm)

For all linearization steps k > 1.

$$\|\mathcal{R}(u_{\ell}^{k-1})\||_{-1,u_{\ell}^{k-1}} \leq \eta(u_{\ell}^{k}).$$

Moreover, for all linearization steps k > 1 and for each element $K \in \mathcal{T}_{\ell}$, there holds

$$\eta_{\mathcal{K}}(u_{\ell}^{k}) \leq \frac{\mathcal{C}_{\mathsf{eff}}(d,\kappa_{\mathcal{T}},p)\mathcal{C}_{\mathcal{K}}^{k}|||\mathcal{R}(u_{\ell}^{k-1})|||_{-1,u_{\ell}^{k-1},\omega_{\mathcal{K}}} + quadrature \ error \ terms,$$

where

$$C_{\mathcal{K}}^{k} := \left(\frac{\max.\ eig.\ \boldsymbol{A}_{\ell}^{k-1}|_{\omega_{\mathcal{K}}}}{\min.\ eig.\ \boldsymbol{A}_{\ell}^{k-1}|_{\omega_{\mathcal{K}}}}\right)^{1/2} + \left(\frac{\max.\ L_{\ell}^{k-1}|_{\omega_{\mathcal{K}}}}{\min.\ L_{\ell}^{k-1}|_{\omega_{\mathcal{K}}}}\right)^{1/2} \text{ if react. dom.}$$

- \checkmark C_{k}^{k} given by **local conditioning** of the linearization matrix A_{ℓ}^{k-1} : typically much better than global conditioning (= worst-case scenario)
- \checkmark C_{k}^{k} computable: we can affirm robustness *a posteriori*, for the given case ✓ local efficiency

M Vohralík

Outline

- Introduction
- 2 Equilibrated flux reconstruction
- 3 Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance

4 Steady nonlinear problems

- Gradient-dependent nonlinearities
- A posteriori error estimates for an augmented energy difference
- Numerical experiments
- Gradient-independent nonlinearities
- A posteriori error estimates for an iteration-dependent norm
- Numerical experiments
- Unsteady linear problems
 - The Richards equation (unsteady nonlinear degenerate parabolic problems
- Conclusions

One time step of the Richards equation

Setting

- unit square $\Omega = (0, 1)^2$
- realistic data

$$f(\boldsymbol{x}, u) = S(u) - S(u_{\ell}^{n-1}(\boldsymbol{x})), \quad \mathcal{D}(\boldsymbol{x}, u) = \kappa(S(u)), \quad \boldsymbol{q}(\boldsymbol{x}, u) = -\kappa(S(u)) \boldsymbol{g},$$
$$\boldsymbol{K} = \begin{bmatrix} 1 & 0.2\\ 0.2 & 1 \end{bmatrix}, \quad \boldsymbol{g} = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

• van Genuchten saturation and permeability laws

$$S(u) := \left(1 + (2-u)^{\frac{1}{1-\lambda}}\right)^{-\lambda}, \quad \kappa(s) := \sqrt{s} \left(1 - (1-s^{\frac{1}{\lambda}})^{\lambda}\right)^2, \quad \lambda = 0.5$$

• time step length $\tau \in [10^{-3}, 1]$

I Flux Steady linear Steady nonlinear Unsteady linear Richards C Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

One time step of the Richards equation: saturation u

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 38 / 53

I Flux Steady linear Steady nonlinear Unsteady linear Richards C Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

How large is the error? Robustness wrt the nonlinearities

K. Mitra, M. Vohralík, preprint (2023)

Ínnía

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 39 / 53

Where is the error **localized**?

Exact local error, $\tau = 1$

-3.86

Where is the error localized?

Estimated local error, $\tau = 0.01$

K. Mitra, M. Vohralík, preprint (202

-5.86

-2.892.56

Error components and adaptivity via stopping criteria

K. Mitra, M. Vohralík, preprint (2023)

Ínaía

Flux Steady linear Steady nonlinear Unsteady linear Richards C

Gradient-dep. Estimates Numerics Gradient-indep. Estimates Numerics

Outline

- Introduction
- 2 Equilibrated flux reconstruction
- Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance
- 4 Steady nonlinear problems
 - Gradient-dependent nonlinearities
 - A posteriori error estimates for an augmented energy difference
 - Numerical experiments
 - Gradient-independent nonlinearities
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
 - Unsteady linear problems

