Mixed finite element methods: reduction to one unknown per element

Martin Vohralík and Barbara Wohlmuth

INRIA Paris-Rocquencourt

Liblice, November 25, 2013

Outline

- Primal and dual formulations, mixed finite elements
- 2 Stokes flow with implicit constitutive laws, motivations
- MFEs reduced to one unknown per element
 - Local problems definition and a link to the MPFA method
 - Global problems definition
- 4 Numerical experiments
- 5 General polygonal meshes
- 6 Conclusions and future work

Outline

Primal and dual formulations, mixed finite elements

- 2 Stokes flow with implicit constitutive laws, motivations
- MFEs reduced to one unknown per element
 Local problems definition and a link to the MPFA method
 Global problems definition
- 4 Numerical experiments
- 5 General polygonal meshes
- 6 Conclusions and future work

Model problem and different weak formulations

A model second-order elliptic problem

Decomposition to two first-order systems

 $\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla p) &= g & \text{ in } \Omega, & \mathbf{u} &= -\mathbf{S} \nabla p & \text{ in } \Omega, \\ p &= 0 & \text{ on } \partial \Omega & \nabla \cdot \mathbf{u} &= g & \text{ in } \Omega, \\ p &= 0 & \text{ on } \partial \Omega & p &= 0 \end{aligned}$

Primal weak formulationDual mixed weak formulationFind $p \in H_0^1(\Omega)$ such thatFind $p \in L^2(\Omega)$ & $\mathbf{u} \in \mathbf{H}(\operatorname{div}, \Omega)$ s. that

 $\begin{aligned} (\mathbf{S}\nabla\rho,\nabla\varphi) = & (g,\varphi) & (\mathbf{S}^{-1}\mathbf{u},\mathbf{v}) - (\rho,\nabla\cdot\mathbf{v}) = \mathbf{0} & \forall \,\mathbf{v}\in\mathbf{H}(\mathrm{div},\Omega), \\ \forall\varphi\in H_0^1(\Omega) & (\nabla\cdot\mathbf{u},\phi) = (g,\phi) \,\,\forall\phi\in L^2(\Omega) \end{aligned}$

Model problem and different weak formulations

A model second-order elliptic problem		Decomposition to two first-order systems	
$- abla \cdot ({f S} abla ho) = g$	in Ω ,	$\mathbf{u}=-\mathbf{S} abla p$	in Ω ,
ho=0	on $\partial \Omega$	$ abla {\cdot} \mathbf{u} = oldsymbol{g}$	in Ω ,
		ho=0	on $\partial \Omega$

Primal weak formulationDual mixed weak formulationFind $p \in H_0^1(\Omega)$ such thatFind $p \in L^2(\Omega)$ & $\mathbf{u} \in \mathbf{H}(\operatorname{div}, \Omega)$ s. that

 $\begin{aligned} (\mathbf{S}\nabla\rho,\nabla\varphi) = & (g,\varphi) \quad (\mathbf{S}^{-1}\mathbf{u},\mathbf{v}) - (\rho,\nabla\cdot\mathbf{v}) = \mathbf{0} \quad \forall \,\mathbf{v} \in \mathbf{H}(\mathrm{div},\Omega), \\ \forall \varphi \in H_0^1(\Omega) \quad (\nabla\cdot\mathbf{u},\phi) = & (g,\phi) \ \forall \phi \in L^2(\Omega) \end{aligned}$

Model problem and different weak formulations

A model second-order elliptic problem

Decomposition to two first-order systems

- $\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla p) &= g & \text{ in } \Omega, & \mathbf{u} &= -\mathbf{S} \nabla p & \text{ in } \Omega, \\ p &= 0 & \text{ on } \partial \Omega & \nabla \cdot \mathbf{u} &= g & \text{ in } \Omega, \\ p &= 0 & \text{ on } \partial \Omega & p &= 0 \end{aligned}$
- **Primal weak formulation** Find $p \in H_0^1(\Omega)$ such that

Dual mixed weak formulation Find $p \in L^2(\Omega)$ & $\mathbf{u} \in \mathbf{H}(\operatorname{div}, \Omega)$ s. that

 $\begin{aligned} (\mathbf{S}\nabla\rho,\nabla\varphi) = & (\boldsymbol{g},\varphi) & (\mathbf{S}^{-1}\mathbf{u},\mathbf{v}) - (\rho,\nabla\cdot\mathbf{v}) = \mathbf{0} & \forall \,\mathbf{v} \in \mathsf{H}(\mathrm{div},\Omega), \\ \forall \varphi \in \mathsf{H}_0^1(\Omega) & (\nabla\cdot\mathbf{u},\phi) = (\boldsymbol{g},\phi) \ \forall \phi \in L^2(\Omega) \end{aligned}$

Model problem and different weak formulations

A model second-order elliptic problem

Decomposition to two first-order systems

 $\begin{aligned} -\nabla \cdot (\mathbf{S} \nabla p) &= g & \text{ in } \Omega, & \mathbf{u} &= -\mathbf{S} \nabla p & \text{ in } \Omega, \\ p &= 0 & \text{ on } \partial \Omega & \nabla \cdot \mathbf{u} &= g & \text{ in } \Omega, \\ p &= 0 & \text{ on } \partial \Omega & p &= 0 \end{aligned}$

Primal weak formulation Find $p \in H_0^1(\Omega)$ such that

Dual mixed weak formulation Find $p \in L^2(\Omega)$ & $\mathbf{u} \in \mathbf{H}(\operatorname{div}, \Omega)$ s. that

$$\begin{split} (\mathbf{S} \nabla \boldsymbol{\rho}, \nabla \varphi) = & (\boldsymbol{g}, \varphi) \\ \forall \varphi \in \boldsymbol{H}_0^1(\Omega) \\ \end{split} (\begin{split} \mathbf{S}^{-1} \mathbf{u}, \mathbf{v}) - & (\boldsymbol{\rho}, \nabla \cdot \mathbf{v}) = \mathbf{0} \\ (\nabla \cdot \mathbf{u}, \phi) = & (\boldsymbol{g}, \phi) \\ \forall \phi \in \boldsymbol{L}^2(\Omega) \\ \end{split}$$

Mixed finite elements

Mixed finite element method Find $p_h \in \Phi_h \subset L^2(\Omega)$ and $\mathbf{u}_h \in \mathbf{V}_h \subset \mathbf{H}(\operatorname{div}, \Omega)$ such that

$$egin{aligned} (\mathbf{S}^{-1}\mathbf{u}_h,\mathbf{v}_h) &- (p_h,
abla\cdot\mathbf{v}_h) &= 0 & orall \,\mathbf{v}_h \in \mathbf{V}_h, \ (
abla\cdot\mathbf{u}_h,\phi_h) &= (g,\phi_h) & orall \phi_h \in \Phi_h \end{aligned}$$

Φ_h, V_h: Raviart–Thomas–Nédélec MFE spaces
 high precision

Matrix form

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & 0 \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

- indefinite, saddle-point-type
- both fluxes U and potentials P involved \Rightarrow expensive
- $U = \mathbb{A}^{-1}(F \mathbb{B}^t P)$: only global flux expression

Main goal Rewrite **equivalently** as

Reduction of MFEs to one unknown per element

Mixed finite elements

Mixed finite element method Find $p_h \in \Phi_h \subset L^2(\Omega)$ and $\mathbf{u}_h \in \mathbf{V}_h \subset \mathbf{H}(\operatorname{div}, \Omega)$ such that

$$egin{aligned} (\mathbf{S}^{-1}\mathbf{u}_h,\mathbf{v}_h) &- (p_h,
abla\cdot\mathbf{v}_h) &= 0 & orall \,\mathbf{v}_h \in \mathbf{V}_h, \ (
abla\cdot\mathbf{u}_h,\phi_h) &= (g,\phi_h) & orall \phi_h \in \Phi_h \end{aligned}$$

Φ_h, V_h: Raviart–Thomas–Nédélec MFE spaces
 high precision

Matrix form

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

- indefinite, saddle-point-type
- both fluxes U and potentials P involved \Rightarrow expensive
- $U = \mathbb{A}^{-1}(F \mathbb{B}^t P)$: only global flux expression

Main goal Rewrite **equivalently** as

Reduction of MFEs to one unknown per element

Mixed finite elements

Mixed finite element method Find $p_h \in \Phi_h \subset L^2(\Omega)$ and $\mathbf{u}_h \in \mathbf{V}_h \subset \mathbf{H}(\operatorname{div}, \Omega)$ such that

$$egin{aligned} & (\mathbf{S}^{-1}\mathbf{u}_h,\mathbf{v}_h)-(p_h,
abla\cdot\mathbf{v}_h)=0 & & orall \mathbf{v}_h\in\mathbf{V}_h, \ & (
abla\cdot\mathbf{u}_h,\phi_h)=(g,\phi_h) & & orall \phi_h\in\Phi_h. \end{aligned}$$

