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Residuals & dual norms Localization Fully adaptive solvers C Laplace Nonlinear Laplace

Residual and its dual norm for Laplacian
The Laplace problem (polytope Ω ⊂ Rd , d ≥ 1, f ∈ L2(Ω))

−∆u = f in Ω,

u = 0 on ∂Ω

Weak formulation
Find u ∈ H1

0 (Ω) such that
(∇u,∇v) = (f , v) ∀v ∈ H1

0 (Ω)

Residual R(uh) ∈ H−1(Ω) of uh ∈ H1
0 (Ω)

and its dual norm

〈R(uh), v〉 := (f , v)− (∇uh,∇v), v ∈ H1
0 (Ω)

weak form. misfit
‖R(uh)‖−1 := sup

v∈H1
0 (Ω), ‖∇v‖=1

〈R(uh), v〉 size of the misfit

Remark (Equivalence energy error–dual norm of the residual)

Let uh ∈ H1
0 (Ω). Then

‖R(uh)‖−1 = ‖∇(u − uh)‖.

=

localization︷ ︸︸ ︷{∑
K∈Th

‖∇(u − uh)‖2K

} 1
2

.
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Nonlinear Laplacian

Quasi-linear elliptic problem

−∇·σ(u,∇u) = f in Ω,

u = 0 on ∂Ω

p > 1, q := p
p−1 , f ∈ Lq(Ω)

example: p-Laplacian with σ(u,∇u) = |∇u|p−2∇u

Weak formulation
Find u ∈W 1,p

0 (Ω) such that

(σ(u,∇u),∇v) = (f , v) ∀v ∈W 1,p
0 (Ω)

Residual R(uh) ∈W 1,p
0 (Ω)

′
of uh ∈W 1,p

0 (Ω), its dual norm

〈R(uh), v〉 := (f , v)− (σ(uh,∇uh),∇v), v ∈W 1,p
0 (Ω)

‖R(uh)‖
W 1,p

0 (Ω)
′ := sup

v∈W 1,p
0 (Ω); ‖∇v‖p=1

〈R(uh), v〉
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The nonlinear Laplace equation
The game
Is it possible to localize the dual norm of the residual

‖R(uh)‖
W 1,p

0 (Ω)
′ ≈

{∑
a∈Vh

‖R(uh)‖q
W 1,p

0 (ωa)′

} 1
q

?

Vh vertices, ωa patches of elements of a partition Th of Ω;
the constant hidden in ≈ must not depend on p, Ω, uh, the
mesh size h, the regularity of u. . .

How to give tight and robust computable bounds on
‖R(uk ,i

h )‖
W 1,p

0 (Ω)
′ on each Newton step k and algebraic step i?

How to steer adaptively (adaptive stopping criteria, adaptive
mesh refinement) the inexact Newton solver?
How to predict error distribution = refine at the right place?

Eisenstat and Walker (1994), Deuflhard (1996), Chaillou and Suri (2006, 2007), Kim (2007)
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Residuals & dual norms Localization Fully adaptive solvers C Local–global equivalence Numerics

Localization dual norms
Setting

V := W 1,p
0 (Ω), p > 1, bounded linear functional R ∈ V ′

localized energy space V a := W 1,p
0 (ωa) for a ∈ Vh

restriction of R to (V a)′ (zero extension of v ∈ V a),

〈R, v〉(V a)′,V a := 〈R, v〉V ′,V v ∈ V a,

‖R‖(V a)′ := sup
v∈V a; ‖∇v‖p,ωa =1

〈R, v〉(V a)′,V a

Theorem (Localization of ‖R‖V ′)
There holds

‖R‖V ′≤(d +1)Ccont,PF

 1
(d +1)

∑
a∈Vh

‖R‖q(V a)′


1
q

if 〈R,ψa〉=0 ∀a∈V int
h , 1

(d +1)

∑
a∈Vh

‖R‖q(V a)′


1
q

≤ ‖R‖V ′ .
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Residuals & dual norms Localization Fully adaptive solvers C Local–global equivalence Numerics

Localization of the dual residual norm

Upper bound (needs vanishing lowest modes).

partition of unity, the linearity of R, orthogonality wrt ψa:

