Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods

Martin Vohralík and Barbara Wohlmuth

Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie (Paris 6)

Bordeaux, March 30, 2011

Outline

- Known equivalences
- Oiscrete maximum principle
 - General polygonal meshes
- One unknown per element: a unified construction principle and a link to the MPFA
 - Local problems definition and a link to the MPFA method
 - Global problems definition
- 6 Numerical experiments
 - 7 Conclusions and future work

Outline

- Introduction and motivation
- 2 Known equivalences
- Oiscrete maximum principle
- General polygonal meshes
- One unknown per element: a unified construction principle and a link to the MPFA
 - Local problems definition and a link to the MPFA method
 - Global problems definition
- 6 Numerical experiments
- Conclusions and future work

Five widespread beliefs about mixed finite elements

- there exist no local flux expressions
- there is no discrete maximum principle
- they cannot work on general polygonal meshes
- they cannot be implemented with one unknown/element
- they are only related to finite difference, finite volume, mimetic finite difference, or MPFA through approximate numerical quadratures

Five widespread beliefs about mixed finite elements

- there exist no local flux expressions
- there is no discrete maximum principle
- they cannot work on general polygonal meshes
- they cannot be implemented with one unknown/element
- they are only related to finite difference, finite volume, mimetic finite difference, or MPFA through approximate numerical quadratures

Five widespread beliefs about mixed finite elements

- there exist no local flux expressions
- there is no discrete maximum principle
- they cannot work on general polygonal meshes
- they cannot be implemented with one unknown/element
- they are only related to finite difference, finite volume, mimetic finite difference, or MPFA through approximate numerical quadratures

Five widespread beliefs about mixed finite elements

- there exist no local flux expressions
- there is no discrete maximum principle
- they cannot work on general polygonal meshes
- they cannot be implemented with one unknown/element
- they are only related to finite difference, finite volume, mimetic finite difference, or MPFA through approximate numerical quadratures

Five widespread beliefs about mixed finite elements

- there exist no local flux expressions
- there is no discrete maximum principle
- they cannot work on general polygonal meshes
- they cannot be implemented with one unknown/element
- they are only related to finite difference, finite volume, mimetic finite difference, or MPFA through approximate numerical quadratures

Five widespread beliefs about mixed finite elements

- there exist no local flux expressions
- there is no discrete maximum principle
- they cannot work on general polygonal meshes
- they cannot be implemented with one unknown/element
- they are only related to finite difference, finite volume, mimetic finite difference, or MPFA through approximate numerical quadratures

Five widespread beliefs about mixed finite elements

- there exist no local flux expressions
- there is no discrete maximum principle
- they cannot work on general polygonal meshes
- they cannot be implemented with one unknown/element
- they are only related to finite difference, finite volume, mimetic finite difference, or MPFA through approximate numerical quadratures

- recall the rectifications to the five false beliefs
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- present a comparative numerical study
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes

- recall the rectifications to the five false beliefs
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- present a comparative numerical study
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes

- recall the rectifications to the five false beliefs
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- present a comparative numerical study
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes

- recall the rectifications to the five false beliefs
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- present a comparative numerical study
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes

- recall the rectifications to the five false beliefs
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- present a comparative numerical study
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes

Model problem and mixed finite elements

A model second-order elliptic problem

$$\begin{aligned} -\nabla\cdot(\mathbf{S}\nabla p) &= g \qquad \text{ in } \Omega, \\ p &= 0 \qquad \text{ on } \partial\Omega \end{aligned}$$

Mixed finite element method find $p_h \in \Phi_h$ and $\mathbf{u}_h \in \mathbf{V}_h$ such that

$$\begin{aligned} (\mathbf{S}^{-1}\mathbf{u}_h,\mathbf{v}_h) - (p_h,\nabla\cdot\mathbf{v}_h) &= \mathbf{0} \qquad \forall \,\mathbf{v}_h \in \mathbf{V}_h, \\ (\nabla\cdot\mathbf{u}_h,\phi_h) &= (g,\phi_h) \qquad \forall \phi_h \in \Phi_h \end{aligned}$$

• Φ_h, **V**_h: Raviart–Thomas–Nédélec MFE space **Matrix form**

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

- indefinite, saddle point type
- both fluxes U (1/side) and potentials P (1/element) involved

Martin Vohralík and Barbara Wohlmuth

Model problem and mixed finite elements

A model second-order elliptic problem

$$\begin{aligned} -\nabla\cdot(\mathbf{S}\nabla p) &= g & \text{ in } \Omega, \\ p &= 0 & \text{ on } \partial\Omega \end{aligned}$$

Mixed finite element method

find $p_h \in \Phi_h$ and $\mathbf{u}_h \in \mathbf{V}_h$ such that

$$\begin{aligned} (\mathbf{S}^{-1}\mathbf{u}_h,\mathbf{v}_h) - (p_h,\nabla\cdot\mathbf{v}_h) &= 0 & \forall \mathbf{v}_h \in \mathbf{V}_h, \\ (\nabla\cdot\mathbf{u}_h,\phi_h) &= (g,\phi_h) & \forall \phi_h \in \Phi_h \end{aligned}$$

Φ_h, V_h: Raviart–Thomas–Nédélec MFE space
 Matrix form

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

- indefinite, saddle point type
- both fluxes U (1/side) and potentials P (1/element) involved

Martin Vohralík and Barbara Wohlmuth

Model problem and mixed finite elements

A model second-order elliptic problem

$$\begin{aligned} -\nabla\cdot\left(\mathbf{S}\nabla\rho\right) &= g \qquad \text{ in } \Omega, \\ p &= 0 \qquad \text{ on } \partial\Omega \end{aligned}$$

Mixed finite element method

find $p_h \in \Phi_h$ and $\mathbf{u}_h \in \mathbf{V}_h$ such that

$$\begin{aligned} (\mathbf{S}^{-1}\mathbf{u}_h,\mathbf{v}_h) - (p_h,\nabla\cdot\mathbf{v}_h) &= 0 & \forall \mathbf{v}_h \in \mathbf{V}_h, \\ (\nabla\cdot\mathbf{u}_h,\phi_h) &= (g,\phi_h) & \forall \phi_h \in \Phi_h \end{aligned}$$

• Φ_h, **V**_h: Raviart–Thomas–Nédélec MFE space **Matrix form**

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} \boldsymbol{U} \\ \boldsymbol{P} \end{array}\right) = \left(\begin{array}{c} \boldsymbol{F} \\ \boldsymbol{G} \end{array}\right)$$

- indefinite, saddle point type
- both fluxes U (1/side) and potentials P (1/element) involved

Martin Vohralík and Barbara Wohlmuth

Outline

- General polygonal meshes
- One unknown per element: a unified construction principle and a link to the MPFA
 - Local problems definition and a link to the MPFA method
 - Global problems definition
- 6 Numerical experiments
- Conclusions and future work

Equivalence with nonconforming finite elements

Crouzeix–Raviart nonconforming finite element method $\bullet \$ find $\tilde{\lambda}_h \in \tilde{\Psi}_h$ such that

$$(\mathbf{S}
abla ilde{\lambda}_h,
abla ilde{\psi}_h)=(g, ilde{\psi}_h)\qquadorall ilde{\psi}_h\in ilde{\Psi}_h$$

• degrees of freedom: 1 potential/side (vector Λ)

matrix form

 $\mathbb{Z}\Lambda = E$

 $\bullet \ \mathbb{Z}$ is symmetric and positive definite

Equivalence of MFEs with nonconforming finite elements

• MFEs \longrightarrow Lagrange multipliers Λ , mixed-hybrid FEM:

$$\mathbb{Z}\Lambda = E$$

- **same matrices and RHS** as in the nonconforming finite element method (when **S** and *g* are piecewise constant)
- $\tilde{\lambda}_h$ from MFEs and $\tilde{\lambda}_h$ from NCFEs coincide
- Arnold & Brezzi 1985, Marini 1985, Arbogast & Chen 1995, Chen 1996