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 41 / 53

I Flux Steady linear Steady nonlinear Unsteady linear Richards C

A model unsteady linear problem

The unsteady linear Darcy (heat) equation

Find $u: \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t u - \Delta u = f \quad \text{in } \Omega \times (0, T),$ $u = 0 \quad \text{on } \partial \Omega \times (0, T),$ $u(0) = u_0 \quad \text{in } \Omega.$

• T: final time

• f and u_0 piecewise polynomial for simplicity

Spaces and norms

$$\begin{split} \boldsymbol{X} &:= L^2(0, T; H_0^1(\Omega)), \\ \|\boldsymbol{v}\|_X^2 &:= \int_0^T \|\nabla \boldsymbol{v}\|^2 \, \mathrm{d}t, \\ \boldsymbol{Y} &:= L^2(0, T; H_0^1(\Omega)) \cap H^1(0, T; H^{-1}(\Omega)), \\ \|\boldsymbol{v}\|_Y^2 &:= \int_0^T \|\partial_t \boldsymbol{v}\|_{H^{-1}(\Omega)}^2 + \|\nabla \boldsymbol{v}\|^2 \, \mathrm{d}t + \|\boldsymbol{v}(T)\|^2 \end{split}$$

I Flux Steady linear Steady nonlinear Unsteady linear Richards C

A model unsteady linear problem

The unsteady linear Darcy (heat) equation

Find $u: \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t u - \Delta u = f \quad \text{in } \Omega \times (0, T),$ $u = 0 \quad \text{on } \partial\Omega \times (0, T),$ $u(0) = u_0 \quad \text{in } \Omega.$

• T: final time

• f and u_0 piecewise polynomial for simplicity

Spaces and norms

$$\begin{split} \boldsymbol{X} &:= L^2(0, T; H_0^1(\Omega)), \\ \|\boldsymbol{v}\|_X^2 &:= \int_0^T \|\nabla \boldsymbol{v}\|^2 \, \mathrm{d}t, \\ \boldsymbol{Y} &:= L^2(0, T; H_0^1(\Omega)) \cap H^1(0, T; H^{-1}(\Omega)), \\ \|\boldsymbol{v}\|_Y^2 &:= \int_0^T \|\partial_t \boldsymbol{v}\|_{H^{-1}(\Omega)}^2 + \|\nabla \boldsymbol{v}\|^2 \, \mathrm{d}t + \|\boldsymbol{v}(T)\|^2 \end{split}$$

Weak solution

Definition (Weak solution)

 $u \in Y$ with $u(0) = u_0$ such that

$$\int_0^T \langle \partial_t u, v \rangle + (\nabla u, \nabla v) \, \mathrm{d} t = \int_0^T (f, v) \, \mathrm{d} t \qquad \forall v \in \mathbf{X}.$$

Nonsymmetry Trial space *Y*, test space *X*.

Weak solution

Definition (Weak solution)

 $u \in Y$ with $u(0) = u_0$ such that

$$\int_0^T \langle \partial_t u, v \rangle + (\nabla u, \nabla v) \, \mathrm{d} t = \int_0^T (f, v) \, \mathrm{d} t \qquad \forall \, v \in \mathbf{X}.$$

Nonsymmetry Trial space *Y*, test space *X*.

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 43 / 53

Previous results

- Picasso / Verfürth (1998), work with the energy norm of X:
 - ✓ upper bound $||u u_{\ell}||_{X}^{2} \leq C^{2} \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{\ell}^{n}} \eta_{K}^{n}(u_{\ell})^{2}$

 $\pmb{\times}$ constrained lower bound (number of mesh elements $|\mathcal{T}_\ell^n|$ and time step τ strongly linked)

- Verfürth (2003) (cf. also Bergam, Bernardi, and Mghazli (2005)), work with the Y norm:
 - ✓ upper bound $||u Iu_{\ell}||_{Y}^{2} \le C^{2} \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{\ell}^{n}} \eta_{K}^{n}(u_{\ell})^{2}$
 - ✓ efficiency $\sum_{K \in \mathcal{T}_{\ell}^{n}} \eta_{K}^{n} (u_{\ell})^{2} \leq C^{2} \|u \mathcal{I}u_{\ell}\|_{Y(I_{n})}^{2}$
 - ✓ robustness with respect to the final time *T*, no link $|T_{\ell}^n| \leftrightarrow \tau$
 - X efficiency local in time but global in space
 - X restrictions on mesh coarsening between time steps

