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Examples: numerical simulations of PDEs in SERENA
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Partial differential equations (PDEs)

@ describe numerous physical phenomena

e fluid flow and transport in the underground, air, oceans,
rivers (weather forecast, modeling pollution, . ..)
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Partial differential equations (PDEs)

@ describe numerous physical phenomena

e fluid flow and transport in the underground, air, oceans,
rivers (weather forecast, modeling pollution, . ..)

e solid structure and its deformations (construction of
buildings/cars/planes. . .)

e population dynamics, behavior of financial markets
(demography, economy ...)

o ...

@ include (partial) derivatives of the solution

@ it is almost never possible to find analytical, exact
solutions (not even Einstein could solve PDEs with paper
and pen, except in model cases . ..)
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Elastic rod subject to force /: displacement u







Introduction A posteriori estimates  Application to underground flows

Example: elastic rod

éNU\ b

Elastic rod subject to force /: displacement u

9

Let Q be an interval, ©2 =|a. b[, a, b two real numbers, a < b.
Let f :]a, b[— R be a given function. Find v :|a, b|— R such that

—wy = 2
u(a) = u(b) =0.

M. Vohralik
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Numerical approximations of PDEs

Numerical methods

@ mathematically-based algorithms
@ evaluated with the aid of computers
@ deliver approximate solutions

@ conception: more and more computational resources =
closer and closer to the unknown solution
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Numerical approximations of PDEs

Numerical methods

@ mathematically-based algorithms
@ evaluated with the aid of computers
@ deliver approximate solutions

@ conception: more and more computational resources =
closer and closer to the unknown solution
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Numerical approximations of PDEs

Numerical methods

@ mathematically-based algorithms
@ evaluated with the aid of computers
@ deliver approximate solutions

@ conception: more and more computational resources =
closer and closer to the unknown solution

up € P.(Th),

Numerical approximation uy, and its convergence to u
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Numerical approximations of PDEs

Numerical methods

@ mathematically-based algorithms
@ evaluated with the aid of computers
@ deliver approximate solutions

@ conception: more and more computational resources =
closer and closer to the unknown solution
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Numerical approximation uy, and its convergence to u
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IV (u=unll={J7 l(u=uny(2}* AnU, = Fy
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@ How large is the overall error?
© Where (space, time, solver) is the error localized?
© Can we decrease the error efficiently?
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3 crucial questions

@ How large is the overall error?
© Where (space, time, solver) is the error localized?
© Can we decrease the error efficiently?

[
ek
Assumptions

@ The physical model is correct.
@ We know the data.

@ The computer implementation and execution of our
certification methodology is safe and correct.
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CDG Terminal 2E collapse in 2004 (opened in 2003)
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CDG Terminal 2E collapse in 2004 (opened in 2003)

@ no earthquake, roodmg, heavy rain, extreme temperature
@ deterministic, steady problem, PDE known, data known
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CDG Terminal 2E collapse in 2004 (opened in 2003)

@ no earthquake, flooding, heavy rain, extreme temperature
@ deterministic, steady problem, PDE known, data known

probably numerical simulations done poorly,

Reliability study and simulation of the progressive collapse of (I c..v..
Roissy Charles de Gaulle Airport

Y. El Kamari®, W. Raphael **, A. Chateauneuf "<
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CDG Terminal 2E collapse in 2004 (opened in 2003)

@ no earthquake, flooding, heavy rain, extreme temperature
@ deterministic, steady problem, PDE known, data known

probably numerical simulations done poorly,
| believe without error certification

Reliability study and simulation of the progressive collapse of (I c..v..
Roissy Charles de Gaulle Airport

Y. El Kamari®, W. Raphael **, A. Chateauneuf "<

M. Vohralik
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u=0 on 00
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A posteriori error control: the principle

Elastic membrane equation
—Au=f in Q,
u=0 on 09

Guaranteed error upper bound (reliability)

IV(u—up)ll < nlun)
—— ~——
unknown error computable estimator
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A posteriori error control: the principle

Elastic membrane equation
—Au=f in Q,
u=0 on 09

Guaranteed error upper bound (reliability)
IV(u—up)ll < n(un)
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A posteriori error control: the principle

Elastic membrane equation
—Au=f in Q,
u=0 on 09

Guaranteed error upper bound (reliability)
IV(u—un)|| < n(un)
———— N——
unknown error computable estimator
Error lower bound (efficiency)
n(un) < Cer|[ V(U — un)||

@ C. independent of Q, u, up, h, p
@ computable bound on C available, Cer ~ 5
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How large is the overall error? (model pb, known sol.)

- [OD) TV (u=up)
: ;1) n(up) rel. error estimate aniuhnll |V (u — up)|| rel. error W
o

1.25 28% 1.07 24%
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How large is the overall error? (model pb, known sol.)