Equivalence with nonconforming finite elements

Crouzeix–Raviart nonconforming finite element method $\bullet \$ find $\tilde{\lambda}_h \in \tilde{\Psi}_h$ such that

$$(\mathbf{S}
abla ilde{\lambda}_h,
abla ilde{\psi}_h)=(g, ilde{\psi}_h)\qquadorall ilde{\psi}_h\in ilde{\Psi}_h$$

degrees of freedom: 1 potential/side (vector Λ)

matrix form

 $\mathbb{Z}\Lambda = E$

 $\bullet \ \mathbb{Z}$ is symmetric and positive definite

Equivalence of MFEs with nonconforming finite elements

$$\mathbb{Z}\Lambda = E$$

- **same matrices and RHS** as in the nonconforming finite element method (when **S** and *g* are piecewise constant)
- $\tilde{\lambda}_h$ from MFEs and $\tilde{\lambda}_h$ from NCFEs coincide
- Arnold & Brezzi 1985, Marini 1985, Arbogast & Chen 1995, Chen 1996

Equivalence with nonconforming finite elements

Crouzeix–Raviart nonconforming finite element method $\bullet \$ find $\tilde{\lambda}_h \in \tilde{\Psi}_h$ such that

$$({f S}
abla ilde{\lambda}_h,
abla ilde{\psi}_h)=({f g}, ilde{\psi}_h)\qquad orall ilde{\psi}_h\in ilde{\Psi}_h$$

• degrees of freedom: 1 potential/side (vector Λ)

matrix form

 $\mathbb{Z}\Lambda = E$

 $\bullet \ \mathbb{Z}$ is symmetric and positive definite

Equivalence of MFEs with nonconforming finite elements

$$\mathbb{Z}\Lambda = E$$

- **same matrices and RHS** as in the nonconforming finite element method (when **S** and *g* are piecewise constant)
- $\tilde{\lambda}_h$ from MFEs and $\tilde{\lambda}_h$ from NCFEs coincide
- Arnold & Brezzi 1985, Marini 1985, Arbogast & Chen 1995, Chen 1996

Equivalence with nonconforming finite elements

Crouzeix–Raviart nonconforming finite element method $\bullet \$ find $\tilde{\lambda}_h \in \tilde{\Psi}_h$ such that

$$({f S}
abla ilde{\lambda}_h,
abla ilde{\psi}_h)=({f g}, ilde{\psi}_h)\qquad orall ilde{\psi}_h\in ilde{\Psi}_h$$

- degrees of freedom: 1 potential/side (vector Λ)
- matrix form

$$\mathbb{Z}\Lambda = E$$

 $\bullet \ \mathbb{Z}$ is symmetric and positive definite

Equivalence of MFEs with nonconforming finite elements

$$\mathbb{Z}\Lambda = E$$

- **same matrices and RHS** as in the nonconforming finite element method (when **S** and *g* are piecewise constant)
- $\tilde{\lambda}_h$ from MFEs and $\tilde{\lambda}_h$ from NCFEs coincide
- Arnold & Brezzi 1985, Marini 1985, Arbogast & Chen 1995, Chen 1996

Equivalence with nonconforming finite elements

Crouzeix–Raviart nonconforming finite element method $\bullet \$ find $\tilde{\lambda}_h \in \tilde{\Psi}_h$ such that

$$({f S}
abla ilde{\lambda}_h,
abla ilde{\psi}_h)=(g, ilde{\psi}_h)\qquad orall ilde{\psi}_h\in ilde{\Psi}_h$$

degrees of freedom: 1 potential/side (vector Λ)

matrix form

 $\mathbb{Z}\Lambda = E$

• \mathbb{Z} is symmetric and positive definite

Equivalence of MFEs with nonconforming finite elements

• MFEs \longrightarrow Lagrange multipliers Λ , mixed-hybrid FEM:

 $\mathbb{Z}\Lambda = E$

- **same matrices and RHS** as in the nonconforming finite element method (when **S** and *g* are piecewise constant)
- $\tilde{\lambda}_h$ from MFEs and $\tilde{\lambda}_h$ from NCFEs coincide
- Arnold & Brezzi 1985, Marini 1985, Arbogast & Chen 1995, Chen 1996

Equivalence with nonconforming finite elements

Crouzeix–Raviart nonconforming finite element method $\bullet \$ find $\tilde{\lambda}_h \in \tilde{\Psi}_h$ such that

$$({f S}
abla ilde{\lambda}_h,
abla ilde{\psi}_h)=(g, ilde{\psi}_h)\qquad orall ilde{\psi}_h\in ilde{\Psi}_h$$

degrees of freedom: 1 potential/side (vector Λ)

matrix form

$$\mathbb{Z}\Lambda = E$$

• \mathbb{Z} is symmetric and positive definite

Equivalence of MFEs with nonconforming finite elements

$$\mathbb{Z}\Lambda=E$$

- same matrices and RHS as in the nonconforming finite element method (when S and g are piecewise constant)
- $\tilde{\lambda}_h$ from MFEs and $\tilde{\lambda}_h$ from NCFEs coincide
- Arnold & Brezzi 1985, Marini 1985, Arbogast & Chen 1995, Chen 1996

Equivalence with nonconforming finite elements

Crouzeix–Raviart nonconforming finite element method • find $\tilde{\lambda}_h \in \tilde{\Psi}_h$ such that

$$({f S}
abla ilde{\lambda}_h,
abla ilde{\psi}_h)=({f g}, ilde{\psi}_h)\qquad orall ilde{\psi}_h\in ilde{\Psi}_h$$

degrees of freedom: 1 potential/side (vector Λ)

matrix form

$$\mathbb{Z}\Lambda = E$$

• \mathbb{Z} is symmetric and positive definite

Equivalence of MFEs with nonconforming finite elements

$$\mathbb{Z}\Lambda = E$$

- **same matrices and RHS** as in the nonconforming finite element method (when **S** and *g* are piecewise constant)
- $\tilde{\lambda}_h$ from MFEs and $\tilde{\lambda}_h$ from NCFEs coincide
- Arnold & Brezzi 1985, Marini 1985, Arbogast & Chen 1995, Chen 1996

Equivalence with nonconforming finite elements

Crouzeix–Raviart nonconforming finite element method • find $\tilde{\lambda}_h \in \tilde{\Psi}_h$ such that

$$({f S}
abla ilde{\lambda}_h,
abla ilde{\psi}_h)=(g, ilde{\psi}_h)\qquad orall ilde{\psi}_h\in ilde{\Psi}_h$$

- degrees of freedom: 1 potential/side (vector Λ)
- matrix form

$$\mathbb{Z}\Lambda = E$$

• \mathbb{Z} is symmetric and positive definite

Equivalence of MFEs with nonconforming finite elements

$$\mathbb{Z}\Lambda = E$$

- same matrices and RHS as in the nonconforming finite element method (when **S** and *g* are piecewise constant)
- $\tilde{\lambda}_h$ from MFEs and $\tilde{\lambda}_h$ from NCFEs coincide
- Arnold & Brezzi 1985, Marini 1985, Arbogast & Chen 1995, Chen 1996

Different representations of the MFE solution

4-point finite volume scheme

4-point finite volume scheme (S = \mathbb{I})

• find $\bar{p}_h \in \Phi_h$ such that

$$-\sum_{L\in\mathcal{N}(K)}\frac{\bar{p}_{h}|_{L}-\bar{p}_{h}|_{K}}{d_{K,L}}|\sigma_{K,L}|=(g,1)_{K}\qquad\forall K\in\mathcal{T}_{h}$$

degrees of freedom: 1 potential/element (vector P)
matrix form

$$\mathbb{S}P = H$$

• S is symmetric and positive definite (S scalar and T_h Del.)

