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Residual and its dual norm for Laplacian

The Laplace problem (polytope Q c R?, d > 1, f € L2(Q))
“Au=f inQ,
u=0 on 90Q
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Residual and its dual norm for Laplacian

The Laplace problem (polytope Q c R?, d > 1, f € L2(Q))
“Au=f inQ,
u=20 on 09
Weak formulation
Find u € H} () such that

(Vu,Vv)=(f,v)  VveHi(Q)
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Residual and its dual norm for Laplacian

The Laplace problem (polytope Q c R?, d > 1, f € L2(Q))
“Au=f inQ,

u=2~0 on 9f2
Weak formulation
Find u € H} () such that

(Vu Vv)=(f,v) VYveHI(Q)
Residual ?(u,) € H '(Q) of u, € H}(Q2) and its dual norm
(R(up), v) = (f, v) (Vup, Vv), ve HI(Q) weakform. misfit

IR(up)|| -1 := sup (R(up),v) size of the misfit
veH} (@), [Vv]=1

Remark (Equivalence energy error—dual norm of the residual)
Let up € H}(Q). Then localization

R(un)l—1 = [[V(u = un)|| = { Do IIv(u- Uh)H%} :
KETh
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Nonlinear Laplacian

Quasi-linear elliptic problem
—Vo(u,Vu)=f in Q,
u=20 on 02
o p>1,q:= 2, feliQ)
@ example: p-Laplacian with o(u, Vu) = |VulP~?Vu
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The nonlinear Laplace equation

Is it possible to localize the dual norm of the residual

1

~ q
HR(uh)HWg»P(Q)' ~ Z HR(uh)HWJ,P( ) ?

Wa

acVy
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The nonlinear Laplace equation

Is it possible to localize the dual norm of the residual
1
q
HR(uh)HW1 P( )’ A~ { Z HR(Uh ‘W1 P( a)’ } i
acVy

@ V), vertices, wa patches of elements of a partition 7, of Q;

@ the constant hidden in ~ must not depend on p, €2, vy, the
mesh size h, the regularity of v. ..
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acVy

@ V), vertices, wa patches of elements of a partition 7, of Q;
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mesh size h, the regularity of v. ..

How to give tight and robust computable bounds on

HR(U,’j")HWLp(Q)/ on each Newton step k and algebraic step /?
0
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The nonlinear Laplace equation

Is it possible to localize the dual norm of the residual
1

q
~ q
IR Cun)ll ey = {Z HR(Uh)HWJ,p(Wa),} ?

acVy

@ V), vertices, wa patches of elements of a partition 7, of Q;
@ the constant hidden in ~ must not depend on p, €2, vy, the
mesh size h, the regularity of v. ..
How to give tight and robust computable bounds on
HR(U//;J)HWJD(Q)/ on each Newton step k and algebraic step /?

How to steer adaptively (adaptive stopping criteria, adaptive
mesh refinement) the inexact Newton solver?
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The nonlinear Laplace equation

Is it possible to localize the dual norm of the residual

1

q
HR(uh)HW1 P( )’ A~ {Z HR(Uh ‘W1 P( a)’ } ?

acVy

@ V), vertices, wa patches of elements of a partition 7, of Q;

@ the constant hidden in ~ must not depend on p, Q, up, the
mesh size h, the regularity of v. ..

How to give tight and robust computable bounds on

HR(U//;'I)HWW(Q)/ on each Newton step k and algebraic step /?
0

How to steer adaptively (adaptive stopping criteria, adaptive
mesh refinement) the inexact Newton solver?

How to predict error distribution = refine at the right place?
Eisenstat and Walker (1994), Deuflhard (1996), Chaillou and Suri (2006, 2007), Kim ZOMOW_
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Localization dual norms

Setting
oV = W(; P(Q), p > 1, bounded linear functional = <
@ localized energy space V2 := Wg P(wa) fora € vy,
@ restriction of R to (V2)’ (zero extension of v € V@),
<R, V>(Va)/7\/a = <R, V) v,V vV € Va,

HRH(V"‘)’ = sup <R, V>(Va)’,Va
veVa; || Vv|p,wa=1

.........
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Localization dual norms

Setting
oV = W(; P(Q), p > 1, bounded linear functional = <
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@ restriction of R to (V2)’ (zero extension of v € V@),
<R, V>(Va)/7\/a = <R, V) v,V vV € Va,

HRH(V"‘)’ = sup <R, V>(Va)’,Va
veVa; || Vv|p,wa=1

Theorem (Localization of ||R]y-)

There holds (17

1 9 in
IRy < (d+1) Coont,pr WZHRH?W)/ if (R,)a) =0 Vae Vit
acyy

1

]
Ty 2 RIGay ¢ < IRl ;
{(d+1)ag,h S e
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Localization of the dual residual norm

Upper bound (needs vanishing lowest modes).
@ partition of unity, the linearity of R, orthogonality wrt );:

(R, V)= (R,vaV) = > (R,va(V—Tow,V)) + > (R, vaV)

acVy, acyi acVy™
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Localization of the dual residual norm

Lower bound (unconditioned).

