Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods

Martin Vohralík and Barbara Wohlmuth

Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie (Paris 6)
Bordeaux, March 30, 2011

Outline

(1) Introduction and motivation
(2) Known equivalences
(3) Discrete maximum principle

4 General polygonal meshes
(5) One unknown per element: a unified construction principle and a link to the MPFA

- Local problems definition and a link to the MPFA method
- Global problems definition
(6) Numerical experiments
(7) Conclusions and future work

Outline

(1) Introduction and motivation

Known equivalences3 Discrete maximum principle
a General polygonal meshes
(5) One unknown per element: a unified construction principle and a link to the MPFA

- Local problems definition and a link to the MPFA method
- Global problems definitionNumerical experiments
(7)

Conclusions and future work

Five widespread beliefs about mixed finite elements

Five widespread beliefs about mixed finite elements

Five widespread beliefs about mixed finite elements

Five widespread beliefs about mixed finite elements

- there exist no local flux expressions
- there is no discrete maximum principle
- they cannot work on general polygonal meshes
- they cannot be implemented with one unknown/elemen
- they are only related to finite difference, finite volume, mimetic finite difference, or MPFA through approximate

Five widespread beliefs about mixed finite elements

Five widespread beliefs about mixed finite elements

- there exist no local flux expressions
- there is no discrete maximum principle
- they cannot work on general polygonal meshes
- they cannot be implemented with one unknown/element
- they are only related to finite difference, finite volume, mimetic finite difference, or MPFA through approximate numerical quadratures

Five widespread beliefs about mixed finite elements

Five widespread beliefs about mixed finite elements

- there exist no local flux expressions
- there is no discrete maximum principle
- they cannot work on general polygonal meshes
- they cannot be implemented with one unknown/element
- they are only related to finite difference, finite volume,
mimetic finite difference, or MPFA through approximate numerical quadratures

Five widespread beliefs about mixed finite elements

Five widespread beliefs about mixed finite elements

- there exist no local flux expressions
- there is no discrete maximum principle
- they cannot work on general polygonal meshes
- they cannot be implemented with one unknown/element
- they are only related to finite difference, finite volume,
mimetic finite difference, or MPFA through approximate numerical quadratures

Five widespread beliefs about mixed finite elements

Five widespread beliefs about mixed finite elements

- there exist no local flux expressions
- there is no discrete maximum principle
- they cannot work on general polygonal meshes
- they cannot be implemented with one unknown/element
- they are only related to finite difference, finite volume, mimetic finite difference, or MPFA through approximate numerical quadratures

Five widespread beliefs about mixed finite elements

Five widespread beliefs about mixed finite elements

- there exist no local flux expressions
- there is no discrete maximum principle
- they cannot work on general polygonal meshes
- they cannot be implemented with one unknown/element
- they are only related to finite difference, finite volume, mimetic finite difference, or MPFA through approximate numerical quadratures

All these beliefs are false!

Motivations

Motivations of the present work

- recall the rectifications to the five false beliefs
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- present a comparative numerical study
- show closeness in building principles of MFE and

FD/FV/MFD/MPFA, even on general polygonal meshes

Motivations

Motivations of the present work

- recall the rectifications to the five false beliefs
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- present a comparative numerical study
- show closeness in building principles of MFE and

FD/FV/MFD/MPFA, even on general polygonal meshes

Motivations

Motivations of the present work

- recall the rectifications to the five false beliefs
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- present a comparative
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes

Motivations

Motivations of the present work

- recall the rectifications to the five false beliefs
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- present a comparative numerical study
- show closeness in building principles of MFE and

FD/FV/MFD/MPFA, even on general polygonal meshes

Motivations

Motivations of the present work

- recall the rectifications to the five false beliefs
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- present a comparative numerical study
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes

I Equiv. DMP Pol. meshes 1 unkn per el. Num. exp. C

Model problem and mixed finite elements

A model second-order elliptic problem

$$
\begin{aligned}
-\nabla \cdot(\mathbf{S} \nabla p)=g & \text { in } \Omega, \\
p=0 & \text { on } \partial \Omega
\end{aligned}
$$

Mixed finite element method
 find $p_{h} \in \Phi_{h}$ and $\mathbf{u}_{h} \in \mathbf{V}_{h}$ such that

- Φ_{h}, \mathbf{V}_{h} : Raviart-Thomas-Nédélec MFE space

Matrix form

Model problem and mixed finite elements

A model second-order elliptic problem

$$
\begin{aligned}
-\nabla \cdot(\mathbf{S} \nabla p)=g & \text { in } \Omega, \\
p=0 & \text { on } \partial \Omega
\end{aligned}
$$

Mixed finite element method find $p_{h} \in \Phi_{h}$ and $\mathbf{u}_{h} \in \mathbf{V}_{h}$ such that

$$
\begin{aligned}
\left(\mathbf{S}^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \nabla \cdot \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h}, \\
\left(\nabla \cdot \mathbf{u}_{h}, \phi_{h}\right) & =\left(g, \phi_{h}\right) & & \forall \phi_{h} \in \Phi_{h}
\end{aligned}
$$

- Φ_{h}, \mathbf{V}_{h} : Raviart-Thomas-Nédélec MFE space Matrix form

Model problem and mixed finite elements

A model second-order elliptic problem

$$
\begin{aligned}
-\nabla \cdot(\mathbf{S} \nabla p)=g & \text { in } \Omega, \\
p=0 & \text { on } \partial \Omega
\end{aligned}
$$

Mixed finite element method find $p_{h} \in \Phi_{h}$ and $\mathbf{u}_{h} \in \mathbf{V}_{h}$ such that

$$
\begin{aligned}
\left(\mathbf{S}^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \nabla \cdot \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h}, \\
\left(\nabla \cdot \mathbf{u}_{h}, \phi_{h}\right) & =\left(g, \phi_{h}\right) & & \forall \phi_{h} \in \Phi_{h}
\end{aligned}
$$

- Φ_{h}, \mathbf{V}_{h} : Raviart-Thomas-Nédélec MFE space Matrix form

$$
\left(\begin{array}{ll}
\mathbb{A} & \mathbb{B}^{t} \\
\mathbb{B} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{G}
$$

- indefinite, saddle point type
- both fluxes U (1/side) and potentials P (1/element) involved

Outline

(1) Introduction and motivation
(2) Known equivalences
(3) Discrete maximum principle

4 General polygonal meshes
(5.) One unknown per element: a unified construction principle and a link to the MPFA

- Local problems definition and a link to the MPFA method
- Global problems definition
(6)

Numerical experiments
(7)

Conclusions and future work

Equivalence with nonconforming finite elements

Crouzeix-Raviart nonconforming finite element method

- find $\tilde{\lambda}_{h} \in \tilde{\Psi}_{h}$ such that

$$
\left(\mathbf{S} \nabla \tilde{\lambda}_{h}, \nabla \tilde{\psi}_{h}\right)=\left(g, \tilde{\psi}_{h}\right) \quad \forall \tilde{\psi}_{h} \in \tilde{\Psi}_{h}
$$

- degrees of freedom:
(vector \wedge)
- matrix form

Equivalence of MFEs with nonconforming finite elements

- MFEs \longrightarrow Lagrange multipliers \wedge, mixed-hybrid FEM: $\mathbb{Z} \Lambda=E$
- same matrices and RHS as in the nonconforming finite element method (when \mathbf{S} and g are piecewise constant)
- $\tilde{\lambda}_{h}$ from MFEs and $\tilde{\lambda}_{h}$ from NCFEs coincide
- Arnold \& Brezzi 1985, Marini 1985, Arbogast \& Chen

1995, Chen 1996

Equivalence with nonconforming finite elements

Crouzeix-Raviart nonconforming finite element method

- find $\tilde{\lambda}_{h} \in \tilde{\Psi}_{h}$ such that

$$
\left(\mathbf{S} \nabla \tilde{\lambda}_{h}, \nabla \tilde{\psi}_{h}\right)=\left(g, \tilde{\psi}_{h}\right) \quad \forall \tilde{\psi}_{h} \in \tilde{\Psi}_{h}
$$