Φ_h, V_h: Raviart–Thomas–Nédélec MFE spaces
high precision

Matrix form

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} \mathbf{U} \\ \mathbf{P} \end{array}\right) = \left(\begin{array}{c} \mathbf{F} \\ \mathbf{G} \end{array}\right)$$

- indefinite, saddle-point-type
- both fluxes U and potentials P involved \Rightarrow expensive
- $U = \mathbb{A}^{-1}(F \mathbb{B}^t P)$: only global flux expression

Main goal Rewrite **equivalently** as

Mixed finite elements

Mixed finite element method Find $p_h \in \Phi_h \subset L^2(\Omega)$ and $\mathbf{u}_h \in \mathbf{V}_h \subset \mathbf{H}(\operatorname{div}, \Omega)$ such that

$$egin{aligned} & (\mathbf{S}^{-1}\mathbf{u}_h,\mathbf{v}_h)-(p_h,
abla\cdot\mathbf{v}_h)=0 & & orall \mathbf{v}_h\in\mathbf{V}_h, \ & (
abla\cdot\mathbf{u}_h,\phi_h)=(g,\phi_h) & & orall \phi_h\in\Phi_h. \end{aligned}$$

Φ_h, V_h: Raviart–Thomas–Nédélec MFE spaces
high precision

Matrix form

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} \mathbf{U} \\ \mathbf{P} \end{array}\right) = \left(\begin{array}{c} \mathbf{F} \\ \mathbf{G} \end{array}\right)$$

• indefinite, saddle-point-type

- both fluxes U and potentials P involved \Rightarrow expensive
- $U = \mathbb{A}^{-1}(F \mathbb{B}^t P)$: only global flux expression

Main goal

Rewrite equivalently as

$$\mathbb{S}P = H$$

Extension to unsteady nonlinear problems

Unsteady nonlinear advection-diffusion-reaction problem

$$\begin{aligned} \frac{\partial \boldsymbol{p}}{\partial t} + \nabla \cdot \mathbf{u} + \boldsymbol{F}(\boldsymbol{p}) &= \boldsymbol{q} \quad \text{in} \quad \Omega, \\ \mathbf{u} &= -\mathbf{S} \nabla \varphi(\boldsymbol{p}) + \psi(\boldsymbol{p}) \mathbf{w} \quad \text{in} \quad \Omega, \end{aligned}$$

 $p = p_0$ in Ω for t = 0, p = 0 on $\partial \Omega \times (0, T)$.

Mixed approximation Define p_h^0 by p_0 . On each t_n , find $\mathbf{u}_h^n \in \mathbf{V}_h \otimes p_h^n \in \Phi_h$ such that $(\mathbf{S}^{-1}\mathbf{u}_h^n, \mathbf{v}_h) - (\nabla \cdot \mathbf{v}_h, \varphi(p_h^n)) - (\psi(p_h^n)\mathbf{w}, \mathbf{S}^{-1}\mathbf{v}_h) = 0 \quad \forall \mathbf{v}_h \in \mathbf{V}_h,$ $\left(\frac{p_h^n - p_h^{n-1}}{\tau_n}, \phi_h\right) + (\nabla \cdot \mathbf{u}_h^n, \phi_h) + (F(p_h^n), \phi_h) = (q, \phi_h) \quad \forall \phi_h \in \Phi_h.$

Properties

- works \Leftrightarrow the steady linear diffusion case
- assemblage and inversion of local condensation matrices only once; linearization and time steps – only p_h as ip FVs.

Extension to unsteady nonlinear problems

Unsteady nonlinear advection-diffusion-reaction problem

$$\frac{\partial p}{\partial t} + \nabla \cdot \mathbf{u} + F(p) = q \quad \text{in} \quad \Omega,$$
$$\mathbf{u} = -\mathbf{S}\nabla\varphi(p) + \psi(p)\mathbf{w} \quad \text{in} \quad \Omega,$$

 $p = p_0$ in Ω for t = 0, p = 0 on $\partial \Omega \times (0, T)$.

Mixed approximation

Define p_h^0 by p_0 . On each t_n , find $\mathbf{u}_h^n \in \mathbf{V}_h$ & $p_h^n \in \Phi_h$ such that

$$(\mathbf{S}^{-1}\mathbf{u}_{h}^{n},\mathbf{v}_{h}) - (\nabla \cdot \mathbf{v}_{h},\varphi(p_{h}^{n})) - (\psi(p_{h}^{n})\mathbf{w},\mathbf{S}^{-1}\mathbf{v}_{h}) = 0 \quad \forall \mathbf{v}_{h} \in \mathbf{V}_{h}, \\ \left(\frac{p_{h}^{n} - p_{h}^{n-1}}{\tau_{n}},\phi_{h}\right) + (\nabla \cdot \mathbf{u}_{h}^{n},\phi_{h}) + (F(p_{h}^{n}),\phi_{h}) = (q,\phi_{h}) \quad \forall \phi_{h} \in \Phi_{h}.$$

Properties

● works ⇔ the steady linear diffusion case

 assemblage and inversion of local condensation matrices only once; linearization and time steps – only p_h as if FVs

Extension to unsteady nonlinear problems

Unsteady nonlinear advection-diffusion-reaction problem

$$\frac{\partial p}{\partial t} + \nabla \cdot \mathbf{u} + F(p) = q \quad \text{in} \quad \Omega,$$
$$\mathbf{u} = -\mathbf{S}\nabla\varphi(p) + \psi(p)\mathbf{w} \quad \text{in} \quad \Omega,$$

 $p = p_0$ in Ω for t = 0, p = 0 on $\partial \Omega \times (0, T)$.

Mixed approximation

Define p_h^0 by p_0 . On each t_n , find $\mathbf{u}_h^n \in \mathbf{V}_h$ & $p_h^n \in \Phi_h$ such that

$$(\mathbf{S}^{-1}\mathbf{u}_{h}^{n},\mathbf{v}_{h}) - (\nabla \cdot \mathbf{v}_{h},\varphi(\mathbf{p}_{h}^{n})) - (\psi(\mathbf{p}_{h}^{n})\mathbf{w},\mathbf{S}^{-1}\mathbf{v}_{h}) = 0 \quad \forall \mathbf{v}_{h} \in \mathbf{V}_{h}, \\ \left(\frac{p_{h}^{n}-p_{h}^{n-1}}{\tau_{n}},\phi_{h}\right) + (\nabla \cdot \mathbf{u}_{h}^{n},\phi_{h}) + (F(\mathbf{p}_{h}^{n}),\phi_{h}) = (q,\phi_{h}) \quad \forall \phi_{h} \in \Phi_{h}.$$

Properties

- works ⇔ the steady linear diffusion case
- assemblage and inversion of local condensation matrices only once; linearization and time steps – only p_h as ip FVs

Outline

Primal and dual formulations, mixed finite elements

- 2 Stokes flow with implicit constitutive laws, motivations
- MFEs reduced to one unknown per element
 Local problems definition and a link to the MPFA method
 Global problems definition
- 4 Numerical experiments
- 5 General polygonal meshes
- 6 Conclusions and future work

Stokes flow with implicit constitutive laws

Stokes flow with implicit constitutive laws

$- abla \cdot \mathbf{s} + abla \boldsymbol{p} = \mathbf{f}$	in Ω ,
$ abla \cdot {f u} = {f 0}$	$\text{ in }\Omega,$
$\mathbf{u} = 0$	on $\partial \Omega,$
$g(\mathbf{s}, d(\mathbf{u})) = 0$	in Ω.

Nomenclature

- **u**: velocity, *p*: pressure, s: shear stress
- $d(\mathbf{u}) := \frac{1}{2}(\nabla \mathbf{u} + (\nabla \mathbf{u})^t)$ symmetric velocity gradient
- f: volume forces, μ : viscosity, τ_* : yield stress
- $g(\cdot, \cdot)$: nonlinear implicit constitutive law
 - $g(s, d(\mathbf{u})) = 2\mu(\tau_* + (|s| \tau_*)^+)d(\mathbf{u}) (|s| \tau_*)^+s$: Bingham fluid
 - $g(\mathbf{s}, d(\mathbf{u})) = 2\mu |d(\mathbf{u})|^{r-2} (\tau_* + (|\mathbf{s}| \tau_*)^+) d(\mathbf{u}) (|\mathbf{s}| \tau_*)^+ \mathbf{s},$ $r \in (1, \infty)$: Herschel-Bulkley fluid
 - $g(\mathbf{s}, d(\mathbf{u})) = \mathbf{s} 2\mu |d(\mathbf{u})|^{r-2} d(\mathbf{u}), r \in (1, \infty)$: power low independent of the interval of the second secon

