Localization of dual norms, local stopping criteria, and fully adaptive solvers

Martin Vohralík

Inria Paris

in collaboration with Jan Blechta, Alexandre Ern, and Josef Málek

Uxbridge, MAFELAP 2016, June 15

- Laplace
- Nonlinear Laplace
- 2 Localization of dual norms
 - Local–global equivalence
 - Numerical illustration
- 3 Fully adaptive solvers
 - Setting
 - Guaranteed reliability
 - Local stopping criteria, local efficiency, and robustness
 - Numerical results

- Residuals and their dual norms
 - Laplace
 - Nonlinear Laplace
- 2 Localization of dual norms
 - Local–global equivalence
 - Numerical illustration
- 3 Fully adaptive solvers
 - Setting
 - Guaranteed reliability
 - Local stopping criteria, local efficiency, and robustness
 - Numerical results

- Residuals and their dual norms
 - Laplace
 - Nonlinear Laplace
- Localization of dual norms
 - Local–global equivalence
 - Numerical illustration
- 3 Fully adaptive solvers
 - Setting
 - Guaranteed reliability
 - Local stopping criteria, local efficiency, and robustness
 - Numerical results
 - Conclusions and ongoing work

Laplace Nonlinear Laplace

Residual and its dual norm for Laplacian

The Laplace problem (polytope $\Omega \subset \mathbb{R}^d$, $d \ge 1$, $f \in L^2(\Omega)$) $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$

Weak formulation Find $u \in H_0^1(\Omega)$ such that $(\nabla u, \nabla v) = (f, v) \quad \forall v \in H_0^1(\Omega)$ Residual $\mathcal{R}(u_h) \in H^{-1}(\Omega)$ of $u_h \in H_0^1(\Omega)$ $\langle \mathcal{R}(u_h), v \rangle := (f, v) - (\nabla u_h, \nabla v), \quad v \in H_0^1(\Omega)$

Residual and its dual norm for Laplacian

The Laplace problem (polytope $\Omega \subset \mathbb{R}^d$, $d \ge 1$, $f \in L^2(\Omega)$) $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$

Weak formulation

Find $u \in H_0^1(\Omega)$ such that

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H_0^1(\Omega)$$

 $\begin{array}{l} \left\langle \mathcal{R}(u_h) \in H^{-1}(\Omega) \text{ of } u_h \in H^1_0(\Omega) \\ \left\langle \mathcal{R}(u_h), v \right\rangle := (f, v) - (\nabla u_h, \nabla v), \quad v \in H^1_0(\Omega) \end{array}$

Residual and its dual norm for Laplacian

The Laplace problem (polytope $\Omega \subset \mathbb{R}^d$, $d \ge 1$, $f \in L^2(\Omega)$) $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$

Weak formulation

Find $u \in H_0^1(\Omega)$ such that

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H_0^1(\Omega)$$

Residual $\mathcal{R}(u_h) \in H^{-1}(\Omega)$ of $u_h \in H^1_0(\Omega)$ $\langle \mathcal{R}(u_h), v \rangle := (f, v) - (\nabla u_h, \nabla v), \quad v \in H^1_0(\Omega)$

Residual and its dual norm for Laplacian

The Laplace problem (polytope $\Omega \subset \mathbb{R}^d$, $d \ge 1$, $f \in L^2(\Omega)$) $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$

Weak formulation

Find $u \in H_0^1(\Omega)$ such that

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H_0^1(\Omega)$$

Residual $\mathcal{R}(u_h) \in H^{-1}(\Omega)$ of $u_h \in H^1_0(\Omega)$

 $\langle \mathcal{R}(u_h), v \rangle := (f, v) - (\nabla u_h, \nabla v), \quad v \in H_0^1(\Omega) \quad \text{weak form. misfit}$

Residual and its dual norm for Laplacian

The Laplace problem (polytope $\Omega \subset \mathbb{R}^d$, $d \ge 1$, $f \in L^2(\Omega)$) $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$

Weak formulation

Find $u \in H_0^1(\Omega)$ such that

 $(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H^1_0(\Omega)$

Residual $\mathcal{R}(u_h) \in H^{-1}(\Omega)$ of $u_h \in H^1_0(\Omega)$ and its dual norm $\langle \mathcal{R}(u_h), v \rangle := (f, v) - (\nabla u_h, \nabla v), \quad v \in H^1_0(\Omega)$ weak form. misfit $\|\mathcal{R}(u_h)\|_{-1} := \sup_{v \in H^1_0(\Omega), \|\nabla v\|=1} \langle \mathcal{R}(u_h), v \rangle$

Residual and its dual norm for Laplacian

The Laplace problem (polytope $\Omega \subset \mathbb{R}^d$, $d \ge 1$, $f \in L^2(\Omega)$) $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$

Weak formulation

Find $u \in H_0^1(\Omega)$ such that

 $(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H_0^1(\Omega)$

Residual $\mathcal{R}(u_h) \in H^{-1}(\Omega)$ of $u_h \in H^1_0(\Omega)$ and its dual norm $\langle \mathcal{R}(u_h), v \rangle := (f, v) - (\nabla u_h, \nabla v), \quad v \in H^1_0(\Omega)$ weak form. misfit $\|\mathcal{R}(u_h)\|_{-1} := \sup_{v \in H^1_0(\Omega), \|\nabla v\|=1} \langle \mathcal{R}(u_h), v \rangle$ size of the misfit

Residual and its dual norm for Laplacian

The Laplace problem (polytope $\Omega \subset \mathbb{R}^d$, $d \ge 1$, $f \in L^2(\Omega)$) $-\Delta u = f$ in Ω , u = 0 on $\partial \Omega$

Weak formulation

Find $u \in H_0^1(\Omega)$ such that

 $(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H^1_0(\Omega)$

Residual $\mathcal{R}(u_h) \in H^{-1}(\Omega)$ of $u_h \in H^1_0(\Omega)$ and its dual norm $\langle \mathcal{R}(u_h), v \rangle := (f, v) - (\nabla u_h, \nabla v), \quad v \in H^1_0(\Omega)$ weak form. misfit $\|\mathcal{R}(u_h)\|_{-1} := \sup_{v \in H^1_0(\Omega), \|\nabla v\|=1} \langle \mathcal{R}(u_h), v \rangle$ size of the misfit

Remark (Equivalence energy error-dual norm of the residual) Let $u_h \in H_0^1(\Omega)$. Then $\|\mathcal{R}(u_h)\|_{-1} = \|\nabla(u - u_h)\| = \left\{\sum_{K \in \mathcal{T}_h} \|\nabla(u - u_h)\|_K^2\right\}^{\frac{1}{2}}$.

- Residuals and their dual norms
 - Laplace
 - Nonlinear Laplace
- 2 Localization of dual norms
 - Local–global equivalence
 - Numerical illustration
- 3 Fully adaptive solvers
 - Setting
 - Guaranteed reliability
 - Local stopping criteria, local efficiency, and robustness
 - Numerical results
 - Conclusions and ongoing work

Laplace Nonlinear Laplace

Nonlinear Laplacian

Quasi-linear elliptic problem

$$\begin{aligned} -\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) &= \boldsymbol{f} & \text{in } \boldsymbol{\Omega}, \\ \boldsymbol{u} &= \boldsymbol{0} & \text{on } \partial \boldsymbol{\Omega} \end{aligned}$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^q(\Omega)$$

• example: *p*-Laplacian with $\sigma(u, \nabla u) = |\nabla u|^{p-2} \nabla u$

Weak formulation Find $u \in W_0^{1,p}(\Omega)$ such that

$$(\sigma(u, \nabla u), \nabla v) = (f, v) \qquad \forall v \in W_0^{1,p}(\Omega)$$

Residual $\mathcal{R}(u_h)\in W^{1,
ho}_0(\Omega)^{'}$ of $u_h\in W^{1,
ho}_0(\Omega)$, its dual norm

 $\langle \mathcal{R}(u_h), v \rangle := (f, v) - (\sigma(u_h, \nabla u_h), \nabla v), \qquad v \in W_0^{1, \rho}(\Omega)$