@ p-Laplacian lifting of the residual on the patch wjy:
A € V@ = W, P(wa) such that

(VAP 2VA,VV), = (R,v) VYvel
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@ p-Laplacian
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_ Local—global equivalence Numerics
Numerical results

Model problems

@ p-Laplacian

V-([VuP2vu)=f inQ,
u=up onoN

@ Q= (0,1) x(0,1) and, for p=1.5and 10,

uley) = =25t (0= 2 = )7 252 (3)
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Numerical results

Model problems

@ p-Laplacian

V-([VuP2vu)=f inQ,
u=up onof

@ Q= (0,1) x(0,1) and, for p=1.5and 10,

p

uy) = B3t (0= 2 = )0 4 1 (3)
® Q= (—1,1) x (=1,1)\ [0,1] x [-1,0] and, for p = 4,

u(r,0) = rs sin(6§)
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Effectivity indices of the localization bounds

—e— upper bound, p =4
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Global and local residual distributions, p = 1.5
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(global error)9: (Iocalized error)q'
IV4ls = IR, a7 LacvllV 2 b = g7 Lacv Rl {vay
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Global and local residual distributions, p = 10
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Global and local residual distributions, p = 4
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0 Fully adaptive solvers
@ Setting
@ Guaranteed reliability
@ Local stopping criteria, local efficiency, and robustness
@ Numerical results
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Abstract assumptions

Numerical approximation

@ simplicial mesh 7, linearization step k, algebraic step /
o U eV(Ty) = {velP(Q), vk e WP(K) YKeTp} ¢ V

...........
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Abstract assumptions

Numerical approximation

@ simplicial mesh 7, linearization step k, algebraic step /
o U eV(Ty) = {velP(Q), vk e WP(K) YKeTp} ¢ V

Assumption A (Total flux reconstruction)
There exists o' < H9(div, Q) and pi" € L9(Q) such that

K,i K,i
Vo, " =fh— p,
~—

Assumption B (Discretization, linearization, and alg. fluxes)
There exist fluxes di”' 15 al" € [L9(Q)]¢ such that
(i) as the linear solver converges, ||a’,§” lg = 0;

(iif) as the nonlinear solver converges, ||If7”

q— 0.

<

.........
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Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let
@ u € V be the weak solution,

° uﬁ”' € V(Ty) be arbitrary,
@ Assumptions A and B hold.
Then there holds

K,i K,i K,i K,i Kk,i K,i
HR(Uh I)H W*-p(Q)’ +NC§77dislc+ nlinl + nalgl + nrerln —+ nqu;d+n0507
0 ~— ~— ~~—~

Kk.i : K,i
Illg faiq ollohlla
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Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let
@ u € V be the weak solution,

° uﬁ”' € V(Ty) be arbitrary,
@ Assumptions A and B hold.
Then there holds

p K,i K,i K,i K,i Kk,i K,i
H R(Uh I) H W*-p(Q)’ +NC S ndislc+ nlinl + nalgl + nrerln —+ nqu;d+n0507
0 —_ —wo =~

W5lla yakiyq hallenlla
- i\g)1/9
[ k:’ Y ky’ q
with i’ ._{§ ke, (12k) } and

1
ki i ki o koiy | ko 1—qq . ki 7
Mane K= 2"(”0(’-’/7Ivvuhl)+dhl||q,K+{ > he 9I[up ’]]HZ,e} )

eclk
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Local—global equivalence
Numerical illustration

[

0 Fully adaptive solvers
@ Setting
@ Guaranteed reliability
@ Local stopping criteria, local efficiency, and robustness
@ Numerical results




Residuals & dual norms Localization Fully adaptive solvers C Setting Reliability Local st. crit. & efficiency Numerics

Assumptions for efficiency

Assumption C (Piecewise polynomials, meshes, quadrature)

The approximation u,f”' is piecewise polynomial. The meshes
Th are shape-regular. The quadrature error is negligible.

e —
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Assumptions for efficiency

Assumption C (Piecewise polynomials, meshes, quadrature)

The approximation u,’j” is piecewise polynomial. The meshes
Th are shape-regular. The quadrature error is negligible.