Stokes flow with implicit constitutive laws

Stokes flow with implicit constitutive laws

$$\begin{aligned} -\nabla \cdot \mathbf{s} + \nabla \boldsymbol{\rho} &= \mathbf{f} & \text{in } \Omega, \\ \nabla \cdot \mathbf{u} &= \mathbf{0} & \text{in } \Omega, \\ \mathbf{u} &= \mathbf{0} & \text{on } \partial \Omega, \\ \boldsymbol{g}(\mathbf{s}, \boldsymbol{d}(\mathbf{u})) &= \boldsymbol{\upsilon} & \text{in } \Omega. \end{aligned}$$

Nomenclature

- u: velocity, p: pressure, s: shear stress
- d(u) := ½(∇u + (∇u)^t) symmetric velocity gradient
- **f**: volume forces, μ : viscosity, τ_* : yield stress
- $g(\cdot, \cdot)$: nonlinear implicit constitutive law
 - $g(s, d(\mathbf{u})) = 2\mu(\tau_* + (|s| \tau_*)^+)d(\mathbf{u}) (|s| \tau_*)^+s$: Bingham fluid
 - $g(s, d(\mathbf{u})) = 2\mu |d(\mathbf{u})|^{r-2} (\tau_* + (|s| \tau_*)^+) d(\mathbf{u}) (|s| \tau_*)^+ s,$ $r \in (1, \infty)$: *Herschel–Bulkley* fluid
 - $g(\mathbf{s}, d(\mathbf{u})) = \mathbf{s} 2\mu |d(\mathbf{u})|^{r-2} d(\mathbf{u}), r \in (1, \infty)$: power law filling summarized

Velocity (explicit law) formulation

Weak formulation For $\mathbf{f} \in [L^s(\Omega)]^d$, find $\mathbf{u} \in \mathbf{V}_0$ such that

$$(\mathfrak{s}(d(\mathbf{u})),
abla \mathbf{v}) = (\mathbf{f}, \mathbf{v}) \qquad orall \mathbf{v} \in \mathbf{V}_0.$$

Function spaces

•
$$\mathbf{V} := [W_0^{1,r}(\Omega)]^d$$

•
$$V_0 := \{ v \in V; \nabla \cdot v = 0 \}$$

Velocity (explicit law) formulation

Weak formulation For $\mathbf{f} \in [L^s(\Omega)]^d$, find $\mathbf{u} \in \mathbf{V}_0$ such that

$$(\mathbf{s}(d(\mathbf{u})),
abla \mathbf{v}) = (\mathbf{f}, \mathbf{v}) \qquad orall \mathbf{v} \in \mathbf{V}_0.$$

Function spaces

•
$$\mathbf{V} := [W_0^{1,r}(\Omega)]^d$$

• $\mathbf{V}_0 := \{\mathbf{v} \in \mathbf{V}; \ \nabla \cdot \mathbf{v} = 0\}$

Velocity-pressure (explicit law) formulation

Weak formulation Find $(\mathbf{u}, p) \in \mathbf{V} \times Q$ such that

$$egin{aligned} &(\mathfrak{s}(d(\mathbf{u})),
abla \mathbf{v}) - (
abla \cdot \mathbf{v}, oldsymbol{p}) = (\mathbf{f}, \mathbf{v}) & orall \mathbf{v} \in \mathbf{V}, \ &(
abla \cdot \mathbf{u}, q) = \mathbf{0} & orall q \in Q. \end{aligned}$$

Function spaces

•
$$Q := L_0^s(\Omega) := \{q \in L^s(\Omega); (q, 1) = 0\}; \frac{1}{r} + \frac{1}{s} = 1$$

inf-sup condition

$$\inf_{q \in Q} \sup_{\mathbf{v} \in \mathbf{V}} \frac{(q, \nabla \cdot \mathbf{v})}{\|\nabla \mathbf{v}\|_r \, \|q\|_s} = \beta > 0$$

Velocity-pressure (explicit law) formulation

Weak formulation Find $(\mathbf{u}, p) \in \mathbf{V} \times Q$ such that

$$egin{aligned} &(\mathfrak{s}(d(\mathbf{u})),
abla \mathbf{v}) - (
abla \cdot \mathbf{v}, p) &= (\mathbf{f}, \mathbf{v}) & orall \mathbf{v} \in \mathbf{V}, \ &(
abla \cdot \mathbf{u}, q) &= \mathbf{0} & orall q \in Q. \end{aligned}$$

Function spaces

•
$$Q := L_0^s(\Omega) := \{q \in L^s(\Omega); (q, 1) = 0\}; \frac{1}{r} + \frac{1}{s} = 1$$

inf-sup condition

$$\inf_{q \in Q} \sup_{\mathbf{v} \in \mathbf{V}} \frac{(q, \nabla \cdot \mathbf{v})}{\|\nabla \mathbf{v}\|_r \, \|q\|_s} = \beta > 0$$

Velocity-pressure (explicit law) formulation

Weak formulation Find $(\mathbf{u}, p) \in \mathbf{V} \times Q$ such that

$$egin{aligned} &(\operatorname{s}(d(\mathbf{u})),
abla \mathbf{v}) - (
abla \cdot \mathbf{v}, oldsymbol{p}) = (\mathbf{f}, \mathbf{v}) & orall \mathbf{v} \in \mathbf{V}, \ &(
abla \cdot \mathbf{u}, q) = \mathbf{0} & orall q \in Q. \end{aligned}$$

Function spaces

•
$$Q := L_0^s(\Omega) := \{q \in L^s(\Omega); (q, 1) = 0\}; \frac{1}{r} + \frac{1}{s} = 1$$

inf-sup condition

$$\inf_{q \in Q} \sup_{\mathbf{v} \in \mathbf{V}} \frac{(q, \nabla \cdot \mathbf{v})}{\|\nabla \mathbf{v}\|_r \, \|q\|_s} = \beta > 0$$

Velocity-pressure-stress implicit law formulation

Weak formulation Find $(\mathbf{u}, p, \mathbf{s}) \in \mathbf{V} \times \mathbf{Q} \times \mathbb{T}$ such that

$$\begin{aligned} (\mathbf{s}, \nabla \mathbf{v}) - (\nabla \cdot \mathbf{v}, \boldsymbol{p}) &= (\mathbf{f}, \mathbf{v}) \qquad \forall \mathbf{v} \in \mathbf{V}, \\ (\nabla \cdot \mathbf{u}, \boldsymbol{q}) &= \mathbf{0} \qquad \forall \boldsymbol{q} \in \boldsymbol{Q}, \end{aligned}$$

$$(g(\mathbf{s},d(\mathbf{u})),\mathrm{t})=0 \qquad orall \mathrm{t}\in\mathbb{T}.$$

Function spaces

•
$$\mathbb{T} := [L^s_{\mathrm{sym}}(\Omega)]^{d \times d}$$

Second inf-sup condition

$$\inf_{\mathbf{v}\in\mathbf{V}}\sup_{\mathbf{t}\in\mathbb{T}}\frac{(\mathbf{t},\nabla\mathbf{v})}{\|\nabla\mathbf{v}\|_{r}\,\|\mathbf{t}\|_{s}}=\gamma>0$$

Velocity-pressure-stress implicit law formulation

Weak formulation Find $(\mathbf{u}, p, \mathbf{s}) \in \mathbf{V} \times \mathbf{Q} \times \mathbb{T}$ such that

$$egin{aligned} &(\mathbf{s},
abla \mathbf{v}) - (
abla \cdot \mathbf{v}, oldsymbol{
ho}) &= (\mathbf{f}, \mathbf{v}) & & orall \mathbf{v} \in \mathbf{V}, \ & (
abla \cdot \mathbf{u}, oldsymbol{q}) &= \mathbf{0} & & orall oldsymbol{q} \in oldsymbol{Q}, \end{aligned}$$

$$(g({f s},d({f u})),{f t})=0 \qquad orall {f t}\in {\Bbb T}$$
 ,

Function spaces

•
$$\mathbb{T} := [L^s_{\mathrm{sym}}(\Omega)]^{d \times d}$$

Second inf-sup condition

$$\inf_{\mathbf{v}\in\mathbf{V}}\sup_{\mathbf{t}\in\mathbb{T}}\frac{(\mathbf{t},\nabla\mathbf{v})}{\|\nabla\mathbf{v}\|_{r}\,\|\mathbf{t}\|_{s}}=\gamma>0$$

Velocity-pressure-stress implicit law formulation

Weak formulation Find $(\mathbf{u}, p, \mathbf{s}) \in \mathbf{V} \times \mathbf{Q} \times \mathbb{T}$ such that

$$egin{aligned} &(\mathbf{s},
abla \mathbf{v}) - (
abla \cdot \mathbf{v}, oldsymbol{p}) &= (\mathbf{f}, \mathbf{v}) & & orall \mathbf{v} \in \mathbf{V}, \ & (
abla \cdot \mathbf{u}, oldsymbol{q}) &= \mathbf{0} & & orall oldsymbol{q} \in oldsymbol{Q}, \end{aligned}$$

$$(g(\mathrm{s},d(\mathbf{u})),\mathrm{t})=0 \qquad orall \mathrm{t}\in\mathbb{T}$$