 $\|\mathcal{R}(u_{h})\|_{W_{0}^{1,p}(\Omega)'} := \sup_{v \in W_{0}^{1,p}(\Omega)} \sup_{\|\nabla v\| = 1} \langle \mathcal{R}(u_{h}), v \rangle$

Laplace Nonlinear Laplace

Nonlinear Laplacian

Quasi-linear elliptic problem

$$\begin{aligned} -\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) &= \boldsymbol{f} \qquad \text{ in } \boldsymbol{\Omega}, \\ \boldsymbol{u} &= \boldsymbol{0} \qquad \text{ on } \partial \boldsymbol{\Omega} \end{aligned}$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^{q}(\Omega)$$

• example: *p*-Laplacian with $\sigma(u, \nabla u) = |\nabla u|^{p-2} \nabla u$

Weak formulation Find $u \in W_0^{1,p}(\Omega)$ such that

$$(\boldsymbol{\sigma}(\boldsymbol{u},\nabla\boldsymbol{u}),\nabla\boldsymbol{v})=(\boldsymbol{f},\boldsymbol{v})\qquad\forall\boldsymbol{v}\in\boldsymbol{W}_{0}^{1,p}(\Omega)$$

Residual $\mathcal{R}(u_h)\in W^{1,
ho}_0(\Omega)^{'}$ of $u_h\in W^{1,
ho}_0(\Omega),$ its dual norm

 $\langle \mathcal{R}(u_h), v
angle := (f, v) - (\sigma(u_h,
abla u_h),
abla v), \qquad v \in W_0^{1, \rho}(\Omega)$

 $\|\mathcal{R}(u_h)\|_{W_0^{1,\rho}(\Omega)'} := \sup_{v \in W^{1,\rho}(\Omega) : \|\nabla v\|_{r} = 1} \langle \mathcal{R}(u_h), v \rangle$

Laplace Nonlinear Laplace

Nonlinear Laplacian

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = \boldsymbol{f} \qquad \text{in } \Omega, \\ \boldsymbol{u} = \boldsymbol{0} \qquad \text{on } \partial \Omega$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^{q}(\Omega)$$

• example: *p*-Laplacian with $\sigma(u, \nabla u) = |\nabla u|^{p-2} \nabla u$

Weak formulation

Find $u \in W_0^{1,p}(\Omega)$ such that

$$(\sigma(u, \nabla u), \nabla v) = (f, v) \qquad \forall v \in W_0^{1,p}(\Omega)$$

Residual $\mathcal{R}(u_h) \in W_0^{1,p}(\Omega)'$ of $u_h \in W_0^{1,p}(\Omega)$, its dual norm

$$\langle \mathcal{R}(u_h), v \rangle := (f, v) - (\sigma(u_h, \nabla u_h), \nabla v), \qquad v \in W^{1,p}_0(\Omega)$$

$$\|\mathcal{R}(u_h)\|_{W_0^{1,\rho}(\Omega)'} := \sup_{v \in W_0^{1,\rho}(\Omega); \, \|\nabla v\|_{\rho}=1} \langle \mathcal{R}(u_h), v \rangle$$

The game

Is it possible to localize the dual norm of the residual

$$\|\mathcal{R}(\boldsymbol{u}_h)\|_{W_0^{1,p}(\Omega)'} \approx \left\{ \sum_{\mathbf{a}\in\mathcal{V}_h} \|\mathcal{R}(\boldsymbol{u}_h)\|_{W_0^{1,p}(\omega_{\mathbf{a}})'}^q \right\}^{\frac{1}{q}} ?$$

• \mathcal{V}_h vertices, ω_a patches of elements of a partition \mathcal{T}_h of Ω ;

• the constant hidden in \approx must not depend on p, Ω , u_h , the mesh size h, the regularity of u...

How to give tight and robust **computable bounds** on $\|\mathcal{R}(u_h^{k,i})\|_{W_0^{1,p}(\Omega)'}$ on each Newton step *k* and algebraic step *i*? How to **steer adaptively** (adaptive stopping criteria, adaptive mesh refinement) the inexact Newton solver? How to predict **error distribution** = refine at the right place?

The game

Is it possible to localize the dual norm of the residual

$$\|\mathcal{R}(\boldsymbol{u}_h)\|_{W_0^{1,p}(\Omega)'} \approx \left\{ \sum_{\mathbf{a}\in\mathcal{V}_h} \|\mathcal{R}(\boldsymbol{u}_h)\|_{W_0^{1,p}(\omega_{\mathbf{a}})'}^q \right\}^{\frac{1}{q}} ?$$

- \mathcal{V}_h vertices, ω_a patches of elements of a partition \mathcal{T}_h of Ω ;
- the constant hidden in ≈ must not depend on p, Ω, u_h, the mesh size h, the regularity of u...

How to give tight and robust **computable bounds** on $\|\mathcal{R}(u_h^{k,i})\|_{W_0^{1,p}(\Omega)'}$ on each Newton step *k* and algebraic step *i*? How to **steer adaptively** (adaptive stopping criteria, adaptive mesh refinement) the inexact Newton solver? How to predict **error distribution** = refine at the right place?

The game

Is it possible to localize the dual norm of the residual

$$\|\mathcal{R}(\boldsymbol{u}_h)\|_{W_0^{1,p}(\Omega)'} \approx \left\{ \sum_{\mathbf{a}\in\mathcal{V}_h} \|\mathcal{R}(\boldsymbol{u}_h)\|_{W_0^{1,p}(\omega_{\mathbf{a}})'}^q \right\}^{\frac{1}{q}} ?$$

- V_h vertices, ω_a patches of elements of a partition T_h of Ω;
- the constant hidden in ≈ must not depend on p, Ω, u_h, the mesh size h, the regularity of u...

How to give tight and robust **computable bounds** on $\|\mathcal{R}(u_h^{k,i})\|_{W_0^{1,\rho}(\Omega)'}$ on each Newton step *k* and algebraic step *i*? How to **steer adaptively** (adaptive stopping criteria, adaptive mesh refinement) the inexact Newton solver? How to predict **error distribution** = refine at the right place?

The game

Is it possible to localize the dual norm of the residual

$$\|\mathcal{R}(\boldsymbol{u}_h)\|_{W_0^{1,p}(\Omega)'} \approx \left\{ \sum_{\mathbf{a}\in\mathcal{V}_h} \|\mathcal{R}(\boldsymbol{u}_h)\|_{W_0^{1,p}(\omega_{\mathbf{a}})'}^q \right\}^{\frac{1}{q}} ?$$

- \mathcal{V}_h vertices, ω_a patches of elements of a partition \mathcal{T}_h of Ω ;
- the constant hidden in ≈ must not depend on p, Ω, u_h, the mesh size h, the regularity of u...

How to give tight and robust **computable bounds** on $\|\mathcal{R}(u_h^{k,i})\|_{W_0^{1,\rho}(\Omega)'}$ on each Newton step *k* and algebraic step *i*? How to **steer adaptively** (adaptive stopping criteria, adaptive mesh refinement) the inexact Newton solver?

How to predict **error distribution** = refine at the right place?

The game

Is it possible to localize the dual norm of the residual

$$\|\mathcal{R}(\boldsymbol{u}_h)\|_{W_0^{1,p}(\Omega)'} \approx \left\{ \sum_{\mathbf{a}\in\mathcal{V}_h} \|\mathcal{R}(\boldsymbol{u}_h)\|_{W_0^{1,p}(\omega_{\mathbf{a}})'}^q \right\}^{\frac{1}{q}} ?$$

- V_h vertices, ω_a patches of elements of a partition T_h of Ω;
- the constant hidden in ≈ must not depend on p, Ω, u_h, the mesh size h, the regularity of u...

How to give tight and robust **computable bounds** on $\|\mathcal{R}(u_h^{k,i})\|_{W_0^{1,\rho}(\Omega)'}$ on each Newton step *k* and algebraic step *i*? How to **steer adaptively** (adaptive stopping criteria, adaptive mesh refinement) the inexact Newton solver? How to predict **error distribution** = refine at the right place?