- degrees of freedom: 1 potential/side (vector Λ)
- matrix form

Equivalence of MFEs with nonconforming finite elements - MFEs \longrightarrow Lagrange multipliers \wedge, mixed-hybrid FEM: $\mathbb{Z} \Lambda=E$

- same matrices and RHS as in the nonconforming finite element method (when \mathbf{S} and g are piecewise constant) - $\tilde{\lambda}_{h}$ from MFEs and $\tilde{\lambda}_{h}$ from NCFEs - Arnold \& Brezzi 1985, Marini 1985, Arbogast \& Chen 1995, Chen 1996

Equivalence with nonconforming finite elements

Crouzeix-Raviart nonconforming finite element method

- find $\tilde{\lambda}_{h} \in \tilde{\Psi}_{h}$ such that

$$
\left(\mathbf{S} \nabla \tilde{\lambda}_{h}, \nabla \tilde{\psi}_{h}\right)=\left(g, \tilde{\psi}_{h}\right) \quad \forall \tilde{\psi}_{h} \in \tilde{\Psi}_{h}
$$

- degrees of freedom: 1 potential/side (vector Λ)
- matrix form

$$
\mathbb{Z} \wedge=E
$$

Equivalence of MFEs with nonconforming finite elements - MFEs \longrightarrow Lagrange multipliers \wedge, mixed-hybrid FEM: $\mathbb{Z} \Lambda=E$

- same matrices and RHS as in the nonconforming finite element method (when \mathbf{S} and g are piecewise constant)
- $\tilde{\lambda}_{h}$ from MFEs and $\tilde{\lambda}_{h}$ from NCFEs coincide
- Arnold \& Brezzi 1985, Marini 1985, Arbogast \& Chen

Equivalence with nonconforming finite elements

Crouzeix-Raviart nonconforming finite element method

- find $\tilde{\lambda}_{h} \in \tilde{\Psi}_{h}$ such that

$$
\left(\mathbf{S} \nabla \tilde{\lambda}_{h}, \nabla \tilde{\psi}_{h}\right)=\left(g, \tilde{\psi}_{h}\right) \quad \forall \tilde{\psi}_{h} \in \tilde{\Psi}_{h}
$$

- degrees of freedom: 1 potential/side (vector Λ)
- matrix form

$$
\mathbb{Z} \Lambda=E
$$

- \mathbb{Z} is symmetric and positive definite

Equivalence of MFEs with nonconforming finite elements

- same matrices and RHS as in the nonconforming finite element method (when \mathbf{S} and g are piecewise constant)
\square
- Arnold \& Brezzi 1985, Marini 1985, Arbogast \& Chen

Equivalence with nonconforming finite elements

Crouzeix-Raviart nonconforming finite element method

- find $\tilde{\lambda}_{h} \in \tilde{\Psi}_{h}$ such that

$$
\left(\mathbf{S} \nabla \tilde{\lambda}_{h}, \nabla \tilde{\psi}_{h}\right)=\left(g, \tilde{\psi}_{h}\right) \quad \forall \tilde{\psi}_{h} \in \tilde{\Psi}_{h}
$$

- degrees of freedom: 1 potential/side (vector Λ)
- matrix form

$$
\mathbb{Z} \Lambda=E
$$

- \mathbb{Z} is symmetric and positive definite

Equivalence of MFEs with nonconforming finite elements

- MFEs \longrightarrow Lagrange multipliers Λ, mixed-hybrid FEM:

$$
\mathbb{Z} \Lambda=E
$$

- same matrices and RHS as in the nonconforming finite element method (when \mathbf{S} and g are piecewise constant)

Equivalence with nonconforming finite elements

Crouzeix-Raviart nonconforming finite element method

- find $\tilde{\lambda}_{h} \in \tilde{\Psi}_{h}$ such that

$$
\left(\mathbf{S} \nabla \tilde{\lambda}_{h}, \nabla \tilde{\psi}_{h}\right)=\left(g, \tilde{\psi}_{h}\right) \quad \forall \tilde{\psi}_{h} \in \tilde{\Psi}_{h}
$$

- degrees of freedom: 1 potential/side (vector Λ)
- matrix form

$$
\mathbb{Z} \Lambda=E
$$

- \mathbb{Z} is symmetric and positive definite

Equivalence of MFEs with nonconforming finite elements

- MFEs \longrightarrow Lagrange multipliers Λ, mixed-hybrid FEM:

$$
\mathbb{Z} \Lambda=E
$$

- same matrices and RHS as in the nonconforming finite element method (when \mathbf{S} and g are piecewise constant)

Equivalence with nonconforming finite elements

Crouzeix-Raviart nonconforming finite element method

- find $\tilde{\lambda}_{h} \in \tilde{\Psi}_{h}$ such that

$$
\left(\mathbf{S} \nabla \tilde{\lambda}_{h}, \nabla \tilde{\psi}_{h}\right)=\left(g, \tilde{\psi}_{h}\right) \quad \forall \tilde{\psi}_{h} \in \tilde{\Psi}_{h}
$$

- degrees of freedom: 1 potential/side (vector Λ)
- matrix form

$$
\mathbb{Z} \Lambda=E
$$

- \mathbb{Z} is symmetric and positive definite

Equivalence of MFEs with nonconforming finite elements

- MFEs \longrightarrow Lagrange multipliers \wedge, mixed-hybrid FEM:

$$
\mathbb{Z} \Lambda=E
$$

- same matrices and RHS as in the nonconforming finite element method (when \mathbf{S} and g are piecewise constant)
- $\tilde{\lambda}_{h}$ from MFEs and $\tilde{\lambda}_{h}$ from NCFEs coincide

Equivalence with nonconforming finite elements

Crouzeix-Raviart nonconforming finite element method

- find $\tilde{\lambda}_{h} \in \tilde{\Psi}_{h}$ such that

$$
\left(\mathbf{S} \nabla \tilde{\lambda}_{h}, \nabla \tilde{\psi}_{h}\right)=\left(g, \tilde{\psi}_{h}\right) \quad \forall \tilde{\psi}_{h} \in \tilde{\Psi}_{h}
$$

- degrees of freedom: 1 potential/side (vector Λ)
- matrix form

$$
\mathbb{Z} \Lambda=E
$$

- \mathbb{Z} is symmetric and positive definite

Equivalence of MFEs with nonconforming finite elements

- MFEs \longrightarrow Lagrange multipliers Λ, mixed-hybrid FEM:

$$
\mathbb{Z} \Lambda=E
$$

- same matrices and RHS as in the nonconforming finite element method (when \mathbf{S} and g are piecewise constant)
- $\tilde{\lambda}_{h}$ from MFEs and $\tilde{\lambda}_{h}$ from NCFEs coincide
- Arnold \& Brezzi 1985, Marini 1985, Arbogast \& Chen 1995, Chen 1996

Different representations of the MFE solution

4-point finite volume scheme

4-point finite volume scheme $(\mathbf{S}=\mathbb{I})$

- find $\bar{p}_{h} \in \Phi_{h}$ such that

$$
-\sum_{L \in \mathcal{N}(K)} \frac{\left.\bar{p}_{h}\right|_{L}-\left.\bar{p}_{h}\right|_{K}}{d_{K, L}}\left|\sigma_{K, L}\right|=(g, 1)_{K} \quad \forall K \in \mathcal{T}_{h}
$$

- degrees of freedom: 1 potential/element (vector P)
- matrix form

4-point finite volume scheme

4-point finite volume scheme $(\mathbf{S}=\mathbb{I})$

- find $\bar{p}_{h} \in \Phi_{h}$ such that

$$
-\sum_{L \in \mathcal{N}(K)} \frac{\bar{p}_{h}\left|L-\bar{p}_{h}\right|_{K}}{d_{K, L}}\left|\sigma_{K, L}\right|=(g, 1)_{K} \quad \forall K \in \mathcal{T}_{h}
$$