Martin Vohralík and Barbara Wohlmuth

4-point finite volume scheme

4-point finite volume scheme (S = \mathbb{I})

• find $\bar{p}_h \in \Phi_h$ such that

$$-\sum_{L\in\mathcal{N}(K)}\frac{\bar{p}_{h}|_{L}-\bar{p}_{h}|_{K}}{d_{K,L}}|\sigma_{K,L}|=(g,1)_{K}\qquad\forall K\in\mathcal{T}_{h}$$

degrees of freedom: 1 potential/element (vector P)
matrix form

$$\mathbb{S}P = H$$

• S is symmetric and positive definite (S scalar and T_h Del.)

Martin Vohralík and Barbara Wohlmuth

4-point finite volume scheme

4-point finite volume scheme (S = \mathbb{I})

• find $\bar{p}_h \in \Phi_h$ such that

$$-\sum_{L\in\mathcal{N}(K)}\frac{\bar{p}_{h}|_{L}-\bar{p}_{h}|_{K}}{d_{K,L}}|\sigma_{K,L}|=(g,1)_{K}\qquad\forall K\in\mathcal{T}_{h}$$

degrees of freedom: 1 potential/element (vector P)
matrix form

$$\mathbb{S}P = H$$

• S is symmetric and positive definite (S scalar and T_h Del.)

Martin Vohralík and Barbara Wohlmuth

4-point finite volume scheme

4-point finite volume scheme (S = \mathbb{I})

• find $\bar{p}_h \in \Phi_h$ such that

$$-\sum_{L\in\mathcal{N}(K)}\frac{\bar{p}_{h}|_{L}-\bar{p}_{h}|_{K}}{d_{K,L}}|\sigma_{K,L}|=(g,1)_{K}\qquad\forall K\in\mathcal{T}_{h}$$

degrees of freedom: 1 potential/element (vector P)
matrix form

$$\mathbb{S}P = H$$

• S is symmetric and positive definite (S scalar and T_h Del.)

Martin Vohralík and Barbara Wohlmuth

- let g = 0, S = I, and T_h consist of equilateral simplices: then p_h from MFEs and p
 _h from FVs coincide
- g ≠ 0, S ≠ I, or T_h not consisting of equilateral simplices: p_h from MFEs and p
 _h from FVs do not coincide anymore
- conclusion: MFEs and FVs are different
- this conclusion is almost completely wrong

- let g = 0, S = I, and T_h consist of equilateral simplices: then p_h from MFEs and p
 _h from FVs coincide
- $g \neq 0$, $\mathbf{S} \neq \mathbb{I}$, or \mathcal{T}_h not consisting of equilateral simplices: p_h from MFEs and \bar{p}_h from FVs **do not coincide** anymore
- conclusion: MFEs and FVs are different
- this conclusion is almost completely wrong

- let g = 0, S = I, and T_h consist of equilateral simplices: then p_h from MFEs and p
 _h from FVs coincide
- g ≠ 0, S ≠ I, or T_h not consisting of equilateral simplices: p_h from MFEs and p
 _h from FVs do not coincide anymore
- conclusion: MFEs and FVs are different
- this conclusion is almost completely wrong

- let g = 0, S = I, and T_h consist of equilateral simplices: then p_h from MFEs and p
 _h from FVs coincide
- g ≠ 0, S ≠ I, or T_h not consisting of equilateral simplices: p_h from MFEs and p
 _h from FVs do not coincide anymore
- conclusion: MFEs and FVs are different
- this conclusion is almost completely wrong
Equivalence with 4-point finite volumes

• in MFEs (Marini 1985):

$$p_h|_{\mathcal{K}} = \tilde{\lambda}_h(\mathbf{x}_{\mathcal{K}}) + \frac{g_{\mathcal{K}}}{2d|\mathcal{K}|}((\mathbf{x} - \mathbf{x}_{\mathcal{K}})^t \mathbf{S}_{\mathcal{K}}^{-1}(\mathbf{x} - \mathbf{x}_{\mathcal{K}}), 1)_{\mathcal{K}}$$

- **x**_K is the **barycenter**
- *p_h* represents the mean value of the potential
- influence of the source term g
- in FVs, if g = 0 (Younès, Mose, Ackerer, & Chavent 1999–2004):

$$\bar{p}_h|_K = \tilde{\lambda}_h(\mathbf{z}_K)$$

- **z**_K is the **circumcenter**
- \bar{p}_h represents the **point value** of the potential
- no influence of the source term g
- MFEs and FVs are equivalent when g is constant
 - holds on **arbitrary simplicial meshes** (not necessarily Delaunay)!
 - holds for full matrix S!

Martin Vohralík and Barbara Wohlmuth

Equivalence with 4-point finite volumes

• in MFEs (Marini 1985):

$$p_h|_K = \tilde{\lambda}_h(\mathbf{x}_K) + rac{g_K}{2d|K|}((\mathbf{x} - \mathbf{x}_K)^t \mathbf{S}_K^{-1}(\mathbf{x} - \mathbf{x}_K), 1)_K$$

- **x**_K is the **barycenter**
- *p_h* represents the mean value of the potential
- influence of the source term g
- in FVs, if *g* = 0 (Younès, Mose, Ackerer, & Chavent 1999–2004):

$$ar{p}_{h}|_{\mathcal{K}} = ilde{\lambda}_{h}(\mathbf{z}_{\mathcal{K}})$$

- **z**_K is the **circumcenter**
- *p
 _h* represents the **point value** of the potential
- no influence of the source term g
- MFEs and FVs are equivalent when g is constant
 - holds on **arbitrary simplicial meshes** (not necessarily Delaunay)!
 - holds for full matrix S!

Equivalence with 4-point finite volumes

• in MFEs (Marini 1985):

$$p_h|_{\mathcal{K}} = \tilde{\lambda}_h(\mathbf{x}_{\mathcal{K}}) + \frac{g_{\mathcal{K}}}{2d|\mathcal{K}|}((\mathbf{x} - \mathbf{x}_{\mathcal{K}})^t \mathbf{S}_{\mathcal{K}}^{-1}(\mathbf{x} - \mathbf{x}_{\mathcal{K}}), 1)_{\mathcal{K}}$$

- **x**_K is the **barycenter**
- *p_h* represents the mean value of the potential
- influence of the source term g
- in FVs, if *g* = 0 (Younès, Mose, Ackerer, & Chavent 1999–2004):

$$ar{p}_h|_{\mathcal{K}} = ilde{\lambda}_h(\mathbf{z}_{\mathcal{K}})$$

- **z**_K is the **circumcenter**
- *p
 _h* represents the **point value** of the potential
- no influence of the source term g
- MFEs and FVs are equivalent when g is constant
 - holds on arbitrary simplicial meshes (not necessarily Delaunay)!
 - holds for full matrix S!

Equivalence with 4-point finite volumes

• in MFEs (Marini 1985):

$$p_h|_{\mathcal{K}} = \tilde{\lambda}_h(\mathbf{x}_{\mathcal{K}}) + \frac{g_{\mathcal{K}}}{2d|\mathcal{K}|}((\mathbf{x} - \mathbf{x}_{\mathcal{K}})^t \mathbf{S}_{\mathcal{K}}^{-1}(\mathbf{x} - \mathbf{x}_{\mathcal{K}}), 1)_{\mathcal{K}}$$

- **x**_K is the **barycenter**
- *p_h* represents the mean value of the potential
- influence of the source term g
- in FVs, if *g* = 0 (Younès, Mose, Ackerer, & Chavent 1999–2004):

$$ar{p}_h|_{\mathcal{K}} = ilde{\lambda}_h(\mathbf{z}_{\mathcal{K}})$$

- **z**_K is the **circumcenter**
- *p
 _h* represents the **point value** of the potential
- no influence of the source term g
- MFEs and FVs are equivalent when g is constant
 - holds on arbitrary simplicial meshes (not necessarily Delaunay)!
 - holds for full matrix S!