Eisenstat and Walker (1994), Deuflhard (1996), Chaillou and Suri (2006, 2007), Kim (200

- Residuals and their dual norms
 - Laplace
 - Nonlinear Laplace
- 2 Localization of dual norms
 - Local–global equivalence
 - Numerical illustration
- 3 Fully adaptive solvers
 - Setting
 - Guaranteed reliability
 - Local stopping criteria, local efficiency, and robustness
 - Numerical results
 - Conclusions and ongoing work

- Residuals and their dual norms
 - Laplace
 - Nonlinear Laplace
- 2 Localization of dual norms
 - Local–global equivalence
 - Numerical illustration
- 3 Fully adaptive solvers
 - Setting
 - Guaranteed reliability
 - Local stopping criteria, local efficiency, and robustness
 - Numerical results
 - Conclusions and ongoing work

Localization dual norms

Setting

• $V := W_0^{1,p}(\Omega), p > 1$, bounded linear functional $\mathcal{R} \in V'$

- localized energy space $V^{\mathbf{a}} := W^{1,p}_0(\omega_{\mathbf{a}})$ for $\mathbf{a} \in \mathcal{V}_h$
- restriction of \mathcal{R} to $(V^{\mathbf{a}})'$ (zero extension of $v \in V^{\mathbf{a}}$),

$$egin{aligned} &\langle \mathcal{R}, \mathbf{v}
angle_{(V^{\mathbf{a}})', V^{\mathbf{a}}} &\coloneqq \langle \mathcal{R}, \mathbf{v}
angle_{V', V} & \mathbf{v} \in V^{\mathbf{a}}, \ & \|\mathcal{R}\|_{(V^{\mathbf{a}})'} &\coloneqq \sup_{\mathbf{v} \in V^{\mathbf{a}}; \|
abla \mathbf{v} \|_{
ho, \omega_{\mathbf{a}}} = 1} \langle \mathcal{R}, \mathbf{v}
angle_{(V^{\mathbf{a}})', V^{\mathbf{a}}} \end{aligned}$$

Theorem (Localization of $\|\mathcal{R}\|_{V'}$)

$$There holds \\ \|\mathcal{R}\|_{V'} \leq (d+1)C_{\text{cont,PF}} \left\{ \frac{1}{(d+1)} \sum_{\mathbf{a} \in \mathcal{V}_h} \|\mathcal{R}\|_{(V^{\mathbf{a}})'}^q \right\}^{\frac{1}{q}} \text{if } \langle \mathcal{R}, \psi_{\mathbf{a}} \rangle = \mathbf{0} \ \forall \mathbf{a} \in \mathcal{V}_h^{\text{int}}, \\ \left\{ \frac{1}{(d+1)} \sum_{\mathbf{a} \in \mathcal{V}_h} \|\mathcal{R}\|_{(V^{\mathbf{a}})'}^q \right\}^{\frac{1}{q}} \leq \|\mathcal{R}\|_{V'}.$$

Localization dual norms

Setting

- $V := W_0^{1,p}(\Omega), p > 1$, bounded linear functional $\mathcal{R} \in V'$
- localized energy space V^a := W₀^{1,ρ}(ω_a) for a ∈ V_h
- restriction of \mathcal{R} to $(V^{\mathbf{a}})'$ (zero extension of $v \in V^{\mathbf{a}}$),

$$egin{aligned} &\langle \mathcal{R}, \mathbf{v}
angle_{(V^{\mathbf{a}})', V^{\mathbf{a}}} &:= \langle \mathcal{R}, \mathbf{v}
angle_{V', V} \quad \mathbf{v} \in V^{\mathbf{a}}, \ &\| \mathcal{R} \|_{(V^{\mathbf{a}})'} &:= \sup_{\mathbf{v} \in V^{\mathbf{a}}; \|
abla \mathbf{v} \|_{
ho, \omega_{\mathbf{a}}} = 1} \langle \mathcal{R}, \mathbf{v}
angle_{(V^{\mathbf{a}})', V^{\mathbf{a}}} \end{aligned}$$

Theorem (Localization of $\|\mathcal{R}\|_{V'}$)

There holds
$$\begin{aligned} &\|\mathcal{R}\|_{V'} \leq (d+1)C_{\text{cont,PF}} \left\{ \frac{1}{(d+1)} \sum_{\mathbf{a} \in \mathcal{V}_h} \|\mathcal{R}\|_{(V^{\mathbf{a}})'}^q \right\}^{\frac{1}{q}} \text{ if } \langle \mathcal{R}, \psi_{\mathbf{a}} \rangle = 0 \ \forall \mathbf{a} \in \mathcal{V}_h^{\text{int}}, \\ &\left\{ \frac{1}{(d+1)} \sum_{\mathbf{a} \in \mathcal{V}_h} \|\mathcal{R}\|_{(V^{\mathbf{a}})'}^q \right\}^{\frac{1}{q}} \leq \|\mathcal{R}\|_{V'}. \end{aligned}$$

Local-global equivalence Numerics

Localization of the dual residual norm

Upper bound (needs vanishing lowest modes).

• partition of unity, the linearity of \mathcal{R} , orthogonality wrt ψ_a :

$$\langle \mathcal{R}, \mathbf{v} \rangle = \sum_{\mathbf{a} \in \mathcal{V}_h} \langle \mathcal{R}, \psi_{\mathbf{a}} \mathbf{v} \rangle = \sum_{\mathbf{a} \in \mathcal{V}_h^{\text{int}}} \langle \mathcal{R}, \psi_{\mathbf{a}} (\mathbf{v} - \Pi_{\mathbf{0}, \omega_{\mathbf{a}}} \mathbf{v}) \rangle + \sum_{\mathbf{a} \in \mathcal{V}_h^{\text{ext}}} \langle \mathcal{R}, \psi_{\mathbf{a}} \mathbf{v} \rangle$$

• stability (Poincaré–Friedrichs):

$$\|
abla(\psi_{\mathbf{a}}(\mathbf{v} - \Pi_{\mathbf{0},\omega_{\mathbf{a}}}\mathbf{v}))\|_{\mathcal{p},\omega_{\mathbf{a}}} \leq \mathcal{C}_{ ext{cont,PF}}\|
abla \mathbf{v}\|_{\mathcal{p},\omega_{\mathbf{a}}}$$

• Hölder inequality:

$$\langle \mathcal{R}, v \rangle \leq C_{\text{cont,PF}} \left\{ \sum_{\mathbf{a} \in \mathcal{V}_h} \|\mathcal{R}\|_{(V^{\mathbf{a}})'}^q \right\}^{\frac{1}{q}} \left\{ \sum_{\mathbf{a} \in \mathcal{V}_h} \|\nabla v\|_{p,\omega_{\mathbf{a}}}^p \right\}^{\frac{1}{p}}$$

• overlapping of the patches:

$$\sum_{k \in \mathcal{V}_h} \|\nabla v\|_{\rho,\omega_{\mathbf{a}}}^{\rho} = \sum_{K \in \mathcal{T}_h} \sum_{\mathbf{a} \in \mathcal{V}_K} \|\nabla v\|_{\rho,K}^{\rho} \le (d+1) \sum_{K \in \mathcal{T}_h} \|\nabla v\|_{\rho,K}^{\rho}$$

TC

Local-global equivalence Numerics

Localization of the dual residual norm

Upper bound (needs vanishing lowest modes).

