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Five widespread beliefs about mixed finite elements

Five widespread beliefs about mixed finite elements

there exist no local flux expressions
there is no discrete maximum principle
they cannot work on general polygonal meshes
they cannot be implemented with one unknown/element
they are only related to finite difference, finite volume,
mimetic finite difference, or MPFA through approximate
numerical quadratures

All these beliefs are false!
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Motivations

Motivations of the present work

recall the rectifications to the five false beliefs
present a unified framework in which MFEs with one
unknown/element can be derived/studied/used
present a comparative numerical study
show closeness in building principles of MFE and
FD/FV/MFD/MPFA, even on general polygonal meshes
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Model problem and mixed finite elements
A model second-order elliptic problem

−∇ · (S∇p) = g in Ω,

p = 0 on ∂Ω

Mixed finite element method
find ph ∈ Φh and uh ∈ Vh such that

(S−1uh,vh)− (ph,∇ · vh) = 0 ∀vh ∈ Vh,

(∇ · uh, φh) = (g, φh) ∀φh ∈ Φh

Φh, Vh: Raviart–Thomas–Nédélec MFE space
Matrix form

(
A Bt

B 0

)(
U
P

)
=

(
F
G

)

indefinite, saddle point type
both fluxes U (1/side) and potentials P (1/element) involved
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Equivalence with nonconforming finite elements

Crouzeix–Raviart nonconforming finite element method
find λ̃h ∈ Ψ̃h such that

(S∇λ̃h,∇ψ̃h) = (g, ψ̃h) ∀ψ̃h ∈ Ψ̃h

degrees of freedom: 1 potential/side (vector Λ)
matrix form

ZΛ = E

Z is symmetric and positive definite
Equivalence of MFEs with nonconforming finite elements

MFEs −→ Lagrange multipliers Λ, mixed-hybrid FEM:
ZΛ = E

same matrices and RHS as in the nonconforming finite
element method (when S and g are piecewise constant)
λ̃h from MFEs and λ̃h from NCFEs coincide
Arnold & Brezzi 1985, Marini 1985, Arbogast & Chen
1995, Chen 1996
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Different representations of the MFE solution
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4-point finite volume scheme
4-point finite volume scheme (S = I)

find p̄h ∈ Φh such that

−
∑

L∈N (K )

p̄h|L − p̄h|K
dK ,L

|σK ,L| = (g,1)K ∀K ∈ Th

σK,L K

L

• xK

•xL

·dK,L

nK

degrees of freedom: 1 potential/element (vector P)
matrix form

SP = H

S is symmetric and positive definite (S scalar and Th Del.)
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Equivalence with 4-point finite volumes

Equivalence of MFEs with 4-point finite volumes

let g = 0, S = I, and Th consist of equilateral simplices:
then ph from MFEs and p̄h from FVs coincide
g 6= 0, S 6= I, or Th not consisting of equilateral simplices:
ph from MFEs and p̄h from FVs do not coincide anymore
conclusion: MFEs and FVs are different
this conclusion is almost completely wrong
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Equivalence with 4-point finite volumes

in MFEs (Marini 1985):

ph|K = λ̃h(xK ) +
gK

2d |K |((x− xK )tS−1
K (x− xK ),1)K

xK is the barycenter
ph represents the mean value of the potential
influence of the source term g

in FVs, if g = 0 (Younès, Mose, Ackerer, & Chavent
1999–2004):

p̄h|K = λ̃h(zK )

zK is the circumcenter
p̄h represents the point value of the potential
no influence of the source term g

MFEs and FVs are equivalent when g is constant
holds on arbitrary simplicial meshes (not necessarily
Delaunay)!
holds for full matrix S!
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Links to MFDs and MPFAs

Links to the mimetic finite difference and multi-point
flux-approximation methods

using approximate numerical integration
Klausen & Winther, 2006
Wheeler & Yotov, 2006
Aavatsmark, Eigestad, Klausen, Wheeler, & Yotov, 2007
Droniou, Eymard, Gallouët, & Herbin, 2010
Bause Hoffmann, & Knabner, 2010
. . . Brezzi, da Veiga, Lipnikov, Manzini, Shashkov . . .
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Discrete maximum principle in MFEs (S = I)

DMP for the Lagrange multipliers λσ (values of λ̃h in side
barycenters) whenever Th is acute (equivalence with the
NCFE method)
DMP in 2D for the values p̄K (values of λ̃h in
circumcenters) whenever Th is Delaunay and the source g
is constant (equivalence with the FV method)
DMP not necessarily for the original values pK (recall that
pK = value of λ̃h in the barycenter + a small influence of
the source term)
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General polygonal meshes

A general polygonal mesh T̂H

ΩT̂H

nonconvex and non star-shaped elements in T̂H

T̂H can be nonmatching
maximal number of sides of K ∈ T̂H is not limited
T̂H is not necessarily shape-regular
only assumption: existence of a simplicial submesh Th
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MFEs on general polygonal meshes
MFEs on Th