Previous results

- Picasso / Verfürth (1998), work with the energy norm of X:
 - ✓ upper bound $||u u_{\ell}||_{X}^{2} \leq C^{2} \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{\ell}^{n}} \eta_{K}^{n}(u_{\ell})^{2}$
 - ${\it X}$ constrained lower bound (number of mesh elements $|{\cal T}_\ell^n|$ and time step τ strongly linked)
- Verfürth (2003) (cf. also Bergam, Bernardi, and Mghazli (2005)), work with the <u>Y</u> norm:
 - ✓ upper bound $||u Iu_{\ell}||_{Y}^{2} \le C^{2} \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{\ell}^{n}} \eta_{K}^{n}(u_{\ell})^{2}$
 - ✓ efficiency $\sum_{K \in \mathcal{T}_{\ell}^{n}} \eta_{K}^{n} (u_{\ell})^{2} \leq C^{2} \|u \mathcal{I}u_{\ell}\|_{Y(I_{n})}^{2}$
 - ✓ robustness with respect to the final time T, no link $|T_{\ell}^n| \leftrightarrow \tau$
 - X efficiency local in time but global in space
 - X restrictions on mesh coarsening between time steps

Augmented Y norm

$$\|u - u_{\ell}\|_{\mathcal{E}_{Y}}^{2} := \|u - \mathcal{I}u_{\ell}\|_{Y}^{2} + \underbrace{\|u_{\ell} - \mathcal{I}u_{\ell}\|_{X}^{2}}_{\text{known, computable, measures time jumps}}$$

Augmented Y norm

$$\|u - u_\ell\|_{\mathcal{E}_Y}^2 := \|u - \mathcal{I} u_\ell\|_Y^2 +$$

$$\|\boldsymbol{u}_{\ell}-\mathcal{I}\boldsymbol{u}_{\ell}\|_{X}^{2}$$

known, computable, measures time jumps

Theorem (Guaranteed and locally space-time efficient estimate)

There holds
$$\|u-u_{\ell}\|_{\mathcal{E}_{Y}}^{2} \leq \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{\ell}^{n}} \int_{I_{n}} \|\sigma_{\ell} + \nabla \mathcal{I}u_{\ell}\|_{K}^{2} + \|\nabla(u_{\ell} - \mathcal{I}u_{\ell})\|_{K}^{2} \mathrm{d}t.$$

Augmented Y norm

There

$$\|u - u_{\ell}\|_{\mathcal{E}_{Y}}^{2} := \|u - \mathcal{I}u_{\ell}\|_{Y}^{2} + \underbrace{\|u_{\ell} - \mathcal{I}u_{\ell}\|_{X}^{2}}_{\mathbb{E}_{Y}}$$

known, computable, measures time jumps

Theorem (Guaranteed and locally space-time efficient estimate)

holds
$$\|u-u_{\ell}\|_{\mathcal{E}_{Y}}^{2} \leq \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{\ell}^{n}} \int_{I_{n}} \|\boldsymbol{\sigma}_{\ell} + \nabla \mathcal{I} u_{\ell}\|_{K}^{2} + \|\nabla (u_{\ell} - \mathcal{I} u_{\ell})\|_{K}^{2} \mathrm{d}t.$$

Moreover, for each time-step interval I_n and for each element $K \in \mathcal{T}_{\ell}^n$, there holds

$$\int_{I_n} \|\sigma_\ell + \nabla \mathcal{I} u_\ell\|_{\boldsymbol{K}}^2 + \|\nabla (u_\ell - \mathcal{I} u_\ell)\|_{\boldsymbol{K}}^2 \mathsf{d} t \leq C_{\mathsf{eff}}^2 \sum_{\boldsymbol{a} \in \mathcal{V}_{\boldsymbol{K}}} |u - u_\ell|_{\mathcal{E}_{\boldsymbol{Y}}^{\boldsymbol{a},n}}^2$$

Augmented Y norm

$$\|u - u_{\ell}\|_{\mathcal{E}_{Y}}^{2} := \|u - \mathcal{I}u_{\ell}\|_{Y}^{2} + \underbrace{\|u_{\ell} - \mathcal{I}u_{\ell}\|_{X}^{2}}_{\mathbb{E}_{Y}}$$

known, computable, measures time jumps

Theorem (Guaranteed and locally space-time efficient estimate)

There holds
$$\|u-u_\ell\|_{\mathcal{E}_Y}^2 \leq \sum_{n=1}^N \sum_{K \in \mathcal{T}_\ell^n} \int_{I_n} \|\sigma_\ell + \nabla \mathcal{I} u_\ell\|_K^2 + \|\nabla (u_\ell - \mathcal{I} u_\ell)\|_K^2 \mathrm{d}t.$$