• partition of unity, the linearity of \mathcal{R} , orthogonality wrt ψ_a :

$$\langle \mathcal{R}, \mathbf{v} \rangle = \sum_{\mathbf{a} \in \mathcal{V}_h} \langle \mathcal{R}, \psi_{\mathbf{a}} \mathbf{v} \rangle = \sum_{\mathbf{a} \in \mathcal{V}_h^{\text{int}}} \langle \mathcal{R}, \psi_{\mathbf{a}} (\mathbf{v} - \Pi_{\mathbf{0}, \omega_{\mathbf{a}}} \mathbf{v}) \rangle + \sum_{\mathbf{a} \in \mathcal{V}_h^{\text{ext}}} \langle \mathcal{R}, \psi_{\mathbf{a}} \mathbf{v} \rangle$$

stability (Poincaré–Friedrichs):

$$\|
abla(\psi_{\mathbf{a}}(\mathbf{v} - \Pi_{\mathbf{0},\omega_{\mathbf{a}}}\mathbf{v}))\|_{\mathbf{p},\omega_{\mathbf{a}}} \leq \mathcal{C}_{ ext{cont,PF}}\|
abla \mathbf{v}\|_{\mathbf{p},\omega_{\mathbf{a}}}$$

• Hölder inequality:

$$\langle \mathcal{R}, \mathbf{v} \rangle \leq C_{\text{cont,PF}} \left\{ \sum_{\mathbf{a} \in \mathcal{V}_h} \| \mathcal{R} \|_{(\mathbf{V}^{\mathbf{a}})'}^q \right\}^{\overline{q}} \left\{ \sum_{\mathbf{a} \in \mathcal{V}_h} \| \nabla \mathbf{v} \|_{p,\omega_{\mathbf{a}}}^p \right\}$$

overlapping of the patches:

$$\sum_{k \in \mathcal{V}_h} \|\nabla v\|_{\rho,\omega_{\mathbf{a}}}^p = \sum_{K \in \mathcal{T}_h} \sum_{\mathbf{a} \in \mathcal{V}_K} \|\nabla v\|_{\rho,K}^p \le (d+1) \sum_{K \in \mathcal{T}_h} \|\nabla v\|_{\rho,V}^p$$

Local-global equivalence Numerics

Localization of the dual residual norm

Upper bound (needs vanishing lowest modes).

• partition of unity, the linearity of \mathcal{R} , orthogonality wrt ψ_a :

$$\langle \mathcal{R}, \mathbf{v} \rangle = \sum_{\mathbf{a} \in \mathcal{V}_h} \langle \mathcal{R}, \psi_{\mathbf{a}} \mathbf{v} \rangle = \sum_{\mathbf{a} \in \mathcal{V}_h^{\text{int}}} \langle \mathcal{R}, \psi_{\mathbf{a}} (\mathbf{v} - \Pi_{\mathbf{0}, \omega_{\mathbf{a}}} \mathbf{v}) \rangle + \sum_{\mathbf{a} \in \mathcal{V}_h^{\text{ext}}} \langle \mathcal{R}, \psi_{\mathbf{a}} \mathbf{v} \rangle$$

• stability (Poincaré–Friedrichs):

$$\|
abla(\psi_{\mathbf{a}}(\mathbf{v} - \Pi_{\mathbf{0},\omega_{\mathbf{a}}}\mathbf{v}))\|_{\mathbf{p},\omega_{\mathbf{a}}} \leq \mathcal{C}_{\mathrm{cont,PF}}\|
abla \mathbf{v}\|_{\mathbf{p},\omega_{\mathbf{a}}}$$

Hölder inequality:

$$\langle \mathcal{R}, \mathbf{v} \rangle \leq C_{\text{cont,PF}} \left\{ \sum_{\mathbf{a} \in \mathcal{V}_h} \|\mathcal{R}\|_{(\mathbf{V}^{\mathbf{a}})'}^q \right\}^{\frac{1}{q}} \left\{ \sum_{\mathbf{a} \in \mathcal{V}_h} \|\nabla \mathbf{v}\|_{\rho,\omega_{\mathbf{a}}}^p \right\}^{\frac{1}{p}}$$

• overlapping of the patches: $\sum_{\mathbf{a}\in\mathcal{V}_h} \|\nabla v\|_{\rho,\omega_{\mathbf{a}}}^{\rho} = \sum_{K\in\mathcal{T}_h} \sum_{\mathbf{a}\in\mathcal{V}_K} \|\nabla v\|_{\rho,K}^{\rho} \le (d+1) \underbrace{\sum_{K\in\mathcal{T}_h} \|\nabla v\|_{\rho}^{\rho}}_{K\in\mathcal{T}_h}$

Local-global equivalence Numerics

Localization of the dual residual norm

Upper bound (needs vanishing lowest modes).

• partition of unity, the linearity of \mathcal{R} , orthogonality wrt ψ_a :

$$\langle \mathcal{R}, \mathbf{v} \rangle = \sum_{\mathbf{a} \in \mathcal{V}_h} \langle \mathcal{R}, \psi_{\mathbf{a}} \mathbf{v} \rangle = \sum_{\mathbf{a} \in \mathcal{V}_h^{\text{int}}} \langle \mathcal{R}, \psi_{\mathbf{a}} (\mathbf{v} - \Pi_{\mathbf{0}, \omega_{\mathbf{a}}} \mathbf{v}) \rangle + \sum_{\mathbf{a} \in \mathcal{V}_h^{\text{ext}}} \langle \mathcal{R}, \psi_{\mathbf{a}} \mathbf{v} \rangle$$

• stability (Poincaré–Friedrichs):

$$\|
abla(\psi_{\mathbf{a}}(\mathbf{v} - \Pi_{\mathbf{0},\omega_{\mathbf{a}}}\mathbf{v}))\|_{\mathbf{p},\omega_{\mathbf{a}}} \leq \mathcal{C}_{\mathrm{cont},\mathrm{PF}}\|
abla \mathbf{v}\|_{\mathbf{p},\omega_{\mathbf{a}}}$$

Hölder inequality:

$$\langle \mathcal{R}, \mathbf{v} \rangle \leq C_{\text{cont,PF}} \left\{ \sum_{\mathbf{a} \in \mathcal{V}_h} \|\mathcal{R}\|_{(\mathbf{V}^{\mathbf{a}})'}^q \right\}^{\frac{1}{q}} \left\{ \sum_{\mathbf{a} \in \mathcal{V}_h} \|\nabla \mathbf{v}\|_{\boldsymbol{p},\omega_{\mathbf{a}}}^p \right\}^{\frac{1}{p}}$$

• overlapping of the patches: $\sum_{\mathbf{a}\in\mathcal{V}_h} \|\nabla v\|_{\rho,\omega_{\mathbf{a}}}^{\rho} = \sum_{K\in\mathcal{T}_h} \sum_{\mathbf{a}\in\mathcal{V}_K} \|\nabla v\|_{\rho,K}^{\rho} \le (d+1) \underbrace{\sum_{K\in\mathcal{T}_h} \|\nabla v\|_{\rho,K}^{\rho}}_{K\in\mathcal{T}_h}$

Lower bound (unconditioned).

$$(|\nabla \not e^{\mathbf{a}}|^{p-2} \nabla \not e^{\mathbf{a}}, \nabla v)_{\omega_{\mathbf{a}}} = \langle \mathcal{R}, v \rangle \qquad \forall v \in V^{\mathbf{a}}$$

• energy equality:

 $\|\nabla \mathbf{\mathcal{E}}^{\mathbf{a}}\|_{\boldsymbol{\rho},\omega_{\mathbf{a}}}^{\boldsymbol{\rho}} = (|\nabla \mathbf{\mathcal{E}}^{\mathbf{a}}|^{\boldsymbol{\rho}-2} \nabla \mathbf{\mathcal{E}}^{\mathbf{a}}, \nabla \mathbf{\mathcal{E}}^{\mathbf{a}})_{\omega_{\mathbf{a}}} = \langle \mathcal{R}, \mathbf{\mathcal{E}}^{\mathbf{a}} \rangle = \|\mathcal{R}\|_{(V^{\mathbf{a}})'}^{q}$

• setting
$$\mathbf{z} := \sum_{\mathbf{a} \in \mathcal{V}_h} \mathbf{z}^{\mathbf{a}} \in V$$
:
$$\sum_{\mathbf{a} \in \mathcal{V}_h} ||\mathcal{R}||_{(V^{\mathbf{a}})'}^q = \sum_{\mathbf{a} \in \mathcal{V}_h} \langle \mathcal{R}, \mathbf{z}^{\mathbf{a}} \rangle = \langle \mathcal{R}, \mathbf{z} \rangle \le ||\mathcal{R}||_{V'} ||\nabla \mathbf{z}||_p$$

• overlapping of the patches:

$$\|\nabla \mathbf{z}\|_{p}^{p} \leq (d+1)^{p-1} \sum_{\mathbf{a} \in \mathcal{V}_{n}} \|\nabla \mathbf{z}^{\mathbf{a}}\|_{p,\omega_{\mathbf{a}}}^{p}$$

Lower bound (unconditioned).

