# Mixed finite element methods: reduction to one unknown per element 

Martin Vohralík and Barbara Wohlmuth

INRIA Paris-Rocquencourt

Liblice, November 25, 2013

## Outline

(1) Primal and dual formulations, mixed finite elements
(2) Stokes flow with implicit constitutive laws, motivations
(3) MFEs reduced to one unknown per element

- Local problems definition and a link to the MPFA method
- Global problems definition

4 Numerical experiments
(5) General polygonal meshes

6 Conclusions and future work

## Outline

(1) Primal and dual formulations, mixed finite elements
(2) Stokes flow with implicit constitutive laws, motivations
(3) MFEs reduced to one unknown per element

- Local problems definition and a link to the MPFA method
- Global problems definition

4 Numerical experiments
(3) General polygonal meshes
(6) Conclusions and future work

Martin Vohralík and Barbara Wohlmuth
Reduction of MFEs to one unknown per element

## Model problem and different weak formulations

## A model second-order elliptic problem

Decomposition to two first-order
systems

$$
\begin{aligned}
-\nabla \cdot(\mathbf{S} \nabla p)=g & \text { in } \Omega, \\
p=0 & \text { on } \partial \Omega
\end{aligned}
$$

## Dual mixed weak formulation

 Find $p \in L^{2}(\Omega) \& u \in H(\operatorname{div}, \Omega)$ s. that

## Model problem and different weak formulations

A model second-order elliptic problem

Decomposition to two first-order systems

$$
\begin{aligned}
-\nabla \cdot(\mathbf{S} \nabla p)=g & \text { in } \Omega \\
p=0 & \text { on } \partial \Omega
\end{aligned}
$$

Primal weak formulation
Find $p \in H_{0}^{1}(\Omega)$ such that

Dual mixed weak formulation
Find $p \in L^{2}(\Omega) \& u \in H(\operatorname{div}, \Omega) s$. that


## Model problem and different weak formulations

A model second-order elliptic problem

$$
\begin{aligned}
-\nabla \cdot(\mathbf{S} \nabla p)=g & \text { in } \Omega \\
p=0 & \text { on } \partial \Omega
\end{aligned}
$$

Decomposition to two first-order systems

Primal weak formulation
Find $p \in H_{0}^{1}(\Omega)$ such that

$$
(\mathbf{S} \nabla p, \nabla \varphi)=(g, \varphi)
$$

$$
\forall \varphi \in H_{0}^{1}(\Omega)
$$

$$
\begin{aligned}
\mathbf{u} & =-\mathbf{S} \nabla p & & \text { in } \Omega, \\
\nabla \cdot \mathbf{u} & =g & & \text { in } \Omega, \\
p & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Dual mixed weak formulation
Find $p \in L^{2}(\Omega) \& u \in H(\operatorname{div}, \Omega) s$. that


## Model problem and different weak formulations

A model second-order elliptic problem

$$
\begin{aligned}
-\nabla \cdot(\mathbf{S} \nabla p)=g & \text { in } \Omega \\
p=0 & \text { on } \partial \Omega
\end{aligned}
$$

Decomposition to two first-order systems

$$
\begin{aligned}
\mathbf{u} & =-\mathbf{S} \nabla p & & \text { in } \Omega, \\
\nabla \cdot \mathbf{u} & =g & & \text { in } \Omega, \\
p & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

## Primal weak formulation

Find $p \in H_{0}^{1}(\Omega)$ such that
Dual mixed weak formulation
Find $p \in L^{2}(\Omega) \& \mathbf{u} \in \mathbf{H}(\operatorname{div}, \Omega)$ s. that
$(\mathbf{S} \nabla p, \nabla \varphi)=(g, \varphi)$
$\forall \varphi \in H_{0}^{1}(\Omega)$

$$
\begin{array}{rlrl}
\left(\mathbf{S}^{-1} \mathbf{u}, \mathbf{v}\right)-(p, \nabla \cdot \mathbf{v}) & =0 & & \forall \mathbf{v} \in \mathbf{H}(\operatorname{div}, \Omega) \\
(\nabla \cdot \mathbf{u}, \phi) & =(g, \phi) & \forall \phi \in L^{2}(\Omega)
\end{array}
$$

## Mixed finite elements

## Mixed finite element method

Find $p_{h} \in \Phi_{h} \subset L^{2}(\Omega)$ and $\mathbf{u}_{h} \in \mathbf{V}_{h} \subset \mathbf{H}(\operatorname{div}, \Omega)$ such that

$$
\begin{aligned}
\left(\mathbf{S}^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \nabla \cdot \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h}, \\
\left(\nabla \cdot \mathbf{u}_{h}, \phi_{h}\right) & =\left(g, \phi_{h}\right) & & \forall \phi_{h} \in \Phi_{h}
\end{aligned}
$$

- $\Phi_{h}, \mathbf{V}_{h}$ : Raviart-Thomas-Nédélec MFE spaces


## Matrix form

- both fluxes $U$ and potentials $P$ involved $\Rightarrow$

Main goal
Rewrite equivalently as

## Mixed finite elements

## Mixed finite element method

Find $p_{h} \in \Phi_{h} \subset L^{2}(\Omega)$ and $\mathbf{u}_{h} \in \mathbf{V}_{h} \subset \mathbf{H}(\operatorname{div}, \Omega)$ such that

$$
\begin{aligned}
\left(\mathbf{S}^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \nabla \cdot \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \\
\left(\nabla \cdot \mathbf{u}_{h}, \phi_{h}\right) & =\left(g, \phi_{h}\right) & & \forall \phi_{h} \in \Phi_{h}
\end{aligned}
$$

- $\Phi_{h}, \mathbf{V}_{h}$ : Raviart-Thomas-Nédélec MFE spaces
- high precision


## Matrix form



- both fluxes $U$ and potentials $P$ involved $\Rightarrow$

Main goal
Rewrite equivalently as

## Mixed finite elements

## Mixed finite element method

Find $p_{h} \in \Phi_{h} \subset L^{2}(\Omega)$ and $\mathbf{u}_{h} \in \mathbf{V}_{h} \subset \mathbf{H}(\operatorname{div}, \Omega)$ such that

$$
\begin{aligned}
\left(\mathbf{S}^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \nabla \cdot \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \\
\left(\nabla \cdot \mathbf{u}_{h}, \phi_{h}\right) & =\left(g, \phi_{h}\right) & & \forall \phi_{h} \in \Phi_{h}
\end{aligned}
$$

- $\Phi_{h}, \mathbf{V}_{h}$ : Raviart-Thomas-Nédélec MFE spaces
- high precision


## Matrix form

$$
\left(\begin{array}{ll}
\mathbb{A} & \mathbb{B}^{t} \\
\mathbb{B} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{G}
$$

- indefinite, saddle-point-type
- both fluxes $U$ and potentials $P$ involved $\Rightarrow$ expensive
- $U=\mathbb{A}^{-1}\left(F-\mathbb{B}^{t} P\right)$ : only global flux expression


## Mixed finite elements

## Mixed finite element method

Find $p_{h} \in \Phi_{h} \subset L^{2}(\Omega)$ and $\mathbf{u}_{h} \in \mathbf{V}_{h} \subset \mathbf{H}(\operatorname{div}, \Omega)$ such that

$$
\begin{aligned}
\left(\mathbf{S}^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \nabla \cdot \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \\
\left(\nabla \cdot \mathbf{u}_{h}, \phi_{h}\right) & =\left(g, \phi_{h}\right) & & \forall \phi_{h} \in \Phi_{h}
\end{aligned}
$$

- $\Phi_{h}, \mathbf{V}_{h}$ : Raviart-Thomas-Nédélec MFE spaces
- high precision


## Matrix form

$$
\left(\begin{array}{ll}
\mathbb{A} & \mathbb{B}^{t} \\
\mathbb{B} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{G}
$$

- indefinite, saddle-point-type
- both fluxes $U$ and potentials $P$ involved $\Rightarrow$ expensive
- $U=\mathbb{A}^{-1}\left(F-\mathbb{B}^{t} P\right)$ : only global flux expression


## Main goal

Rewrite equivalently as

$$
\mathbb{S} P=H
$$

## I Implicit law

## Extension to unsteady nonlinear problems

Unsteady nonlinear advection-diffusion-reaction problem

$$
\begin{aligned}
& \frac{\partial p}{\partial t}+\nabla \cdot \mathbf{u}+F(p)=q \text { in } \Omega, \\
& \mathbf{u}=-\mathbf{S} \nabla \varphi(p)+\psi(p) \mathbf{w} \text { in } \Omega, \\
& p=p_{0} \quad \text { in } \Omega \text { for } t=0, p=0 \text { on } \partial \Omega \times(0, T) .
\end{aligned}
$$

Mixed approximation
Define $p_{h}^{0}$ by $p_{0}$. On each $t_{n}$, find $\mathbf{u}_{h}^{n} \in \mathbf{V}_{h} \& p_{h}^{n} \in \Phi_{h}$ such that


Properties

- works $\Leftrightarrow$ the steady linear diffusion case
- assemblage and inversion of local condensation matrices