Moreover, for each time-step interval I_n and for each element $K \in \mathcal{T}_{\ell}^n$, there holds

$$\int_{u_n} \|m{\sigma}_\ell +
abla \mathcal{I} u_\ell\|_{m{K}}^2 + \|
abla (u_\ell - \mathcal{I} u_\ell)\|_{m{K}}^2 \mathsf{d} t \leq C_{\mathsf{eff}}^2 \sum_{m{a} \in \mathcal{V}_{m{K}}} |u - u_\ell|_{\mathcal{E}_Y^{m{a},n}}^2$$

Comments

✓ C_{eff} only depends on mesh shape regularity κ_T and space dimension $d \Rightarrow$ robustness w.r.t the final time *T*

Augmented Y norm

$$\|u - u_{\ell}\|_{\mathcal{E}_{Y}}^{2} := \|u - \mathcal{I}u_{\ell}\|_{Y}^{2} + \underbrace{\|u_{\ell} - \mathcal{I}u_{\ell}\|_{X}^{2}}_{\mathbb{E}_{Y}}$$

known, computable, measures time jumps

Theorem (Guaranteed and locally space-time efficient estimate)

There holds
$$\|u-u_\ell\|_{\mathcal{E}_Y}^2 \leq \sum_{n=1}^N \sum_{K\in\mathcal{T}_\ell^n} \int_{I_n} \|\sigma_\ell + \nabla\mathcal{I}u_\ell\|_K^2 + \|\nabla(u_\ell - \mathcal{I}u_\ell)\|_K^2 \mathrm{d}t.$$

Moreover, for each time-step interval I_n and for each element $K \in \mathcal{T}_{\ell}^n$, there holds

$$\int_{I_n} \|\boldsymbol{\sigma}_\ell + \nabla \mathcal{I} \boldsymbol{u}_\ell\|_{\boldsymbol{K}}^2 + \|\nabla (\boldsymbol{u}_\ell - \mathcal{I} \boldsymbol{u}_\ell)\|_{\boldsymbol{K}}^2 \mathsf{d} t \leq C_{\mathsf{eff}}^2 \sum_{\boldsymbol{a} \in \mathcal{V}_{\boldsymbol{K}}} |\boldsymbol{u} - \boldsymbol{u}_\ell|_{\mathcal{E}_{\boldsymbol{Y}}^{\boldsymbol{a},n}}^2$$

Comments

✓ C_{eff} only depends on mesh shape regularity κ_T and space dimension $d \Rightarrow$ robustness w.r.t the final time *T* and the polynomial degrees *p* and *q*

Augmented Y norm

 $\|u_\ell - \mathcal{I}u_\ell\|_X^2$

known, computable, measures time jumps

Theorem (Guaranteed and locally space-time efficient estimate)

There holds
$$\|u-u_\ell\|_{\mathcal{E}_Y}^2 \leq \sum_{n=1}^N \sum_{K \in \mathcal{T}_\ell^n} \int_{I_n} \|\sigma_\ell + \nabla \mathcal{I} u_\ell\|_K^2 + \|\nabla (u_\ell - \mathcal{I} u_\ell)\|_K^2 \mathrm{d}t.$$

Moreover, for each time-step interval I_n and for each element $K \in \mathcal{T}_{\ell}^n$, there holds

$$\int_{I_n} \|\boldsymbol{\sigma}_\ell + \nabla \mathcal{I} \boldsymbol{u}_\ell\|_{\boldsymbol{K}}^2 + \|\nabla (\boldsymbol{u}_\ell - \mathcal{I} \boldsymbol{u}_\ell)\|_{\boldsymbol{K}}^2 \mathsf{d} t \leq C_{\mathsf{eff}}^2 \sum_{\boldsymbol{a} \in \mathcal{V}_{\boldsymbol{K}}} |\boldsymbol{u} - \boldsymbol{u}_\ell|_{\mathcal{E}_{\boldsymbol{Y}}^{\boldsymbol{a},n}}^2$$

Comments

✓ C_{eff} only depends on mesh shape regularity κ_T and space dimension $d \Rightarrow$ robustness w.r.t the final time *T* and the polynomial degrees *p* and *q*

Iocal in space and in time efficiency

Outline

- Introduction
- 2 Equilibrated flux reconstruction
- Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance
- 4 Steady nonlinear problems
 - Gradient-dependent nonlinearities
 - A posteriori error estimates for an augmented energy difference
 - Numerical experiments
 - Gradient-independent nonlinearities
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
- 5 Unsteady linear problems