Links to MFDs and MPFAs

Links to the mimetic finite difference and multi-point flux-approximation methods

- using approximate numerical integration
 - Klausen & Winther, 2006
 - Wheeler & Yotov, 2006
 - Aavatsmark, Eigestad, Klausen, Wheeler, & Yotov, 2007
 - Droniou, Eymard, Gallouët, & Herbin, 2010
 - Bause Hoffmann, & Knabner, 2010
 - ... Brezzi, da Veiga, Lipnikov, Manzini, Shashkov ...

Outline

- Introduction and motivation
- Known equivalences
- Oiscrete maximum principle
 - 4 General polygonal meshes
- One unknown per element: a unified construction principle and a link to the MPFA
 - Local problems definition and a link to the MPFA method
 - Global problems definition
- 6 Numerical experiments
- Conclusions and future work

Discrete maximum principle in MFEs

Discrete maximum principle in MFEs (S = I)

- DMP for the Lagrange multipliers λ_σ (values of λ_h in side barycenters) whenever T_h is acute (equivalence with the NCFE method)
- DMP not necessarily for the original values $p_{\mathcal{K}}$ (recall that $p_{\mathcal{K}}$ = value of $\tilde{\lambda}_h$ in the barycenter + a small influence of the source term)

Discrete maximum principle in MFEs

Discrete maximum principle in MFEs (S = I)

- DMP for the Lagrange multipliers λ_σ (values of λ_h in side barycenters) whenever T_h is acute (equivalence with the NCFE method)
- DMP in 2D for the values p
 _K (values of λ
 _h in circumcenters) whenever T_h is Delaunay and the source g is constant (equivalence with the FV method)
- DMP not necessarily for the original values p_K (recall that p_K = value of $\tilde{\lambda}_h$ in the barycenter + a small influence of the source term)

Discrete maximum principle in MFEs

Discrete maximum principle in MFEs (S = I)

- DMP for the Lagrange multipliers λ_σ (values of λ_h in side barycenters) whenever T_h is acute (equivalence with the NCFE method)
- DMP in 2D for the values p
 _K (values of λ
 _h in circumcenters) whenever T_h is Delaunay and the source g is constant (equivalence with the FV method)
- DMP not necessarily for the original values $p_{\mathcal{K}}$ (recall that $p_{\mathcal{K}}$ = value of $\tilde{\lambda}_h$ in the barycenter + a small influence of the source term)

Outline

- Introduction and motivation
- 2 Known equivalences
- Discrete maximum principle
- General polygonal meshes
- 5 One unknown per element: a unified construction principle and a link to the MPFA
 - Local problems definition and a link to the MPFA method
 - Global problems definition
- 6 Numerical experiments
- Conclusions and future work

General polygonal meshes

A general polygonal mesh $\widehat{\mathcal{T}}_{H}$

- nonconvex and non star-shaped elements in $\widehat{\mathcal{T}}_{H}$
- $\widehat{\mathcal{T}}_{H}$ can be nonmatching
- maximal number of sides of $K \in \widehat{\mathcal{T}}_H$ is not limited
- $\hat{\mathcal{T}}_{H}$ is not necessarily shape-regular
- only assumption: existence of a simplicial submesh \mathcal{T}_h

General polygonal meshes

A general polygonal mesh $\widehat{\mathcal{T}}_{H}$

- nonconvex and non star-shaped elements in $\widehat{\mathcal{T}}_{H}$
- $\widehat{\mathcal{T}}_{H}$ can be nonmatching
- maximal number of sides of $K \in \widehat{\mathcal{T}}_H$ is not limited
- $\hat{\mathcal{T}}_H$ is not necessarily shape-regular
- only assumption: existence of a simplicial submesh \mathcal{T}_h

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

MFEs on $\widehat{\mathcal{T}}_H$

- $\left(\begin{array}{cc}\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^t\\ \widehat{\mathbb{B}} & 0\end{array}\right)\left(\begin{array}{c}\widehat{U}\\ \widehat{P}\end{array}\right) = \left(\begin{array}{c}\widehat{F}\\ \widehat{G}\end{array}\right)$
- $\widehat{\mathcal{Q}}$: flux unknowns related to the sides of $\widehat{\mathcal{T}}_H$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_H$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on T_h (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order
- equivalent to the formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle, ...

Martin Vohralík and Barbara Wohlmuth

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$\left(\begin{array}{cc}\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^t\\ \widehat{\mathbb{B}} & \mathbf{0}\end{array}\right)\left(\begin{array}{c}\widehat{U}\\ \widehat{P}\end{array}\right) = \left(\begin{array}{c}\widehat{F}\\ \widehat{G}\end{array}\right)$$

- $\widehat{\mathcal{U}}$: flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_H$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on T_h (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order
- equivalent to the formulation on \mathcal{T}_h (a priori and a posteriori error estimates, discrete maximum principle, .

Martin Vohralík and Barbara Wohlmuth

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$\left(\begin{array}{cc}\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^t\\ \widehat{\mathbb{B}} & \mathbf{0}\end{array}\right)\left(\begin{array}{c}\widehat{U}\\ \widehat{P}\end{array}\right) = \left(\begin{array}{c}\widehat{F}\\ \widehat{G}\end{array}\right)$$

- $\widehat{\mathcal{U}}$: flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_H$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on T_h (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order
- equivalent to the formulation on \mathcal{T}_h (a priori and a posteriori error estimates, discrete maximum principle, .

Martin Vohralík and Barbara Wohlmuth

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$\left(\begin{array}{cc}\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^t\\ \widehat{\mathbb{B}} & \mathbf{0}\end{array}\right)\left(\begin{array}{c}\widehat{U}\\ \widehat{P}\end{array}\right) = \left(\begin{array}{c}\widehat{F}\\ \widehat{G}\end{array}\right)$$

- $\widehat{\mathcal{U}}$: flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_H$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on T_h (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order
- equivalent to the formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle, .

Martin Vohralík and Barbara Wohlmuth

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$\left(\begin{array}{cc}\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^t\\ \widehat{\mathbb{B}} & \mathbf{0}\end{array}\right)\left(\begin{array}{c}\widehat{U}\\ \widehat{P}\end{array}\right) = \left(\begin{array}{c}\widehat{F}\\ \widehat{G}\end{array}\right)$$

- $\widehat{\mathcal{Q}}$: flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_H$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on T_h (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order
- equivalent to the formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle, ...)

Martin Vohralík and Barbara Wohlmuth

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\mathbb{Z}\Lambda = E$$

$$\widehat{\mathbb{Z}}\widehat{\Lambda} = \widehat{E}$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_H$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on T_h (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to the formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle ...)

MFEs on \mathcal{T}_h

$$\mathbb{Z}\Lambda = E$$

$$\widehat{\mathbb{Z}}\widehat{\Lambda} = \widehat{E}$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on T_h (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to the formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle ...)

MFEs on \mathcal{T}_h

$$\mathbb{Z}\Lambda = E$$

$$\widehat{\mathbb{Z}}\widehat{\Lambda} = \widehat{E}$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_H$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on T_h (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to the formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle ...)

MFEs on \mathcal{T}_h

$$\mathbb{Z}\Lambda = E$$

$$\widehat{\mathbb{Z}}\widehat{\Lambda} = \widehat{E}$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on T_h (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to the formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle ...)

MFEs on \mathcal{T}_h

$$\mathbb{Z}\Lambda = E$$

$$\widehat{\mathbb{Z}}\widehat{\Lambda} = \widehat{E}$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on T_h (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to the formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle ...)