• *p*-Laplacian lifting of the residual on the patch
$$\omega_{\mathbf{a}}$$
:
 $\mathscr{E}^{\mathbf{a}} \in V^{\mathbf{a}} = W_{0}^{1,p}(\omega_{\mathbf{a}})$ such that

$$(|
abla \, \imath^{\mathbf{a}}|^{p-2}
abla \, \imath^{\mathbf{a}},
abla \,
u)_{\omega_{\mathbf{a}}} = \langle \mathcal{R}, \nu
angle \qquad orall \, \nu \in V^{\mathbf{a}}$$

energy equality:

$$\|\nabla \mathbf{\mathbf{\mathcal{E}}^{a}}\|_{\boldsymbol{\mathcal{P}},\omega_{a}}^{\boldsymbol{\mathcal{P}}} = (|\nabla \mathbf{\mathbf{\mathcal{E}}^{a}}|^{\boldsymbol{\mathcal{P}}-2} \nabla \mathbf{\mathbf{\mathcal{E}}^{a}}, \nabla \mathbf{\mathbf{\mathcal{E}}^{a}})_{\omega_{a}} = \langle \mathcal{R}, \mathbf{\mathbf{\mathcal{E}}^{a}} \rangle = \|\mathcal{R}\|_{(V^{a})'}^{q}$$

• setting
$$\mathbf{z} := \sum_{\mathbf{a} \in \mathcal{V}_h} \mathbf{z}^{\mathbf{a}} \in \mathbf{V}$$

$$\sum_{\mathbf{a}\in\mathcal{V}_h} \|\mathcal{R}\|^q_{(V^{\mathbf{a}})'} = \sum_{\mathbf{a}\in\mathcal{V}_h} \langle \mathcal{R}, \, \mathbf{\dot{e}}^{\mathbf{a}} \rangle = \langle \mathcal{R}, \, \mathbf{\dot{e}} \rangle \leq \|\mathcal{R}\|_{V'} \|\nabla \mathbf{\dot{e}}\|_{\rho}$$

overlapping of the patches:

$$\|\nabla \mathbf{z}\|_{p}^{p} \leq (d+1)^{p-1} \sum_{\mathbf{a} \in \mathcal{V}} \|\nabla \mathbf{z}^{\mathbf{a}}\|_{p,\omega_{\mathbf{a}}}^{p}$$

Lower bound (unconditioned).

• *p*-Laplacian lifting of the residual on the patch
$$\omega_{\mathbf{a}}$$
:
 $\mathbf{z}^{\mathbf{a}} \in V^{\mathbf{a}} = W_{0}^{1,p}(\omega_{\mathbf{a}})$ such that

$$(|\nabla \, \imath^{\mathbf{a}}|^{p-2} \nabla \, \imath^{\mathbf{a}}, \nabla \, \mathbf{v})_{\omega_{\mathbf{a}}} = \langle \mathcal{R}, \, \mathbf{v} \rangle \qquad \forall \mathbf{v} \in \, \mathbf{V}^{\mathbf{a}}$$

energy equality:

$$\|\nabla \mathbf{\mathbf{\mathcal{E}}}^{\mathbf{a}}\|_{\boldsymbol{\mathcal{P}},\omega_{\mathbf{a}}}^{\boldsymbol{\rho}} = (|\nabla \mathbf{\mathbf{\mathcal{E}}}^{\mathbf{a}}|^{\boldsymbol{\rho}-2} \nabla \mathbf{\mathbf{\mathcal{E}}}^{\mathbf{a}}, \nabla \mathbf{\mathbf{\mathcal{E}}}^{\mathbf{a}})_{\omega_{\mathbf{a}}} = \langle \mathcal{R}, \mathbf{\mathbf{\mathcal{E}}}^{\mathbf{a}} \rangle = \|\mathcal{R}\|_{(V^{\mathbf{a}})'}^{q}$$

• setting
$$\mathbf{i} := \sum_{\mathbf{a} \in \mathcal{V}_h} \mathbf{i}^{\mathbf{a}} \in \mathbf{V}$$
:
$$\sum_{\mathbf{a} \in \mathcal{V}_h} \|\mathcal{R}\|_{(\mathbf{V}^{\mathbf{a}})'}^q = \sum_{\mathbf{a} \in \mathcal{V}_h} \langle \mathcal{R}, \mathbf{i}^{\mathbf{a}} \rangle = \langle \mathcal{R}, \mathbf{i} \rangle \le \|\mathcal{R}\|_{\mathbf{V}'} \|\nabla \mathbf{i}\|_p$$

overlapping of the patches:

$$\|\nabla \mathbf{v}\|_p^p \leq (d+1)^{p-1} \sum_{\mathbf{a} \in \mathcal{V}} \|\nabla \mathbf{v}^{\mathbf{a}}\|_{p,\omega_{\mathbf{a}}}^p$$

Lower bound (unconditioned).

• *p*-Laplacian lifting of the residual on the patch
$$\omega_{\mathbf{a}}$$
:
 $\mathbf{z}^{\mathbf{a}} \in V^{\mathbf{a}} = W_0^{1,p}(\omega_{\mathbf{a}})$ such that

$$(|\nabla \, \imath^{\mathbf{a}}|^{p-2} \nabla \, \imath^{\mathbf{a}}, \nabla \, \mathbf{v})_{\omega_{\mathbf{a}}} = \langle \mathcal{R}, \, \mathbf{v} \rangle \qquad \forall \mathbf{v} \in \, \mathbf{V}^{\mathbf{a}}$$

energy equality:

$$\|\nabla \mathbf{\mathbf{\mathcal{E}}}^{\mathbf{a}}\|_{\boldsymbol{\mathcal{P}},\omega_{\mathbf{a}}}^{\boldsymbol{\rho}} = (|\nabla \mathbf{\mathbf{\mathcal{E}}}^{\mathbf{a}}|^{\boldsymbol{\rho}-2} \nabla \mathbf{\mathbf{\mathcal{E}}}^{\mathbf{a}}, \nabla \mathbf{\mathbf{\mathcal{E}}}^{\mathbf{a}})_{\omega_{\mathbf{a}}} = \langle \mathcal{R}, \mathbf{\mathbf{\mathcal{E}}}^{\mathbf{a}} \rangle = \|\mathcal{R}\|_{(V^{\mathbf{a}})'}^{q}$$

• setting
$$\mathbf{z} := \sum_{\mathbf{a} \in \mathcal{V}_h} \mathbf{z}^{\mathbf{a}} \in \mathbf{V}$$
:
$$\sum_{\mathbf{a} \in \mathcal{V}_h} \|\mathcal{R}\|_{(\mathbf{V}^{\mathbf{a}})'}^q = \sum_{\mathbf{a} \in \mathcal{V}_h} \langle \mathcal{R}, \mathbf{z}^{\mathbf{a}} \rangle = \langle \mathcal{R}, \mathbf{z} \rangle \le \|\mathcal{R}\|_{\mathbf{V}'} \|\nabla \mathbf{z}\|_p$$

overlapping of the patches:

$$\|\nabla \mathbf{\dot{z}}\|_{\rho}^{\rho} \leq (d+1)^{\rho-1} \sum_{\mathbf{a} \in \mathcal{V}_{h}} \|\nabla \mathbf{\dot{z}}^{\mathbf{a}}\|_{\rho,\omega_{\mathbf{a}}}^{\rho}$$