The Richards equation (unsteady nonlinear degenerate parabolic problems)

Conclusions

Modelling flow of water and air through soil

The Richards equation

Find $u: \Omega \times (0, T) \rightarrow \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K}_{\kappa}(S(u))(\nabla u + \mathbf{g})] = f \quad \text{in } \Omega \times (0, T),$ $u = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \quad \text{in } \Omega.$

Modelling flow of water and air through soil

The Richards equation

Find $u: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K}_{\kappa}(S(u))(\nabla u + \mathbf{g})] = f \text{ in } \Omega \times (0, T),$ $u = 0 \text{ on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \text{ in } \Omega.$

Setting

- U: pressure
- s = S(u): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \leq d \leq 3$, open bounded polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor *K*, source term *f*, gravity *g*, initial saturation *s*₀
- nonlinear (degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $u: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K}_{\mathbf{K}}(S(u))(\nabla u + \mathbf{g})] = f \text{ in } \Omega \times (0, T),$ $u = 0 \text{ on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \text{ in } \Omega.$

Setting

- U: pressure
- s = S(u): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open bounded polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor K, source term f, gravity g, initial saturation s_0
- nonlinear (degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $u: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K}_{\kappa}(S(u))(\nabla u + \mathbf{g})] = f \text{ in } \Omega \times (0, T),$ $u = 0 \text{ on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \text{ in } \Omega.$

Setting

- U: pressure
- s = S(u): saturation
- $\Omega \subset \mathbb{R}^d$, $1 \le d \le 3$, open bounded polytope with Lipschitz boundary $\partial \Omega$
- T: final time
- diffusion tensor K, source term f, gravity g, initial saturation s_0
- nonlinear (degenerate) functions S and κ

Modelling flow of water and air through soil

The Richards equation

Find $u: \Omega \times (0, T) \to \mathbb{R}$ such that $\partial_t S(u) - \nabla \cdot [\mathbf{K}_{\kappa}(S(u))(\nabla u + \mathbf{g})] = f \quad \text{in } \Omega \times (0, T),$ $u = 0 \quad \text{on } \partial\Omega \times (0, T),$ $(S(u))(0) = s_0 \quad \text{in } \Omega.$

Nonlinear (degenerate) functions S and κ

- Use all the tools from the above cases.
- Treatment of time-dependent nonlinearity: sharp Gronwall lemma not neglecting the integral terms.
- Avoids the appearance of the usual factor e^T, but gives rise to integrated norms.

- Use all the tools from the above cases.
- Treatment of time-dependent nonlinearity: sharp Gronwall lemma not neglecting the integral terms.
- Avoids the appearance of the usual factor e^T, but gives rise to integrated norms.
- Iocal in space and in time efficiency

- Use all the tools from the above cases.
- Treatment of time-dependent nonlinearity: sharp Gronwall lemma not neglecting the integral terms.
- Avoids the appearance of the usual factor e^T, but gives rise to integrated norms.
- Iocal in space and in time efficiency
- ✓ robustness w.r.t the final time T

- Use all the tools from the above cases.
- Treatment of time-dependent nonlinearity: sharp Gronwall lemma not neglecting the integral terms.
- Avoids the appearance of the usual factor e^T, but gives rise to integrated norms.
- Iocal in space and in time efficiency
- ✓ robustness w.r.t the final time T
- X heuristic estimators for the treatment of degeneracy

- Use all the tools from the above cases.
- Treatment of time-dependent nonlinearity: sharp Gronwall lemma not neglecting the integral terms.
- Avoids the appearance of the usual factor e^T, but gives rise to integrated norms.
- Iocal in space and in time efficiency
- ✓ robustness w.r.t the final time T
- X heuristic estimators for the treatment of degeneracy
- X norm change between efficiency and reliability

- Use all the tools from the above cases.
- Treatment of time-dependent nonlinearity: **sharp Gronwall lemma** not neglecting the integral terms.
- Avoids the appearance of the usual factor e^T, but gives rise to integrated norms.
- Iocal in space and in time efficiency
- ✓ robustness w.r.t the final time T
- X heuristic estimators for the treatment of degeneracy
- X norm change between efficiency and reliability
- X no robustness wrt the strength of nonlinearities

- Use all the tools from the above cases.
- Treatment of time-dependent nonlinearity: sharp Gronwall lemma not neglecting the integral terms.
- Avoids the appearance of the usual factor e^T, but gives rise to integrated norms.
- Iocal in space and in time efficiency
- ✓ robustness w.r.t the final time T
- X heuristic estimators for the treatment of degeneracy
- X norm change between efficiency and reliability
- X no robustness wrt the strength of nonlinearities
- Details in K. Mitra, M. Vohralík, preprint (2022)

Estimates Numerical experiments

How large is the error? Robustness wrt the final time (known sol.)