- degrees of freedom: 1 potential/element (vector P)
- matrix form

4-point finite volume scheme

4-point finite volume scheme $(\mathbf{S}=\mathbb{I})$

- find $\bar{p}_{h} \in \Phi_{h}$ such that

$$
-\sum_{L \in \mathcal{N}(K)} \frac{\bar{p}_{h}\left|L-\bar{p}_{h}\right|_{K}}{d_{K, L}}\left|\sigma_{K, L}\right|=(g, 1)_{K} \quad \forall K \in \mathcal{T}_{h}
$$

- degrees of freedom: 1 potential/element (vector P)
- matrix form

$$
\mathbb{S} P=H
$$

4-point finite volume scheme

4-point finite volume scheme ($\mathbf{S}=\mathbb{I}$)

- find $\bar{p}_{h} \in \Phi_{h}$ such that

$$
-\sum_{L \in \mathcal{N}(K)} \frac{\bar{p}_{h}\left|L-\bar{p}_{h}\right|_{K}}{d_{K, L}}\left|\sigma_{K, L}\right|=(g, 1)_{K} \quad \forall K \in \mathcal{T}_{h}
$$

- degrees of freedom: 1 potential/element (vector P)
- matrix form

$$
\mathbb{S} P=H
$$

- \mathbb{S} is symmetric and positive definite (\mathbf{S} scalar and \mathcal{T}_{h} Del.)

Equivalence with 4-point finite volumes

Equivalence of MFEs with 4-point finite volumes

- let $g=0, \mathbf{S}=\mathbb{I}$, and \mathcal{T}_{h} consist of equilateral simplices: then p_{h} from MFEs and \bar{p}_{h} from FVs coincide
- $g \neq 0, S \neq \mathbb{I}$, or \mathcal{T}_{h} not consisting of equilateral simplices: p_{h} from MFEs and \bar{p}_{h} from FVs do not coincide anymore
\square

Equivalence with 4-point finite volumes

Equivalence of MFEs with 4-point finite volumes

- let $g=0, \mathbf{S}=\mathbb{I}$, and \mathcal{T}_{h} consist of equilateral simplices: then p_{h} from MFEs and \bar{p}_{h} from FVs coincide
- $g \neq 0, \mathbf{S} \neq \mathbb{I}$, or \mathcal{T}_{h} not consisting of equilateral simplices: p_{h} from MFEs and \bar{p}_{h} from FVs do not coincide anymore

Equivalence with 4-point finite volumes

Equivalence of MFEs with 4-point finite volumes

- let $g=0, \mathbf{S}=\mathbb{I}$, and \mathcal{T}_{h} consist of equilateral simplices: then p_{h} from MFEs and \bar{p}_{h} from FVs coincide
- $g \neq 0, \mathbf{S} \neq \mathbb{I}$, or \mathcal{T}_{h} not consisting of equilateral simplices: p_{h} from MFEs and \bar{p}_{h} from FVs do not coincide anymore
- conclusion: MFEs and FVs are different

Equivalence with 4-point finite volumes

Equivalence of MFEs with 4-point finite volumes

- let $g=0, \mathbf{S}=\mathbb{I}$, and \mathcal{T}_{h} consist of equilateral simplices: then p_{h} from MFEs and \bar{p}_{h} from FVs coincide
- $g \neq 0, \mathbf{S} \neq \mathbb{I}$, or \mathcal{T}_{h} not consisting of equilateral simplices: p_{h} from MFEs and \bar{p}_{h} from FVs do not coincide anymore
- conclusion: MFEs and FVs are different
- this conclusion is almost completely wrong

Equivalence with 4-point finite volumes

- in MFEs (Marini 1985):

$$
\left.p_{h}\right|_{K}=\tilde{\lambda}_{h}\left(\mathbf{x}_{K}\right)+\frac{g_{K}}{2 d|K|}\left(\left(\mathbf{x}-\mathbf{x}_{K}\right)^{t} \mathbf{S}_{K}^{-1}\left(\mathbf{x}-\mathbf{x}_{K}\right), 1\right)_{K}
$$

- \mathbf{x}_{K} is the barycenter
- p_{h} represents the mean value of the potential
- influence of the source term g
- in FVs, if $g=0$ (Younès, Mose, Ackerer, \& Chavent

1999-2004):

$$
\bar{p}_{h} \mid K=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)
$$

- \mathbf{z}_{K} is the circumcenter
- \bar{p}_{h} represents the point value of the potential
- no influence of the source term g
- holds on arbitrary simplicial meshes (not necessarily

Delaunay)!

- holds for full matrix S!

Equivalence with 4-point finite volumes

- in MFEs (Marini 1985):

$$
\left.p_{h}\right|_{K}=\tilde{\lambda}_{h}\left(\mathbf{x}_{K}\right)+\frac{g_{K}}{2 d|K|}\left(\left(\mathbf{x}-\mathbf{x}_{K}\right)^{t} \mathbf{S}_{K}^{-1}\left(\mathbf{x}-\mathbf{x}_{K}\right), 1\right)_{K}
$$

- \mathbf{x}_{K} is the barycenter
- p_{h} represents the mean value of the potential
- influence of the source term g
- in FVs, if $g=0$ (Younès, Mose, Ackerer, \& Chavent 1999-2004):

$$
\left.\bar{p}_{h}\right|_{K}=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)
$$

- \mathbf{z}_{K} is the circumcenter
- \bar{p}_{h} represents the point value of the potential
- no influence of the source term g
- holds on arbitrary simplicial meshes (not necessarily

Delaunay)!

Equivalence with 4-point finite volumes

- in MFEs (Marini 1985):

$$
\left.p_{h}\right|_{K}=\tilde{\lambda}_{h}\left(\mathbf{x}_{K}\right)+\frac{g_{K}}{2 d|K|}\left(\left(\mathbf{x}-\mathbf{x}_{K}\right)^{t} \mathbf{S}_{K}^{-1}\left(\mathbf{x}-\mathbf{x}_{K}\right), 1\right)_{K}
$$

- \mathbf{x}_{K} is the barycenter
- p_{h} represents the mean value of the potential
- influence of the source term g
- in FVs, if $g=0$ (Younès, Mose, Ackerer, \& Chavent 1999-2004):

$$
\left.\bar{p}_{h}\right|_{K}=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)
$$

- \mathbf{z}_{K} is the circumcenter
- \bar{p}_{h} represents the point value of the potential
- no influence of the source term g
- MFEs and FVs are equivalent when g is constant
- holds on arbitrary simplicial meshes (not necessarily Delaunay)!

Equivalence with 4-point finite volumes

- in MFEs (Marini 1985):

$$
\left.p_{h}\right|_{K}=\tilde{\lambda}_{h}\left(\mathbf{x}_{K}\right)+\frac{g_{K}}{2 d|K|}\left(\left(\mathbf{x}-\mathbf{x}_{K}\right)^{t} \mathbf{S}_{K}^{-1}\left(\mathbf{x}-\mathbf{x}_{K}\right), 1\right)_{K}
$$

- \mathbf{x}_{K} is the barycenter
- p_{h} represents the mean value of the potential
- influence of the source term g
- in FVs, if $g=0$ (Younès, Mose, Ackerer, \& Chavent 1999-2004):

$$
\bar{p}_{h} \mid K=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)
$$

- \mathbf{z}_{K} is the circumcenter
- \bar{p}_{h} represents the point value of the potential
- no influence of the source term g
- MFEs and FVs are equivalent when g is constant
- holds on arbitrary simplicial meshes (not necessarily Delaunay)!
- holds for full matrix S!

Links to MFDs and MPFAs

Links to the mimetic finite difference and multi-point flux-approximation methods

- using approximate numerical integration
- Klausen \& Winther, 2006
- Wheeler \& Yotov, 2006
- Aavatsmark, Eigestad, Klausen, Wheeler, \& Yotov, 2007
- Droniou, Eymard, Gallouët, \& Herbin, 2010
- Bause Hoffmann, \& Knabner, 2010
- ... Brezzi, da Veiga, Lipnikov, Manzini, Shashkov ...