Outline

- 5 One unknown per element: a unified construction principle and a link to the MPFA
 - Local problems definition and a link to the MPFA method
 - Global problems definition

Local flux expression from the Lagrange multipliers

Nonconforming finite element method find $\tilde{\lambda}_h \in \tilde{\Psi}_h$ such that

$$(\mathbf{S}
abla ilde{\lambda}_h,
abla ilde{\psi}_h) = (g, ilde{\psi}_h) \qquad orall ilde{\psi}_h \in ilde{\Psi}_h$$

Local flux expression from the Lagrange multipliers there holds (Marini 1985)

$$\mathbf{u}_h|_{\mathcal{K}} = -\mathbf{S}_{\mathcal{K}} \nabla \tilde{\lambda}_h|_{\mathcal{K}} + \frac{g_{\mathcal{K}}}{d} (\mathbf{x} - \mathbf{x}_{\mathcal{K}}) \qquad \forall \mathcal{K} \in \mathcal{T}_h$$

- \mathbf{x}_K : barycenter of K
- g_K : mean value of the source term g over K

Local flux expression from the Lagrange multipliers

Nonconforming finite element method find $\tilde{\lambda}_h \in \tilde{\Psi}_h$ such that

$$(\mathbf{S}
abla ilde{\lambda}_h,
abla ilde{\psi}_h) = (g, ilde{\psi}_h) \qquad orall ilde{\psi}_h \in ilde{\Psi}_h$$

Local flux expression from the Lagrange multipliers there holds (Marini 1985)

$$|\mathbf{u}_h|_{\mathcal{K}} = -\mathbf{S}_{\mathcal{K}}
abla ilde{\lambda}_h|_{\mathcal{K}} + rac{g_{\mathcal{K}}}{d} (\mathbf{x} - \mathbf{x}_{\mathcal{K}}) \qquad orall \mathcal{K} \in \mathcal{T}_h$$

- \mathbf{x}_{K} : barycenter of K
- g_K: mean value of the source term g over K

Outline

- 5 One unknown per element: a unified construction principle and a link to the MPFA
 - Local problems definition and a link to the MPFA method

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_K = \lambda_h(\mathbf{z}_K)$
- $\tilde{\lambda}_h$ expressed in the three points \mathbf{x}_{σ} , \mathbf{x}_{γ} , and \mathbf{z}_K (d = 2)
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K} = \tilde{\lambda}_{h}(\mathbf{z}_{K})$
- $\tilde{\lambda}_h$ expressed in the three points \mathbf{x}_{σ} , \mathbf{x}_{γ} , and \mathbf{z}_K (d = 2)
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K} = \tilde{\lambda}_{h}(\mathbf{z}_{K})$
- $\tilde{\lambda}_h$ expressed in the three points \mathbf{x}_{σ} , \mathbf{x}_{γ} , and \mathbf{z}_K (d = 2)
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K} = \tilde{\lambda}_{h}(\mathbf{z}_{K})$
- $\tilde{\lambda}_h$ expressed in the three points \mathbf{x}_{σ} , \mathbf{x}_{γ} , and \mathbf{z}_K (d = 2)
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K} = \tilde{\lambda}_{h}(\mathbf{z}_{K})$
- $\tilde{\lambda}_h$ expressed in the three points \mathbf{x}_{σ} , \mathbf{x}_{γ} , and \mathbf{z}_K (d = 2)
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

•
$$\mathbf{u}_h|_{\mathcal{K}} = -\mathbf{S}_{\mathcal{K}} \nabla \tilde{\lambda}_h|_{\mathcal{K}} + \frac{g_{\mathcal{K}}}{d} (\mathbf{x} - \mathbf{x}_{\mathcal{K}}) \quad \Rightarrow$$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K} = \tilde{\lambda}_{h}(\mathbf{z}_{K})$
- $\tilde{\lambda}_h$ expressed in the three points \mathbf{x}_{σ} , \mathbf{x}_{γ} , and \mathbf{z}_K (d = 2)
- Lagrange basis functions $\tilde{\varphi}_{\sigma}$, $\tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

•
$$\mathbf{u}_{h}|_{K} = -\mathbf{S}_{K} \nabla \left(\sum_{\sigma \in \mathcal{E}_{V,K}} \lambda_{\sigma} \tilde{\varphi}_{\sigma} + \bar{p}_{K} \tilde{\varphi}_{K} \right) + \frac{g_{K}}{d} (\mathbf{x} - \mathbf{x}_{K})$$

Definition of a local problem

Definition of a local problem

- $\bullet\,$ consider a patch \mathcal{T}_V of the elements around a vertex V
- given the new element values p
 _K and λ_σ, σ ∈ E^{int}_V, in the patch, express the fluxes u_h in the patch
- impose the continuity of \mathbf{u}_h on the interior sides ($\mathcal{E}_V^{\text{int}}$) of the patch $\sum \langle \mathbf{u}_h \cdot \mathbf{n}_K, 1 \rangle_{\sigma} = 0 \qquad \forall \sigma \in \mathcal{E}_V^{\text{int}}$
- local problem: given $\overline{P}_V = {\{\overline{p}_K\}}_{K \in \mathcal{T}_V}$, find $\Lambda_V^{\text{int}} = {\{\lambda_\gamma\}}_{\gamma \in \mathcal{E}_V^{\text{int}}}$ s.t. $\mathbb{M}_V \Lambda_V^{\text{int}} = \widetilde{G}_V - \mathbb{J}_V \overline{P}_V$
- the same building principle as that of MPFA methods

Definition of a local problem

Definition of a local problem

- consider a patch \mathcal{T}_V of the elements around a vertex V
- given the new element values p
 _K and λ_σ, σ ∈ E^{int}_V, in the patch, express the fluxes u_h in the patch
- impose the continuity of \mathbf{u}_h on the interior sides $(\mathcal{E}_V^{\text{int}})$ of the patch $\sum_{K \in \mathcal{T}_V; \, \sigma \in \mathcal{E}_K} \langle \mathbf{u}_h \cdot \mathbf{n}_K, 1 \rangle_{\sigma} = 0 \qquad \forall \sigma \in \mathcal{E}_V^{\text{int}}$
- local problem: given $\overline{P}_V = {\{\overline{p}_K\}_{K \in \mathcal{T}_V}}$, find $\Lambda_V^{\text{int}} = {\{\lambda_\gamma\}_{\gamma \in \mathcal{E}_V^{\text{int}}}}$ s.t. $\mathbb{M}_V \Lambda_V^{\text{int}} = \widetilde{G}_V - \mathbb{J}_V \overline{P}_V$
- the same building principle as that of MPFA methods

Martin Vohralik and Barbara Wohlmuth MFEs with one unknown per element and complements

Definition of a local problem

Definition of a local problem

- consider a patch T_V of the elements around a vertex V
- given the new element values p
 _K and λ_σ, σ ∈ E^{int}_V, in the patch, express the fluxes u_h in the patch
- impose the continuity of \mathbf{u}_h on the interior sides $(\mathcal{E}_V^{\text{int}})$ of the patch patch $\sum \langle \mathbf{u}_h \cdot \mathbf{n}_K, 1 \rangle_{\sigma} = 0 \quad \forall \sigma \in \mathcal{E}_V^{\text{int}}$

$$\sum_{K \in \mathcal{T}_V; \, \sigma \in \mathcal{E}_K} \langle \mathbf{u}_h \cdot \mathbf{n}_K, \mathbf{1} \rangle_{\sigma} = \mathbf{0} \qquad \forall \sigma \in \mathcal{E}_V$$

- local problem: given $\overline{P}_V = {\{\overline{p}_K\}_{K \in \mathcal{T}_V}}$, find $\Lambda_V^{\text{int}} = {\{\lambda_\gamma\}_{\gamma \in \mathcal{E}_V^{\text{int}}}}$ s.t. $\mathbb{M}_V \Lambda_V^{\text{int}} = \widetilde{G}_V - \mathbb{J}_V \overline{P}_V$
- the same building principle as that of MPFA methods

Martin Vohralík and Barbara Wohlmuth MFEs with one unknown per element and complements