Function spaces

•
$$\mathbb{T} := [L^s_{\mathrm{sym}}(\Omega)]^{d \times d}$$

Second inf-sup condition

$$\inf_{\mathbf{v}\in\mathbf{V}}\sup_{\mathbf{t}\in\mathbb{T}}\frac{(\mathbf{t},\nabla\mathbf{v})}{\|\nabla\mathbf{v}\|_{r}\,\|\mathbf{t}\|_{s}}=\gamma>0$$

- reduce the unknowns back to one per element in various situations
- exemplify local flux expressions
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes
- give hints for the numerical treatment of implicit constitutive laws

- reduce the unknowns back to one per element in various situations
- exemplify local flux expressions
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes
- give hints for the numerical treatment of implicit constitutive laws

- reduce the unknowns back to one per element in various situations
- exemplify local flux expressions
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes
- give hints for the numerical treatment of implicit constitutive laws

- reduce the unknowns back to one per element in various situations
- exemplify local flux expressions
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes
- give hints for the numerical treatment of implicit constitutive laws

- reduce the unknowns back to one per element in various situations
- exemplify local flux expressions
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes
- give hints for the numerical treatment of implicit constitutive laws

Previous results

Links to nonconforming finite elements

 Arnold & Brezzi 1985, Marini 1985, Arbogast & Chen 1995, Chen 1996

Links to finite volumes

• Younès, Mose, Ackerer, & Chavent 1999–2004

Links to mimetic finite differences and and multi-point flux-approximations (using approximate numerical integration)

- Klausen & Winther, 2006
- Wheeler & Yotov, 2006
- Aavatsmark, Eigestad, Klausen, Wheeler, & Yotov, 2007
- Droniou, Eymard, Gallouët, & Herbin, 2010
- Bause Hoffmann, & Knabner, 2010
- ... Brezzi, da Veiga, Lipnikov, Manzini, Shashkov .

Previous results

Links to nonconforming finite elements

 Arnold & Brezzi 1985, Marini 1985, Arbogast & Chen 1995, Chen 1996

Links to finite volumes

• Younès, Mose, Ackerer, & Chavent 1999–2004

Links to mimetic finite differences and and multi-point flux-approximations (using approximate numerical integration)

- Klausen & Winther, 2006
- Wheeler & Yotov, 2006
- Aavatsmark, Eigestad, Klausen, Wheeler, & Yotov, 2007
- Droniou, Eymard, Gallouët, & Herbin, 2010
- Bause Hoffmann, & Knabner, 2010
- ... Brezzi, da Veiga, Lipnikov, Manzini, Shashkov .

Previous results

Links to nonconforming finite elements

 Arnold & Brezzi 1985, Marini 1985, Arbogast & Chen 1995, Chen 1996

Links to finite volumes

• Younès, Mose, Ackerer, & Chavent 1999–2004

Links to mimetic finite differences and and multi-point flux-approximations (using approximate numerical integration)

- Klausen & Winther, 2006
- Wheeler & Yotov, 2006
- Aavatsmark, Eigestad, Klausen, Wheeler, & Yotov, 2007
- Droniou, Eymard, Gallouët, & Herbin, 2010
- Bause Hoffmann, & Knabner, 2010
- ... Brezzi, da Veiga, Lipnikov, Manzini, Shashkov ...

Outline

Primal and dual formulations, mixed finite elements

- 2 Stokes flow with implicit constitutive laws, motivations
- MFEs reduced to one unknown per element
 - Local problems definition and a link to the MPFA method
 - Global problems definition
- 4 Numerical experiments
- 5 General polygonal meshes
- 6 Conclusions and future work

Implicit laws Reduction Num. ex. Polygonal meshes C Local problems and MPFA Global problems

Local flux expression from the Lagrange multipliers

Mixed finite element method

Find $p_h \in \Phi_h$ and $\mathbf{u}_h \in \mathbf{V}_h$ such that

$$egin{aligned} (\mathbf{S}^{-1}\mathbf{u}_h,\mathbf{v}_h)-(p_h,
abla\cdot\mathbf{v}_h)&=0 & orall\,\mathbf{v}_h\in\mathbf{V}_h,\ (
abla\cdot\mathbf{v}_h,\phi_h)&=(g,\phi_h) & orall\phi_h\in\Phi_h \end{aligned}$$

Nonconforming finite element method Find $\tilde{\lambda}_h \in \tilde{\Psi}_h$ such that

$$(\mathbf{S}
abla ilde{\lambda}_h,
abla ilde{\psi}_h) = (g, ilde{\psi}_h) \qquad orall ilde{\psi}_h \in ilde{\Psi}_h$$

Local flux expression from the Lagrange multipliers There holds (Marini 1985)

$$\mathbf{u}_h|_{K} = -\mathbf{S}_K \nabla \tilde{\lambda}_h|_{K} + \frac{g_K}{d} (\mathbf{x} - \mathbf{x}_K) \qquad \forall K \in \mathcal{T}_h$$

- **x**_K: barycenter of K
- g_K: mean value of the source term g over k

Reduction of MFEs to one unknown per element

Implicit laws Reduction Num. ex. Polygonal meshes C Local problems and MPFA Global problems

Local flux expression from the Lagrange multipliers

Mixed finite element method

Find $p_h \in \Phi_h$ and $\mathbf{u}_h \in \mathbf{V}_h$ such that

$$\begin{aligned} (\mathbf{S}^{-1}\mathbf{u}_h,\mathbf{v}_h) - (p_h,\nabla\cdot\mathbf{v}_h) &= 0 & \forall \mathbf{v}_h \in \mathbf{V}_h; \\ (\nabla\cdot\mathbf{u}_h,\phi_h) &= (g,\phi_h) & \forall \phi_h \in \Phi_h \end{aligned}$$

Nonconforming finite element method Find $\tilde{\lambda}_h \in \tilde{\Psi}_h$ such that

$$({f S}
abla ilde{\lambda}_h,
abla ilde{\psi}_h)=(g, ilde{\psi}_h)\qquad orall ilde{\psi}_h\in ilde{\Psi}_h$$

Local flux expression from the Lagrange multipliers There holds (Marini 1985)

$$\mathbf{u}_h|_{K} = -\mathbf{S}_K
abla ilde{\lambda}_h|_{K} + rac{g_K}{d} (\mathbf{x} - \mathbf{x}_K) \qquad orall K \in \mathcal{T}_h$$

- **x**_K: barycenter of K
- g_{K} : mean value of the source term g over k

Martin Vohralík and Barbara Wohlmuth
Local flux expression from the Lagrange multipliers

Mixed finite element method

Find $p_h \in \Phi_h$ and $\mathbf{u}_h \in \mathbf{V}_h$ such that

$$egin{aligned} (\mathbf{S}^{-1}\mathbf{u}_h,\mathbf{v}_h)-(p_h,
abla\cdot\mathbf{v}_h)&=0 & orall\,\mathbf{v}_h\in\mathbf{V}_h,\ (
abla\cdot\mathbf{u}_h,\phi_h)&=(oldsymbol{g},\phi_h) & orall\phi_h\in\Phi_h \end{aligned}$$

Nonconforming finite element method Find $\tilde{\lambda}_h \in \tilde{\Psi}_h$ such that

$$(\mathbf{S}
abla ilde{\lambda}_h,
abla ilde{\psi}_h)=(g, ilde{\psi}_h)\qquadorall ilde{\psi}_h\in ilde{\Psi}_h$$

Local flux expression from the Lagrange multipliers There holds (Marini 1985)

$$|\mathbf{u}_h|_{\mathcal{K}} = -\mathbf{S}_{\mathcal{K}}
abla ilde{\lambda}_h|_{\mathcal{K}} + rac{g_{\mathcal{K}}}{d} (\mathbf{x} - \mathbf{x}_{\mathcal{K}}) \qquad orall \mathcal{K} \in \mathcal{T}_h$$

- **x**_K: barycenter of K
- g_K : mean value of the source term g over K

Different representations of the MFE solution

Martin Vohralík and Barbara Wohlmuth Reduction of MFEs to one unknown per element

Outline

Primal and dual formulations, mixed finite elements

- 2 Stokes flow with implicit constitutive laws, motivations
- MFEs reduced to one unknown per element
 - Local problems definition and a link to the MPFA method
 Global problems definition
- 4 Numerical experiments
- 6 General polygonal meshes
- 6 Conclusions and future work

A new element value in $K \in \mathcal{T}_h$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_K = \lambda_h(\mathbf{z}_K)$
- $\tilde{\lambda}_h$ expressed in the three points \mathbf{x}_{σ} , \mathbf{x}_{γ} , and \mathbf{z}_K (d = 2)
- Lagrange basis functions $\tilde{\varphi}_{\sigma}$, $\tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