(
A Bt

B 0

)(
U
P

)
=

(
F
G

)

MFEs on T̂H
(

Â B̂t

B̂ 0

)(
Û
P̂

)
=

(
F̂
Ĝ

)

Û: flux unknowns related to the sides of T̂H only
P̂: potential unknowns related to the elements of T̂H only
indefinite, saddle point system, well-posed
derived by static condensation from MFEs on Th (inverses
of loc. matrices corresponding to local Neumann problems)
works for arbitrary order
equivalent to the formulation on Th (a priori and a
posteriori error estimates, discrete maximum principle, . . . )
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Ĝ

)
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Û
P̂

)
=

(
F̂
Ĝ
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Ẑ is symmetric and positive definite
derived by static condensation from MFEs on Th (inverses
of local matrices corresponding to local Dirichlet problems)
works for arbitrary order
equivalent to the formulation on Th (a priori and a
posteriori error estimates, discrete maximum principle . . . )

Martin Vohralík and Barbara Wohlmuth MFEs with one unknown per element and complements



I Equiv. DMP Pol. meshes 1 unkn per el. Num. exp. C

MFEs on general polygonal meshes

MFEs on Th

ZΛ = E

MFEs on T̂H
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Local flux expression from the Lagrange multipliers

Nonconforming finite element method
find λ̃h ∈ Ψ̃h such that

(S∇λ̃h,∇ψ̃h) = (g, ψ̃h) ∀ψ̃h ∈ Ψ̃h

Local flux expression from the Lagrange multipliers
there holds (Marini 1985)

uh|K = −SK∇λ̃h|K +
gK

d
(x− xK ) ∀K ∈ Th

xK : barycenter of K
gK : mean value of the source term g over K
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A new element value

A new element value in K ∈ Th

zK : a new point related to K (not necessarily inside K )
new element value: p̄K = λ̃h(zK )
λ̃h expressed in the three points xσ, xγ , and zK (d = 2)
Lagrange basis functions ϕ̃σ, ϕ̃γ , and ϕ̃K

uh|K = −SK∇
( ∑

σ∈EV ,K

λσϕ̃σ + p̄K ϕ̃K

)
+

gK

d
(x− xK )

•zK

K

L

σ

γ

xγ

xσ
V
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Definition of a local problem
Definition of a local problem

consider a patch TV of the elements around a vertex V
given the new element values p̄K and λσ, σ ∈ E int

V , in the
patch, express the fluxes uh in the patch
impose the continuity of uh on the interior sides (E int

V ) of the
patch ∑

K∈TV ;σ∈EK

〈uh · nK ,1〉σ = 0 ∀σ ∈ E int
V

local problem: given P̄V={p̄K}K∈TV , find Λint
V ={λγ}γ∈E int

V
s.t.

MV Λint
V = G̃V − JV P̄V

the same building principle as that of MPFA methods

σ4
σ5

σ1

σ2

σ3

γ4

γ5

γ1

γ2

γ3

K1

K2

K3

K4

K5

V

TV = {Ki}5i=1

E int
V = {σi}5i=1

Eext
V = {γi}5i=1

EV = E int
V ∪ Eext

V
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S-circumcenter as the evaluation point

S-circumcenter as the point zK

circumcenter when SK = IsK
the approach of Younès, Mose, Ackerer, & Chavent, 1999
MV gets diagonal
no local linear system needs to be solved
two-point flux expression (on arbitrary triangular grids and
full-matrix piecewise constant S)
impossible in 3D (except particular cases)
MV can explode (modifications necessary):

K

L

•zK = zL
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Barycenter as the evaluation point

Barycenter as the point zK

this is the approach of Vohralík, 2004/2006
MV is not diagonal (unless barycenter = circumcenter)
a local linear system needs to be solved
multi-point flux expression
works generally in d space dimensions
MV can get singular (modifications necessary):

V 
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Changing adaptively the evaluation point

Changing adaptively the evaluation point

change zK according to the local geometry and diffusion
tensor
ensure the well-posedness of the local problems
influence the properties of the local matrices MV

influence the properties of the final matrix
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tensor
ensure the well-posedness of the local problems
influence the properties of the local matrices MV

influence the properties of the final matrix
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Examples of the different evaluation points zK

S =

(
0.7236 0.3804
0.3804 0.4764

)

•
zK (barycenter)

•zK (circumcenter)

• zK (S-circumcenter)
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S-circumcenter barycenter/opt. evaluation point
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Expressing the Lagrange multipliers Λ or the fluxes U

Expressing the Lagrange multipliers Λ or the fluxes U

local problems give Λint
V = (MV )−1(G̃V − JV P̄V )

for every vertex V , we have one expression for Λint
V

run through all vertices and combine the (weighted)
inverses of the local condensation matrices
this gives