Estimates Numerical experiments

Where (in space and time) is the error **localized**? (benchmark case)

Exact local error

K. Mitra, M. Vohralík, preprint (2022)

M. Vohralík

A posteriori error estimates robust wrt nonlinearities & final time 49 / 53

Realistic case

Setting

- unit square $\Omega = (0, 1)^2$
- \bullet T=1
- $f(\mathbf{x}, u) = 0$, heterogeneous and anisotropic \mathbf{K} , $\mathbf{g} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- Brooks–Corey-type saturation and permeability laws

$$S(u) := egin{cases} rac{1}{(2-u)^{rac{1}{3}}} & ext{if } u < 1, \ 1 & ext{if } u \geq 1 \end{cases}, \quad \kappa(s) := s^3$$

• $(h, \tau) = (h_0, \tau_0)/\ell$ with $\ell \in \{1, 2, 4\}, h_0 = 0.2$, and $\tau_0 = 0.04$

Estimates Numerical experiments

Realistic case

Numerical saturation for $\ell = 2$ at t = 1

Estimates Numerical experiments

Where (in space and time) is the error **localized**? (realistic test case)

Exact local error

K. Mitra, M. Vohralík, preprint (2022)

M. Vohralík

- Introduction
- 2 Equilibrated flux reconstruction
- Steady linear problems
 - A posteriori error estimates
 - Recovering mass balance
- 4 Steady nonlinear problems
 - Gradient-dependent nonlinearities
 - A posteriori error estimates for an augmented energy difference
 - Numerical experiments
 - Gradient-independent nonlinearities
 - A posteriori error estimates for an iteration-dependent norm
 - Numerical experiments
 - Unsteady linear problems

The Richards equation (unsteady nonlinear degenerate parabolic problems

Conclusions

Conclusions

- a posteriori certification of the error for nonlinear and unsteady problems
- robustness with respect to the strength of nonlinearities and final time for model cases (nonlinear or unsteady)
- localization of the error in space and in time
- theory and sound numerical performance for the Richards equation

Conclusions

Conclusions

- a posteriori certification of the error for nonlinear and unsteady problems
- robustness with respect to the strength of nonlinearities and final time for model cases (nonlinear or unsteady)
- localization of the error in space and in time
- theory and sound numerical performance for the Richards equation
- HARNIST A., MITRA K., RAPPAPORT A., VOHRALÍK M. Robust energy a posteriori estimates for nonlinear elliptic problems. HAL Preprint 04033438, 2023.
- MITRA K., VOHRALÍK M. Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic problems in iteration-dependent norms. An orthogonal decomposition result based on iterative linearization. HAL Preprint 04156711, 2023.
- ERN A., SMEARS, I., VOHRALÍK M. Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, SIAM J. Numer. Anal. 55 (2017), 2811–2834.
- MITRA K., VOHRALIK M. A posteriori error estimates for the Richards equation. HAL Preprint 03328944, 2022.

Conclusions

Conclusions

- a posteriori certification of the error for nonlinear and unsteady problems
- robustness with respect to the strength of nonlinearities and final time for model cases (nonlinear or unsteady)
- localization of the error in space and in time
- theory and sound numerical performance for the Richards equation
- HARNIST A., MITRA K., RAPPAPORT A., VOHRALIK M. Robust energy a posteriori estimates for nonlinear elliptic problems. HAL Preprint 04033438, 2023.
- MITRA K., VOHRALÍK M. Guaranteed, locally efficient, and robust a posteriori estimates for nonlinear elliptic problems in iteration-dependent norms. An orthogonal decomposition result based on iterative linearization. HAL Preprint 04156711, 2023.
- ERN A., SMEARS, I., VOHRALIK M. Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, SIAM J. Numer. Anal. 55 (2017), 2811–2834.
 - MITRA K., VOHRALÍK M. A posteriori error estimates for the Richards equation. HAL Preprint 03328944, 2022.

Thank you for your attention!