Martin Vohralík and Barbara Wohlmuth

A new element value in $K \in \mathcal{T}_h$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K} = \tilde{\lambda}_{h}(\mathbf{z}_{K})$
- $\tilde{\lambda}_h$ expressed in the three points \mathbf{x}_{σ} , \mathbf{x}_{γ} , and \mathbf{z}_K (d = 2)
- Lagrange basis functions $\tilde{\varphi}_{\sigma}$, $\tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

Martin Vohralík and Barbara Wohlmuth

A new element value

A new element value in $K \in \mathcal{T}_h$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K} = \tilde{\lambda}_{h}(\mathbf{z}_{K})$
- $\tilde{\lambda}_h$ expressed in the three points \mathbf{x}_{σ} , \mathbf{x}_{γ} , and \mathbf{z}_K (d = 2)
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

A new element value in $K \in \mathcal{T}_h$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K} = \tilde{\lambda}_{h}(\mathbf{z}_{K})$
- $\tilde{\lambda}_h$ expressed in the three points \mathbf{x}_{σ} , \mathbf{x}_{γ} , and \mathbf{z}_K (d = 2)
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

A new element value in $K \in \mathcal{T}_h$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K} = \tilde{\lambda}_{h}(\mathbf{z}_{K})$
- $\tilde{\lambda}_h$ expressed in the three points \mathbf{x}_{σ} , \mathbf{x}_{γ} , and \mathbf{z}_K (d = 2)
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

•
$$\mathbf{u}_h|_{\mathcal{K}} = -\mathbf{S}_{\mathcal{K}} \nabla \tilde{\lambda}_h|_{\mathcal{K}} + \frac{g_{\mathcal{K}}}{d} (\mathbf{x} - \mathbf{x}_{\mathcal{K}}) \quad \Rightarrow$$

A new element value in $K \in \mathcal{T}_h$

- \mathbf{z}_{K} : a new point related to K (not necessarily inside K)
- new element value: $\bar{p}_{K} = \tilde{\lambda}_{h}(\mathbf{z}_{K})$
- $\tilde{\lambda}_h$ expressed in the three points \mathbf{x}_{σ} , \mathbf{x}_{γ} , and \mathbf{z}_K (d = 2)
- Lagrange basis functions $\tilde{\varphi}_{\sigma}$, $\tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$

•
$$\mathbf{u}_{h}|_{K} = -\mathbf{S}_{K} \nabla \left(\sum_{\sigma \in \mathcal{E}_{V,K}} \lambda_{\sigma} \tilde{\varphi}_{\sigma} + \bar{p}_{K} \tilde{\varphi}_{K} \right) + \frac{g_{K}}{d} (\mathbf{x} - \mathbf{x}_{K})$$

Martin Vohralík and Barbara Wohlmuth

Definition of a local problem

Definition of a local problem

- $\bullet\,$ consider a patch \mathcal{T}_V of the elements around a vertex V
- given the new element values p
 _K and λ_σ, σ ∈ E^{int}_V, in the patch, express the fluxes u_h in the patch
- local problem: given $\overline{P}_V = {\{\overline{p}_K\}_{K \in \mathcal{T}_V}}$, find $\Lambda_V^{\text{int}} = {\{\lambda_\gamma\}_{\gamma \in \mathcal{E}_V^{\text{int}}}}$ s.t. $\mathbb{M}_V \Lambda_V^{\text{int}} = \widetilde{G}_V - \mathbb{J}_V \overline{P}_V$
- the same building principle as that of MPFA methods

Martin Vohralík and Barbara Wohlmuth Reducti

Definition of a local problem

Definition of a local problem

- consider a patch \mathcal{T}_V of the elements around a vertex V
- given the new element values p
 _K and λ_σ, σ ∈ E^{int}_V, in the patch, express the fluxes u_h in the patch
- MFEs impose the continuity of \mathbf{u}_h on the interior sides $(\mathcal{E}_V^{\text{int}})$ of the patch $\sum_{K \in \mathcal{T}_V; \sigma \in \mathcal{E}_K} \langle \mathbf{u}_h \cdot \mathbf{n}_K, 1 \rangle_{\sigma} = 0 \quad \forall \sigma \in \mathcal{E}_V^{\text{int}}$
- local problem: given $\overline{P}_V = {\{\overline{p}_K\}_{K \in \mathcal{T}_V}}$, find $\Lambda_V^{\text{int}} = {\{\lambda_\gamma\}_{\gamma \in \mathcal{E}_V^{\text{int}}}}$ s.t. $\mathbb{M}_V \Lambda_V^{\text{int}} = \widetilde{G}_V - \mathbb{J}_V \overline{P}_V$
- the same building principle as that of MPFA methods

Martin Vohralík and Barbara Wohlmuth

Definition of a local problem

Definition of a local problem

- consider a patch \mathcal{T}_V of the elements around a vertex V
- given the new element values p
 _K and λ_σ, σ ∈ E^{int}_V, in the patch, express the fluxes u_h in the patch
- MFEs impose the continuity of \mathbf{u}_h on the interior sides $(\mathcal{E}_V^{\text{int}})$ of the patch $\sum \langle \mathbf{u}_h \cdot \mathbf{n}_K, 1 \rangle_{\sigma} = 0 \quad \forall \sigma \in \mathcal{E}_V^{\text{int}}$

$$K \in \mathcal{T}_V; \sigma \in \mathcal{E}_K$$

Martin Vohralík and Barbara Wohlmuth

- local problem: given $\overline{P}_V = {\{\overline{p}_K\}_{K \in \mathcal{T}_V}}$, find $\Lambda_V^{\text{int}} = {\{\lambda_\gamma\}_{\gamma \in \mathcal{E}_V^{\text{int}}}}$ s.t. $\mathbb{M}_V \Lambda_V^{\text{int}} = \widetilde{G}_V - \mathbb{J}_V \overline{P}_V$
- the same building principle as that of MPFA methods

Definition of a local problem

Definition of a local problem

- consider a patch \mathcal{T}_V of the elements around a vertex V
- given the new element values p
 _K and λ_σ, σ ∈ E^{int}_V, in the patch, express the fluxes u_h in the patch
- MFEs impose the continuity of \mathbf{u}_h on the interior sides $(\mathcal{E}_V^{\text{int}})$ of the patch $\sum \langle \mathbf{u}_h \cdot \mathbf{n}_K, 1 \rangle_{\sigma} = 0 \quad \forall \sigma \in \mathcal{E}_V^{\text{int}}$

$$K \in \mathcal{T}_V; \sigma \in \mathcal{E}_K$$

- local problem: given $\overline{P}_V = \{\overline{p}_K\}_{K \in \mathcal{T}_V}$, find $\Lambda_V^{\text{int}} = \{\lambda_\gamma\}_{\gamma \in \mathcal{E}_V^{\text{int}}}$ s.t. $\mathbb{M}_V \Lambda_V^{\text{int}} = \widetilde{G}_V - \mathbb{J}_V \overline{P}_V$
- the same building principle as that of MPFA methods

Martin Vohralík and Barbara Wohlmuth

Definition of a local problem

Definition of a local problem

Κ

- consider a patch \mathcal{T}_V of the elements around a vertex V
- given the new element values p
 _K and λ_σ, σ ∈ E^{int}_V, in the patch, express the fluxes u_h in the patch
- MFEs impose the continuity of u_h on the interior sides (𝔅^{int}_V) of the patch ∑ (u_h⋅n_K, 1)_σ = 0 ∀σ ∈ 𝔅^{int}_V

$$\in \mathcal{T}_{V}; \sigma \in \mathcal{E}_{K}$$

- local problem: given $\overline{P}_V = \{\overline{p}_K\}_{K \in \mathcal{T}_V}$, find $\Lambda_V^{\text{int}} = \{\lambda_\gamma\}_{\gamma \in \mathcal{E}_V^{\text{int}}}$ s.t. $\mathbb{M}_V \Lambda_V^{\text{int}} = \widetilde{G}_V - \mathbb{J}_V \overline{P}_V$
- the same building principle as that of MPFA methods

Martin Vohralík and Barbara Wohlmuth

S-circumcenter as the evaluation point

S-circumcenter as the point $\mathbf{z}_{\mathcal{K}}$

- circumcenter when $\mathbf{S}_{K} = \mathbb{I}\mathbf{s}_{K}$
- the approach of Younès, Mose, Ackerer, & Chavent, 1999
- M_V gets diagonal
- no local linear system needs to be solved
- two-point flux expression (on arbitrary triangular grids and full-matrix piecewise constant **S**)
- impossible in 3D (except particular cases)
- \mathbb{M}_V can explode (modifications necessary):

Barycenter as the evaluation point

Barycenter as the point z_K

- this is the approach of Vohralík, 2004/2006
- \mathbb{M}_V is not diagonal (unless barycenter = circumcenter)
- a local linear system needs to be solved
- multi-point flux expression
- works generally in *d* space dimensions
- \mathbb{M}_V can get singular (modifications necessary):