## I Implicit laws Reduction Num. ex. Polygonal meshes C

## Extension to unsteady nonlinear problems

Unsteady nonlinear advection-diffusion-reaction problem

$$
\begin{aligned}
& \frac{\partial p}{\partial t}+\nabla \cdot \mathbf{u}+F(p)=q \text { in } \Omega, \\
& \mathbf{u}=-\mathbf{S} \nabla \varphi(p)+\psi(p) \mathbf{w} \text { in } \Omega, \\
& p=p_{0} \quad \text { in } \Omega \text { for } t=0, p=0 \text { on } \partial \Omega \times(0, T) .
\end{aligned}
$$

## Mixed approximation

Define $p_{h}^{0}$ by $p_{0}$. On each $t_{n}$, find $\mathbf{u}_{h}^{n} \in \mathbf{V}_{h} \& p_{h}^{n} \in \Phi_{h}$ such that

$$
\left(\mathbf{S}^{-1} \mathbf{u}_{h}^{n}, \mathbf{v}_{h}\right)-\left(\nabla \cdot \mathbf{v}_{h}, \varphi\left(p_{h}^{n}\right)\right)-\left(\psi\left(p_{h}^{\eta}\right) \mathbf{w}, \mathbf{S}^{-1} \mathbf{v}_{h}\right)=0 \quad \forall \mathbf{v}_{h} \in \mathbf{V}_{h},
$$

$$
\left(\frac{p_{h}^{n}-p_{h}^{n-1}}{\tau_{n}}, \phi_{h}\right)+\left(\nabla \cdot \mathbf{u}_{h}^{n}, \phi_{h}\right)+\left(F\left(p_{h}^{n}\right), \phi_{h}\right)=\left(q, \phi_{h}\right) \quad \forall \phi_{h} \in \Phi_{h} .
$$

Properties

- assemblage and inversion of local condensation matrices


## Extension to unsteady nonlinear problems

## Unsteady nonlinear advection-diffusion-reaction problem

$$
\begin{aligned}
& \frac{\partial p}{\partial t}+\nabla \cdot \mathbf{u}+F(p)=q \text { in } \Omega, \\
& \mathbf{u}=-\mathbf{S} \nabla \varphi(p)+\psi(p) \mathbf{w} \text { in } \Omega, \\
& p=p_{0} \quad \text { in } \Omega \text { for } t=0, p=0 \text { on } \partial \Omega \times(0, T) .
\end{aligned}
$$

## Mixed approximation

Define $p_{h}^{0}$ by $p_{0}$. On each $t_{n}$, find $\mathbf{u}_{h}^{n} \in \mathbf{V}_{h} \& p_{h}^{n} \in \Phi_{h}$ such that

$$
\begin{aligned}
& \left(\mathbf{S}^{-1} \mathbf{u}_{h}^{n}, \mathbf{v}_{h}\right)-\left(\nabla \cdot \mathbf{v}_{h}, \varphi\left(p_{h}^{n}\right)\right)-\left(\psi\left(p_{h}^{n}\right) \mathbf{w}, \mathbf{S}^{-1} \mathbf{v}_{h}\right)=0 \quad \forall \mathbf{v}_{h} \in \mathbf{V}_{h}, \\
& \left(\frac{p_{h}^{n}-p_{h}^{n-1}}{\tau_{n}}, \phi_{h}\right)+\left(\nabla \cdot \mathbf{u}_{h}^{n}, \phi_{h}\right)+\left(F\left(p_{h}^{n}\right), \phi_{h}\right)=\left(q, \phi_{h}\right) \quad \forall \phi_{h} \in \Phi_{h} .
\end{aligned}
$$

## Properties

- works $\Leftrightarrow$ the steady linear diffusion case
- assemblage and inversion of local condensation matrices only once; linearization and time steps - only $p_{h}$ as in FVs


## Outline



## Primal and dual formulations, mixed finite elements

(2) Stokes flow with implicit constitutive laws, motivationsMFEs reduced to one unknown per element

- Local problems definition and a link to the MPFA method
- Global problems definition
(4) Numerical experiments
(5) General polygonal meshes
(6) Conclusions and future work

Martin Vohralík and Barbara Wohlmuth
Reduction of MFEs to one unknown per element

## I Implicit laws Reduction Num. ex. Polygonal meshes C

## Stokes flow with implicit constitutive laws

## Stokes flow with implicit constitutive laws

$$
\begin{aligned}
&-\nabla \cdot \mathbb{s}+\nabla p=\mathbf{f} \text { in } \Omega \\
& \nabla \cdot \mathbf{u}=0 \text { in } \Omega \\
& \mathbf{u}=\mathbf{0} \text { on } \partial \Omega \\
& g(\mathbb{s}, d(\mathbf{u}))=\mathbb{O} \\
& \text { in } \Omega .
\end{aligned}
$$

## Nomenclature

- u: velocity, p: pressure, s: shear stress
- $d(\mathbf{u}):=\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{t}\right)$ symmetric velocity gradient
- f: volume forces, $\mu$ : viscosity, $\tau_{*}$ : yield stress
- $g($



## Stokes flow with implicit constitutive laws

Stokes flow with implicit constitutive laws

$$
\begin{aligned}
-\nabla \cdot \mathbb{s}+\nabla p=\mathbf{f} & \text { in } \Omega \\
\nabla \cdot \mathbf{u}=0 & \text { in } \Omega \\
\mathbf{u}=\mathbf{0} & \text { on } \partial \Omega \\
g(\mathbb{s}, d(\mathbf{u}))=\mathbb{O} & \text { in } \Omega .
\end{aligned}
$$

Nomenclature

- u: velocity, p: pressure, s: shear stress
- $d(\mathbf{u}):=\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{t}\right)$ symmetric velocity gradient
- f: volume forces, $\mu$ : viscosity, $\tau_{*}$ : yield stress
- $g(\cdot, \cdot)$ : nonlinear implicit constitutive law
- $g(\mathbb{s}, d(\mathbf{u}))=2 \mu\left(\tau_{*}+\left(|\mathbb{s}|-\tau_{*}\right)^{+}\right) d(\mathbf{u})-\left(|\mathbb{s}|-\tau_{*}\right)^{+} \mathbb{s}:$ Bingham fluid
- $g(\mathbb{s}, d(\mathbf{u}))=2 \mu|d(\mathbf{u})|^{r-2}\left(\tau_{*}+\left(|\mathbb{s}|-\tau_{*}\right)^{+}\right) d(\mathbf{u})-\left(|\mathbb{s}|-\tau_{*}\right)^{+} \mathbb{s}$, $r \in(1, \infty)$ : Herschel-Bulkley fluid
- $g(s, d(\mathbf{u}))=\mathbb{s}-2 \mu|d(\mathbf{u})|^{r-2} d(\mathbf{u}), r \in(1, \infty)$ : power láw flutid


## Velocity (explicit law) formulation

Weak formulation
For $\mathbf{f} \in\left[L^{s}(\Omega)\right]^{d}$, find $\mathbf{u} \in \mathbf{V}_{0}$ such that

$$
(\mathbb{s}(d(\mathbf{u})), \nabla \mathbf{v})=(\mathbf{f}, \mathbf{v}) \quad \forall \mathbf{v} \in \mathbf{V}_{0}
$$

## Function spaces



## Velocity (explicit law) formulation

Weak formulation
For $\mathbf{f} \in\left[L^{s}(\Omega)\right]^{d}$, find $\mathbf{u} \in \mathbf{V}_{0}$ such that

$$
(\mathbb{s}(d(\mathbf{u})), \nabla \mathbf{v})=(\mathbf{f}, \mathbf{v}) \quad \forall \mathbf{v} \in \mathbf{V}_{0}
$$

## Function spaces

- $\mathbf{V}:=\left[W_{0}^{1, r}(\Omega)\right]^{d}$
- $\mathbf{V}_{0}:=\{\mathbf{v} \in \mathbf{V} ; \nabla \cdot \mathbf{v}=0\}$


## I Implicit laws Reduction Num. ex. Polygonal meshes C

## Velocity-pressure (explicit law) formulation

Weak formulation
Find $(\mathbf{u}, p) \in \mathbf{V} \times Q$ such that

$$
\begin{aligned}
(\mathbb{s}(d(\mathbf{u})), \nabla \mathbf{v})-(\nabla \cdot \mathbf{v}, p) & =(\mathbf{f}, \mathbf{v}) & & \forall \mathbf{v} \in \mathbf{V} \\
(\nabla \cdot \mathbf{u}, q) & =0 & & \forall q \in Q
\end{aligned}
$$

Function spaces

inf-sup condition

## Velocity-pressure (explicit law) formulation

Weak formulation
Find $(\mathbf{u}, p) \in \mathbf{V} \times Q$ such that

$$
\begin{aligned}
(\mathbb{s}(d(\mathbf{u})), \nabla \mathbf{v})-(\nabla \cdot \mathbf{v}, p) & =(\mathbf{f}, \mathbf{v}) & & \forall \mathbf{v} \in \mathbf{V} \\
(\nabla \cdot \mathbf{u}, q) & =0 & & \forall q \in Q
\end{aligned}
$$