Λ = M̃invG̃ −MinvP̄

similarly

U = ÕinvG −OinvP̄
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Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

recall U = ÕinvG −OinvP̄
put this into BU = G
this gives

S̄P̄ = H̄

with

S̄ = −BOinv, H̄ = G − BÕinvG

zK = S-circumcenter gives the FV method (Younès, Mose,
Ackerer, & Chavent, 1999)
zK = barycenter gives the CMFE method (Vohralík,
2004/2006) (fully equivalent to the MPFA-O method when
g = 0 (Hoffmann, 2008))
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Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

recall Λ = M̃invG̃ −MinvP̄
put this into NΛ = P̄ (p̄K are punctual values of λ̃h)
this gives

S̄P̄ = H̄

with

S̄ = NMinv + I, H̄ = NM̃invG̃

using zK = S-circumcenter, we name it the MFEC method
using zK = barycenter, we name it the MFEB method
using zK = the optimal evaluation point, we name it the
MFEO method
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Model problem

Model problem

Ω = (0,1)× (0,1)

inhomogeneous Dirichlet boundary condition given by
p(x , y) = 0.1y + 0.9
K ∈ Th:

S|K =

(
cos(θK ) − sin(θK )
sin(θK ) cos(θK )

)(
sK 0
0 νsK

)(
cos(θK ) sin(θK )
− sin(θK ) cos(θK )

)

homogeneous isotropic case, sK = 1 for all K ∈ Th, ν = 1
anisotropic case, sK = 1 for all K ∈ Th,
θK ∈

{
π
5 ,

3π
4 ,

π
2 ,

3π
5 ,

π
3

}
, ν = 0.2

inhomogeneous case, sK ∈ {10,1,0.1,0.01,0.001}, ν = 1
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Initial mesh

Initial mesh and the distribution of the inhomogeneities
and anisotropies
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Matrices of the different methods
System matrix sparsity patterns
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Results, homogeneous isotropic case

CG/ PCG/
DS Bi-CGStab PBi-CGStab

IC/
Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU ILU Iter.

MFEB 13824 NPD 14 177652 7564 7580 0.27 4.86 324.5 0.81 0.36 9.0
MFEC 13824 NNS 4 55040 11256 11056 0.09 2.23 372.0 0.42 0.19 6.5
MFEO 13824 NPD 14 177652 7531 7558 0.28 4.08 270.0 0.80 0.41 7.5
CMFE 13824 NPD 14 177652 7397 7380 0.27 4.70 312.0 0.83 0.39 8.5
FV 13824 SPD 4 55040 65722 8898 0.07 3.09 1098.0 0.42 0.17 17.0
NCFE 20608 SPD 5 102528 14064 9944 0.14 2.92 620.0 1.11 0.56 19.0
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Results, anisotropic case

CG/ PCG/
DS Bi-CGStab PBi-CGStab

IC/
Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU ILU Iter.

MFEB 13824 NPD 14 177652 14489 11203 0.28 6.61 448.0 0.98 0.59 6.5
MFEC 13824 NID 4 55040 2401279 416769 0.08 — — 0.45 0.20 7.0
MFEO 13824 NPD 14 177652 13401 10767 0.27 6.51 440.5 0.95 0.41 10.0
CMFE 13824 NPD 14 177652 9276 7758 0.28 5.27 350.5 0.84 0.38 9.0
FV 13824 SID 4 55040 247055 239934 0.09 — — 0.45 0.20 7.0
NCFE 20608 SPD 5 102528 25393 16969 0.18 4.03 850.0 1.12 0.41 30.0
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Results, inhomogeneous case

CG/ PCG/
DS Bi-CGStab PBi-CGStab

IC/
Meth. Un. Mat. St. Nonz. CN CNS CPU CPU Iter. CPU ILU Iter.

MFEB 13824 NPD 14 177652 819248 740706 0.28 13.33 897.5 1.05 0.62 6.5
MFEC 13824 NNS 4 55040 903789 763849 0.09 5.34 947.5 0.47 0.20 7.5
MFEO 13824 NPD 14 177652 820367 739957 0.28 12.45 790.5 1.05 0.56 8.0
CMFE 13824 NPD 14 177652 2500730 478974 0.28 102.27 6842.5 1.01 0.41 10.5
FV 13824 SPD 4 55040 16387758 497974 0.07 39.41 14101.0 0.44 0.17 16.0
NCFE 20608 SPD 5 102528 4797335 670623 0.18 52.42 11226.0 1.22 0.64 16.0
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Conclusions and future work

Conclusions
mixed finite elements: one method with

saddle point / symmetric pos. definite / nonsymmetric pos.
definite / symmetric indefinite / nonsymmetric indef. matrix
U and P unknowns / Λ unknowns / P unknowns
narrow stencil and two-point flux expressions / wider stencil
and multi-point flux expressions
discrete maximum principle for values in some points but
not in some others

no free parameter to choose, no stabilization, the best
method if your criterion is min. complementary energy
close relations in building principles between MFE/FD/FV/
MFD/MPFA, even on general polygonal meshes

Work in progress
a general principle for nonconforming finite elements
extensions to all order MFE schemes
multigrid solvers
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