- change **z**_K according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices \mathbb{M}_V
- influence the properties of the final matrix (like basis and preconditioning choice)

- change z_K according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices M_V
- influence the properties of the final matrix (like basis and

- change z_K according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices \mathbb{M}_V

- change z_K according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices \mathbb{M}_V
- influence the properties of the final matrix (like basis and preconditioning choice)

Examples of the different evaluation points

Examples of the different evaluation points z_K

Examples of the local matrices

Examples of the local matrices \mathbb{M}_V

Outline

Primal and dual formulations, mixed finite elements

- 2 Stokes flow with implicit constitutive laws, motivations
- MFEs reduced to one unknown per element
 Local problems definition and a link to the MPFA method
 - Global problems definition
- 4 Numerical experiments
- 5 General polygonal meshes
- 6 Conclusions and future work

Expressing the Lagrange multipliers \wedge or the fluxes U

• local problems give
$$\Lambda_V^{\text{int}} = (\mathbb{M}_V)^{-1} (\widetilde{G}_V - \mathbb{J}_V \overline{P}_V)$$

- for every vertex V, we have one expression for Λ_V^{int}
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{\boldsymbol{G}} - \mathbb{M}^{\mathrm{inv}}\overline{\boldsymbol{P}}$$

$$U = \widetilde{\mathbb{O}}^{\operatorname{inv}} G - \mathbb{O}^{\operatorname{inv}} \overline{P}$$

Expressing the Lagrange multipliers \wedge or the fluxes U

- local problems give $\Lambda_V^{\text{int}} = (\mathbb{M}_V)^{-1} (\widetilde{G}_V \mathbb{J}_V \overline{P}_V)$
- for every vertex V, we have one expression for Λ_V^{int}
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$\Lambda = \widetilde{\mathbb{M}}^{ ext{inv}}\widetilde{m{G}} - \mathbb{M}^{ ext{inv}}ar{m{P}}$$

$$U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G - \mathbb{O}^{\mathrm{inv}} \overline{P}$$

Expressing the Lagrange multipliers Λ or the fluxes U

- local problems give $\Lambda_V^{\text{int}} = (\mathbb{M}_V)^{-1} (\widetilde{G}_V \mathbb{J}_V \overline{P}_V)$
- for every vertex V, we have one expression for Λ_V^{int}
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{\boldsymbol{G}} - \mathbb{M}^{\mathrm{inv}}\overline{\boldsymbol{P}}$$

$$U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G - \mathbb{O}^{\mathrm{inv}} \overline{P}$$

Expressing the Lagrange multipliers \wedge or the fluxes U

- local problems give $\Lambda_V^{\text{int}} = (\mathbb{M}_V)^{-1} (\widetilde{G}_V \mathbb{J}_V \overline{P}_V)$
- for every vertex V, we have one expression for Λ_V^{int}
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G} - \mathbb{M}^{\mathrm{inv}}\overline{P}$$

$$U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G - \mathbb{O}^{\mathrm{inv}} \overline{P}$$

Expressing the Lagrange multipliers \wedge or the fluxes U

- local problems give $\Lambda_V^{\text{int}} = (\mathbb{M}_V)^{-1} (\widetilde{G}_V \mathbb{J}_V \overline{P}_V)$
- for every vertex V, we have one expression for Λ_V^{int}
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G} - \mathbb{M}^{\mathrm{inv}}\overline{P}$$

$$U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G - \mathbb{O}^{\mathrm{inv}} \overline{P}$$

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U = \widetilde{\mathbb{O}}^{\operatorname{inv}} G \mathbb{O}^{\operatorname{inv}} \overline{P}$
- put this into $\mathbb{B}U = G$

• this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

with

$$\bar{\mathbb{S}} = -\mathbb{BO}^{\mathrm{inv}}, \quad \bar{H} = G - \mathbb{BO}^{\mathrm{inv}}G$$

- z_K = S-circumcenter gives the FV method (Younès, Mose, Ackerer, & Chavent, 1999)
- \mathbf{z}_{K} = barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when g = 0 (Hoffmann, 2008))

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G \mathbb{O}^{\mathrm{inv}} \overline{P}$
- put this into $\mathbb{B}U = G$

• this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

with

$$\bar{\mathbb{S}} = -\mathbb{BO}^{\mathrm{inv}}, \quad \bar{H} = G - \mathbb{BO}^{\mathrm{inv}}G$$

- z_K = S-circumcenter gives the FV method (Younès, Mose, Ackerer, & Chavent, 1999)
- \mathbf{z}_{K} = barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when g = 0 (Hoffmann, 2008))

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G \mathbb{O}^{\mathrm{inv}} \overline{P}$
- put this into $\mathbb{B}U = G$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

$$ar{\mathbb{S}} = -\mathbb{BO}^{\mathrm{inv}}, \quad ar{H} = G - \mathbb{B}\widetilde{\mathbb{O}}^{\mathrm{inv}}G$$

- z_K = S-circumcenter gives the FV method (Younès, Mose, Ackerer, & Chavent, 1999)
- z_{K} = barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when g = 0 (Hoffmann, 2008))

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G \mathbb{O}^{\mathrm{inv}} \overline{P}$
- put this into $\mathbb{B}U = G$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

with

$$ar{\mathbb{S}} = -\mathbb{BO}^{\mathrm{inv}}, \quad ar{H} = G - \mathbb{B}\widetilde{\mathbb{O}}^{\mathrm{inv}}G$$

 z_K = S-circumcenter gives the FV method (Younès, Mose, Ackerer, & Chavent, 1999)

• z_{K} = barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when g = 0 (Hoffmann, 2008))

Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U = \widetilde{\mathbb{O}}^{\mathrm{inv}} G \mathbb{O}^{\mathrm{inv}} \overline{P}$
- put this into $\mathbb{B}U = G$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

$$ar{\mathbb{S}} = -\mathbb{BO}^{\mathrm{inv}}, \quad ar{H} = G - \mathbb{B}\widetilde{\mathbb{O}}^{\mathrm{inv}}G$$

- z_K = S-circumcenter gives the FV method (Younès, Mose, Ackerer, & Chavent, 1999)
- z_K = barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when g = 0 (Hoffmann, 2008))

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G} \mathbb{M}^{\mathrm{inv}}\overline{P}$
- put this into $\mathbb{N}\Lambda = \overline{P}(\overline{p}_K \text{ are punctual values of } \widetilde{\lambda}_h)$

• this gives

$\bar{\mathbb{S}}\bar{P}=\bar{H}$

$$\overline{\mathbb{S}} = \mathbb{NM}^{\mathrm{inv}} + \mathbb{I}, \quad \overline{H} = \mathbb{N}\widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G}$$

- using $\mathbf{z}_{\mathcal{K}} = \mathbf{S}$ -circumcenter, we name it the MFEC method
- using \mathbf{z}_{K} = barycenter, we name it the MFEB method
- using z_K = the optimal evaluation point, we name it the MFEO method

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G} \mathbb{M}^{\mathrm{inv}}\overline{P}$
- put this into $\mathbb{N}\Lambda = \overline{P}(\overline{p}_K \text{ are punctual values of } \widetilde{\lambda}_h)$

this gives

$\bar{\mathbb{S}}\bar{P}=\bar{H}$

$$\overline{\mathbb{S}} = \mathbb{NM}^{\mathrm{inv}} + \mathbb{I}, \quad \overline{H} = \mathbb{N}\widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G}$$

- using z_K = S-circumcenter, we name it the MFEC method
- using \mathbf{z}_{K} = barycenter, we name it the MFEB method
- using z_K = the optimal evaluation point, we name it the MFEO method

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G} \mathbb{M}^{\mathrm{inv}}\overline{P}$
- put this into $\mathbb{N}\Lambda = \overline{P} (\overline{p}_K \text{ are punctual values of } \widetilde{\lambda}_h)$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

$$\mathbf{\bar{S}} = \mathbb{NM}^{\mathrm{inv}} + \mathbb{I}, \quad \mathbf{\bar{H}} = \mathbb{N}\widetilde{\mathbb{M}}^{\mathrm{inv}}\mathbf{\widetilde{G}}$$

- using z_K = S-circumcenter, we name it the MFEC method
- using z_K = barycenter, we name it the MFEB method
- using z_K = the optimal evaluation point, we name it the MFEO method

Implicit laws Reduction Num. ex. Polygonal meshes C Local problems and MPFA Global problems

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G} \mathbb{M}^{\mathrm{inv}}\overline{P}$
- put this into $\mathbb{N}\Lambda = \overline{P} (\overline{p}_K \text{ are punctual values of } \widetilde{\lambda}_h)$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

with

$$ar{\mathbb{S}} = \mathbb{NM}^{\mathrm{inv}} + \mathbb{I}, \quad ar{H} = \mathbb{N}\widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G}$$