Outline

(1) Introduction and motivation

Known equivalences
(3) Discrete maximum principle
(4) General polygonal meshes
(5) One unknown per element: a unified construction principle and a link to the MPFA

- Local problems definition and a link to the MPFA method
- Global problems definitionNumerical experiments
(7)

Conclusions and future work

Discrete maximum principle in MFEs

Discrete maximum principle in MFEs $(\mathbf{S}=\mathbb{I})$

- DMP for the Lagrange multipliers λ_{σ} (values of $\tilde{\lambda}_{h}$ in side barycenters) whenever \mathcal{T}_{h} is acute (equivalence with the NCFE method)

Discrete maximum principle in MFEs

Discrete maximum principle in MFEs $(S=\mathbb{I})$

- DMP for the Lagrange multipliers λ_{σ} (values of $\tilde{\lambda}_{h}$ in side barycenters) whenever \mathcal{T}_{h} is acute (equivalence with the NCFE method)
- DMP in 2D for the values \bar{p}_{K} (values of $\tilde{\lambda}_{h}$ in circumcenters) whenever \mathcal{T}_{h} is Delaunay and the source g is constant (equivalence with the FV method)
$p_{K}=$ value of $\tilde{\lambda}_{h}$ in the barycenter + a small influence of
the source term)

Discrete maximum principle in MFEs

Discrete maximum principle in MFEs $(S=\mathbb{I})$

- DMP for the Lagrange multipliers λ_{σ} (values of $\tilde{\lambda}_{h}$ in side barycenters) whenever \mathcal{T}_{h} is acute (equivalence with the NCFE method)
- DMP in 2D for the values \bar{p}_{K} (values of $\tilde{\lambda}_{h}$ in circumcenters) whenever \mathcal{T}_{h} is Delaunay and the source g is constant (equivalence with the FV method)
- DMP not necessarily for the original values p_{K} (recall that $p_{K}=$ value of $\tilde{\lambda}_{h}$ in the barycenter + a small influence of the source term)

Outline

(1) Introduction and motivationKnown equivalencesDiscrete maximum principle
(4) General polygonal meshes
(5) One unknown per element: a unified construction principle and a link to the MPFA

- Local problems definition and a link to the MPFA method
- Global problems definitionNumerical experiments
(7
Conclusions and future work

General polygonal meshes

A general polygonal mesh $\widehat{\mathcal{T}}_{H}$

- nonconvex and non star-shaped elements in $\widehat{\mathcal{T}}_{H}$
- $\widehat{\mathcal{T}}_{H}$ can be nonmatching
- maximal number of sides of $K \in \widehat{\mathcal{T}}_{H}$ is not limited
- $\widehat{\mathcal{T}}_{H}$ is not necessarily shape-regular

General polygonal meshes

A general polygonal mesh $\widehat{\mathcal{T}}_{H}$

- nonconvex and non star-shaped elements in $\widehat{\mathcal{T}}_{H}$
- $\widehat{\mathcal{T}}_{H}$ can be nonmatching
- maximal number of sides of $K \in \widehat{\mathcal{T}}_{H}$ is not limited
- $\widehat{\mathcal{T}}_{H}$ is not necessarily shape-regular
- only assumption: existence of a simplicial submesh \mathcal{T}_{h}

MFEs on general polygonal meshes

MFEs on \mathcal{T}_{h}

$$
\left(\begin{array}{ll}
\mathbb{A} & \mathbb{B}^{t} \\
\mathbb{B} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{G}
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

- \widehat{U} : flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_{H}$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on \mathcal{T}_{h} (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order
- equivalent to the formulation on \mathcal{T}_{h} (a priori and a posteriori error estimates, discrete maximum principle, ...)

MFEs on general polygonal meshes

MFEs on \mathcal{T}_{h}

$$
\left(\begin{array}{ll}
\mathbb{A} & \mathbb{B}^{t} \\
\mathbb{B} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{G}
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\left(\begin{array}{cc}
\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^{t} \\
\widehat{\mathbb{B}} & 0
\end{array}\right)\binom{\hat{U}}{\hat{P}}=\binom{\hat{F}}{\widehat{G}}
$$

- \widehat{U} : flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- \widehat{P} : potential unknowns related to the elements of \widehat{T}_{H} only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on \mathcal{T}_{h} (inverses
of loc. matrices corresponding to local Neumann problems)
- equivalent to the formulation on T_{h} (a priori and a
posteriori error estimates, discrete maximum principle, ...)

MFEs on general polygonal meshes

MFEs on \mathcal{T}_{h}

$$
\left(\begin{array}{ll}
\mathbb{A} & \mathbb{B}^{t} \\
\mathbb{B} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{G}
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\left(\begin{array}{ll}
\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^{t} \\
\widehat{\mathbb{B}} & 0
\end{array}\right)\binom{\widehat{U}}{\widehat{P}}=\binom{\widehat{F}}{\widehat{G}}
$$

- \widehat{U} : flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_{H}$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on \mathcal{T}_{h} (inverses of loc. matrices corresponding to local Neumann problems)
- equivalent to the formulation on \mathcal{T}_{h} (a priori and a

MFEs on general polygonal meshes

MFEs on \mathcal{T}_{h}

$$
\left(\begin{array}{ll}
\mathbb{A} & \mathbb{B}^{t} \\
\mathbb{B} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{G}
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\left(\begin{array}{ll}
\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^{t} \\
\widehat{\mathbb{B}} & 0
\end{array}\right)\binom{\widehat{U}}{\widehat{P}}=\binom{\widehat{F}}{\widehat{G}}
$$

- \widehat{U} : flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_{H}$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on \mathcal{T}_{h} (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order

MFEs on general polygonal meshes

MFEs on \mathcal{T}_{h}

$$
\left(\begin{array}{ll}
\mathbb{A} & \mathbb{B}^{t} \\
\mathbb{B} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{G}
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\left(\begin{array}{ll}
\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^{t} \\
\widehat{\mathbb{B}} & 0
\end{array}\right)\binom{\widehat{U}}{\widehat{P}}=\binom{\widehat{F}}{\widehat{G}}
$$

- \widehat{U} : flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_{H}$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on \mathcal{T}_{h} (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order
- equivalent to the formulation on \mathcal{T}_{h} (a priori and a posteriori error estimates, discrete maximum principle, ...)

MFEs on general polygonal meshes

MFEs on \mathcal{T}_{h}

$$
\mathbb{Z} \Lambda=E
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\widehat{\mathbb{Z}} \widehat{\Lambda}=\widehat{E}
$$

- $\widehat{\wedge}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on \mathcal{T}_{h} (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to the formulation on T_{h} (a priori and a posteriori error estimates, discrete maximum principle ...)

MFEs on general polygonal meshes

MFEs on \mathcal{T}_{h}

$$
\mathbb{Z} \Lambda=E
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\widehat{\mathbb{Z}} \widehat{\Lambda}=\widehat{E}
$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on \mathcal{T}_{h} (inverses of local matrices corresponding to local Dirichlet problems)
- equivalent to the formulation on T_{h} (a priori and a
posteriori error estimates, discrete maximum principle ...)

MFEs on general polygonal meshes

MFEs on \mathcal{T}_{h}

$$
\mathbb{Z} \Lambda=E
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\widehat{\mathbb{Z}} \widehat{\Lambda}=\widehat{E}
$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on \mathcal{T}_{h} (inverses of local matrices corresponding to local Dirichlet problems)
- equivalent to the formulation on T_{h} (a priori and a posteriori error estimates, discrete maximum principle ...)

MFEs on general polygonal meshes

MFEs on \mathcal{T}_{h}

$$
\mathbb{Z} \Lambda=E
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\widehat{\mathbb{Z}} \widehat{\Lambda}=\widehat{E}
$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on \mathcal{T}_{h} (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to the formulation on \mathcal{T}_{h} (a priori and a posteriori error estimates, discrete maximum principle ...)