Function spaces

- $Q:=L_{0}^{s}(\Omega):=\left\{q \in L^{s}(\Omega) ;(q, 1)=0\right\} ; \frac{1}{r}+\frac{1}{s}=1$
inf-sup condition


## Velocity-pressure (explicit law) formulation

Weak formulation
Find $(\mathbf{u}, p) \in \mathbf{V} \times Q$ such that

$$
\begin{aligned}
(\mathbb{s}(d(\mathbf{u})), \nabla \mathbf{v})-(\nabla \cdot \mathbf{v}, p) & =(\mathbf{f}, \mathbf{v}) & & \forall \mathbf{v} \in \mathbf{V} \\
(\nabla \cdot \mathbf{u}, q) & =0 & & \forall q \in Q
\end{aligned}
$$

Function spaces

- $Q:=L_{0}^{s}(\Omega):=\left\{q \in L^{s}(\Omega) ;(q, 1)=0\right\} ; \frac{1}{r}+\frac{1}{s}=1$
inf-sup condition

$$
\inf _{q \in Q} \sup _{\mathbf{v} \in \mathbf{V}} \frac{(q, \nabla \cdot \mathbf{v})}{\|\nabla \mathbf{v}\|_{r}\|q\|_{s}}=\beta>0
$$

## Velocity-pressure-stress implicit law formulation

## Weak formulation

Find $(\mathbf{u}, p, s) \in \mathbf{V} \times Q \times \mathbb{T}$ such that

$$
\begin{aligned}
(\mathrm{s}, \nabla \mathbf{v})-(\nabla \cdot \mathbf{v}, p) & =(\mathbf{f}, \mathbf{v}) & & \forall \mathbf{v} \in \mathbf{V}, \\
(\nabla \cdot \mathbf{u}, q) & =0 & & \forall q \in Q, \\
(g(\mathrm{~s}, d(\mathbf{u})), \mathrm{t}) & =0 & & \forall \mathbb{t} \in \mathbb{T} .
\end{aligned}
$$

Function spaces


Second inf-sup condition


## Velocity-pressure-stress implicit law formulation

## Weak formulation

Find $(\mathbf{u}, p, s) \in \mathbf{V} \times Q \times \mathbb{T}$ such that

$$
\begin{aligned}
(\mathrm{s}, \nabla \mathbf{v})-(\nabla \cdot \mathbf{v}, p) & =(\mathbf{f}, \mathbf{v}) & & \forall \mathbf{v} \in \mathbf{V}, \\
(\nabla \cdot \mathbf{u}, q) & =0 & & \forall q \in Q, \\
(g(\mathrm{~s}, d(\mathbf{u})), \mathrm{t}) & =0 & & \forall \mathbb{t} \in \mathbb{T} .
\end{aligned}
$$

Function spaces

- $\mathbb{T}:=\left[L_{\text {sym }}^{s}(\Omega)\right]^{d \times d}$


## Second inf-sup condition



## Velocity-pressure-stress implicit law formulation

## Weak formulation

Find $(\mathbf{u}, p, s) \in \mathbf{V} \times Q \times \mathbb{T}$ such that

$$
\begin{aligned}
(\mathbb{s}, \nabla \mathbf{v})-(\nabla \cdot \mathbf{v}, p) & =(\mathbf{f}, \mathbf{v}) & & \forall \mathbf{v} \in \mathbf{V}, \\
(\nabla \cdot \mathbf{u}, q) & =0 & & \forall q \in Q, \\
(g(\mathbb{s}, d(\mathbf{u})), \mathbb{t}) & =0 & & \forall \mathbb{t} \in \mathbb{T} .
\end{aligned}
$$

Function spaces

$$
\text { - } \mathbb{T}:=\left[L_{\text {sym }}^{s}(\Omega)\right]^{d \times d}
$$

Second inf-sup condition

$$
\inf _{\mathbf{v} \in \mathbf{V}} \sup _{\mathbb{t} \in \mathbb{T}} \frac{(\mathbb{t}, \nabla \mathbf{v})}{\|\nabla \mathbf{v}\|_{r}\|\mathbb{t}\|_{s}}=\gamma>0
$$

## Motivations

## Motivations of the present work

- reduce the unknowns back to one per element in various situations
- exemplify
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes
- give hints for the numerical treatment of implicit constitutive laws


## Motivations

## Motivations of the present work

- reduce the unknowns back to one per element in various situations
- exemplify local flux expressions
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes
- give hints for the numerical treatment of implicit constitutive laws


## Motivations

## Motivations of the present work

- reduce the unknowns back to one per element in various situations
- exemplify local flux expressions
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes



## Motivations

## Motivations of the present work

- reduce the unknowns back to one per element in various situations
- exemplify local flux expressions
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes


## Motivations

## Motivations of the present work

- reduce the unknowns back to one per element in various situations
- exemplify local flux expressions
- present a unified framework in which MFEs with one unknown/element can be derived/studied/used
- show closeness in building principles of MFE and FD/FV/MFD/MPFA, even on general polygonal meshes
- give hints for the numerical treatment of implicit constitutive laws


## Previous results

## Links to nonconforming finite elements

- Arnold \& Brezzi 1985, Marini 1985, Arbogast \& Chen 1995, Chen 1996

Links to finite volumes

- Younès, Mose, Ackerer, \& Chavent 1999-2004

Links to mimetic finite differences and and multi-point flux-approximations (u

- Klausen \& Winther, 2006
- Wheeler \& Yotov, 2006
- Aavatsmark, Eigestad, Klausen, Wheeler, \& Yotov, 2007
- Droniou, Eymard, Gallouët, \& Herbin, 2010
- Bause Hoffmann, \& Knabner, 2010

O
Brezzi, da Veiga, Lipnikov, Manzini, Shashkov

## Previous results

Links to nonconforming finite elements

- Arnold \& Brezzi 1985, Marini 1985, Arbogast \& Chen 1995, Chen 1996
Links to finite volumes
- Younès, Mose, Ackerer, \& Chavent 1999-2004

Links to mimetic finite differences and and multi-point flux-approximations (u

- Klausen \& Winther, 2006
- Wheeler \& Yotov, 2006
- Aavatsmark, Eigestad, Klausen, Wheeler, \& Yotov, 2007
- Droniou, Eymard, Gallouët, \& Herbin, 2010
- Bause Hoffmann, \& Knabner, 2010
- ... Brezzi, da Veiga, Lipnikov, Manzini, Shashkov

Martin Vohralík and Barbara Wohlmuth

## Previous results

Links to nonconforming finite elements

- Arnold \& Brezzi 1985, Marini 1985, Arbogast \& Chen 1995, Chen 1996


## Links to finite volumes

- Younès, Mose, Ackerer, \& Chavent 1999-2004

Links to mimetic finite differences and and multi-point flux-approximations (using approximate numerical integration)

- Klausen \& Winther, 2006
- Wheeler \& Yotov, 2006
- Aavatsmark, Eigestad, Klausen, Wheeler, \& Yotov, 2007
- Droniou, Eymard, Gallouët, \& Herbin, 2010
- Bause Hoffmann, \& Knabner, 2010
- ... Brezzi, da Veiga, Lipnikov, Manzini, Shashkov .


## Outline



## Primal and dual formulations, mixed finite elements

Stokes flow with implicit constitutive laws, motivations
(3) MFEs reduced to one unknown per element

- Local problems definition and a link to the MPFA method
- Global problems definitionNumerical experimentsGeneral polygonal meshesConclusions and future work


## Local flux expression from the Lagrange multipliers

## Mixed finite element method

Find $p_{h} \in \Phi_{h}$ and $\mathbf{u}_{h} \in \mathbf{V}_{h}$ such that

$$
\begin{aligned}
\left(\mathbf{S}^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \nabla \cdot \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \\
\left(\nabla \cdot \mathbf{u}_{h}, \phi_{h}\right) & =\left(g, \phi_{h}\right) & & \forall \phi_{h} \in \Phi_{h}
\end{aligned}
$$

## Nonconforming finite element method Find $\tilde{\lambda}_{h} \in \tilde{\Psi}_{h}$ such that



Local flux expression from the Lagrange multipliers There holds (Marini 1985)


- $\mathbf{x}_{K}$ : barycenter of $K$
- $g_{K}$ : mean value of the source term $g$ over $K$


## Local flux expression from the Lagrange multipliers

Mixed finite element method
Find $p_{h} \in \Phi_{h}$ and $\mathbf{u}_{h} \in \mathbf{V}_{h}$ such that

$$
\begin{aligned}
\left(\mathbf{S}^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \nabla \cdot \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \\
\left(\nabla \cdot \mathbf{u}_{h}, \phi_{h}\right) & =\left(g, \phi_{h}\right) & & \forall \phi_{h} \in \Phi_{h}
\end{aligned}
$$