A posteriori error estimates robust wrt nonlinearities & final time 53 / 53

9 Fenchel conjugate, dual energy, flux equilibration

10 Adaptivity

Sobolev space and error

Sobolev space

 $H_0^1(\Omega)$

Sobolev norm error

$$\left\|\nabla(u_\ell-u)\right\|$$

Residual and its dual norm

Definition (Residual)

$$\begin{split} \mathcal{R}: H_0^1(\Omega) \to H^{-1}(\Omega); \text{ for } w \in H_0^1(\Omega), \, \mathcal{R}(w) \in H^{-1}(\Omega) \text{ is given by} \\ \langle \mathcal{R}(w), v \rangle := (a(|\nabla w|) \nabla w, \nabla v) - (f, v), \quad v \in H_0^1(\Omega). \end{split}$$

Definition (Dual norm of the finite element residual)

$$|||\mathcal{R}(u_{\ell}) - \mathcal{R}(u)|||_{-1} = \boxed{|||\mathcal{R}(u_{\ell})|||_{-1}} := \sup_{v \in H_0^1(\Omega)} \frac{\langle \mathcal{R}(u_{\ell}), v \rangle}{|||v|||}$$

- $|||\mathcal{R}(u_\ell)|||_{-1} \ge 0$, $|||\mathcal{R}(u_\ell)|||_{-1} = 0$ if and only if $u_\ell = u$
- subordinate to the choice of the norm $||| \cdot |||$ on the Sobolev space $H_0^1(\Omega)$
- the most straightforward choice: $|||v||| := ||\nabla v||$
- mathematically-based error measure

Residual and its dual norm

Definition (Residual)

$$\begin{split} \mathcal{R}: H_0^1(\Omega) \to H^{-1}(\Omega); \text{ for } w \in H_0^1(\Omega), \, \mathcal{R}(w) \in H^{-1}(\Omega) \text{ is given by} \\ \langle \mathcal{R}(w), v \rangle := (a(|\nabla w|) \nabla w, \nabla v) - (f, v), \quad v \in H_0^1(\Omega). \end{split}$$

Definition (Dual norm of the finite element residual)

$$\||\mathcal{R}(u_\ell) - \mathcal{R}(u)\||_{-1} = \boxed{\||\mathcal{R}(u_\ell)\||_{-1}} := \sup_{v \in \mathcal{H}_0^1(\Omega)} \frac{\langle \mathcal{R}(u_\ell), v \rangle}{\||v|\|}$$

- $|||\mathcal{R}(u_\ell)|||_{-1} \ge 0$, $|||\mathcal{R}(u_\ell)|||_{-1} = 0$ if and only if $u_\ell = u$
- subordinate to the choice of the norm $||| \cdot |||$ on the Sobolev space $H_0^1(\Omega)$
- the most straightforward choice: $|||v||| := ||\nabla v||$
- mathematically-based error measure

land a

9 Fenchel conjugate, dual energy, flux equilibration

10 Adaptivity

Two-phase flow

Fenchel conjugate, dual energy, flux equilibration

Definition (Fenchel conjugate)

$$\phi^*(\cdot, \boldsymbol{s}) := \sup_{r \in [0,\infty)} (\boldsymbol{sr} - \phi(\cdot, r)).$$

Definition (Dual energy)

$$\mathcal{J}^*({oldsymbol v}):=-\int_\Omega \phi^*(\cdot,|{oldsymbol v}|), \quad {oldsymbol v}\in {oldsymbol H}(\operatorname{div},\Omega).$$

Definition (Flux equilibration)

$$\sigma_{\ell}^{\boldsymbol{a},k} := \arg \min_{\substack{\boldsymbol{v}_{\ell} \in \mathcal{RT}_{p+1}(\mathcal{T}_{\boldsymbol{a}}) \cap \boldsymbol{H}_{0}(\operatorname{div},\omega_{\boldsymbol{a}}) \\ \nabla \cdot \boldsymbol{v}_{\ell} = \Pi_{\ell,\rho}(\psi^{\boldsymbol{a}}f - \nabla\psi^{\boldsymbol{a}} \cdot (\boldsymbol{A}_{\ell}^{k-1} \nabla u_{\ell}^{k} - \boldsymbol{b}_{\ell}^{k-1}))} \| (\boldsymbol{A}_{\ell}^{k-1})^{-\frac{1}{2}} (\psi^{\boldsymbol{a}} \Pi_{\ell,p-1}^{\boldsymbol{RTN}} (\boldsymbol{A}_{\ell}^{k-1} \nabla u_{\ell}^{k} - \boldsymbol{b}_{\ell}^{k-1}) + \boldsymbol{v}_{\ell}) \|_{\omega_{\boldsymbol{a}}}^{2}.$$