- Residuals and their dual norms
 - Laplace
 - Nonlinear Laplace
- 2 Localization of dual norms
 - Local–global equivalence
 - Numerical illustration
- 3 Fully adaptive solvers
 - Setting
 - Guaranteed reliability
 - Local stopping criteria, local efficiency, and robustness
 - Numerical results
 - Conclusions and ongoing work

Numerical results

Model problems

• *p*-Laplacian

$$\nabla \cdot (|\nabla u|^{\rho-2} \nabla u) = f \quad \text{in } \Omega, \\ u = u_{\rm D} \quad \text{on } \partial \Omega$$

• $\Omega = (0, 1) \times (0, 1)$ and, for p = 1.5 and 10,

$$U(x,y) = -\frac{p-1}{p} \left(\left(x - \frac{1}{2} \right)^2 + \left(y - \frac{1}{2} \right)^2 \right)^{\frac{p}{2(p-1)}} + \frac{p-1}{p} \left(\frac{1}{2} \right)^{\frac{p}{p-1}}$$

• $\Omega = (-1, 1) \times (-1, 1) \setminus [0, 1] \times [-1, 0]$ and, for p = 4,

$$u(r,\theta)=r^{\frac{7}{8}}\sin(\theta\frac{7}{8})$$

Numerical results

Model problems

• *p*-Laplacian

$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega, \\ u = u_{\mathrm{D}} \quad \text{on } \partial \Omega$$

• $\Omega = (0, 1) \times (0, 1)$ and, for p = 1.5 and 10,

$$u(x,y) = -\frac{p-1}{p} \left((x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 \right)^{\frac{p}{2(p-1)}} + \frac{p-1}{p} \left(\frac{1}{2} \right)^{\frac{p}{p-1}}$$

• $\Omega = (-1, 1) \times (-1, 1) \setminus [0, 1] \times [-1, 0]$ and, for p = 4,

$$u(r,\theta)=r^{\frac{7}{8}}\sin(\theta\frac{7}{8})$$

Numerical results

Model problems

p-Laplacian

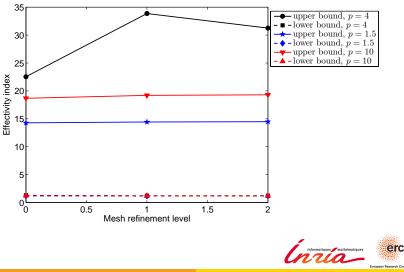
$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega, \\ u = u_{\mathrm{D}} \quad \text{on } \partial \Omega$$

• $\Omega = (0, 1) \times (0, 1)$ and, for p = 1.5 and 10,

$$u(x,y) = -\frac{p-1}{p} \left((x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 \right)^{\frac{p}{2(p-1)}} + \frac{p-1}{p} \left(\frac{1}{2} \right)^{\frac{p}{p-1}}$$

•
$$\Omega = (-1, 1) \times (-1, 1) \setminus [0, 1] \times [-1, 0]$$
 and, for $p = 4$,
 $u(r, \theta) = r^{\frac{7}{8}} \sin(\theta \frac{7}{8})$

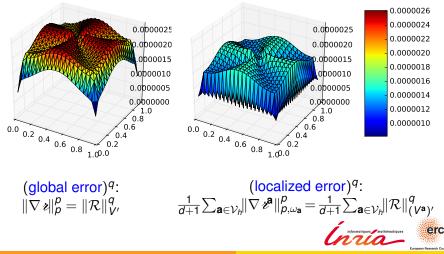
Effectivity indices of the localization bounds



Residuals & dual norms Localization Fully adaptive solvers C

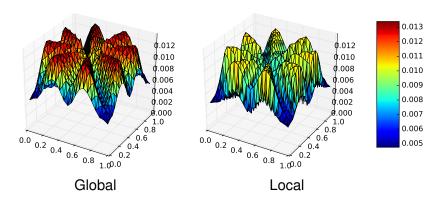
Local-global equivalence Numerics

Global and local residual distributions, p = 1.5



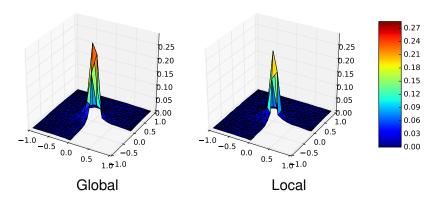
Residuals & dual norms Localization Fully adaptive solvers C Local-global equivalence Numerics

Global and local residual distributions, p = 10



Residuals & dual norms Localization Fully adaptive solvers C Local-global equivalence Numerics

Global and local residual distributions, p = 4



- Residuals and their dual norms
 - Laplace
 - Nonlinear Laplace
- 2 Localization of dual norms
 - Local–global equivalence
 - Numerical illustration
- 3 Fully adaptive solvers
 - Setting
 - Guaranteed reliability
 - Local stopping criteria, local efficiency, and robustness
 - Numerical results

- Residuals and their dual norms
 - Laplace
 - Nonlinear Laplace
- 2 Localization of dual norms
 - Local–global equivalence
 - Numerical illustration
- 3 Fully adaptive solvers
 - Setting
 - Guaranteed reliability
 - Local stopping criteria, local efficiency, and robustness
 - Numerical results
 - Conclusions and ongoing work

Numerical approximation

• simplicial mesh \mathcal{T}_h , linearization step k, algebraic step i

•
$$u_h^{k,i} \in V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \} \not\subset V$$

Assumption A (Total flux reconstruction)

There exists $\sigma_h^{k,i} \in \mathbf{H}^q(\operatorname{div}, \Omega)$ and $\rho_h^{k,i} \in L^q(\Omega)$ such that

$$\nabla \cdot \boldsymbol{\sigma}_h^{k,i} = f_h -$$

algebraic remainder

Assumption B (Discretization, linearization, and alg. fluxes)

There exist fluxes $\mathbf{d}_{h}^{k,i}, \mathbf{l}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$ such that (i) $\sigma_{h}^{k,i} = \mathbf{d}_{h}^{k,i} + \mathbf{l}_{h}^{k,i} + \mathbf{a}_{h}^{k,i};$

(ii) as the linear solver converges, $\|\mathbf{a}_{h}^{\kappa,\iota}\|_{q} \rightarrow 0$;

(iii) as the nonlinear solver converges, $\|\mathbf{I}_{h}^{\kappa,\iota}\|_{q} \rightarrow \|\mathbf{I}_{h}^{\kappa,\iota}\|_{q}$

Numerical approximation

• simplicial mesh \mathcal{T}_h , linearization step k, algebraic step i

•
$$u_h^{k,i} \in V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \} \not\subset V$$

Assumption A (Total flux reconstruction)

There exists $\sigma_h^{k,i} \in \mathbf{H}^q(\operatorname{div}, \Omega)$ and $\rho_h^{k,i} \in L^q(\Omega)$ such that

$$abla \cdot \boldsymbol{\sigma}_h^{k,i} = f_h -$$

algebraic remainder

 $\rho_h^{K,I}$.