Nonconforming finite element method
Find $\tilde{\lambda}_{h} \in \tilde{\Psi}_{h}$ such that

$$
\left(\mathbf{S} \nabla \tilde{\lambda}_{h}, \nabla \tilde{\psi}_{h}\right)=\left(g, \tilde{\psi}_{h}\right) \quad \forall \tilde{\psi}_{h} \in \tilde{\Psi}_{h}
$$

Local flux expression from the Lagrange multipliers There holds (Marini 1985)

- $g_{K}$ : mean value of the source term $g$ over $K$


## Local flux expression from the Lagrange multipliers

Mixed finite element method
Find $p_{h} \in \Phi_{h}$ and $\mathbf{u}_{h} \in \mathbf{V}_{h}$ such that

$$
\begin{aligned}
\left(\mathbf{S}^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)-\left(p_{h}, \nabla \cdot \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \\
\left(\nabla \cdot \mathbf{u}_{h}, \phi_{h}\right) & =\left(g, \phi_{h}\right) & & \forall \phi_{h} \in \Phi_{h}
\end{aligned}
$$

Nonconforming finite element method
Find $\tilde{\lambda}_{h} \in \tilde{\Psi}_{h}$ such that

$$
\left(\mathbf{S} \nabla \tilde{\lambda}_{h}, \nabla \tilde{\psi}_{h}\right)=\left(g, \tilde{\psi}_{h}\right) \quad \forall \tilde{\psi}_{h} \in \tilde{\Psi}_{h}
$$

Local flux expression from the Lagrange multipliers There holds (Marini 1985)

$$
\mathbf{u}_{h}\left|K=-\mathbf{S}_{K} \nabla \tilde{\lambda}_{h}\right| K+\frac{g_{K}}{d}\left(\mathbf{x}-\mathbf{x}_{K}\right) \quad \forall K \in \mathcal{T}_{h}
$$

- $\mathbf{x}_{K}$ : barycenter of $K$
- $g_{K}$ : mean value of the source term $g$ over $K$


## Different representations of the MFE solution



## Outline



## Primal and dual formulations, mixed finite elements

## Stokes flow with implicit constitutive laws, motivations

(3) MFEs reduced to one unknown per element

- Local problems definition and a link to the MPFA method
- Global problems definition

4 Numerical experiments
(5) General polygonal meshes

6 Conclusions and future work

## A new element value

A new element value in $K \in \mathcal{T}_{h}$

- $\mathbf{z}_{K}$ : a new point related to $K$ (not necessarily inside $K$ )
- new element value:
- $\tilde{\lambda}_{h}$ expressed in the three points $\mathbf{x}_{\sigma}, \mathbf{x}_{\gamma}$, and $\mathbf{z}_{K}(d=2)$ - Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$



## A new element value

A new element value in $K \in \mathcal{T}_{h}$

- $\mathbf{z}_{K}$ : a new point related to $K$ (not necessarily inside $K$ )
- new element value: $\bar{p}_{K}=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)$
- $\tilde{\lambda}_{h}$ expressed in the three points $\mathbf{x}_{\sigma}, \mathbf{x}_{\gamma}$, and $\mathbf{z}_{K}(d=2)$ - Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$



## A new element value

A new element value in $K \in \mathcal{T}_{h}$

- $\mathbf{z}_{K}$ : a new point related to $K$ (not necessarily inside $K$ )
- new element value: $\bar{p}_{K}=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)$
- $\tilde{\lambda}_{h}$ expressed in the three points $\mathbf{x}_{\sigma}, \mathbf{x}_{\gamma}$, and $\mathbf{z}_{K}(d=2)$



## A new element value

A new element value in $K \in \mathcal{T}_{h}$

- $\mathbf{z}_{K}$ : a new point related to $K$ (not necessarily inside $K$ )
- new element value: $\bar{p}_{K}=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)$
- $\tilde{\lambda}_{h}$ expressed in the three points $\mathbf{x}_{\sigma}, \mathbf{x}_{\gamma}$, and $\mathbf{z}_{K}(d=2)$
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$



## A new element value

A new element value in $K \in \mathcal{T}_{h}$

- $\mathbf{z}_{K}$ : a new point related to $K$ (not necessarily inside $K$ )
- new element value: $\bar{p}_{K}=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)$
- $\tilde{\lambda}_{h}$ expressed in the three points $\mathbf{x}_{\sigma}, \mathbf{x}_{\gamma}$, and $\mathbf{z}_{K}(d=2)$
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$
- $\left.\mathbf{u}_{h}\right|_{K}=-\left.\mathbf{S}_{K} \nabla \tilde{\lambda}_{h}\right|_{K}+\frac{g_{K}}{d}\left(\mathbf{x}-\mathbf{x}_{K}\right) \Rightarrow$



## A new element value

A new element value in $K \in \mathcal{T}_{h}$

- $\mathbf{z}_{K}$ : a new point related to $K$ (not necessarily inside $K$ )
- new element value: $\bar{p}_{K}=\tilde{\lambda}_{h}\left(\mathbf{z}_{K}\right)$
- $\tilde{\lambda}_{h}$ expressed in the three points $\mathbf{x}_{\sigma}, \mathbf{x}_{\gamma}$, and $\mathbf{z}_{K}(d=2)$
- Lagrange basis functions $\tilde{\varphi}_{\sigma}, \tilde{\varphi}_{\gamma}$, and $\tilde{\varphi}_{K}$
- $\mathbf{u}_{h} \left\lvert\, K=-\mathbf{S}_{K} \nabla\left(\sum_{\sigma \in \mathcal{E}_{V, K}} \lambda_{\sigma} \tilde{\varphi}_{\sigma}+\bar{p}_{K} \tilde{\varphi}_{K}\right)+\frac{g_{K}}{d}\left(\mathbf{x}-\mathbf{x}_{K}\right)\right.$



## Definition of a local problem

Definition of a local problem

- consider a patch $\mathcal{T}_{V}$ of the elements around a vertex $V$
patch, express the
- MFEs impose the continuity of $u_{h}$ on the interior sides $\left(\varepsilon_{V}^{\text {int }}\right)$ of the patch

- local problem: given $\bar{P}_{V}=\left\{\bar{p}_{K}\right\}_{K \in \mathcal{T}_{V}}$, find $\Lambda_{V}^{\mathrm{int}}=\left\{\lambda_{\gamma}\right\}_{\gamma \in \mathcal{E}}$ int s.t.
- the same building principle as that of MPFA methods


$$
\begin{aligned}
\mathcal{T}_{V} & =\left\{K_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {int }} & =\left\{\sigma_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {ext }} & =\left\{\gamma_{i j i=1}^{5}\right\}_{i=1}^{\text {ent }} \\
\mathcal{E}_{V} & =\mathcal{E}_{V}^{\text {int }} \cup \mathcal{E}_{V}^{\text {ext }}
\end{aligned}
$$

## Definition of a local problem

Definition of a local problem

- consider a patch $\mathcal{T}_{V}$ of the elements around a vertex $V$
- given the new element values $\bar{p}_{K}$ and $\lambda_{\sigma}, \sigma \in \mathcal{E}_{V}^{\text {int }}$, in the patch, express the fluxes $\mathbf{u}_{h}$ in the patch
- local problem: given $\bar{P}_{V}=\left\{\bar{p}_{K}\right\} K \in \mathcal{T}_{V}$, find $\Lambda_{V}^{\mathrm{int}}=\left\{\lambda_{\gamma}\right\}_{\gamma \in \mathcal{E}_{V}}$ int s.t.
- the same building principle as that of MPFA methods


$$
\begin{aligned}
\mathcal{T}_{V} & =\left\{K_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {int }} & =\left\{\sigma_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {ext }} & =\left\{\gamma_{i} i_{i=1}^{5}\right. \\
\mathcal{E}_{V} & =\mathcal{E}_{V}^{\text {int }} \cup \mathcal{E}_{V}^{\text {ext }}
\end{aligned}
$$

## Definition of a local problem

Definition of a local problem

- consider a patch $\mathcal{T}_{V}$ of the elements around a vertex $V$
- given the new element values $\bar{p}_{K}$ and $\lambda_{\sigma}, \sigma \in \mathcal{E}_{V}^{\text {int }}$, in the patch, express the fluxes $\mathbf{u}_{n}$ in the patch
- MFEs impose the continuity of $\mathbf{u}_{h}$ on the interior sides $\left(\mathcal{E}_{V}^{\mathrm{int}}\right)$ of the patch

$$
\text { ch } \sum_{K \in \mathcal{T}_{V} ; \sigma \in \mathcal{E}_{K}}
$$

$\left\langle\mathbf{u}_{h} \cdot \mathbf{n}_{K}, 1\right\rangle_{\sigma}=0 \quad \forall \sigma \in \mathcal{E}_{V}^{\mathrm{int}}$

as that of


$$
\begin{aligned}
\mathcal{T}_{V} & =\left\{K_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {int }} & =\left\{\sigma_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {ext }} & =\left\{\gamma_{i} i_{i=1}^{5}\right. \\
\mathcal{E}_{V} & =\mathcal{E}_{V}^{\text {int }} \cup \mathcal{E}_{V}^{\text {ext }}
\end{aligned}
$$