- using $\mathbf{z}_{\mathcal{K}} = \mathbf{S}$ -circumcenter, we name it the MFEC method
- using z_K = barycenter, we name it the MFEB method
- using z_K = the optimal evaluation point, we name it the MFEO method

Implicit laws Reduction Num. ex. Polygonal meshes C Local problems and MPFA Global problems

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{G} \mathbb{M}^{\mathrm{inv}}\overline{P}$
- put this into $\mathbb{N}\Lambda = \overline{P} (\overline{p}_K \text{ are punctual values of } \widetilde{\lambda}_h)$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

with

$$\mathbf{\bar{S}} = \mathbb{NM}^{\mathrm{inv}} + \mathbb{I}, \quad \mathbf{\bar{H}} = \mathbb{N}\widetilde{\mathbb{M}}^{\mathrm{inv}}\mathbf{\widetilde{G}}$$

- using z_K = S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{\mathcal{K}}$ = barycenter, we name it the MFEB method
- using z_K = the optimal evaluation point, we name it the MFEO method

Implicit laws Reduction Num. ex. Polygonal meshes C Local problems and MPFA Global problems

Prescribing the final system by a potential relation

Prescribing the final system by a potential relation

- recall $\Lambda = \widetilde{\mathbb{M}}^{\mathrm{inv}}\widetilde{\mathbf{G}} \mathbb{M}^{\mathrm{inv}}\overline{\mathbf{P}}$
- put this into $\mathbb{N}\Lambda = \overline{P}(\overline{p}_K \text{ are punctual values of } \widetilde{\lambda}_h)$
- this gives

$$\bar{\mathbb{S}}\bar{P}=\bar{H}$$

with

$$\mathbf{\bar{S}} = \mathbb{NM}^{\mathrm{inv}} + \mathbb{I}, \quad \mathbf{\bar{H}} = \mathbb{N}\widetilde{\mathbb{M}}^{\mathrm{inv}}\mathbf{\widetilde{G}}$$

- using z_K = S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{\mathcal{K}}$ = barycenter, we name it the MFEB method
- using z_K = the optimal evaluation point, we name it the MFEO method

Outline

Primal and dual formulations, mixed finite elements

- 2 Stokes flow with implicit constitutive laws, motivations
- MFEs reduced to one unknown per element
 Local problems definition and a link to the MPFA method
 Global problems definition
- 4 Numerical experiments
- 5 General polygonal meshes
- 6 Conclusions and future work

Model problem

- $\Omega = (0, 1) \times (0, 1)$
- inhomogeneous Dirichlet boundary condition given by p(x, y) = 0.1y + 0.9
- $K \in \mathcal{T}_h$:

$$\mathbf{S}|_{\mathcal{K}} = \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & -\sin(\theta_{\mathcal{K}}) \\ \sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix} \begin{pmatrix} s_{\mathcal{K}} & 0 \\ 0 & \nu s_{\mathcal{K}} \end{pmatrix} \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & \sin(\theta_{\mathcal{K}}) \\ -\sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix}$$

homogeneous isotropic case, s_K = 1 for all K ∈ T_h, ν = 1
anisotropic case, s_K = 1 for all K ∈ T_h, θ_K ∈ {^π/₅, ^{3π}/₄, ^π/₂, ^{3π}/₅, ^π/₃}, ν = 0.2
inhomogeneous case, s_K ∈ {10, 1, 0.1, 0.01, 0.001}, ν = 1

Model problem

- $\Omega = (0, 1) \times (0, 1)$
- inhomogeneous Dirichlet boundary condition given by p(x, y) = 0.1y + 0.9
- $K \in \mathcal{T}_h$:

$$\mathbf{S}|_{\mathcal{K}} = \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & -\sin(\theta_{\mathcal{K}}) \\ \sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix} \begin{pmatrix} s_{\mathcal{K}} & 0 \\ 0 & \nu s_{\mathcal{K}} \end{pmatrix} \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & \sin(\theta_{\mathcal{K}}) \\ -\sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix}$$

homogeneous isotropic case, s_K = 1 for all K ∈ T_h, ν = 1
anisotropic case, s_K = 1 for all K ∈ T_h, θ_K ∈ {π/5, 3π/4, π/2, 3π/5, π/3}, ν = 0.2
inhomogeneous case, s_K ∈ {10, 1, 0.1, 0.01, 0.001}, ν = 1

Model problem

- $\Omega = (0, 1) \times (0, 1)$
- inhomogeneous Dirichlet boundary condition given by p(x, y) = 0.1y + 0.9
- $K \in \mathcal{T}_h$:

$$\mathbf{S}|_{\mathcal{K}} = \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & -\sin(\theta_{\mathcal{K}}) \\ \sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix} \begin{pmatrix} s_{\mathcal{K}} & 0 \\ 0 & \nu s_{\mathcal{K}} \end{pmatrix} \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & \sin(\theta_{\mathcal{K}}) \\ -\sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix}$$

- homogeneous isotropic case, $s_{K} = 1$ for all $K \in T_{h}$, $\nu = 1$
- anisotropic case, $s_K = 1$ for all $K \in \mathcal{T}_h$,

$$\theta_{K} \in \left\{\frac{\pi}{5}, \frac{3\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{5}, \frac{\pi}{3}\right\}, \nu = 0.2$$

• inhomogeneous case, $s_K \in \{10, 1, 0.1, 0.01, 0.001\}, \nu = 1$

Model problem

- $\Omega = (0, 1) \times (0, 1)$
- inhomogeneous Dirichlet boundary condition given by p(x, y) = 0.1y + 0.9
- $K \in \mathcal{T}_h$:

$$\mathbf{S}|_{\mathcal{K}} = \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & -\sin(\theta_{\mathcal{K}}) \\ \sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix} \begin{pmatrix} s_{\mathcal{K}} & 0 \\ 0 & \nu s_{\mathcal{K}} \end{pmatrix} \begin{pmatrix} \cos(\theta_{\mathcal{K}}) & \sin(\theta_{\mathcal{K}}) \\ -\sin(\theta_{\mathcal{K}}) & \cos(\theta_{\mathcal{K}}) \end{pmatrix}$$

- homogeneous isotropic case, $s_{K} = 1$ for all $K \in T_{h}$, $\nu = 1$
- anisotropic case, $s_K = 1$ for all $K \in \mathcal{T}_h$,
 - $\theta_{\mathcal{K}} \in \left\{\frac{\pi}{5}, \frac{3\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{5}, \frac{\pi}{3}\right\}, \nu = 0.2$
- inhomogeneous case, $s_K \in \{10, 1, 0.1, 0.01, 0.001\}, \nu = 1$

Initial mesh

Initial mesh and the distribution of the inhomogeneities and anisotropies

Martin Vohralík and Barbara Wohlmuth Reduction of MFEs to one unknown per element

Matrices of the different methods

System matrix sparsity patterns

Martin Vohralík and Barbara Wohlmuth

Results, homogeneous isotropic case

							DS	CG/ Bi-CGStab		PCG/ PBi-CGSt		tab
Meth.	Un.	Mat.	St.	Nonz.	CN	CNS	CPU	CPU	Iter.	CPU	IC/ ILU	lter.
MFEB	13824	NPD	14	177652	7564	7580	0.27	4.86	324.5	0.81	0.36	9.0
MFEC	13824	NNS	4	55040	11256	11056	0.09	2.23	372.0	0.42	0.19	6.5
MFEO	13824	NPD	14	177652	7531	7558	0.28	4.08	270.0	0.80	0.41	7.5
CMFE	13824	NPD	14	177652	7397	7380	0.27	4.70	312.0	0.83	0.39	8.5
FV	13824	SPD	4	55040	65722	8898	0.07	3.09	1098.0	0.42	0.17	17.0
NCFE	20608	SPD	5	102528	14064	9944	0.14	2.92	620.0	1.11	0.56	19.0

Results, anisotropic case

							DS	C Bi-C	G/ GStab	PCG/ PBi-CGStab		
Meth.	Un.	Mat.	St.	Nonz.	CN	CNS	CPU	CPU	lter.	CPU	IC/ ILU	Iter.
MFEB	13824	NPD	14	177652	14489	11203	0.28	6.61	448.0	0.98	0.59	6.5
MFEC	13824	NID	4	55040	2401279	416769	0.08	_		0.45	0.20	7.0
MFEO	13824	NPD	14	177652	13401	10767	0.27	6.51	440.5	0.95	0.41	10.0
CMFE	13824	NPD	14	177652	9276	7758	0.28	5.27	350.5	0.84	0.38	9.0
FV	13824	SID	4	55040	247055	239934	0.09	_	_	0.45	0.20	7.0
NCFE	20608	SPD	5	102528	25393	16969	0.18	4.03	850.0	1.12	0.41	30.0