Assumption B (Discretization, linearization, and alg. fluxes)

There exist fluxes $\mathbf{d}_{h}^{k,i}, \mathbf{l}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$ such that (i) $\boldsymbol{\sigma}_{h}^{k,i} = \mathbf{d}_{h}^{k,i} + \mathbf{l}_{h}^{k,i} + \mathbf{a}_{h}^{k,i};$

(ii) as the linear solver converges, $\|\mathbf{a}_{h}^{k,i}\|_{q} \rightarrow 0$;

(iii) as the nonlinear solver converges, $\| {f I}_h^{k,i} \|_q o 0$

Numerical approximation

• simplicial mesh \mathcal{T}_h , linearization step k, algebraic step i

•
$$u_h^{k,i} \in V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \} \not\subset V$$

Assumption A (Total flux reconstruction)

There exists $\sigma_h^{k,i} \in \mathbf{H}^q(\operatorname{div}, \Omega)$ and $\rho_h^{k,i} \in L^q(\Omega)$ such that

$$\nabla \cdot \boldsymbol{\sigma}_{h}^{k,i} = f_{h} - \underbrace{\rho_{h}^{k,i}}_{h}$$

algebraic remainder

Assumption B (Discretization, linearization, and alg. fluxes)

There exist fluxes $\mathbf{d}_{h}^{k,i}, \mathbf{l}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$ such that (i) $\boldsymbol{\sigma}_{h}^{k,i} = \mathbf{d}_{h}^{k,i} + \mathbf{l}_{h}^{k,i} + \mathbf{a}_{h}^{k,i};$

(ii) as the linear solver converges, $\|\mathbf{a}_{h}^{k,i}\|_{q} \rightarrow 0$;

(iii) as the nonlinear solver converges, $\|{f I}_h^{k,i}\|_q o 0$

Numerical approximation

• simplicial mesh \mathcal{T}_h , linearization step k, algebraic step i

•
$$u_h^{k,i} \in V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \} \not\subset V$$

Assumption A (Total flux reconstruction)

There exists $\sigma_h^{k,i} \in \mathbf{H}^q(\operatorname{div}, \Omega)$ and $\rho_h^{k,i} \in L^q(\Omega)$ such that

$$\nabla \cdot \boldsymbol{\sigma}_{h}^{k,i} = f_{h} - \underbrace{\rho_{h}^{k,i}}_{h}$$

algebraic remainder

Assumption B (Discretization, linearization, and alg. fluxes)

There exist fluxes $\mathbf{d}_{h}^{k,i}, \mathbf{l}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$ such that (i) $\boldsymbol{\sigma}_{h}^{k,i} = \mathbf{d}_{h}^{k,i} + \mathbf{l}_{h}^{k,i} + \mathbf{a}_{h}^{k,i}$;

(ii) as the linear solver converges, $\|\mathbf{a}_{h}^{k,i}\|_{q} \rightarrow 0$;

(iii) as the nonlinear solver converges, $\|\mathbf{I}_{h}^{k,i}\|_{q} \to 0$.

rc

- Residuals and their dual norms
 - Laplace
 - Nonlinear Laplace
- 2 Localization of dual norms
 - Local–global equivalence
 - Numerical illustration
- 3 Fully adaptive solvers
 - Setting
 - Guaranteed reliability
 - Local stopping criteria, local efficiency, and robustness
 - Numerical results

Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let

- $u \in V$ be the weak solution.
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumptions A and B hold.

Then there holds

$$\begin{aligned} \|\mathcal{R}(\boldsymbol{u}_{h}^{k,i})\|_{\boldsymbol{W}_{0}^{1,p}(\Omega)'} + \mathrm{NC} &\leq \eta_{\mathrm{disc}}^{k,i} + \underline{\eta_{\mathrm{lin}}^{k,i}} + \underline{\eta_{\mathrm{alg}}^{k,i}} + \underline{\eta_{\mathrm{rem}}^{k,i}} + \eta_{\mathrm{quad}}^{k,i} + \eta_{\mathrm{osc}}, \\ \|\boldsymbol{u}_{h}^{k,i}\|_{q} & \text{hom} \|\boldsymbol{\rho}_{h}^{k,i}\|_{q} \end{aligned}$$

$$with \ \eta_{\cdot}^{k,i} &:= \left\{ \sum_{K \in \mathcal{T}_{h}} (\eta_{\cdot,K}^{k,i})^{q} \right\}^{1/q} \text{ and } \\ \eta_{\mathrm{disc},K}^{k,i} &:= 2^{\frac{1}{p}} \left(\|\overline{\boldsymbol{\sigma}}(\boldsymbol{u}_{h}^{k,i}, \nabla \boldsymbol{u}_{h}^{k,i}) + \mathbf{d}_{h}^{k,i}\|_{q,K} + \left\{ \sum_{\boldsymbol{e} \in \mathcal{E}_{K}} h_{\boldsymbol{e}}^{1-q} \| \|\boldsymbol{u}_{h}^{k,i}\| \|_{q,\boldsymbol{e}}^{q} \right\}^{\frac{1}{q}} \right). \end{aligned}$$

Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let

- $u \in V$ be the weak solution.
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumptions A and B hold.

Then there holds

$$\begin{aligned} \|\mathcal{R}(\boldsymbol{u}_{h}^{k,i})\|_{\boldsymbol{W}_{0}^{1,p}(\Omega)'} + \mathrm{NC} &\leq \eta_{\mathrm{disc}}^{k,i} + \underbrace{\eta_{\mathrm{lin}}^{k,i}}_{\|\boldsymbol{I}_{h}^{k,i}\|_{q}} + \underbrace{\eta_{\mathrm{alg}}^{k,i}}_{\|\boldsymbol{a}_{h}^{k,i}\|_{q}} + \underbrace{\eta_{\mathrm{rem}}^{k,i}}_{h_{\Omega}\|\rho_{h}^{k,i}\|_{q}} + \eta_{\mathrm{quad}}^{k,i} + \eta_{\mathrm{osc}}, \end{aligned}$$

$$\text{with } \eta_{\cdot}^{k,i} &:= \left\{ \sum_{K \in \mathcal{T}_{h}} (\eta_{\cdot,K}^{k,i})^{q} \right\}^{1/q} \text{ and }$$

$$\eta_{\mathrm{disc},K}^{k,i} &:= 2^{\frac{1}{p}} \left(\|\overline{\sigma}(\boldsymbol{u}_{h}^{k,i}, \nabla \boldsymbol{u}_{h}^{k,i}) + \mathbf{d}_{h}^{k,i}\|_{q,K} + \left\{ \sum_{\boldsymbol{e} \in \mathcal{E}_{K}} h_{\boldsymbol{e}}^{1-q} \|[\boldsymbol{u}_{h}^{k,i}]\|_{q,\boldsymbol{e}}^{q} \right\}^{\frac{1}{q}} \right). \end{aligned}$$

- Residuals and their dual norms
 - Laplace
 - Nonlinear Laplace
- 2 Localization of dual norms
 - Local–global equivalence
 - Numerical illustration
- 3 Fully adaptive solvers
 - Setting
 - Guaranteed reliability
 - Local stopping criteria, local efficiency, and robustness
 - Numerical results
 - Conclusions and ongoing work

Assumptions for efficiency

Assumption C (Piecewise polynomials, meshes, quadrature)

The approximation $u_h^{k,i}$ is piecewise polynomial. The meshes \mathcal{T}_h are shape-regular. The quadrature error is negligible.

Assumption D (Approximation property)

For all $K \in T_h$, there holds

$$\begin{split} \|\overline{\sigma}(u_h^{k,i},\nabla u_h^{k,i}) + \mathbf{d}_h^{k,i}\|_{q,K} &\leq C \Biggl\{ \sum_{K' \in \mathcal{T}_K} h_{K'}^q \|f + \nabla \cdot \overline{\sigma}(u_h^{k,i},\nabla u_h^{k,i})\|_{q,K'}^q \\ &+ \sum_{e \in E_K^{\text{int}}} h_e \| \llbracket \overline{\sigma}(u_h^{k,i},\nabla u_h^{k,i}) \cdot \mathbf{n}_e \rrbracket \|_{q,e}^q \\ &+ \sum_{h_e^q} h_e^{1-q} \| \llbracket u_h^{k,i} \rrbracket \|_{q,e}^q \Biggr\}^{\frac{1}{q}}. \end{split}$$

2714

Assumptions for efficiency

Assumption C (Piecewise polynomials, meshes, quadrature)

The approximation $u_h^{k,i}$ is piecewise polynomial. The meshes \mathcal{T}_h are shape-regular. The quadrature error is negligible.