## Definition of a local problem

Definition of a local problem

- consider a patch $\mathcal{T}_{V}$ of the elements around a vertex $V$
- given the new element values $\bar{p}_{K}$ and $\lambda_{\sigma}, \sigma \in \mathcal{E}_{V}^{\text {int }}$, in the patch, express the fluxes $\mathbf{u}_{h}$ in the patch
- MFEs impose the continuity of $\mathbf{u}_{h}$ on the interior sides $\left(\mathcal{E}_{V}^{\mathrm{int}}\right)$ of the patch

$$
\sum_{K \in \mathcal{T}_{V} ; \sigma \in \mathcal{E}_{K}}\left\langle\mathbf{u}_{h} \cdot \mathbf{n}_{K}, 1\right\rangle_{\sigma}=0 \quad \forall \sigma \in \mathcal{E}_{V}^{\mathrm{int}}
$$

- local problem: given $\bar{P}_{V}=\left\{\bar{p}_{\widetilde{G}}\right\}_{K \in \mathcal{T}_{V}}$, find $\Lambda_{V}^{\text {int }}=\left\{\lambda_{\gamma}\right\}_{\gamma \in \mathcal{E}_{V}^{\text {int }}}$ s.t.

$$
\mathbb{M}_{V} \Lambda_{V}^{\mathrm{int}}=\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}
$$



$$
\begin{aligned}
\mathcal{T}_{V} & =\left\{K_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {int }} & =\left\{\sigma_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {ext }} & =\left\{\gamma_{i} i_{i=1}^{5}\right. \\
\mathcal{E}_{V} & =\mathcal{E}_{V}^{\text {int }} \cup \mathcal{E}_{V}^{\text {ext }}
\end{aligned}
$$



## Definition of a local problem

Definition of a local problem

- consider a patch $\mathcal{T}_{V}$ of the elements around a vertex $V$
- given the new element values $\bar{p}_{K}$ and $\lambda_{\sigma}, \sigma \in \mathcal{E}_{V}^{\text {int }}$, in the patch, express the fluxes $\mathbf{u}_{h}$ in the patch
- MFEs impose the continuity of $\mathbf{u}_{h}$ on the interior sides $\left(\mathcal{E}_{V}^{\mathrm{int}}\right)$ of the patch

$$
\sum_{K \in \mathcal{T}_{V} ; \sigma \in \mathcal{E}_{K}}\left\langle\mathbf{u}_{h} \cdot \mathbf{n}_{K}, 1\right\rangle_{\sigma}=0 \quad \forall \sigma \in \mathcal{E}_{V}^{\mathrm{int}}
$$

- local problem: given $\bar{P}_{V}=\left\{\bar{p}_{K}\right\}_{K \in \mathcal{T}_{V}}$, find $\Lambda_{V}^{\mathrm{int}}=\left\{\lambda_{\gamma}\right\}_{\gamma \in \mathcal{E}_{V}^{\text {int }}}$ s.t.

$$
\mathbb{M}_{V} \Lambda_{V}^{\mathrm{int}}=\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}
$$

- the same building principle as that of MPFA methods


$$
\begin{aligned}
\mathcal{T}_{V} & =\left\{K_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {int }} & =\left\{\sigma_{i}\right\}_{i=1}^{5} \\
\mathcal{E}_{V}^{\text {ext }} & =\left\{\gamma_{i} i_{i=1}^{5}\right. \\
\mathcal{E}_{V} & =\mathcal{E}_{V}^{\text {int }} \cup \mathcal{E}_{V}^{\text {ext }}
\end{aligned}
$$



## S-circumcenter as the evaluation point

S-circumcenter as the point $\mathbf{z}_{K}$

- circumcenter when $\mathbf{S}_{K}=\mathbb{I} \boldsymbol{s}_{K}$
- the approach of Younès, Mose, Ackerer, \& Chavent, 1999
- $\mathbb{M}_{V}$ gets diagonal
- no local linear system needs to be solved
- two-point flux expression (on arbitrary triangular grids and full-matrix piecewise constant S)
- impossible in 3D (except particular cases)
- $\mathbb{M}_{V}$ can explode (modifications necessary):



## Barycenter as the evaluation point

## Barycenter as the point $\mathbf{z}_{K}$

- this is the approach of Vohralík, 2004/2006
- $\mathbb{M}_{V}$ is not diagonal (unless barycenter = circumcenter)
- a local linear system needs to be solved
- multi-point flux expression
- works generally in $d$ space dimensions
- $\mathbb{M}_{V}$ can get singular (modifications necessary):



## Changing adaptively the evaluation point

Changing adaptively the evaluation point

- change $\mathbf{z}_{K}$ according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices $\mathbb{M}_{V}$ - influence the properties of the final matrix (like basis and preconditioning choice)


## Changing adaptively the evaluation point

Changing adaptively the evaluation point

- change $\mathbf{z}_{K}$ according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices $\mathbb{M}_{V}$ - influence the properties of the final matrix (like basis and preconditioning choice)


## Changing adaptively the evaluation point

Changing adaptively the evaluation point

- change $\mathbf{z}_{K}$ according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices $\mathbb{M}_{V}$
preconditioning choice)


## Changing adaptively the evaluation point

Changing adaptively the evaluation point

- change $\mathbf{z}_{K}$ according to the local geometry and diffusion tensor
- ensure the well-posedness of the local problems
- influence the properties of the local matrices $\mathbb{M}_{V}$
- influence the properties of the final matrix (like basis and preconditioning choice)


## Examples of the different evaluation points

## Examples of the different evaluation points $\mathbf{z}_{K}$

- $\mathbf{S}=\left(\begin{array}{ll}0.7236 & 0.3804 \\ 0.3804 & 0.4764\end{array}\right)$



## Examples of the local matrices

## Examples of the local matrices $\mathbb{M}_{V}$




S-circumcenter
barycenter/opt. evaluation point

## Outline



## Primal and dual formulations, mixed finite elements



Stokes flow with implicit constitutive laws, motivations
(3) MFEs reduced to one unknown per element

- Local problems definition and a link to the MPFA method
- Global problems definitionNumerical experiments
(5) General polygonal meshes
(6) Conclusions and future work

Martin Vohralík and Barbara Wohlmuth
Reduction of MFEs to one unknown per element

## Expressing the Lagrange multipliers $\wedge$ or the fluxes $U$

Expressing the Lagrange multipliers $\Lambda$ or the fluxes $U$

- local problems give $\Lambda_{V}^{\mathrm{int}}=\left(\mathbb{M}_{V}\right)^{-1}\left(\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}\right)$
- for every vertex $V$, we have one expression for $\Lambda_{V}^{\text {int }}$
- run through all vertices and combine the (weighted)
- this gives

- similarly



## Expressing the Lagrange multipliers $\Lambda$ or the fluxes $U$

Expressing the Lagrange multipliers $\wedge$ or the fluxes $U$

- local problems give $\Lambda_{V}^{\mathrm{int}}=\left(\mathbb{M}_{V}\right)^{-1}\left(\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}\right)$
- for every vertex $V$, we have one expression for $\Lambda_{V}^{\text {int }}$
- this gives

- similarly



## Expressing the Lagrange multipliers $\Lambda$ or the fluxes $U$

Expressing the Lagrange multipliers $\wedge$ or the fluxes $U$

- local problems give $\Lambda_{V}^{\mathrm{int}}=\left(\mathbb{M}_{V}\right)^{-1}\left(\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}\right)$
- for every vertex $V$, we have one expression for $\Lambda_{V}^{\mathrm{int}}$
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

- similarly



## Expressing the Lagrange multipliers $\wedge$ or the fluxes $U$

Expressing the Lagrange multipliers $\Lambda$ or the fluxes $U$

- local problems give $\Lambda_{V}^{\mathrm{int}}=\left(\mathbb{M}_{V}\right)^{-1}\left(\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}\right)$
- for every vertex $V$, we have one expression for $\Lambda_{V}^{\mathrm{int}}$
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$
\Lambda=\widetilde{\mathbb{M}}^{\mathrm{inv}} \tilde{G}-\mathbb{M}^{\mathrm{inv}} \bar{P}
$$

- similarly



## Expressing the Lagrange multipliers $\wedge$ or the fluxes $U$

Expressing the Lagrange multipliers $\wedge$ or the fluxes $U$

- local problems give $\Lambda_{V}^{\mathrm{int}}=\left(\mathbb{M}_{V}\right)^{-1}\left(\widetilde{G}_{V}-\mathbb{J}_{V} \bar{P}_{V}\right)$
- for every vertex $V$, we have one expression for $\Lambda_{V}^{\mathrm{int}}$
- run through all vertices and combine the (weighted) inverses of the local condensation matrices
- this gives

$$
\Lambda=\widetilde{\mathbb{M}}^{\mathrm{inv}} \widetilde{G}-\mathbb{M}^{\mathrm{inv}} \bar{P}
$$

- similarly

$$
U=\widetilde{\mathbb{O}}^{\text {inv }} G-\mathbb{O}^{\text {inv }} \bar{P}
$$