Results, inhomogeneous case

							DS	CG/ Bi-CGStab		PCG/ PBi-CGSta		tab
Meth.	Un.	Mat.	St.	Nonz.	CN	CNS	CPU	CPU	Iter.	CPU	IC/ ILU	lter.
MFEB	13824	NPD	14	177652	819248	740706	0.28	13.33	897.5	1.05	0.62	6.5
MFEC	13824	NNS	4	55040	903789	763849	0.09	5.34	947.5	0.47	0.20	7.5
MFEO	13824	NPD	14	177652	820367	739957	0.28	12.45	790.5	1.05	0.56	8.0
CMFE	13824	NPD	14	177652	2500730	478974	0.28	102.27	6842.5	1.01	0.41	10.5
FV	13824	SPD	4	55040	16387758	497974	0.07	39.41	14101.0	0.44	0.17	16.0
NCFE	20608	SPD	5	102528	4797335	670623	0.18	52.42	11226.0	1.22	0.64	16.0

Outline

- Primal and dual formulations, mixed finite elements
- 2 Stokes flow with implicit constitutive laws, motivations
- MFEs reduced to one unknown per element
 Local problems definition and a link to the MPFA method
 Global problems definition
- 4 Numerical experiments
- 5 General polygonal meshes
- 6 Conclusions and future work

General polygonal meshes

A general polygonal mesh $\widehat{\mathcal{T}}_{H}$

- nonconvex and non star-shaped elements in $\widehat{\mathcal{T}}_{H}$
- $\widehat{\mathcal{T}}_{H}$ can be nonmatching
- maximal number of sides of $K \in \widehat{\mathcal{T}}_H$ is not limited
- $\widehat{\mathcal{T}}_{H}$ is not necessarily shape-regular
- assumption: existence of a simplicial submesh 7

General polygonal meshes

A general polygonal mesh $\widehat{\mathcal{T}}_{H}$

- nonconvex and non star-shaped elements in $\widehat{\mathcal{T}}_{H}$
- $\widehat{\mathcal{T}}_{H}$ can be nonmatching
- maximal number of sides of $K \in \widehat{\mathcal{T}}_H$ is not limited
- $\hat{\mathcal{T}}_{H}$ is not necessarily shape-regular
- assumption: existence of a simplicial submesh T_h

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

MFEs on $\widehat{\mathcal{T}}_H$

- $\left(\begin{array}{cc} \widehat{\mathbb{A}} & \widehat{\mathbb{B}}^t \\ \widehat{\mathbb{B}} & 0 \end{array}\right) \left(\begin{array}{c} \widehat{U} \\ \widehat{P} \end{array}\right) = \left(\begin{array}{c} F \\ \widehat{G} \end{array}\right)$
- $\widehat{\mathcal{Q}}$: flux unknowns related to the sides of $\widehat{\mathcal{T}}_H$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_H$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on T_h (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order
- equivalent to formulation on T_h (a priori and a postpriori error estimates, discrete maximum principle, ...)

Martin Vohralík and Barbara Wohlmuth

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$\left(\begin{array}{cc}\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^t\\ \widehat{\mathbb{B}} & \mathbf{0}\end{array}\right)\left(\begin{array}{c}\widehat{U}\\ \widehat{P}\end{array}\right) = \left(\begin{array}{c}\widehat{F}\\ \widehat{G}\end{array}\right)$$

- $\widehat{\mathcal{Q}}$: flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_{H}$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on T_h (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order
- equivalent to formulation on T_h (a priori and a postoriori error estimates, discrete maximum principle, ...)

Martin Vohralík and Barbara Wohlmuth

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$\left(\begin{array}{cc}\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^t\\ \widehat{\mathbb{B}} & \mathbf{0}\end{array}\right)\left(\begin{array}{c}\widehat{U}\\ \widehat{P}\end{array}\right) = \left(\begin{array}{c}\widehat{F}\\ \widehat{G}\end{array}\right)$$

- $\widehat{\mathcal{Q}}$: flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_{H}$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on T_h (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order
- equivalent to formulation on \mathcal{T}_h (a priori and a posteriori error estimates, discrete maximum principle, ...)

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$\left(\begin{array}{cc}\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^t\\ \widehat{\mathbb{B}} & \mathbf{0}\end{array}\right)\left(\begin{array}{c}\widehat{U}\\ \widehat{P}\end{array}\right) = \left(\begin{array}{c}\widehat{F}\\ \widehat{G}\end{array}\right)$$

- $\widehat{\mathcal{Q}}$: flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_{H}$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on T_h (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order
- equivalent to formulation on \mathcal{T}_h (a priori and a posteriori error estimates, discrete maximum principle, ...)

Martin Vohralík and Barbara Wohlmuth

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\left(\begin{array}{cc} \mathbb{A} & \mathbb{B}^t \\ \mathbb{B} & \mathbf{0} \end{array}\right) \left(\begin{array}{c} U \\ P \end{array}\right) = \left(\begin{array}{c} F \\ G \end{array}\right)$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$\left(\begin{array}{cc}\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^t\\ \widehat{\mathbb{B}} & \mathbf{0}\end{array}\right)\left(\begin{array}{c}\widehat{U}\\ \widehat{P}\end{array}\right) = \left(\begin{array}{c}\widehat{F}\\ \widehat{G}\end{array}\right)$$

- $\widehat{\mathcal{U}}$: flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- \widehat{P} : potential unknowns related to the elements of $\widehat{\mathcal{T}}_H$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on T_h (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order
- equivalent to formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle, ...)

Martin Vohralík and Barbara Wohlmuth

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\mathbb{Z}\Lambda = E$$

$$\widehat{\mathbb{Z}}\widehat{\Lambda} = \widehat{E}$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_H$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on T_h (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle ...)

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\mathbb{Z}\Lambda = E$$

$$\widehat{\mathbb{Z}}\widehat{\Lambda} = \widehat{E}$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on T_h (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle ...)

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\mathbb{Z}\Lambda = E$$

$$\widehat{\mathbb{Z}}\widehat{\Lambda} = \widehat{E}$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_H$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on T_h (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle ...)

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\mathbb{Z}\Lambda = E$$

$$\widehat{\mathbb{Z}}\widehat{\Lambda} = \widehat{E}$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on T_h (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle ...)

MFEs on general polygonal meshes

MFEs on \mathcal{T}_h

$$\mathbb{Z}\Lambda = E$$

$$\widehat{\mathbb{Z}}\widehat{\Lambda} = \widehat{E}$$

- $\widehat{\Lambda}$: Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on T_h (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to formulation on T_h (a priori and a posteriori error estimates, discrete maximum principle ...)

Outline

- Primal and dual formulations, mixed finite elements
- 2 Stokes flow with implicit constitutive laws, motivations
- MFEs reduced to one unknown per element
 Local problems definition and a link to the MPFA method
 Global problems definition
- 4 Numerical experiments
- 5 General polygonal meshes
- 6 Conclusions and future work

Conclusions and future work

Conclusions

- mixed finite elements: one method with
 - saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
 - U and P unknowns / A unknowns / P unknowns
 - narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
 - discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
- paradigm: decompose into a system in order to better understand, describe, & analyze and reduce back in order to solve cheaply

Work in progress

- extensions to all order MFE schemes
- optimal multigrid solvers

Martin Vohralík and Barbara Wohlmuth

Conclusions and future work

Conclusions

- mixed finite elements: one method with
 - saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
 - U and P unknowns / A unknowns / P unknowns
 - narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
 - discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
- paradigm: decompose into a system in order to better understand, describe, & analyze and reduce back in order to solve cheaply

Work in progress

- extensions to all order MFE schemes
- optimal multigrid solvers

Conclusions and future work

Conclusions

- mixed finite elements: one method with
 - saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
 - U and P unknowns / A unknowns / P unknowns
 - narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
 - discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
- paradigm: decompose into a system in order to better understand, describe, & analyze and reduce back in order to solve cheaply

Work in progress

- extensions to all order MFE schemes
- optimal multigrid solvers

Martin Vohralík and Barbara Wohlmuth

Conclusions and future work

Conclusions

- mixed finite elements: one method with
 - saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
 - U and P unknowns / A unknowns / P unknowns
 - narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
 - discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
- paradigm: decompose into a system in order to better understand, describe, & analyze and reduce back in order to solve cheaply

Work in progress

- extensions to all order MFE schemes
- optimal multigrid solvers

Bibliography

Bibliography

- VOHRALÍK M., Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes, *M2AN Math. Model. Numer. Anal.* 40 (2006), 367–391.
- VOHRALÍK M., WOHLMUTH B., Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods, *Math. Models Methods Appl. Sci.* 23 (2013), 803–838.
- VOHRALÍK M., WOHLMUTH B., From face to element unknowns by local static condensation with application to nonconforming finite elements, Comput. Methods Appl. Mech. Engrg. 253 (2013), 517–529.

Thank you for your attention!