MFEs on general polygonal meshes

MFEs on \mathcal{T}_{h}

$$
\mathbb{Z} \Lambda=E
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\widehat{\mathbb{Z}} \widehat{\Lambda}=\widehat{E}
$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on \mathcal{T}_{h} (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to the formulation on \mathcal{T}_{h} (a priori and a posteriori error estimates, discrete maximum principle ...)

Outline

Introduction and motivation
 Known equivalences
 Discrete maximum principle
 General polygonal meshes

(5) One unknown per element: a unified construction principle and a link to the MPFA

- Local problems definition and a link to the MPFA method
- Global problems definitionNumerical experimentsConclusions and future work

Local flux expression from the Lagrange multipliers

Nonconforming finite element method

find $\tilde{\lambda}_{h} \in \tilde{\Psi}_{h}$ such that

$$
\left(\mathbf{S} \nabla \tilde{\lambda}_{h}, \nabla \tilde{\psi}_{h}\right)=\left(g, \tilde{\psi}_{h}\right) \quad \forall \tilde{\psi}_{h} \in \tilde{\psi}_{h}
$$

Local flux expression from the Lagrange multipliers there holds (Marini 1985)

- \mathbf{x}_{K} : barycenter of K
- g_{K} : mean value of the source term g over K

Local flux expression from the Lagrange multipliers

Nonconforming finite element method

find $\tilde{\lambda}_{h} \in \tilde{\Psi}_{h}$ such that

$$
\left(\mathbf{S} \nabla \tilde{\lambda}_{h}, \nabla \tilde{\psi}_{h}\right)=\left(g, \tilde{\psi}_{h}\right) \quad \forall \tilde{\psi}_{h} \in \tilde{\Psi}_{h}
$$

Local flux expression from the Lagrange multipliers there holds (Marini 1985)

$$
\left.\mathbf{u}_{h}\right|_{K}=-\left.\mathbf{S}_{K} \nabla \tilde{\lambda}_{h}\right|_{K}+\frac{g_{K}}{d}\left(\mathbf{x}-\mathbf{x}_{K}\right) \quad \forall K \in \mathcal{T}_{h}
$$

- \mathbf{x}_{K} : barycenter of K
- g_{K} : mean value of the source term g over K

Outline

Introduction and motivation
 Known equivalences
 Discrete maximum principle
 General polygonal meshes

(5) One unknown per element: a unified construction principle and a link to the MPFA

- Local problems definition and a link to the MPFA method
- Global problems definitionNumerical experimentsConclusions and future work

A new element value

A new element value in $K \in \mathcal{T}_{h}$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value:
- $\tilde{\lambda}_{h}$ expressed in the three points $\mathbf{x}_{\sigma}, \mathbf{x}_{\gamma}$, and $\mathbf{z}_{K}(d=2)$ - Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

A new element value

A new element value in $K \in \mathcal{T}_{h}$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K}=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)$
- $\tilde{\lambda}_{h}$ expressed in the three points $\mathbf{x}_{\sigma}, \mathbf{x}_{\gamma}$, and $\mathbf{z}_{K}(d=2)$ - Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

A new element value

A new element value in $K \in \mathcal{T}_{h}$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K}=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)$
- $\tilde{\lambda}_{h}$ expressed in the three points $\mathbf{x}_{\sigma}, \mathbf{x}_{\gamma}$, and $\mathbf{z}_{K}(d=2)$

A new element value

A new element value in $K \in \mathcal{T}_{h}$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K}=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)$
- $\tilde{\lambda}_{h}$ expressed in the three points $\mathbf{x}_{\sigma}, \mathbf{x}_{\gamma}$, and $\mathbf{z}_{K}(d=2)$
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

A new element value

A new element value in $K \in \mathcal{T}_{h}$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K}=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)$
- $\tilde{\lambda}_{h}$ expressed in the three points $\mathbf{x}_{\sigma}, \mathbf{x}_{\gamma}$, and $\mathbf{z}_{K}(d=2)$
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$
- $\left.\mathbf{u}_{h}\right|_{K}=-\left.\mathbf{S}_{K} \nabla \tilde{\lambda}_{h}\right|_{K}+\frac{g_{K}}{d}\left(\mathbf{x}-\mathbf{x}_{K}\right) \quad \Rightarrow$

A new element value

A new element value in $K \in \mathcal{T}_{h}$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K}=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)$
- $\tilde{\lambda}_{h}$ expressed in the three points $\mathbf{x}_{\sigma}, \mathbf{x}_{\gamma}$, and $\mathbf{z}_{K}(d=2)$
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$
- $\left.\mathbf{u}_{h}\right|_{K}=-\mathbf{S}_{K} \nabla\left(\sum_{\sigma \in \mathcal{E}_{V, K}} \lambda_{\sigma} \tilde{\varphi}_{\sigma}+\bar{p}_{K} \tilde{\varphi}_{K}\right)+\frac{g_{K}}{d}\left(\mathbf{x}-\mathbf{x}_{K}\right)$

Definition of a local problem

Definition of a local problem

- consider a patch \mathcal{T}_{V} of the elements around a vertex V
patch, express the
- impose the continuity of u_{h} on the interior sides $\left(\varepsilon_{V}^{i n t}\right)$ of the patch

- local problem: given $\bar{P}_{V}=\left\{\bar{p}_{K}\right\}_{K \in \mathcal{T}_{V}}$, find $\Lambda_{V}^{\mathrm{int}}=\left\{\lambda_{\gamma}\right\}_{\gamma \in \mathcal{E}_{V}^{\mathrm{int}}}$ s.t.
- the same building principle as that of MPFA methods

$$
\begin{aligned}
\mathcal{T}_{V} & =\left\{K_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {int }} & =\left\{\sigma_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {ext }} & =\left\{\gamma_{i} i_{i=1}^{5}\right. \\
\mathcal{E}_{V} & =\mathcal{E}_{V}^{\text {int }} \cup \mathcal{E}_{V}^{\text {ext }}
\end{aligned}
$$

Definition of a local problem

Definition of a local problem

- consider a patch \mathcal{T}_{V} of the elements around a vertex V
- given the new element values \bar{p}_{K} and $\lambda_{\sigma}, \sigma \in \mathcal{E}_{V}^{\text {int }}$, in the patch, express the fluxes \mathbf{u}_{h} in the patch

Definition of a local problem

Definition of a local problem

- consider a patch \mathcal{T}_{V} of the elements around a vertex V
- given the new element values \bar{p}_{K} and $\lambda_{\sigma}, \sigma \in \mathcal{E}_{V}^{\text {int }}$, in the patch, express the fluxes \mathbf{u}_{h} in the patch
- impose the continuity of \mathbf{u}_{h} on the interior sides $\left(\mathcal{E}_{V}^{\mathrm{int}}\right)$ of the patch

$$
\sum_{-\mathcal{T}}\left\langle\mathbf{u}_{h} \cdot \mathbf{n}_{K}, 1\right\rangle_{\sigma}=0 \quad \forall \sigma \in \mathcal{E}_{V}^{\operatorname{int}}
$$

the same building principle as that of MPFA methods

$$
\begin{aligned}
\mathcal{T}_{V} & =\left\{K_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {int }} & =\left\{\sigma_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {ext }} & =\left\{\gamma_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V} & =\mathcal{E}_{V}^{\text {int }} \cup \mathcal{E}_{V}^{\text {ext }}
\end{aligned}
$$

Definition of a local problem

Definition of a local problem

- consider a patch \mathcal{T}_{V} of the elements around a vertex V
- given the new element values \bar{p}_{K} and $\lambda_{\sigma}, \sigma \in \mathcal{E}_{V}^{\text {int }}$, in the patch, express the fluxes \mathbf{u}_{h} in the patch
- impose the continuity of \mathbf{u}_{h} on the interior sides $\left(\mathcal{E}_{V}^{\mathrm{int}}\right)$ of the patch

$$
\sum_{K \in \mathcal{T}_{V} ; \sigma \in \mathcal{E}_{K}}\left\langle\mathbf{u}_{h} \cdot \mathbf{n}_{K}, 1\right\rangle_{\sigma}=0 \quad \forall \sigma \in \mathcal{E}_{V}^{\mathrm{int}}
$$