〈R, v〉=
∑
a∈Vh

〈R, ψav〉 =
∑

a∈V int
h

〈R, ψa(v − Π0,ωav)〉+
∑

a∈Vext
h

〈R, ψav〉

stability (Poincaré–Friedrichs):

‖∇(ψa(v − Π0,ωav))‖p,ωa ≤ Ccont,PF‖∇v‖p,ωa

Hölder inequality:

〈R, v〉 ≤ Ccont,PF

∑
a∈Vh

‖R‖q(V a)′


1
q
∑

a∈Vh

‖∇v‖pp,ωa


1
p

overlapping of the patches:∑
a∈Vh

‖∇v‖pp,ωa =
∑

K∈Th

∑
a∈VK

‖∇v‖pp,K ≤ (d + 1)

‖∇v‖p
p︷ ︸︸ ︷∑

K∈Th

‖∇v‖pp,K
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Localization of the dual residual norm

Lower bound (unconditioned).
p-Laplacian lifting of the residual on the patch ωa:
ra ∈ V a = W 1,p

0 (ωa) such that

(|∇ra|p−2∇ra,∇v)ωa = 〈R, v〉 ∀v ∈ V a

energy equality:

‖∇ra‖pp,ωa = (|∇ra|p−2∇ra,∇ra)ωa = 〈R, ra〉 = ‖R‖q(V a)′

setting r :=
∑

a∈Vh
ra ∈ V :∑

a∈Vh

‖R‖q(V a)′ =
∑
a∈Vh

〈R, ra〉 = 〈R, r〉 ≤ ‖R‖V ′‖∇r‖p

overlapping of the patches:

‖∇r‖pp ≤ (d + 1)p−1
∑
a∈Vh

‖∇ra‖pp,ωa
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Outline
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Numerical results

Model problems

p-Laplacian

∇·(|∇u|p−2∇u) = f in Ω,

u = uD on ∂Ω

Ω = (0,1)× (0,1) and, for p = 1.5 and 10,

u(x , y) = −p−1
p

(
(x − 1

2)2 + (y − 1
2)2
) p

2(p−1)
+ p−1

p

(
1
2

) p
p−1

Ω = (−1,1)× (−1,1) \ [0,1]× [−1,0] and, for p = 4,

u(r , θ) = r
7
8 sin(θ 7

8)
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Effectivity indices of the localization bounds
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Global and local residual distributions, p = 1.5

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

0.0000000
0.0000005
0.0000010
0.0000015
0.0000020

0.0000025

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

0.0000000
0.0000005
0.0000010
0.0000015
0.0000020

0.0000025

0.0000010
0.0000012
0.0000014
0.0000016
0.0000018
0.0000020
0.0000022
0.0000024
0.0000026

(global error)q:
‖∇r‖pp = ‖R‖qV ′

(localized error)q:
1

d+1
∑

a∈Vh
‖∇ra‖pp,ωa = 1

d+1
∑

a∈Vh
‖R‖q(V a)′
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Global and local residual distributions, p = 10

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0
0.000
0.002
0.004
0.006
0.008
0.010
0.012

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0
0.000
0.002
0.004
0.006
0.008
0.010
0.012

0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013

Global Local

M. Vohralík Localization of dual norms & fully adaptive solvers 12 / 21



Residuals & dual norms Localization Fully adaptive solvers C Local–global equivalence Numerics

Global and local residual distributions, p = 4
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Abstract assumptions
Numerical approximation

simplicial mesh Th, linearization step k , algebraic step i
uk ,i

h ∈V (Th) := {v ∈ Lp(Ω), v |K ∈W 1,p(K ) ∀K ∈Th} 6⊂ V

Assumption A (Total flux reconstruction)

There exists σk ,i
h ∈ Hq(div,Ω) and ρk ,i

h ∈ Lq(Ω) such that

∇·σk ,i
h = fh − ρk ,i

h︸︷︷︸
algebraic
remainder

.