## Prescribing the final system by a flux equilibrium

## Prescribing the final system by a flux equilibrium

- recall $U=\widetilde{\mathbb{O}} \widetilde{\widetilde{i n v}}^{\text {inv }} G-\mathbb{O}^{\text {inv }} \bar{P}$
- put this into
- this gives
with

- $\mathbf{z}_{K}=\mathbf{S}$-circumcenter gives the FV method (Younès, Mose, Ackerer, \& Chavent, 1999)
- $\mathbf{z}_{K}=$ barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when



## Prescribing the final system by a flux equilibrium

## Prescribing the final system by a flux equilibrium

- recall $U=\widetilde{\left(\mathbb{O}^{\text {inv }}\right.} G-\mathbb{O}^{\text {inv }} \bar{P}$
- put this into $\mathbb{B} U=G$
- this gives
with
- $\mathbf{z}_{K}=$ S-circumcenter gives the FV method (Younès, Mose, Ackerer, \& Chavent, 1999)
- $\mathbf{z}_{K}=$ barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when $g=0$ (Hoffmann, 2008))


## Prescribing the final system by a flux equilibrium

## Prescribing the final system by a flux equilibrium

- recall $U=\widetilde{\mathbb{O}}^{\text {inv }} G-\mathbb{O}^{\text {inv }} \bar{P}$
- put this into $\mathbb{B} U=G$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=-\mathbb{B} \mathbb{O}^{\text {inv }}, \quad \bar{H}=G-\mathbb{B} \widetilde{\mathbb{O}}^{\text {inv }} G
$$

- $\mathbf{z}_{K}=$ S-circumcenter gives the FV method (Younès, Mose, Ackerer, \& Chavent, 1999)
- $\mathbf{z}_{K}=$ barycenter aives the CNFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when $g=0(H o f f m a n n, 2008))$


## Prescribing the final system by a flux equilibrium

Prescribing the final system by a flux equilibrium

- recall $U=\widetilde{\mathbb{O}}^{\text {inv }} G-\mathbb{O}^{\text {inv }} \bar{P}$
- put this into $\mathbb{B} U=G$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=-\mathbb{B} \mathbb{O}^{\text {inv }}, \quad \bar{H}=G-\mathbb{B} \widetilde{\mathbb{O}}^{\text {inv }} G
$$

- $\mathbf{z}_{K}=\mathbf{S}$-circumcenter gives the FV method (Younès, Mose, Ackerer, \& Chavent, 1999)

$g=0(H o f f m a n n, 2008))$


## Prescribing the final system by a flux equilibrium

## Prescribing the final system by a flux equilibrium

- recall $U=\widetilde{\mathbb{O}^{\text {inv }}} G-\mathbb{O}^{\text {inv }} \bar{P}$
- put this into $\mathbb{B} U=G$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=-\mathbb{B} \mathbb{O}^{\text {inv }}, \quad \bar{H}=G-\mathbb{B} \widetilde{\mathbb{O}}^{\text {inv }} G
$$

- $\mathbf{z}_{K}=$ S-circumcenter gives the FV method (Younès, Mose, Ackerer, \& Chavent, 1999)
- $\mathbf{z}_{K}=$ barycenter gives the CMFE method (Vohralík, 2004/2006) (fully equivalent to the MPFA-O method when $g=0$ (Hoffmann, 2008))


## I Implicit laws Reduction

## Prescribing the final system by a potential relation

## Prescribing the final system by a potential relation

- recall $\Lambda=\widetilde{\mathbb{M}}^{\text {inv }} \widetilde{G}-\mathbb{M}^{\text {inv }} \bar{P}$
- put this into $\mathbb{N} \wedge=\bar{P}\left(\bar{p}_{K}\right.$ are punctual values of $\left.\tilde{\lambda}_{h}\right)$
- this gives
with

- using $\mathbf{z}_{K}=$ S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{K}=$ barycenter, we name it the MFEB method
- using $\mathbf{z}_{K}=$ the optimal evaluation point, we name it the MFEO method


## Prescribing the final system by a potential relation

## Prescribing the final system by a potential relation

- recall $\Lambda=\widetilde{\mathbb{M}}^{\text {inv }} \widetilde{G}-\mathbb{M}^{\text {inv }} \bar{P}$
- put this into $\mathbb{N} \Lambda=\bar{P}\left(\bar{p}_{K}\right.$ are punctual values of $\left.\tilde{\lambda}_{h}\right)$
- this gives
with

- using $\mathbf{z}_{K}=$ S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{K}=$ barycenter, we name it the MFEB method
- using $\mathbf{z}_{K}=$ the optimal evaluation point, we name it the
$\square$



## Implicit laws Reduction

## Prescribing the final system by a potential relation

## Prescribing the final system by a potential relation

- recall $\Lambda=\widetilde{\mathbb{M}}^{\text {inv }} \widetilde{G}-\mathbb{M}^{\text {inv }} \bar{P}$
- put this into $\mathbb{N} \Lambda=\bar{P}\left(\bar{p}_{K}\right.$ are punctual values of $\left.\tilde{\lambda}_{h}\right)$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=\mathbb{N M}^{\text {inv }}+\mathbb{I}, \quad \bar{H}=\mathbb{N} \widetilde{M}^{\text {inv }} \widetilde{G}
$$

- using $\mathbf{z}_{K}=$ S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{K}=$ barycenter, we name it the MFEB method
- using $\mathbf{z}_{K}=$ the optimal evaluation point, we name it the
$\square$


## Prescribing the final system by a potential relation

## Prescribing the final system by a potential relation

- recall $\Lambda=\widetilde{\mathbb{M}}^{\text {inv }} \widetilde{G}-\mathbb{M}^{\text {inv }} \bar{P}$
- put this into $\mathbb{N} \Lambda=\bar{P}\left(\bar{p}_{K}\right.$ are punctual values of $\left.\tilde{\lambda}_{h}\right)$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=\mathbb{N M}^{\mathrm{inv}}+\mathbb{I}, \quad \bar{H}=\mathbb{N} \widetilde{M}^{\mathrm{inv}} \widetilde{G}
$$

- using $\mathbf{z}_{K}=$ S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{K}=$ barycenter, we name it the MFEB method
- using $\mathbf{z}_{K}=$ the optimal evaluation point, we name it the
$\square$


## Prescribing the final system by a potential relation

## Prescribing the final system by a potential relation

- recall $\Lambda=\widetilde{\mathbb{M}}^{\text {inv }} \widetilde{G}-\mathbb{M}^{\text {inv }} \bar{P}$
- put this into $\mathbb{N} \Lambda=\bar{P}\left(\bar{p}_{K}\right.$ are punctual values of $\left.\tilde{\lambda}_{h}\right)$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=\mathbb{N M}^{\mathrm{inv}}+\mathbb{I}, \quad \bar{H}=\mathbb{N} \widetilde{M}^{\mathrm{inv}} \widetilde{G}
$$

- using $\mathbf{z}_{K}=$ S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{K}=$ barycenter, we name it the MFEB method
- using $\mathbf{z}_{K}=$ the optimal evaluation point, we name it the


## Prescribing the final system by a potential relation

## Prescribing the final system by a potential relation

- recall $\Lambda=\widetilde{\mathbb{M}}^{\text {inv }} \widetilde{G}-\mathbb{M}^{\text {inv }} \bar{P}$
- put this into $\mathbb{N} \Lambda=\bar{P}\left(\bar{p}_{K}\right.$ are punctual values of $\left.\tilde{\lambda}_{h}\right)$
- this gives

$$
\overline{\mathbb{S}} \bar{P}=\bar{H}
$$

with

$$
\overline{\mathbb{S}}=\mathbb{N M}^{\mathrm{inv}}+\mathbb{I}, \quad \bar{H}=\mathbb{N} \widetilde{M}^{\mathrm{inv}} \widetilde{G}
$$

- using $\mathbf{z}_{K}=$ S-circumcenter, we name it the MFEC method
- using $\mathbf{z}_{K}=$ barycenter, we name it the MFEB method
- using $\mathbf{z}_{K}=$ the optimal evaluation point, we name it the MFEO method


## Outline



## Primal and dual formulations, mixed finite elements



Stokes flow with implicit constitutive laws, motivations


MFEs reduced to one unknown per element

- Local problems definition and a link to the MPFA method
- Global problems definition

4 Numerical experiments
(5) General polygonal meshes
(6) Conclusions and future work

Martin Vohralík and Barbara Wohlmuth
Reduction of MFEs to one unknown per element

## Model problem

## Model problem

- $\Omega=(0,1) \times(0,1)$
- inhomogeneous Dirichlet boundary condition given by $p(x, y)=0.1 y+0.9$
- $K \in \mathcal{T}_{h}$ :

$$
\left.\mathbf{S}\right|_{K}=\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & -\sin \left(\theta_{K}\right) \\
\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)\left(\begin{array}{cc}
s_{K} & 0 \\
0 & \nu s_{K}
\end{array}\right)\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & \sin \left(\theta_{K}\right) \\
-\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)
$$