- local problem: given $\bar{P}_{V}=\left\{\bar{p}_{K}\right\}_{K \in \mathcal{T}_{V}}$, find $\Lambda_{V}^{\text {int }}=\left\{\lambda_{\gamma}\right\}_{\gamma \in \mathcal{E}_{V} \text { int }}$ s.t.

$$
\mathbb{M}_{V} \Lambda_{V}^{\mathrm{int}}=\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}
$$

$$
\begin{aligned}
\mathcal{T}_{V} & =\left\{K_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {int }} & =\left\{\sigma_{i}\right\}_{\}_{i=1}^{5}}^{\mathcal{E}_{V}^{\text {eVt }}}
\end{aligned}=\left\{\gamma_{i}\right\}_{i=1}^{5}=\mathcal{E}_{V}=\mathcal{E}_{V}^{\text {int }} \cup \mathcal{E}_{V}^{\text {ext }}
$$

Definition of a local problem

Definition of a local problem

- consider a patch \mathcal{T}_{V} of the elements around a vertex V
- given the new element values \bar{p}_{K} and $\lambda_{\sigma}, \sigma \in \mathcal{E}_{V}^{\text {int }}$, in the patch, express the fluxes u_{n} in the patch
- impose the continuity of \mathbf{u}_{n} on the interior sides $\left(\mathcal{E}_{V}^{\text {int }}\right)$ of the patch

$$
\sum_{K \in \mathcal{T}_{V} ; \sigma \in \mathcal{E}_{K}}\left\langle\mathbf{u}_{h} \cdot \mathbf{n}_{K}, \mathbf{1}\right\rangle_{\sigma}=0 \quad \forall \sigma \in \mathcal{E}_{V}^{\mathrm{int}}
$$

- local problem: given $\bar{P}_{V}=\left\{\bar{p}_{K}\right\}_{K \in \mathcal{T}_{V}}$, find $\Lambda_{V}^{\text {int }}=\left\{\lambda_{\gamma}\right\}_{\gamma \in \mathcal{E}_{V}^{\text {in }}}$ s.t.

$$
\mathbb{M}_{V} \Lambda_{V}^{\mathrm{int}}=\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}
$$

- the same building principle as that of MPFA methods

$$
\begin{aligned}
\mathcal{T}_{V} & =\left\{K_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {int }} & =\left\{\sigma_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {ext }} & =\left\{\gamma_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V} & =\mathcal{E}_{V}^{\text {int }} \cup \mathcal{E}_{V}^{\text {ext }}
\end{aligned}
$$

S-circumcenter as the evaluation point

S-circumcenter as the point \mathbf{z}_{K}

- circumcenter when $\mathbf{S}_{K}=\mathbb{I} \boldsymbol{s}_{K}$
- the approach of Younès, Mose, Ackerer, \& Chavent, 1999
- \mathbb{M}_{V} gets diagonal
- no local linear system needs to be solved
- two-point flux expression (on arbitrary triangular grids and full-matrix piecewise constant S)
- impossible in 3D (except particular cases)
- \mathbb{M}_{V} can explode (modifications necessary):

Barycenter as the evaluation point

Barycenter as the point \mathbf{z}_{K}

- this is the approach of Vohralík, 2004/2006
- \mathbb{M}_{V} is not diagonal (unless barycenter = circumcenter)
- a local linear system needs to be solved
- multi-point flux expression
- works generally in d space dimensions
- \mathbb{M}_{V} can get singular (modifications necessary):

Changing adaptively the evaluation point

Changing adaptively the evaluation point

- change \mathbf{z}_{K} according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices \mathbb{M}_{V}
- influence the properties of the final matrix

Changing adaptively the evaluation point

Changing adaptively the evaluation point

- change \mathbf{z}_{K} according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices \mathbb{M}_{V}
- influence the properties of the final matrix

Changing adaptively the evaluation point

Changing adaptively the evaluation point

- change \mathbf{z}_{K} according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices \mathbb{M}_{V}
- influence the properties of the final matrix

Changing adaptively the evaluation point

Changing adaptively the evaluation point

- change \mathbf{z}_{K} according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices \mathbb{M}_{V}
- influence the properties of the final matrix

Examples of the different evaluation points

Examples of the different evaluation points \mathbf{z}_{K}

- $\mathbf{S}=\left(\begin{array}{ll}0.7236 & 0.3804 \\ 0.3804 & 0.4764\end{array}\right)$

Examples of the local matrices

Examples of the local matrices \mathbb{M}_{V}

S-circumcenter
barycenter/opt. evaluation point

Outline

Introduction and motivation

Known equivalences

Discrete maximum principleGeneral polygonal meshes(5) One unknown per element: a unified construction principle and a link to the MPFA

- Local problems definition and a link to the MPFA method
- Global problems definitionNumerical experimentsConclusions and future work

Expressing the Lagrange multipliers \wedge or the fluxes \cup

Expressing the Lagrange multipliers \wedge or the fluxes U

- local problems give $\Lambda_{V}^{\mathrm{int}}=\left(\mathbb{M}_{V}\right)^{-1}\left(\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}\right)$
- for every vertex V, we have one expression for $\wedge_{V}^{\text {int }}$
- run through all vertices and combine the (weighted)
- this gives

- similarly

Expressing the Lagrange multipliers \wedge or the fluxes \cup

Expressing the Lagrange multipliers \wedge or the fluxes U

- local problems give $\Lambda_{V}^{\text {int }}=\left(\mathbb{M}_{V}\right)^{-1}\left(\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}\right)$
- for every vertex V, we have one expression for $\Lambda_{V}^{\text {int }}$
- this gives

Expressing the Lagrange multipliers \wedge or the fluxes U

Expressing the Lagrange multipliers \wedge or the fluxes U

- local problems give $\Lambda_{V}^{\mathrm{int}}=\left(\mathbb{M}_{V}\right)^{-1}\left(\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}\right)$
- for every vertex V, we have one expression for $\Lambda_{V}^{\mathrm{int}}$
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

Expressing the Lagrange multipliers Λ or the fluxes U

Expressing the Lagrange multipliers \wedge or the fluxes U

- local problems give $\Lambda_{V}^{\mathrm{int}}=\left(\mathbb{M}_{V}\right)^{-1}\left(\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}\right)$
- for every vertex V, we have one expression for $\Lambda_{V}^{\text {int }}$
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$
\Lambda=\widetilde{\mathbb{M}}^{\mathrm{inv}} \widetilde{G}-\mathbb{M}^{\mathrm{inv}} \bar{P}
$$

- similarly

Expressing the Lagrange multipliers Λ or the fluxes U

Expressing the Lagrange multipliers \wedge or the fluxes U

- local problems give $\Lambda_{V}^{\mathrm{int}}=\left(\mathbb{M}_{V}\right)^{-1}\left(\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}\right)$
- for every vertex V, we have one expression for $\Lambda_{V}^{\mathrm{int}}$
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$
\Lambda=\widetilde{\mathbb{M}}^{\mathrm{inv}} \widetilde{G}-\mathbb{M}^{\mathrm{inv}} \bar{P}
$$

- similarly

$$
U=\widetilde{\mathbb{O}}^{\text {inv }} G-\mathbb{O}^{\text {inv }} \bar{P}
$$

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U=\widetilde{\mathbb{O}}^{\text {inv }} G-\mathbb{O}^{\text {inv }} \bar{P}$
- put this into
- this gives
with

- $\mathbf{z}_{K}=$ S-circumcenter gives the FV method (Younès, Mose, Ackerer, \& Chavent, 1999)
- $\mathbf{z}_{K}=$ barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when $g=0$ (Hoffmann, 2008))