Assumption D (Approximation property)
For all K € Ty, there holds

le(uy’, Vup') + dy gk < C3 > hLNIf+V-a(uy’, Vup)I|E
K'eTk

+ > helll(uy’, Vug')ne] |

int
ecEy

S [ (7 ([

ecéy

1
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Stopping criteria and efficiency

Local stopping criteria (v,em k., fyalg,K,fyﬁn Kk ~0.1)
ki
nrern K — "}/rem K max{ndlsc K> nlm K> dlg K} VK € 77)7
”al};,K < Yalg K max{ndi’qu, Mhin, 'k} VKETh

K,i K,i
Min,k < Vin, K Ngise, K VK € Th
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Stopping criteria and efficiency

Local stopping criteria (v,em k., ’yalg Ks fyﬁn k ~0.1)
K,i

Them, K < Yrem,K max{ndlsc K nlm Ko dlg 'k} VYKETh
”al};,K S Yalg K max{nd{sc,Kv Mhin, 'k} VK ETh
Uﬁl’f;K < min,mﬁi’s’;,,{ VK € Th

Theorem (Local efficiency)

Let the Assumptions C and D be satisfied. Let the local
stopping criteria hold. Then, for all K € T,

77d1sc K_H711n K+nalg K_H7rem K — <C Z (HR uh )“ W1 p( +NCwa>
acVyg

where C is independent of o and q.
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Stopping criteria and efficiency

Local stopping criteria (v,em k., ’yalg Ks fyﬁn k ~0.1)

K,i
nremK — ﬁyremeaX{ndlsc K’nlm K> dlg K} VK € 77’7

nal:g,K < Valg,K max{nd{sc,K’ Mhin, K} VK € Th,
k,i k,i
7711;1’7/( < 'Ylin,K77di7sIC7K VK € Th
Theorem (Local efficiency)

Let the Assumptions C and D be satisfied. Let the local
stopping criteria hold. Then, for all K € T,

77d1sc K_H711n K+nalg K_H7rem K — <C Z (HR uh )“ W1 p( +NCwa>
acVyg

where C is independent of o and q.

@ robustness with respect to the nonlinearity
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Local stopping criteria (v,em k., ’yalg Ks ’ylin k ~0.1)

K,i
nremK — ﬁyremeaX{ndlsc K’nlm K> dlg K} VK € 77’7

nal:g,K < Valg,K max{”d{sc,Kv Mhin, K} VK € Th,
k,i k,i
77116(;( < 'Ylin,K77di7sIC7K VK € Th
Theorem (Local efficiency)

Let the Assumptions C and D be satisfied. Let the local
stopping criteria hold. Then, for all K € T,

77d1sc K_H711n K+nalg K_'_nrem K — <C Z (HR uh )“ W1 p( +NCwa>
acVyg

where C is independent of o and q.

@ robustness with respect to the nonlinearity
@ local stopping criteria & localizable error measyre = local
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O Residuals and their dual norms
@ Laplace
@ Nonlinear Laplace

O Localization of dual norms
@ Local—-global equivalence
@ Numerical illustration

o Fully adaptive solvers
@ Setting
@ Guaranteed reliability
@ Local stopping criteria, local efficiency, and robustness
@ Numerical results

O Conclusions and ongoing work
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Error distribution, p = 10, Crouzeix—Raviart NCFE
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Error distribution, adaptively refined mesh,
Crouzeix—Raviart NCFE
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Estimated error distribution Exact error distribution
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Q Residuals and their dual norms
@ Laplace
@ Nonlinear Laplace

O Localization of dual norms
@ Local—-global equivalence
@ Numerical illustration

Q Fully adaptive solvers
@ Setting
@ Guaranteed reliability
@ Local stopping criteria, local efficiency, and robustness
@ Numerical results

o Conclusions and ongoing work
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Conclusions and future directions

Conclusions

@ dual residual norms are localizable
@ local stopping criteria then lead to local efficiency

@ concept of full adaptivity (linear solver, nonlinear solver,
mesh)
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Conclusions and future directions

Conclusions

@ dual residual norms are localizable
@ local stopping criteria then lead to local efficiency
@ concept of full adaptivity (linear solver, nonlinear solver,
mesh)
Ongoing work
@ multigrid as a linear solver
@ convergence and optimality
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Informatiques P mathématiques
lizia

M. Vohralik Localization of dual norms & fully adaptive solvers 21 /21




	Residuals and their dual norms
	Laplace
	Nonlinear Laplace

	Localization of dual norms
	Local–global equivalence
	Numerical illustration

	Fully adaptive solvers
	Setting
	Guaranteed reliability
	Local stopping criteria, local efficiency, and robustness
	Numerical results

	Conclusions and ongoing work