## Model problem

## Model problem

- $\Omega=(0,1) \times(0,1)$
- inhomogeneous Dirichlet boundary condition given by $p(x, y)=0.1 y+0.9$
- $K \in \mathcal{T}_{h}$ :

$$
\left.\mathbf{S}\right|_{K}=\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & -\sin \left(\theta_{K}\right) \\
\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)\left(\begin{array}{cc}
s_{K} & 0 \\
0 & \nu s_{K}
\end{array}\right)\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & \sin \left(\theta_{K}\right) \\
-\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)
$$

- homogeneous isotropic case, $s_{K}=1$ for all $K \in \mathcal{T}_{h}, \nu=1$



## Model problem

## Model problem

- $\Omega=(0,1) \times(0,1)$
- inhomogeneous Dirichlet boundary condition given by $p(x, y)=0.1 y+0.9$
- $K \in \mathcal{T}_{h}$ :

$$
\left.\mathbf{S}\right|_{K}=\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & -\sin \left(\theta_{K}\right) \\
\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)\left(\begin{array}{cc}
s_{K} & 0 \\
0 & \nu s_{K}
\end{array}\right)\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & \sin \left(\theta_{K}\right) \\
-\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)
$$

- homogeneous isotropic case, $s_{K}=1$ for all $K \in \mathcal{T}_{h}, \nu=1$
- anisotropic case, $s_{K}=1$ for all $K \in \mathcal{T}_{h}$,

$$
\theta_{K} \in\left\{\frac{\pi}{5}, \frac{3 \pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{5}, \frac{\pi}{3}\right\}, \nu=0.2
$$

## Model problem

## Model problem

- $\Omega=(0,1) \times(0,1)$
- inhomogeneous Dirichlet boundary condition given by $p(x, y)=0.1 y+0.9$
- $K \in \mathcal{T}_{h}$ :

$$
\left.\mathbf{S}\right|_{K}=\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & -\sin \left(\theta_{K}\right) \\
\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)\left(\begin{array}{cc}
s_{K} & 0 \\
0 & \nu s_{K}
\end{array}\right)\left(\begin{array}{cc}
\cos \left(\theta_{K}\right) & \sin \left(\theta_{K}\right) \\
-\sin \left(\theta_{K}\right) & \cos \left(\theta_{K}\right)
\end{array}\right)
$$

- homogeneous isotropic case, $s_{K}=1$ for all $K \in \mathcal{T}_{h}, \nu=1$
- anisotropic case, $s_{K}=1$ for all $K \in \mathcal{T}_{h}$,

$$
\theta_{K} \in\left\{\frac{\pi}{5}, \frac{3 \pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{5}, \frac{\pi}{3}\right\}, \nu=0.2
$$

- inhomogeneous case, $s_{K} \in\{10,1,0.1,0.01,0.001\}, \nu=1$


## Initial mesh

## Initial mesh and the distribution of the inhomogeneities and anisotropies



## Matrices of the different methods

## System matrix sparsity patterns



MFE



MFEB
MFEO
CMFE


## NCFE

FV MEEO

## Results, homogeneous isotropic case

| Meth. | Un. | Mat. | St. | Nonz. | CN | CNS | $\begin{gathered} \text { DS } \\ \text { CPU } \end{gathered}$ | $\begin{gathered} \text { CG/ } \\ \text { Bi-CGStab } \end{gathered}$ |  | $\begin{gathered} \text { PCG/ } \\ \text { PBi-CGStab } \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | CPU | Iter. | CPU | $\begin{aligned} & \text { IC/ } \\ & \text { ILU } \end{aligned}$ | Iter. |
| MFEB | 13824 | NPD | 14 | 177652 | 7564 | 7580 | 0.27 | 4.86 | 324.5 | 0.81 | 0.36 | 9.0 |
| MFEC | 13824 | NNS | 4 | 55040 | 11256 | 11056 | 0.09 | 2.23 | 372.0 | 0.42 | 0.19 | 6.5 |
| MFEO | 13824 | NPD | 14 | 177652 | 7531 | 7558 | 0.28 | 4.08 | 270.0 | 0.80 | 0.41 | 7.5 |
| CMFE | 13824 | NPD | 14 | 177652 | 7397 | 7380 | 0.27 | 4.70 | 312.0 | 0.83 | 0.39 | 8.5 |
| FV | 13824 | SPD | 4 | 55040 | 65722 | 8898 | 0.07 | 3.09 | 1098.0 | 0.42 | 0.17 | 17.0 |
| NCFE | 20608 | SPD | 5 | 102528 | 14064 | 9944 | 0.14 | 2.92 | 620.0 | 1.11 | 0.56 | 19.0 |

## Results, anisotropic case

| Meth. | Un. | Mat. | St. | Nonz. | CN | CNS | $\begin{array}{r} \text { DS } \\ \text { CPU } \end{array}$ | $\begin{gathered} \mathrm{CG} / \\ \mathrm{Bi}-\mathrm{CGStab} \end{gathered}$ |  | $\begin{gathered} \text { PCG/ } \\ \text { PBi-CGStab } \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | CPU | Iter. | CPU | $\begin{aligned} & \text { IC/ } \\ & \text { ILU } \end{aligned}$ | Iter. |
| MFEB | 13824 | NPD | 14 | 177652 | 14489 | 11203 | 0.28 | 6.61 | 448.0 | 0.98 | 0.59 | 6.5 |
| MFEC | 13824 | NID | 4 | 55040 | 2401279 | 416769 | 0.08 | - |  | 0.45 | 0.20 | 7.0 |
| MFEO | 13824 | NPD | 14 | 177652 | 13401 | 10767 | 0.27 | 6.51 | 440.5 | 0.95 | 0.41 | 10.0 |
| CMFE | 13824 | NPD | 14 | 177652 | 9276 | 7758 | 0.28 | 5.27 | 350.5 | 0.84 | 0.38 | 9.0 |
| FV | 13824 | SID | 4 | 55040 | 247055 | 239934 | 0.09 | - | - | 0.45 | 0.20 | 7.0 |
| NCFE | 20608 | SPD | 5 | 102528 | 25393 | 16969 | 0.18 | 4.03 | 850.0 | 1.12 | 0.41 | 30.0 |

## Results, inhomogeneous case

| Meth. | Un. | Mat. | St. | Nonz. | CN | CNS | DS | $\begin{gathered} \mathrm{CG} / \\ \mathrm{Bi}-\mathrm{CGStab} \end{gathered}$ |  | $\begin{gathered} \text { PCG/ } \\ \text { PBi-CGStab } \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | CPU | Iter. | CPU | $\begin{aligned} & \text { IC/ } \\ & \text { ILU } \end{aligned}$ | Iter. |
| MFEB | 13824 | NPD | 14 | 177652 | 819248 | 740706 | 0.28 | 13.33 | 897.5 | 1.05 | 0.62 | 6.5 |
| MFEC | 13824 | NNS | 4 | 55040 | 903789 | 763849 | 0.09 | 5.34 | 947.5 | 0.47 | 0.20 | 7.5 |
| MFEO | 13824 | NPD | 14 | 177652 | 820367 | 739957 | 0.28 | 12.45 | 790.5 | 1.05 | 0.56 | 8.0 |
| CMFE | 13824 | NPD | 14 | 177652 | 2500730 | 478974 | 0.28 | 102.27 | 6842.5 | 1.01 | 0.41 | 10.5 |
| FV | 13824 | SPD | 4 | 55040 | 16387758 | 497974 | 0.07 | 39.41 | 14101.0 | 0.44 | 0.17 | 16.0 |
| NCFE | 20608 | SPD | 5 | 102528 | 4797335 | 670623 | 0.18 | 52.42 | 11226.0 | 1.22 | 0.64 | 16.0 |

## Outline



## Primal and dual formulations, mixed finite elements



Stokes flow with implicit constitutive laws, motivations
(3)

MFEs reduced to one unknown per element

- Local problems definition and a link to the MPFA method
- Global problems definition
(4) Numerical experiments
(5) General polygonal meshes

6 Conclusions and future work

Martin Vohralík and Barbara Wohlmuth
Reduction of MFEs to one unknown per element

## General polygonal meshes

## A general polygonal mesh $\widehat{\mathcal{T}}_{H}$



- nonconvex and non star-shaped elements in $\widehat{\mathcal{T}}_{H}$
- $\widehat{\mathcal{T}}_{H}$ can be nonmatching
- maximal number of sides of $K \in \widehat{\mathcal{T}}_{H}$ is not limited
- $\widehat{\mathcal{T}}_{H}$ is not necessarily shape-regular



## General polygonal meshes

A general polygonal mesh $\widehat{\mathcal{T}}_{H}$


- nonconvex and non star-shaped elements in $\widehat{\mathcal{T}}_{H}$
- $\widehat{\mathcal{T}}_{H}$ can be nonmatching
- maximal number of sides of $K \in \widehat{\mathcal{T}}_{H}$ is not limited
- $\widehat{\mathcal{T}}_{H}$ is not necessarily shape-regular
- assumption: existence of a simplicial submesh $\mathcal{T}_{h}$