Definition of a local problem

Definition of a local problem

- consider a patch \mathcal{T}_V of the elements around a vertex V
- given the new element values p
 _K and λ_σ, σ ∈ E^{int}_V, in the patch, express the fluxes u_h in the patch
- impose the continuity of \mathbf{u}_h on the interior sides $(\mathcal{E}_V^{\text{int}})$ of the patch $\sum \langle \mathbf{u}_h \cdot \mathbf{n}_K, 1 \rangle_{\sigma} = 0 \quad \forall \sigma \in \mathcal{E}_V^{\text{int}}$

$$\sum_{K \in \mathcal{T}_{V}; \, \sigma \in \mathcal{E}_{K}} \langle \mathbf{u}_{h} \cdot \mathbf{n}_{K}, \mathbf{1} \rangle_{\sigma} = \mathbf{0} \qquad \forall \sigma \in \mathcal{E}_{V}^{"}$$

- local problem: given $\overline{P}_V = \{\overline{p}_K\}_{K \in \mathcal{T}_V}$, find $\Lambda_V^{\text{int}} = \{\lambda_\gamma\}_{\gamma \in \mathcal{E}_V^{\text{int}}}$ s.t. $\mathbb{M}_V \Lambda_V^{\text{int}} = \widetilde{G}_V - \mathbb{J}_V \overline{P}_V$
- the same building principle as that of MPFA methods

Martin Vohralík and Barbara Wohlmuth MFEs with one unknown per element and complements
Definition of a local problem

Definition of a local problem

- consider a patch T_V of the elements around a vertex V
- given the new element values p
 _K and λ_σ, σ ∈ E^{int}_V, in the patch, express the fluxes u_h in the patch
- impose the continuity of \mathbf{u}_h on the interior sides $(\mathcal{E}_V^{\text{int}})$ of the patch $\sum \langle \mathbf{u}_h \cdot \mathbf{n}_K, 1 \rangle_{\sigma} = 0 \quad \forall \sigma \in \mathcal{E}_V^{\text{int}}$

$$\sum_{K \in \mathcal{T}_V; \, \sigma \in \mathcal{E}_K} \langle \mathbf{u}_h \cdot \mathbf{n}_K, \mathbf{1} \rangle_{\sigma} = \mathbf{0} \qquad \forall \sigma \in \mathcal{E}_V^{"}$$

- local problem: given $\overline{P}_V = \{\overline{p}_K\}_{K \in \mathcal{T}_V}$, find $\Lambda_V^{\text{int}} = \{\lambda_\gamma\}_{\gamma \in \mathcal{E}_V^{\text{int}}}$ s.t. $\mathbb{M}_V \Lambda_V^{\text{int}} = \widetilde{G}_V - \mathbb{J}_V \overline{P}_V$
- the same building principle as that of MPFA methods

Martin Vohralík and Barbara Wohlmuth MFEs with one unknown per element and complements

S-circumcenter as the evaluation point

S-circumcenter as the point $\mathbf{z}_{\mathcal{K}}$

- circumcenter when $\mathbf{S}_{K} = \mathbb{I}\mathbf{s}_{K}$
- the approach of Younès, Mose, Ackerer, & Chavent, 1999
- M_V gets diagonal
- no local linear system needs to be solved
- two-point flux expression (on arbitrary triangular grids and full-matrix piecewise constant **S**)
- impossible in 3D (except particular cases)
- \mathbb{M}_V can explode (modifications necessary):

Barycenter as the evaluation point

Barycenter as the point z_K

- this is the approach of Vohralík, 2004/2006
- \mathbb{M}_V is not diagonal (unless barycenter = circumcenter)
- a local linear system needs to be solved
- multi-point flux expression
- works generally in *d* space dimensions
- \mathbb{M}_V can get singular (modifications necessary):

- change \mathbf{z}_{K} according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices M_V
- influence the properties of the final matrix

- change \mathbf{z}_{K} according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices M_V
- influence the properties of the final matrix

- change \mathbf{z}_{K} according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices \mathbb{M}_V
- influence the properties of the final matrix

- change \mathbf{z}_{K} according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices \mathbb{M}_V
- Influence the properties of the final matrix

Examples of the different evaluation points

Examples of the different evaluation points z_K

Examples of the local matrices

Examples of the local matrices \mathbb{M}_V

Outline

- 5 One unknown per element: a unified construction principle and a link to the MPFA
 - Local problems definition and a link to the MPFA method
 - Global problems definition

Expressing the Lagrange multipliers \wedge or the fluxes U

• local problems give
$$\Lambda_V^{\text{int}} = (\mathbb{M}_V)^{-1} (\widetilde{G}_V - \mathbb{J}_V \overline{P}_V)$$

- for every vertex V, we have one expression for Λ_V^{int}
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{\boldsymbol{G}} - \mathbb{M}^{\mathrm{inv}}\overline{\boldsymbol{P}}$$

$$U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G - \mathbb{O}^{\mathrm{inv}} \overline{P}$$

Expressing the Lagrange multipliers \wedge or the fluxes U

- local problems give $\Lambda_V^{\text{int}} = (\mathbb{M}_V)^{-1} (\widetilde{G}_V \mathbb{J}_V \overline{P}_V)$
- for every vertex V, we have one expression for Λ_V^{int}
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{\boldsymbol{G}} - \mathbb{M}^{\mathrm{inv}}\overline{\boldsymbol{P}}$$

$$U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G - \mathbb{O}^{\mathrm{inv}} \overline{P}$$

Expressing the Lagrange multipliers \wedge or the fluxes U

- local problems give $\Lambda_V^{\text{int}} = (\mathbb{M}_V)^{-1} (\widetilde{G}_V \mathbb{J}_V \overline{P}_V)$
- for every vertex V, we have one expression for Λ_V^{int}
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{\boldsymbol{G}} - \mathbb{M}^{\mathrm{inv}}\overline{\boldsymbol{P}}$$

$$U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G - \mathbb{O}^{\mathrm{inv}} \overline{P}$$

Expressing the Lagrange multipliers \wedge or the fluxes U

- local problems give $\Lambda_V^{\text{int}} = (\mathbb{M}_V)^{-1} (\widetilde{G}_V \mathbb{J}_V \overline{P}_V)$
- for every vertex V, we have one expression for Λ_V^{int}
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G} - \mathbb{M}^{\mathrm{inv}}\overline{P}$$

$$U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G - \mathbb{O}^{\mathrm{inv}} \overline{P}$$

Expressing the Lagrange multipliers \wedge or the fluxes U

- local problems give $\Lambda_V^{\text{int}} = (\mathbb{M}_V)^{-1} (\widetilde{G}_V \mathbb{J}_V \overline{P}_V)$
- for every vertex V, we have one expression for Λ_V^{int}
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G} - \mathbb{M}^{\mathrm{inv}}\overline{P}$$

$$U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G - \mathbb{O}^{\mathrm{inv}} \overline{P}$$

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G \mathbb{O}^{\mathrm{inv}} \overline{P}$
- put this into $\mathbb{B}U = G$

• this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

$$\bar{\mathbb{S}} = -\mathbb{BO}^{\mathrm{inv}}, \quad \bar{H} = G - \mathbb{BO}^{\mathrm{inv}}G$$

- z_K = S-circumcenter gives the FV method (Younès, Mose, Ackerer, & Chavent, 1999)
- \mathbf{z}_{K} = barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when g = 0 (Hoffmann, 2008))

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U = \widetilde{\mathbb{O}}^{\operatorname{inv}} G \mathbb{O}^{\operatorname{inv}} \overline{P}$
- put this into $\mathbb{B}U = G$

• this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

$$\bar{\mathbb{S}} = -\mathbb{BO}^{\mathrm{inv}}, \quad \bar{H} = G - \mathbb{BO}^{\mathrm{inv}}G$$

- z_K = S-circumcenter gives the FV method (Younès, Mose, Ackerer, & Chavent, 1999)
- \mathbf{z}_{K} = barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when g = 0 (Hoffmann, 2008))