M. Vohralík

Inn

Fenchel conjugate, dual energy, flux equilibration

Definition (Fenchel conjugate)

$$\phi^*(\cdot, \boldsymbol{s}) := \sup_{r \in [0,\infty)} (\boldsymbol{sr} - \phi(\cdot, r)).$$

Definition (Dual energy)

$$\mathcal{J}^*(oldsymbol{v}) := -\int_\Omega \phi^*(\cdot, |oldsymbol{v}|), \quad oldsymbol{v} \in oldsymbol{H}(\operatorname{div}, \Omega).$$

Definition (Flux equilibration)

$$\sigma_{\ell}^{\boldsymbol{a},k} := \arg \min_{\substack{\boldsymbol{v}_{\ell} \in \mathcal{RT}_{p+1}(\mathcal{T}_{\boldsymbol{a}}) \cap \boldsymbol{H}_{0}(\operatorname{div},\omega_{\boldsymbol{a}}) \\ \nabla \cdot \boldsymbol{v}_{\ell} = \Pi_{\ell,\rho}(\psi^{\boldsymbol{a}}f - \nabla\psi^{\boldsymbol{a}} \cdot (\boldsymbol{A}_{\ell}^{k-1} \nabla u_{\ell}^{k} - \boldsymbol{b}_{\ell}^{k-1}))} \| (\boldsymbol{A}_{\ell}^{k-1})^{-\frac{1}{2}} (\psi^{\boldsymbol{a}} \Pi_{\ell,p-1}^{\boldsymbol{RTN}} (\boldsymbol{A}_{\ell}^{k-1} \nabla u_{\ell}^{k} - \boldsymbol{b}_{\ell}^{k-1}) + \boldsymbol{v}_{\ell}) \|_{\omega_{\boldsymbol{a}}}^{2}.$$

M. Vohralík

Ina

Fenchel conjugate, dual energy, flux equilibration

Definition (Fenchel conjugate)

$$\phi^*(\cdot, \boldsymbol{s}) := \sup_{r \in [0,\infty)} (\boldsymbol{sr} - \phi(\cdot, r)).$$

Definition (Dual energy)

$$\mathcal{J}^*({oldsymbol v}) := -\int_\Omega \phi^*(\cdot, |{oldsymbol v}|), \quad {oldsymbol v} \in {oldsymbol H}(\operatorname{div}, \Omega).$$

Definition (Flux equilibration)

$$\sigma_{\ell}^{\boldsymbol{a},k} := \arg \min_{\substack{\boldsymbol{v}_{\ell} \in \mathcal{RT}_{p+1}(\mathcal{T}_{\boldsymbol{a}}) \cap \boldsymbol{H}_{0}(\operatorname{div},\omega_{\boldsymbol{a}}) \\ \nabla \cdot \boldsymbol{v}_{\ell} = \Pi_{\ell,p}(\psi^{\boldsymbol{a}} - \nabla \psi^{\boldsymbol{a}} \cdot (\boldsymbol{A}_{\ell}^{k-1} \nabla u_{\ell}^{k} - \boldsymbol{b}_{\ell}^{k-1}))} \| (\boldsymbol{A}_{\ell}^{k-1})^{-\frac{1}{2}} (\psi^{\boldsymbol{a}} \Pi_{\ell,p-1}^{\boldsymbol{RTN}} (\boldsymbol{A}_{\ell}^{k-1} \nabla u_{\ell}^{k} - \boldsymbol{b}_{\ell}^{k-1}) + \boldsymbol{v}_{\ell}) \|_{\omega_{\boldsymbol{a}}}^{2}.$$

9 Fenchel conjugate, dual energy, flux equilibration

Two-phase flow

Decreasing the error efficiently: optimal decay rate wrt DoFs

Ínría Esteter

M. Vohralík

Fenchel conjugate, dual energy, flux equilibration

10 Adaptivity

Where (in space and time) is the error **localized**? (two-phase flow)

M. Vohralík, M. Wheeler, Computational Geosciences (2013)

A posteriori error estimates robust wrt nonlinearities & final time 58 / 53

All error components (two-phase flow)

M. Vohralík, M. Wheeler, Computational Geosciences (2013)

A posteriori error estimates robust wrt nonlinearities & final time 59 / 53