## I Implicit laws Reduction Num. ex. Polygonal meshes C

## MFEs on general polygonal meshes

MFEs on $\mathcal{T}_{h}$

$$
\left(\begin{array}{ll}
\mathbb{A} & \mathbb{B}^{t} \\
\mathbb{B} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{G}
$$

MFEs on $\widehat{\mathcal{T}}_{H}$


- $\widehat{U}$ : flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{P}$ : potential unknowns related to the elements of $\widehat{\mathcal{T}}_{H}$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on $\mathcal{T}_{h}$ (inverses of loc. matrices corresponding to local Neumann problems)
- equivalent to formulation on Th (a priori and a posteriori error estimates, discrete maximum principle,


## MFEs on general polygonal meshes

## MFEs on $\mathcal{T}_{h}$

$$
\left(\begin{array}{ll}
\mathbb{A} & \mathbb{B}^{t} \\
\mathbb{B} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{G}
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\left(\begin{array}{cc}
\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^{t} \\
\widehat{\mathbb{B}} & 0
\end{array}\right)\binom{\hat{U}}{\hat{P}}=\binom{\hat{F}}{\widehat{G}}
$$

- $\widehat{U}$ : flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{P}$ : potential unknowns related to the elements of $\widehat{\mathcal{T}}_{H}$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on $T_{h}$ (inverses
of loc. matrices corresponding to local Neumann problems)
- equivalent to formulation on Th (a priori and a posteriori error estimates, discrete maximum principle,


## MFEs on general polygonal meshes

## MFEs on $\mathcal{T}_{h}$

$$
\left(\begin{array}{ll}
\mathbb{A} & \mathbb{B}^{t} \\
\mathbb{B} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{G}
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\left(\begin{array}{ll}
\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^{t} \\
\widehat{\mathbb{B}} & 0
\end{array}\right)\binom{\widehat{U}}{\widehat{P}}=\binom{\widehat{F}}{\widehat{G}}
$$

- $\widehat{U}$ : flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{P}$ : potential unknowns related to the elements of $\widehat{\mathcal{T}}_{H}$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on $\mathcal{T}_{h}$ (inverses of loc. matrices corresponding to local Neumann problems)



## MFEs on general polygonal meshes

## MFEs on $\mathcal{T}_{h}$

$$
\left(\begin{array}{ll}
\mathbb{A} & \mathbb{B}^{t} \\
\mathbb{B} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{G}
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\left(\begin{array}{ll}
\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^{t} \\
\widehat{\mathbb{B}} & 0
\end{array}\right)\binom{\widehat{U}}{\widehat{P}}=\binom{\widehat{F}}{\widehat{G}}
$$

- $\widehat{U}$ : flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{P}$ : potential unknowns related to the elements of $\widehat{\mathcal{T}}_{H}$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on $\mathcal{T}_{h}$ (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order



## MFEs on general polygonal meshes

## MFEs on $\mathcal{T}_{h}$

$$
\left(\begin{array}{ll}
\mathbb{A} & \mathbb{B}^{t} \\
\mathbb{B} & 0
\end{array}\right)\binom{U}{P}=\binom{F}{G}
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\left(\begin{array}{ll}
\widehat{\mathbb{A}} & \widehat{\mathbb{B}}^{t} \\
\widehat{\mathbb{B}} & 0
\end{array}\right)\binom{\widehat{U}}{\widehat{P}}=\binom{\widehat{F}}{\widehat{G}}
$$

- $\widehat{U}$ : flux unknowns related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{P}$ : potential unknowns related to the elements of $\widehat{\mathcal{T}}_{H}$ only
- indefinite, saddle point system, well-posed
- derived by static condensation from MFEs on $\mathcal{T}_{h}$ (inverses of loc. matrices corresponding to local Neumann problems)
- works for arbitrary order
- equivalent to formulation on $\mathcal{T}_{h}$ (a priori and a posteriori



## MFEs on general polygonal meshes

## MFEs on $\mathcal{T}_{h}$

$$
\mathbb{Z} \Lambda=E
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\widehat{\mathbb{Z}} \widehat{\Lambda}=\widehat{E}
$$

- $\widehat{\wedge}$ : Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on $\mathcal{T}_{h}$ (inverses of local matrices corresponding to local Dirichlet problems)
- equivalent to formulation on $T_{h}$ (a priori and a posteriori error estimates, discrete maximum principle ... )

Martin Vohralík and Barbara Wohlmuth
Reduction of MFEs to one unknown per element

## MFEs on general polygonal meshes

## MFEs on $\mathcal{T}_{h}$

$$
\mathbb{Z} \Lambda=E
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\widehat{\mathbb{Z}} \widehat{\Lambda}=\widehat{E}
$$

- $\widehat{\wedge}$ : Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on $\mathcal{T}_{h}$ (inverses
of local matrices corresponding to local Dirichlet problems)
- equivalent to formulation on $T_{h}$ (a priori and a posteriori
error estimates, discrete maximum principle ...)


## MFEs on general polygonal meshes

## MFEs on $\mathcal{T}_{h}$

$$
\mathbb{Z} \Lambda=E
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\widehat{\mathbb{Z}} \widehat{\Lambda}=\widehat{E}
$$

- $\widehat{\Lambda}$ : Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on $\mathcal{T}_{h}$ (inverses of local matrices corresponding to local Dirichlet problems)
- equivalent to formulation on $T_{h}$ (a priori and a posteriori error estimates, discrete maximum principle ... )


## MFEs on general polygonal meshes

## MFEs on $\mathcal{T}_{h}$

$$
\mathbb{Z} \Lambda=E
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\widehat{\mathbb{Z}} \widehat{\Lambda}=\widehat{E}
$$

- $\widehat{\wedge}$ : Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on $\mathcal{T}_{h}$ (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to formulation on $T_{h}$ (a priori and a posteriori error estimates, discrete maximum principle ...)


## MFEs on general polygonal meshes

## MFEs on $\mathcal{T}_{h}$

$$
\mathbb{Z} \Lambda=E
$$

MFEs on $\widehat{\mathcal{T}}_{H}$

$$
\widehat{\mathbb{Z}} \widehat{\Lambda}=\widehat{E}
$$

- $\widehat{\Lambda}$ : Lagrange multipliers related to the sides of $\widehat{\mathcal{T}}_{H}$ only
- $\widehat{\mathbb{Z}}$ is symmetric and positive definite
- derived by static condensation from MFEs on $\mathcal{T}_{h}$ (inverses of local matrices corresponding to local Dirichlet problems)
- works for arbitrary order
- equivalent to formulation on $\mathcal{T}_{h}$ (a priori and a posteriori error estimates, discrete maximum principle ....)


## Outline



## Primal and dual formulations, mixed finite elements



Stokes flow with implicit constitutive laws, motivations
(3)

MFEs reduced to one unknown per element

- Local problems definition and a link to the MPFA method
- Global problems definition

4 Numerical experiments
(3) General polygonal meshes

6 Conclusions and future work

Martin Vohralík and Barbara Wohlmuth
Reduction of MFEs to one unknown per element

## Conclusions and future work

## Conclusions

- mixed finite elements: one method with
- saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
- $U$ and $P$ unknowns / $\wedge$ unknowns / $P$ unknowns
- narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
- discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
understand, describe, \& analyze and in order to better
$\square$
Work in progress
- extensions to all order MFE schemes


## Conclusions and future work

## Conclusions

- mixed finite elements: one method with
- saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
- $U$ and $P$ unknowns / $\wedge$ unknowns / $P$ unknowns
- narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
- discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
understand, describe, \& analyze and


## Work in progress

- extensions to all order MFE schemes
- optimal multigrid solvers


## Conclusions and future work

## Conclusions

- mixed finite elements: one method with
- saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
- $U$ and $P$ unknowns / $\wedge$ unknowns / $P$ unknowns
- narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
- discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
- paradigm: decompose into a system in order to better understand, describe, \& analyze and reduce back in order to solve cheaply



## Conclusions and future work

## Conclusions

- mixed finite elements: one method with
- saddle point / symmetric pos. definite / nonsymmetric pos. definite / symmetric indefinite / nonsymmetric indef. matrix
- $U$ and $P$ unknowns / $\wedge$ unknowns / $P$ unknowns
- narrow stencil and two-point flux expressions / wider stencil and multi-point flux expressions
- discrete maximum principle for values in some points but not in some others
- no free parameter to choose, no stabilization, the best method if your criterion is min. complementary energy
- paradigm: decompose into a system in order to better understand, describe, \& analyze and reduce back in order to solve cheaply


## Work in progress

- extensions to all order MFE schemes
- optimal multigrid solvers


## Bibliography

## Bibliography

- Vohralík M., Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes, M2AN Math. Model. Numer. Anal. 40 (2006), 367-391.
- Vohralík M., Wohlmuth B., Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods, Math. Models Methods Appl. Sci. 23 (2013), 803-838.
- Vohralík M., Wohlmuth B., From face to element unknowns by local static condensation with application to nonconforming finite elements, Comput. Methods Appl. Mech. Engrg. 253 (2013), 517-529.


# Thank you for your attention! 