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U = \widetilde{\mathbb{O}}^{\operatorname{inv}} G \mathbb{O}^{\operatorname{inv}} \overline{P}$
- put this into $\mathbb{B}U = G$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

$$ar{\mathbb{S}} = -\mathbb{BO}^{\mathrm{inv}}, \quad ar{H} = G - \mathbb{B}\widetilde{\mathbb{O}}^{\mathrm{inv}}G$$

- z_K = S-circumcenter gives the FV method (Younès, Mose, Ackerer, & Chavent, 1999)
- \mathbf{z}_{K} = barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when g = 0 (Hoffmann, 2008))

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U = \widetilde{\mathbb{O}}^{\operatorname{inv}} G \mathbb{O}^{\operatorname{inv}} \overline{P}$
- put this into $\mathbb{B}U = G$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

$$ar{\mathbb{S}} = -\mathbb{BO}^{\mathrm{inv}}, \quad ar{H} = G - \mathbb{B}\widetilde{\mathbb{O}}^{\mathrm{inv}}G$$

- z_K = S-circumcenter gives the FV method (Younès, Mose, Ackerer, & Chavent, 1999)
- \mathbf{z}_{K} = barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when g = 0 (Hoffmann, 2008))

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U = \widetilde{\mathbb{O}}^{\operatorname{inv}} G \mathbb{O}^{\operatorname{inv}} \overline{P}$
- put this into $\mathbb{B}U = G$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

$$ar{\mathbb{S}} = -\mathbb{BO}^{\mathrm{inv}}, \quad ar{H} = G - \mathbb{B}\widetilde{\mathbb{O}}^{\mathrm{inv}}G$$

- z_K = S-circumcenter gives the FV method (Younès, Mose, Ackerer, & Chavent, 1999)
- \mathbf{z}_{K} = barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when g = 0 (Hoffmann, 2008))

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{\mathbf{G}} \mathbb{M}^{\mathrm{inv}}\overline{\mathbf{P}}$
- put this into $\mathbb{N}\Lambda = \overline{P}(\overline{p}_K \text{ are punctual values of } \widetilde{\lambda}_h)$

• this gives

$\bar{\mathbb{S}}\bar{P}=\bar{H}$

with

$$\overline{\mathbb{S}} = \mathbb{NM}^{\mathrm{inv}} + \mathbb{I}, \quad \overline{H} = \mathbb{N}\widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G}$$

• using $\mathbf{z}_{K} = \mathbf{S}$ -circumcenter, we name it the MFEC method

- using z_K = barycenter, we name it the MFEB method
- using z_K = the optimal evaluation point, we name it the MFEO method

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{\mathbf{G}} \mathbb{M}^{\mathrm{inv}}\overline{\mathbf{P}}$
- put this into $\mathbb{N}\Lambda = \overline{P} (\overline{p}_K \text{ are punctual values of } \widetilde{\lambda}_h)$

• this gives

$\bar{\mathbb{S}}\bar{P}=\bar{H}$

with

$$\overline{\mathbb{S}} = \mathbb{NM}^{\mathrm{inv}} + \mathbb{I}, \quad \overline{H} = \mathbb{N}\widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G}$$

using z_K = S-circumcenter, we name it the MFEC method

- using z_K = barycenter, we name it the MFEB method
- using z_K = the optimal evaluation point, we name it the MFEO method

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{\boldsymbol{G}} \mathbb{M}^{\mathrm{inv}}\overline{\boldsymbol{P}}$
- put this into $\mathbb{N}\Lambda = \overline{P}(\overline{p}_K \text{ are punctual values of } \widetilde{\lambda}_h)$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

with

$$\mathbf{\bar{S}} = \mathbb{NM}^{\mathrm{inv}} + \mathbb{I}, \quad \mathbf{\bar{H}} = \mathbb{N}\widetilde{\mathbb{M}}^{\mathrm{inv}}\mathbf{\widetilde{G}}$$

• using $\mathbf{z}_{\mathcal{K}} = \mathbf{S}$ -circumcenter, we name it the MFEC method

- using z_K = barycenter, we name it the MFEB method
- using z_K = the optimal evaluation point, we name it the MFEO method

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G} \mathbb{M}^{\mathrm{inv}}\overline{P}$
- put this into $\mathbb{N}\Lambda = \overline{P}(\overline{p}_K \text{ are punctual values of } \widetilde{\lambda}_h)$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

with

$$\overline{\mathbb{S}} = \mathbb{NM}^{\mathrm{inv}} + \mathbb{I}, \quad \overline{H} = \mathbb{N}\widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G}$$

using z_K = S-circumcenter, we name it the MFEC method

- using z_K = barycenter, we name it the MFEB method
- using z_K = the optimal evaluation point, we name it the MFEO method

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G} \mathbb{M}^{\mathrm{inv}}\overline{P}$
- put this into $\mathbb{N}\Lambda = \overline{P} (\overline{p}_K \text{ are punctual values of } \widetilde{\lambda}_h)$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

$$\overline{\mathbb{S}} = \mathbb{NM}^{\mathrm{inv}} + \mathbb{I}, \quad \overline{H} = \mathbb{N}\widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G}$$

- using $\mathbf{z}_{\mathcal{K}} = \mathbf{S}$ -circumcenter, we name it the MFEC method
- using \mathbf{z}_{K} = barycenter, we name it the MFEB method
- using z_K = the optimal evaluation point, we name it the MFEO method

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G} \mathbb{M}^{\mathrm{inv}}\overline{P}$
- put this into $\mathbb{N}\Lambda = \overline{P} (\overline{p}_K \text{ are punctual values of } \widetilde{\lambda}_h)$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

$$\overline{\mathbb{S}} = \mathbb{NM}^{\mathrm{inv}} + \mathbb{I}, \quad \overline{H} = \mathbb{N}\widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G}$$

- using z_K = S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{\mathcal{K}}$ = barycenter, we name it the MFEB method
- using z_K = the optimal evaluation point, we name it the MFEO method

Outline

- Introduction and motivation
- 2 Known equivalences
- 3 Discrete maximum principle
- General polygonal meshes
- One unknown per element: a unified construction principle and a link to the MPFA
 - Local problems definition and a link to the MPFA method
 - Global problems definition
- 6 Numerical experiments
 - Conclusions and future work

Model problem

- $\Omega = (0, 1) \times (0, 1)$
- inhomogeneous Dirichlet boundary condition given by p(x, y) = 0.1y + 0.9
- $K \in \mathcal{T}_h$:

$$\mathbf{S}|_{\mathcal{K}} = \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & -\sin(\theta_{\mathcal{K}}) \\ \sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix} \begin{pmatrix} s_{\mathcal{K}} & 0 \\ 0 & \nu s_{\mathcal{K}} \end{pmatrix} \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & \sin(\theta_{\mathcal{K}}) \\ -\sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix}$$

homogeneous isotropic case, s_K = 1 for all K ∈ T_h, ν = 1
anisotropic case, s_K = 1 for all K ∈ T_h, θ_K ∈ {^π/₅, ^{3π}/₄, ^π/₂, ^{3π}/₅, ^π/₃}, ν = 0.2
inhomogeneous case, s_K ∈ {10, 1, 0.1, 0.01, 0.001}, ν = 1

Model problem

- $\Omega = (0, 1) \times (0, 1)$
- inhomogeneous Dirichlet boundary condition given by p(x, y) = 0.1y + 0.9
- $K \in \mathcal{T}_h$:

$$\mathbf{S}|_{\mathcal{K}} = \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & -\sin(\theta_{\mathcal{K}}) \\ \sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix} \begin{pmatrix} s_{\mathcal{K}} & 0 \\ 0 & \nu s_{\mathcal{K}} \end{pmatrix} \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & \sin(\theta_{\mathcal{K}}) \\ -\sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix}$$

homogeneous isotropic case, s_K = 1 for all K ∈ T_h, ν = 1
anisotropic case, s_K = 1 for all K ∈ T_h, θ_K ∈ {π/5, 3π/4, π/2, 3π/5, π/3}, ν = 0.2
inhomogeneous case, s_K ∈ {10, 1, 0.1, 0.01, 0.001}, ν = 1