Assumption B (Discretization, linearization, and alg. fluxes)

There exist fluxes dk ,i
h , lk ,ih ,ak ,i

h ∈ [Lq(Ω)]d such that

(i) σk ,i
h = dk ,i

h + lk ,ih + ak ,i
h ;

(ii) as the linear solver converges, ‖ak ,i
h ‖q → 0;

(iii) as the nonlinear solver converges, ‖lk ,ih ‖q → 0.
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Outline

1 Residuals and their dual norms
Laplace
Nonlinear Laplace

2 Localization of dual norms
Local–global equivalence
Numerical illustration

3 Fully adaptive solvers
Setting
Guaranteed reliability
Local stopping criteria, local efficiency, and robustness
Numerical results

4 Conclusions and ongoing work
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Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)
Let

u ∈ V be the weak solution,
uk ,i

h ∈ V (Th) be arbitrary,
Assumptions A and B hold.

Then there holds

‖R(uk ,i
h )‖

W 1,p
0 (Ω)

′+NC≤ηk ,i
disc+ ηk ,i

lin︸︷︷︸
‖lk,ih ‖q

+ ηk ,i
alg︸︷︷︸

‖ak,i
h ‖q

+ ηk ,i
rem︸︷︷︸

hΩ‖ρk,i
h ‖q

+ ηk ,i
quad+ηosc,

with ηk ,i
· :=

{∑
K∈Th

(
ηk ,i
·,K
)q
}1/q

and

ηk ,i
disc,K := 2

1
p

(
‖σ(uk ,i

h ,∇uk ,i
h )+dk ,i

h ‖q,K +

{∑
e∈EK

h1−q
e ‖[[uk ,i

h ]]‖qq,e

} 1
q
)
.
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Assumptions for efficiency

Assumption C (Piecewise polynomials, meshes, quadrature)

The approximation uk ,i
h is piecewise polynomial. The meshes

Th are shape-regular. The quadrature error is negligible.

Assumption D (Approximation property)
For all K ∈ Th, there holds

‖σ(uk ,i
h ,∇uk ,i

h ) + dk ,i
h ‖q,K ≤ C

{ ∑
K ′∈TK

hq
K ′‖f +∇·σ(uk ,i

h ,∇uk ,i
h )‖qq,K ′

+
∑

e∈E int
K

he‖[[σ(uk ,i
h ,∇uk ,i

h )·ne]]‖qq,e

+
∑
e∈EK

h1−q
e ‖[[uk ,i

h ]]‖qq,e

} 1
q

.
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Stopping criteria and efficiency
Local stopping criteria (γrem,K , γalg,K , γlin,K ≈ 0.1)

ηk ,i
rem,K ≤ γrem,K max

{
ηk ,i

disc,K , η
k ,i
lin,K , η

k ,i
alg,K

}
∀K ∈ Th,

ηk ,i
alg,K ≤ γalg,K max

{
ηk ,i

disc,K , η
k ,i
lin,K

}
∀K ∈ Th,

ηk ,i
lin,K ≤ γlin,Kη

k ,i
disc,K ∀K ∈ Th

Theorem (Local efficiency)
Let the Assumptions C and D be satisfied. Let the local
stopping criteria hold. Then, for all K ∈ Th,

ηk ,i
disc,K +ηk ,i

lin,K +ηk ,i
alg,K +ηk ,i

rem,K ≤ C
∑

a∈VK

(
‖R(uk ,i

h )‖W 1,p
0 (ωa)′

+NCωa

)
,

where C is independent of σ and q.

robustness with respect to the nonlinearity
local stopping criteria & localizable error measure⇒ local
efficiency
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Error distribution, p = 10, Crouzeix–Raviart NCFE
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Error distribution, adaptively refined mesh,
Crouzeix–Raviart NCFE
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Conclusions and future directions

Conclusions

dual residual norms are localizable
local stopping criteria then lead to local efficiency
concept of full adaptivity (linear solver, nonlinear solver,
mesh)

Ongoing work

multigrid as a linear solver
convergence and optimality
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M. Vohralík Localization of dual norms & fully adaptive solvers 21 / 21


	Residuals and their dual norms
	Laplace
	Nonlinear Laplace

	Localization of dual norms
	Local–global equivalence
	Numerical illustration

	Fully adaptive solvers
	Setting
	Guaranteed reliability
	Local stopping criteria, local efficiency, and robustness
	Numerical results

	Conclusions and ongoing work