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U=\widetilde{\mathbb{O}^{\text {inv }}} G-\mathbb{O}^{\text {inv }} \bar{P}$
- put this into $\mathbb{B} U=G$
- this gives
with
- $\mathbf{z}_{K}=$ S-circumcenter gives the FV method (Younès, Mose, Ackerer, \& Chavent, 1999)
- $\mathbf{z}_{K}=$ barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when $g=0$ (Hoffmann, 2008))

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U=\widetilde{\mathbb{O}^{\text {inv }}} G-\mathbb{O}^{\text {inv }} \bar{P}$
- put this into $\mathbb{B} U=G$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=-\mathbb{B} \mathbb{O}^{\text {inv }}, \quad \bar{H}=G-\mathbb{B}^{\widetilde{O}^{\text {inv }}} G
$$

- $\mathbf{Z}_{K}=$ S-circumcenter gives the FV method (Younès, Mose, Ackerer, \& Chavent, 1999)
- $\mathbf{z}_{K}=$ barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when $g=0$ (Hoffmann, 2008))

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U=\widetilde{\mathbb{O}}^{\text {inv }} G-\mathbb{O}^{\text {inv }} \bar{P}$
- put this into $\mathbb{B} U=G$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=-\mathbb{B} \mathbb{O}^{\text {inv }}, \quad \bar{H}=G-\mathbb{B}_{\mathbb{O}^{\text {inv }}} G
$$

- $\mathbf{z}_{K}=\mathbf{S}$-circumcenter gives the FV method (Younès, Mose, Ackerer, \& Chavent, 1999)
- $\mathbf{z}_{K}=$ barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when $g=0$ (Hoffmann, 2008))

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U=\widetilde{(0}^{\text {inv }} G-\mathbb{O}^{\text {inv }} \bar{P}$
- put this into $\mathbb{B} U=G$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=-\mathbb{B} \mathbb{O}^{\text {inv }}, \quad \bar{H}=G-\mathbb{B}_{\widetilde{O}^{\text {inv }}} G
$$

- $\mathbf{z}_{K}=$ S-circumcenter gives the FV method (Younès, Mose, Ackerer, \& Chavent, 1999)
- $\mathbf{z}_{K}=$ barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when $g=0$ (Hoffmann, 2008))

I Equiv. DMP
 Pol. meshes 1 unkn per el.

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda=\widetilde{\mathbb{M}}^{\text {inv }} \widetilde{G}-\mathbb{M}^{\text {inv }} \bar{P}$
- put this into $\mathbb{N} \wedge=\bar{P}\left(\bar{p}_{K}\right.$ are punctual values of $\left.\tilde{\lambda}_{h}\right)$
- this gives
with

- using $\mathbf{z}_{K}=$ S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{K}=$ barycenter, we name it the MFEB method
- using $\mathbf{z}_{K}=$ the optimal evaluation point, we name it the MFEO method

I Equiv.

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda=\widetilde{\mathbb{M}}^{\text {inv }} \widetilde{G}-\mathbb{M}^{\text {inv }} \bar{P}$
- put this into $\mathbb{N} \Lambda=\bar{P}\left(\bar{p}_{K}\right.$ are punctual values of $\left.\tilde{\lambda}_{h}\right)$
- this gives
with

- using $\mathbf{z}_{K}=$ S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{K}=$ barycenter, we name it the MFEB method
- using $\mathbf{z}_{K}=$ the optimal evaluation point, we name it the MFEO method

Equiv.

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda=\widetilde{\mathbb{M}}^{\text {inv }} \widetilde{G}-\mathbb{M}^{\text {inv }} \bar{P}$
- put this into $\mathbb{N} \Lambda=\bar{P}\left(\bar{p}_{K}\right.$ are punctual values of $\left.\tilde{\lambda}_{h}\right)$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=\mathbb{N M}^{\mathrm{inv}}+\mathbb{I}, \quad \bar{H}=\mathbb{N} \widetilde{M}^{\mathrm{inv}} \widetilde{G}
$$

- using $\mathbf{z}_{K}=$ S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{K}=$ barycenter, we name it the MFEB method
- using $\mathbf{z}_{K}=$ the optimal evaluation point, we name it the MFEO method

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda=\widetilde{\mathbb{M}}^{\text {inv }} \widetilde{G}-\mathbb{M}^{\text {inv }} \bar{P}$
- put this into $\mathbb{N} \Lambda=\bar{P}\left(\bar{p}_{K}\right.$ are punctual values of $\left.\tilde{\lambda}_{h}\right)$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=\mathbb{N M}^{\text {inv }}+\mathbb{I}, \quad \bar{H}=\mathbb{N} \widetilde{M}^{\text {inv }} \widetilde{G}
$$

- using $\mathbf{z}_{K}=$ S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{K}=$ barycenter, we name it the MFEB method
- using $\mathbf{z}_{K}=$ the optimal evaluation point, we name it the
\square

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda=\widetilde{\mathbb{M}}^{\text {inv }} \widetilde{G}-\mathbb{M}^{\text {inv }} \bar{P}$
- put this into $\mathbb{N} \Lambda=\bar{P}\left(\bar{p}_{K}\right.$ are punctual values of $\left.\tilde{\lambda}_{h}\right)$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=\mathbb{N M}^{\text {inv }}+\mathbb{I}, \quad \bar{H}=\mathbb{N} \widetilde{M}^{\text {inv }} \widetilde{G}
$$

- using $\mathbf{z}_{K}=\mathbf{S}$-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{K}=$ barycenter, we name it the MFEB method
- using $\mathbf{z}_{K}=$ the optimal evaluation point, we name it the
\square

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda=\widetilde{\mathbb{M}}^{\text {inv }} \widetilde{G}-\mathbb{M}^{\text {inv }} \bar{P}$
- put this into $\mathbb{N} \Lambda=\bar{P}\left(\bar{p}_{K}\right.$ are punctual values of $\left.\tilde{\lambda}_{h}\right)$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=\mathbb{N M}^{\text {inv }}+\mathbb{I}, \quad \bar{H}=\mathbb{N}_{M^{i n v}} \widetilde{G}
$$

- using $\mathbf{z}_{K}=$ S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{K}=$ barycenter, we name it the MFEB method
- using $\mathbf{z}_{K}=$ the optimal evaluation point, we name it the MFEO method

Outline

(1) Introduction and motivationKnown equivalencesDiscrete maximum principle
(4) General polygonal meshes
(5) One unknown per element: a unified construction principle and a link to the MPFA

- Local problems definition and a link to the MPFA method
- Global problems definition

6 Numerical experiments
(7) Conclusions and future work

Model problem

Model problem

- $\Omega=(0,1) \times(0,1)$
- inhomogeneous Dirichlet boundary condition given by $p(x, y)=0.1 y+0.9$
- $K \in \mathcal{T}_{h}$:

$$
\left.\mathbf{S}\right|_{K}=\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & -\sin \left(\theta_{K}\right) \\
\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)\left(\begin{array}{cc}
s_{K} & 0 \\
0 & \nu s_{K}
\end{array}\right)\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & \sin \left(\theta_{K}\right) \\
-\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)
$$

Model problem

Model problem

- $\Omega=(0,1) \times(0,1)$
- inhomogeneous Dirichlet boundary condition given by $p(x, y)=0.1 y+0.9$
- $K \in \mathcal{T}_{h}$:

$$
\left.\mathbf{S}\right|_{K}=\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & -\sin \left(\theta_{K}\right) \\
\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)\left(\begin{array}{cc}
s_{K} & 0 \\
0 & \nu s_{K}
\end{array}\right)\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & \sin \left(\theta_{K}\right) \\
-\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)
$$