Model problem

- $\Omega = (0, 1) \times (0, 1)$
- inhomogeneous Dirichlet boundary condition given by p(x, y) = 0.1y + 0.9
- $K \in \mathcal{T}_h$:

$$\mathbf{S}|_{\mathcal{K}} = \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & -\sin(\theta_{\mathcal{K}}) \\ \sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix} \begin{pmatrix} s_{\mathcal{K}} & 0 \\ 0 & \nu s_{\mathcal{K}} \end{pmatrix} \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & \sin(\theta_{\mathcal{K}}) \\ -\sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix}$$

- homogeneous isotropic case, $s_{K} = 1$ for all $K \in T_{h}$, $\nu = 1$
- anisotropic case, $s_K = 1$ for all $K \in \mathcal{T}_h$,

$$\theta_{K} \in \left\{\frac{\pi}{5}, \frac{3\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{5}, \frac{\pi}{3}\right\}, \nu = 0.2$$

inhomogeneous case, s_K ∈ {10, 1, 0.1, 0.01, 0.001}, ν = 1

Model problem

- $\Omega = (0, 1) \times (0, 1)$
- inhomogeneous Dirichlet boundary condition given by p(x, y) = 0.1y + 0.9
- $K \in \mathcal{T}_h$:

$$\mathbf{S}|_{\mathcal{K}} = \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & -\sin(\theta_{\mathcal{K}}) \\ \sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix} \begin{pmatrix} s_{\mathcal{K}} & 0 \\ 0 & \nu s_{\mathcal{K}} \end{pmatrix} \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & \sin(\theta_{\mathcal{K}}) \\ -\sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix}$$

• homogeneous isotropic case, $s_{K} = 1$ for all $K \in T_{h}$, $\nu = 1$

• anisotropic case, $s_{K} = 1$ for all $K \in \mathcal{T}_{h}$,

$$\theta_{\mathcal{K}} \in \left\{\frac{\pi}{5}, \frac{3\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{5}, \frac{\pi}{3}\right\}, \nu = 0.2$$

• inhomogeneous case, $s_{\mathcal{K}} \in \{10, 1, 0.1, 0.01, 0.001\}, \nu = 1$

Initial mesh

Initial mesh and the distribution of the inhomogeneities and anisotropies

Equiv. DMP Pol. meshes 1 unkn per el. Num. exp. C

Matrices of the different methods

System matrix sparsity patterns

Martin Vohralík and Barbara Wohlmuth

MFEs with one unknown per element and complements

Results, homogeneous isotropic case

							DS	CG/ Bi-CGStab		PCG/ PBi-CGSta		tab
Meth.	Un.	Mat.	St.	Nonz.	CN	CNS	CPU	CPU	Iter.	CPU	IC/ ILU	lter.
MFEB	13824	NPD	14	177652	7564	7580	0.27	4.86	324.5	0.81	0.36	9.0
MFEC	13824	NNS	4	55040	11256	11056	0.09	2.23	372.0	0.42	0.19	6.5
MFEO	13824	NPD	14	177652	7531	7558	0.28	4.08	270.0	0.80	0.41	7.5
CMFE	13824	NPD	14	177652	7397	7380	0.27	4.70	312.0	0.83	0.39	8.5
FV	13824	SPD	4	55040	65722	8898	0.07	3.09	1098.0	0.42	0.17	17.0
NCFE	20608	SPD	5	102528	14064	9944	0.14	2.92	620.0	1.11	0.56	19.0

Results, anisotropic case

							DS	CG/ Bi-CGStab		PCG/ PBi-CGSt		tab
Meth.	Un.	Mat.	St.	Nonz.	CN	CNS	CPU	CPU	lter.	CPU	IC/ ILU	lter.
MFEB	13824	NPD	14	177652	14489	11203	0.28	6.61	448.0	0.98	0.59	6.5
MFEC	13824	NID	4	55040	2401279	416769	0.08	_		0.45	0.20	7.0
MFEO	13824	NPD	14	177652	13401	10767	0.27	6.51	440.5	0.95	0.41	10.0
CMFE	13824	NPD	14	177652	9276	7758	0.28	5.27	350.5	0.84	0.38	9.0
FV	13824	SID	4	55040	247055	239934	0.09	_	_	0.45	0.20	7.0
NCFE	20608	SPD	5	102528	25393	16969	0.18	4.03	850.0	1.12	0.41	30.0

Results, inhomogeneous case

							DS	CG/ Bi-CGStab		PCG/ PBi-CGSta		tab
Meth.	Un.	Mat.	St.	Nonz.	CN	CNS	CPU	CPU	Iter.	CPU	IC/ ILU	lter.
MFEB	13824	NPD	14	177652	819248	740706	0.28	13.33	897.5	1.05	0.62	6.5
MFEC	13824	NNS	4	55040	903789	763849	0.09	5.34	947.5	0.47	0.20	7.5
MFEO	13824	NPD	14	177652	820367	739957	0.28	12.45	790.5	1.05	0.56	8.0
CMFE	13824	NPD	14	177652	2500730	478974	0.28	102.27	6842.5	1.01	0.41	10.5
FV	13824	SPD	4	55040	16387758	497974	0.07	39.41	14101.0	0.44	0.17	16.0
NCFE	20608	SPD	5	102528	4797335	670623	0.18	52.42	11226.0	1.22	0.64	16.0
Outline

- Introduction and motivation
- 2 Known equivalences
- 3 Discrete maximum principle
- ④ General polygonal meshes
- One unknown per element: a unified construction principle and a link to the MPFA
 - Local problems definition and a link to the MPFA method
 - Global problems definition
- 6 Numerical experiments
- 7 Conclusions and future work

Conclusions and future work

Conclusions

- mixed finite elements: one method with
 - saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
 - U and P unknowns / A unknowns / P unknowns
 - narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
 - discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
- close relations in building principles between MFE/FD/FV/ MFD/MPFA, even on general polygonal meshes

- a general principle for nonconforming finite elements
- extensions to all order MFE schemes
- multigrid solvers

Conclusions and future work

Conclusions

- mixed finite elements: one method with
 - saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
 - U and P unknowns / A unknowns / P unknowns
 - narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
 - discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
- close relations in building principles between MFE/FD/FV/ MFD/MPFA, even on general polygonal meshes

- a general principle for nonconforming finite elements
- extensions to all order MFE schemes
- multigrid solvers

Conclusions and future work

Conclusions

- mixed finite elements: one method with
 - saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
 - U and P unknowns / Λ unknowns / P unknowns
 - narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
 - discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
- close relations in building principles between MFE/FD/FV/ MFD/MPFA, even on general polygonal meshes

- a general principle for nonconforming finite elements
- extensions to all order MFE schemes
- multigrid solvers

Conclusions and future work

Conclusions

- mixed finite elements: one method with
 - saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
 - U and P unknowns / A unknowns / P unknowns
 - narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
 - discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
- close relations in building principles between MFE/FD/FV/ MFD/MPFA, even on general polygonal meshes

- a general principle for nonconforming finite elements
- extensions to all order MFE schemes
- multigrid solvers

Bibliography

Bibliography

- VOHRALÍK M., WOHLMUTH B., Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods, Preprint R10031, Laboratoire Jacques-Louis Lions and HAL Preprint 00497394.
- VOHRALÍK M., Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes, *M2AN Math. Model. Numer. Anal.* 40 (2006), 367–391.
- VOHRALÍK M., WOHLMUTH B., A general principle for reducing the number of unknowns and influencing the matrix properties in nonconforming finite elements, in preparation.
- VOHRALÍK M., WOHLMUTH B., All order mixed finite element methods with one unknown per element, in preparation.

Thank you for your attention!