Assumption D (Approximation property)

For all $K \in T_h$, there holds

$$\begin{split} \|\overline{\sigma}(\boldsymbol{u}_{h}^{k,i},\nabla\boldsymbol{u}_{h}^{k,i}) + \mathbf{d}_{h}^{k,i}\|_{q,K} &\leq C \Biggl\{ \sum_{K' \in \mathcal{T}_{K}} h_{K'}^{q} \|f + \nabla \cdot \overline{\sigma}(\boldsymbol{u}_{h}^{k,i},\nabla\boldsymbol{u}_{h}^{k,i})\|_{q,K'}^{q} \\ &+ \sum_{\boldsymbol{e} \in E_{K}^{\text{int}}} h_{\boldsymbol{e}} \| [\![\overline{\sigma}(\boldsymbol{u}_{h}^{k,i},\nabla\boldsymbol{u}_{h}^{k,i}) \cdot \mathbf{n}_{\boldsymbol{e}}]\!]\|_{q,\boldsymbol{e}}^{q} \\ &+ \sum_{\boldsymbol{e} \in \mathcal{E}_{K}} h_{\boldsymbol{e}}^{1-q} \| [\![\boldsymbol{u}_{h}^{k,i}]\!]\|_{q,\boldsymbol{e}}^{q} \Biggr\}^{\frac{1}{q}}. \end{split}$$

Theorem (Local efficiency)

Let the Assumptions C and D be satisfied. Let the local stopping criteria hold. Then, for all $K \in T_h$,

$$\eta_{\mathrm{disc},\mathcal{K}}^{k,i} + \eta_{\mathrm{lin},\mathcal{K}}^{k,i} + \eta_{\mathrm{alg},\mathcal{K}}^{k,i} + \eta_{\mathrm{rem},\mathcal{K}}^{k,i} \leq C \sum_{\mathbf{a}\in\mathcal{V}_{\mathcal{K}}} \left(\|\mathcal{R}(\boldsymbol{u}_{h}^{k,i})\|_{\boldsymbol{W}_{0}^{1,p}(\boldsymbol{\omega}_{\mathbf{a}})'} + \mathrm{NC}_{\boldsymbol{\omega}_{\mathbf{a}}} \right),$$

where C is independent of σ and q.

- robustness with respect to the nonlinearity

M. Vohralík

Theorem (Local efficiency)

Let the Assumptions C and D be satisfied. Let the local stopping criteria hold. Then, for all $K \in T_h$,

$$\eta_{\mathrm{disc},\mathcal{K}}^{k,i} + \eta_{\mathrm{lin},\mathcal{K}}^{k,i} + \eta_{\mathrm{alg},\mathcal{K}}^{k,i} + \eta_{\mathrm{rem},\mathcal{K}}^{k,i} \leq C \sum_{\mathbf{a}\in\mathcal{V}_{\mathcal{K}}} \left(\|\mathcal{R}(\boldsymbol{u}_{h}^{k,i})\|_{\boldsymbol{W}_{0}^{1,\rho}(\boldsymbol{\omega_{a}})'} + \mathrm{NC}_{\boldsymbol{\omega_{a}}} \right),$$

where C is independent of σ and q.

- robustness with respect to the nonlinearity
- local stopping criteria & localizable error measure ⇒ local efficiency

European Research Council

M. Vohralík

 $\begin{array}{ll} \mbox{Local stopping criteria} \left(\gamma_{\rm rem,K}, \gamma_{\rm alg,K}, \gamma_{\rm lin,K} \approx 0.1 \right) \\ \eta^{k,i}_{{\rm rem,K}} \leq \gamma_{{\rm rem,K}} \max \{ \eta^{k,i}_{{\rm disc,K}}, \eta^{k,i}_{{\rm lin,K}}, \eta^{k,i}_{{\rm alg,K}} \} & \forall K \in \mathcal{T}_h, \\ \eta^{k,i}_{{\rm alg,K}} \leq \gamma_{{\rm alg,K}} \max \{ \eta^{k,i}_{{\rm disc,K}}, \eta^{k,i}_{{\rm lin,K}} \} & \forall K \in \mathcal{T}_h, \\ \eta^{k,i}_{{\rm lin,K}} \leq \gamma_{{\rm lin,K}} \eta^{k,i}_{{\rm disc,K}} & \forall K \in \mathcal{T}_h \end{array}$

Theorem (Local efficiency)

Let the Assumptions C and D be satisfied. Let the local stopping criteria hold. Then, for all $K \in T_h$,

$$\eta_{\mathrm{disc},\mathcal{K}}^{k,i} + \eta_{\mathrm{lin},\mathcal{K}}^{k,i} + \eta_{\mathrm{alg},\mathcal{K}}^{k,i} + \eta_{\mathrm{rem},\mathcal{K}}^{k,i} \leq C \sum_{\mathbf{a}\in\mathcal{V}_{\mathcal{K}}} \left(\|\mathcal{R}(\boldsymbol{u}_{h}^{k,i})\|_{\boldsymbol{W}_{0}^{1,\rho}(\boldsymbol{\omega_{a}})'} + \mathrm{NC}_{\boldsymbol{\omega_{a}}} \right),$$

where C is independent of σ and q.

- robustness with respect to the nonlinearity
- local stopping criteria & localizable error measure ⇒ local efficiency

Theorem (Local efficiency)

Let the Assumptions C and D be satisfied. Let the local stopping criteria hold. Then, for all $K \in T_h$,

$$\eta_{\mathrm{disc},\mathcal{K}}^{k,i} + \eta_{\mathrm{lin},\mathcal{K}}^{k,i} + \eta_{\mathrm{alg},\mathcal{K}}^{k,i} + \eta_{\mathrm{rem},\mathcal{K}}^{k,i} \leq C \sum_{\mathbf{a}\in\mathcal{V}_{\mathcal{K}}} \left(\|\mathcal{R}(\boldsymbol{u}_{h}^{k,i})\|_{\boldsymbol{W}_{0}^{1,p}(\boldsymbol{\omega_{a}})'} + \mathrm{NC}_{\boldsymbol{\omega_{a}}} \right),$$

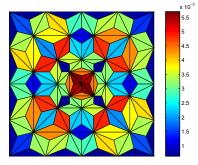
where C is independent of σ and q.

- robustness with respect to the nonlinearity
- local stopping criteria & localizable error measure ⇒ local efficiency

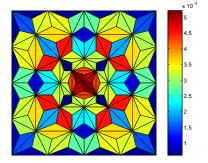
M. Vohralík

- Residuals and their dual norms
 - Laplace
 - Nonlinear Laplace
- 2 Localization of dual norms
 - Local–global equivalence
 - Numerical illustration
- 3 Fully adaptive solvers
 - Setting
 - Guaranteed reliability
 - Local stopping criteria, local efficiency, and robustness
 - Numerical results

Error distribution, p = 10, Crouzeix–Raviart NCFE



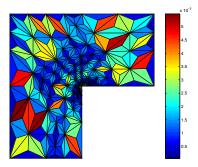
Estimated error distribution



Exact error distribution

Residuals & dual norms Localization Fully adaptive solvers C Setting Reliability Local st. crit. & efficiency Numerics

Error distribution, adaptively refined mesh, Crouzeix-Raviart NCFE



Estimated error distribution

x 10⁻³

Exact error distribution

Residuals and their dual norms

- Laplace
- Nonlinear Laplace
- 2 Localization of dual norms
 - Local–global equivalence
 - Numerical illustration
- 3 Fully adaptive solvers
 - Setting
 - Guaranteed reliability
 - Local stopping criteria, local efficiency, and robustness
 - Numerical results

4 Conclusions and ongoing work

Conclusions and future directions

Conclusions

- dual residual norms are localizable
- local stopping criteria then lead to local efficiency
- concept of full adaptivity (linear solver, nonlinear solver, mesh)

Ongoing work

- multigrid as a linear solver
- convergence and optimality

Conclusions and future directions

Conclusions

- dual residual norms are localizable
- local stopping criteria then lead to local efficiency
- concept of full adaptivity (linear solver, nonlinear solver, mesh)

Ongoing work

- multigrid as a linear solver
- convergence and optimality

Bibliography

- ERN A., VOHRALÍK M., Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35 (2013), A1761–A1791.
- BLECHTA J., MÁLEK J., VOHRALÍK M., Localization of the *W*^{-1,q} norm for robust local a posteriori efficiency, HAL Preprint 01332481.

Thank you for your attention!