- homogeneous isotropic case, $s_{K}=1$ for all $K \in \mathcal{T}_{h}, \nu=1$

Model problem

Model problem

- $\Omega=(0,1) \times(0,1)$
- inhomogeneous Dirichlet boundary condition given by $p(x, y)=0.1 y+0.9$
- $K \in \mathcal{T}_{h}$:

$$
\left.\mathbf{S}\right|_{K}=\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & -\sin \left(\theta_{K}\right) \\
\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)\left(\begin{array}{cc}
s_{K} & 0 \\
0 & \nu s_{K}
\end{array}\right)\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & \sin \left(\theta_{K}\right) \\
-\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)
$$

- homogeneous isotropic case, $s_{K}=1$ for all $K \in \mathcal{T}_{h}, \nu=1$
- anisotropic case, $s_{K}=1$ for all $K \in \mathcal{T}_{h}$,

$$
\theta_{K} \in\left\{\frac{\pi}{5}, \frac{3 \pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{5}, \frac{\pi}{3}\right\}, \nu=0.2
$$

Model problem

Model problem

- $\Omega=(0,1) \times(0,1)$
- inhomogeneous Dirichlet boundary condition given by $p(x, y)=0.1 y+0.9$
- $K \in \mathcal{T}_{h}$:

$$
\left.\mathbf{S}\right|_{K}=\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & -\sin \left(\theta_{K}\right) \\
\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)\left(\begin{array}{cc}
s_{K} & 0 \\
0 & \nu s_{K}
\end{array}\right)\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & \sin \left(\theta_{K}\right) \\
-\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)
$$

- homogeneous isotropic case, $s_{K}=1$ for all $K \in \mathcal{T}_{h}, \nu=1$
- anisotropic case, $s_{K}=1$ for all $K \in \mathcal{T}_{h}$,

$$
\theta_{K} \in\left\{\frac{\pi}{5}, \frac{3 \pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{5}, \frac{\pi}{3}\right\}, \nu=0.2
$$

- inhomogeneous case, $s_{K} \in\{10,1,0.1,0.01,0.001\}, \nu=1$

Initial mesh

Initial mesh and the distribution of the inhomogeneities and anisotropies

Matrices of the different methods

System matrix sparsity patterns

MFE

MFEB
MFEO
CMFE

NCFE

Results, homogeneous isotropic case

Meth.	Un.	Mat.	St.	Nonz.	CN	CNS	$\begin{gathered} \text { DS } \\ \text { CPU } \end{gathered}$	$\begin{gathered} \mathrm{CG} / \\ \mathrm{Bi}-\mathrm{CGStab} \end{gathered}$		$\begin{gathered} \text { PCG/ } \\ \text { PBi-CGStab } \end{gathered}$		
								CPU	Iter.	CPU	$\begin{aligned} & \text { IC/ } \\ & \text { ILU } \end{aligned}$	Iter.
MFEB	13824	NPD	14	177652	7564	7580	0.27	4.86	324.5	0.81	0.36	9.0
MFEC	13824	NNS	4	55040	11256	11056	0.09	2.23	372.0	0.42	0.19	6.5
MFEO	13824	NPD	14	177652	7531	7558	0.28	4.08	270.0	0.80	0.41	7.5
CMFE	13824	NPD	14	177652	7397	7380	0.27	4.70	312.0	0.83	0.39	8.5
FV	13824	SPD	4	55040	65722	8898	0.07	3.09	1098.0	0.42	0.17	17.0
NCFE	20608	SPD	5	102528	14064	9944	0.14	2.92	620.0	1.11	0.56	19.0

Results, anisotropic case

Meth.	Un.	Mat.	St.	Nonz.	CN	CNS	$\begin{gathered} \text { DS } \\ \text { CPU } \end{gathered}$	$\begin{gathered} \text { CG/ } \\ \text { Bi-CGStab } \end{gathered}$		$\begin{gathered} \text { PCG/ } \\ \text { PBi-CGStab } \end{gathered}$		
								CPU	Iter.	CPU	$\begin{aligned} & \text { IC/ } \\ & \text { ILU } \end{aligned}$	Iter.
MFEB	13824	NPD	14	177652	14489	11203	0.28	6.61	448.0	0.98	0.59	6.5
MFEC	13824	NID	4	55040	2401279	416769	0.08	-	-	0.45	0.20	7.0
MFEO	13824	NPD	14	177652	13401	10767	0.27	6.51	440.5	0.95	0.41	10.0
CMFE	13824	NPD	14	177652	9276	7758	0.28	5.27	350.5	0.84	0.38	9.0
FV	13824	SID	4	55040	247055	239934	0.09	-	-	0.45	0.20	7.0
NCFE	20608	SPD	5	102528	25393	16969	0.18	4.03	850.0	1.12	0.41	30.0

Results, inhomogeneous case

Meth.	Un.	Mat.	St.	Nonz.	CN	CNS	$\begin{gathered} \text { DS } \\ \text { CPU } \end{gathered}$	$\begin{gathered} \text { CG/ } \\ \text { Bi-CGStab } \end{gathered}$		$\begin{gathered} \text { PCG/ } \\ \text { PBi-CGStab } \end{gathered}$		
								CPU	Iter.	CPU	$\begin{aligned} & \text { IC/ } \\ & \text { ILU } \end{aligned}$	Iter.
MFEB	13824	NPD	14	177652	819248	740706	0.28	13.33	897.5	1.05	0.62	6.5
MFEC	13824	NNS	4	55040	903789	763849	0.09	5.34	947.5	0.47	0.20	7.5
MFEO	13824	NPD	14	177652	820367	739957	0.28	12.45	790.5	1.05	0.56	8.0
CMFE	13824	NPD	14	177652	2500730	478974	0.28	102.27	6842.5	1.01	0.41	10.5
FV	13824	SPD	4	55040	16387758	497974	0.07	39.41	14101.0	0.44	0.17	16.0
NCFE	20608	SPD	5	102528	4797335	670623	0.18	52.42	11226.0	1.22	0.64	16.0

Outline

(1) Introduction and motivationKnown equivalencesDiscrete maximum principle
(4) General polygonal meshes
(5) One unknown per element: a unified construction principle and a link to the MPFA

- Local problems definition and a link to the MPFA method
- Global problems definition
(6) Numerical experiments
(7) Conclusions and future work

Conclusions and future work

Conclusions

- mixed finite elements: one method with
- saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
- U and P unknowns / \wedge unknowns / P unknowns
- narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
- discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy MFD/MPFA, even on general polygonal meshes
Work in progress
- a general principle for nonconforming finite elements - extensions to all order MFE schemes
- multigrid solvers

Conclusions and future work

Conclusions

- mixed finite elements: one method with
- saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
- U and P unknowns / \wedge unknowns / P unknowns
- narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
- discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy

MFD/MPFA, even on general polygonal meshes
Work in progress

- a general principle for nonconforming finite elements
- extensions to all order MFE schemes
- multigrid solvers

Conclusions and future work

Conclusions

- mixed finite elements: one method with
- saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
- U and P unknowns / \wedge unknowns / P unknowns
- narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
- discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
- close relations in building principles between MFE/FD/FV/ MFD/MPFA, even on general polygonal meshes

Conclusions and future work

Conclusions

- mixed finite elements: one method with
- saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
- U and P unknowns / \wedge unknowns / P unknowns
- narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
- discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
- close relations in building principles between MFE/FD/FV/ MFD/MPFA, even on general polygonal meshes

Work in progress

- a general principle for nonconforming finite elements
- extensions to all order MFE schemes
- multigrid solvers

Bibliography

Bibliography

- Vohralík M., Wohlmuth B., Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods, Preprint R10031, Laboratoire Jacques-Louis Lions and HAL Preprint 00497394.
- Vohralík M., Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes, M2AN Math. Model. Numer. Anal. 40 (2006), 367-391.
- Vohralík M., Wohlmuth B., A general principle for reducing the number of unknowns and influencing the matrix properties in nonconforming finite elements, in preparation.
- Vohralík M., Wohlmuth B., All order mixed finite element methods with one unknown per element, in preparation.

Thank you for your attention!