; (Un) TVW=up) | jeff — __n(up)
h p n(up) rel. error estimate HnVuhnH IV (u — up)|| rel. error HWMT et = HV(“_"Uh)H
ho 1 1.25 28% 1.07 o 1.17
~hy/2 6.07 x 10~ 14% 5.56 x 10~ 13% 1.09
~hy/4 | 310 x 101 7.0% 2.92 x 101 6.6% 1.06
~hy/8 | 1.45x 10~ 3.3% 1.39 x 10~ 3.1% 1.04
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How large is the overall error? (model pb, known sol.)
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How large is the overall error? (model pb, known sol.)
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How large is the overall error? (model pb, known sol.)

h p n(up)  rel. error estimate ‘(’V(‘L”h)” IV (u — up)]| rel. error ”Vu(é;h“"")” P = HV?ML)I")H

o 1 1.25 28% 1.07 24% 117
~hy/2 |6.07x 107" 14% 5.56 x 10~1 13% 1.09
~hy/4 |3.10 x 10~! 7.0% 2.92 x 1071 6.6% 1.06
~hy/8 | 1.45x 10! 3.3% 1.39 x 10! 3.1% 1.04
~hy/2 2| 423 x 102 9.5x 10~ '% 407 x1072 9.2x 10 '% 1.04
~hy/4 3] 2.62x 10~ 5.9 x 10% 260 x 1074 5.9 x 107 3% 1.01
~hy/8 4]260x 107 59 x 107 %% 2.58 x 107 5.8 x 1075% 1.01

A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2015)
V. Dolejsi, A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2016)
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Where (in space) is the error localized?

%107

Estimated error distribution Exact error distribution

1k (Un) IV(u — un)llk
P. Daniel, A. Ern, |. Smears, M. Vohralik, Computers & Mathematics with Applications (2018)
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Can we decrease the error efficiently? (smooth solution)

S
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Mesh 7, and pol. degrees pg
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Can we decrease the error efficiently? (smooth solution)

B P5
P4
§> P3
P2
IPl
Mesh T, and pol. degrees pg Exact solution

P. Daniel, A. Ern, |. Smears, M. Vohralik, Computers & Mathematics with Applications (2018)
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 Introduction - A posteriori estimates - Application to underground flows
Can we decrease the error efficiently? (singular solution)
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Can we decrease the error efficiently? (singular solution)
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P5 =
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210t
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S

P3 ©10°
2
= uniform h, p=
% 10 - ]7—adapkii'i1;/', pl—l
= —o0— hp-adaptivity

—p—a priori best
P2 10
0 5 10 15 20 25 30
L DoFY?
Mesh 7, and polynomial Relative error as a function of
degrees px no. of unknowns
P. Daniel, A. Ern, I. Smears, M. Vohralik, Computers & Mathematics with Applications (2018) i
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Including algebraic error: A,U} + Fp

%10 %10

EY

25
{3
25
2 1.5
15

]
|

05
05

Exact total error

N

Estimated total error '
distribution 7, (u},) distribution ||V (v — u}) | k

J. Papez, U. Rude, M. Vohralik, B. Wohlmuth, preprint (2017)
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Including algebraic error: ApU}, + Fp

x107 x107
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2 2

Estimated algebraic error Exact algebraic error

distribution 7, «(uy,) distribution |V (uy — u}) ||k

J. Papez, U. Rude, M. Vohralik, B. Wohlmuth, preprint (2017)
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classical

error est. | 4.6%




B oo o e o sk s il
Nonlinear pb —V-o(Vu) = f: including linearization
and algebraic error: A(U;') + Fp, AU £ BT

tot. alg. it.| 10890

classical
errorest. | 4.6%
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Nonlinear pb —V-o(Vu) = f: including linearization

and algebraic error: Ay(U;") # Fp, AK-TU, + FE-T

NN, Yy
%‘R\ ‘e ;\‘\‘17
) 7~ A\

\\\\\\\ Yy \V/

4L

\1) \
\\ A\

s |
N

Estimated error distribution Exact error dlstri?u_tion

I]K(Uh ) HO’(VU) _ U(vuh./)HK
classica) ©oF alg. it. 10890
error est. | 4.6%
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Nonlinear pb —V-o(Vu) = f: including linearization

and algebraic error: A,(U}') # Fy, AK-TUS £ R

\\\\\\\ y \\/ NN

‘A\ m;\‘\‘v
4) gy~ AR

NP
<0
Estimated error distribution Exact error d|striEu_tion
nk(uy) o (Vu) — a(Vuy")|«
classical tot. alg. it.| 10890 adaptive
error est. | 4.6% P error est. \1.1%
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Nonlinear pb —V-o(Vu) = f: including linearization

and algebraic error: Ay(U;") # Fp, AK-TU, + FE-T

\\\\\\\ y \\/ NN

‘A\ - 050

/«»"“ b\

() \0
=N
Estlmated error distribution Exact error distri?u_tion
nk(upy') lo(Vu) = a(Vuy")|
classical tot. alg. it.| 10890 adaptive tot. alg. it.| 242
error est. | 4.6% P errorest. |1.1%

A. Ern, M. Vohralik, SIAM Journal on Scientific Computing (2013)
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Can we certify error in a practical case
—V-(KVu)=Tf:

12007
Underground reservoir,
10th SPE test case
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Can we certify error in a practical case
—V-(KVu) = f: outflow error | [, ;.0 KV(u — up)-n|

no of unknowns| 825 3300 13200
rel. error est. |46% 34% 24% remeabizity

120070
Underground reservoir,
10th SPE test case

G. Mallik, M. Vohralik, S. Yousef, in preparation (2018)

M. Vohralik Can we trust results from numerical S|mulat|ons’> 14/17
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Realistic environmental problem

Incompressible two-phase flow in porous media
Find saturations s, and pressures p,, « € {g,w}, such that

i(#a) — V- <ka(3w)

i K(Vp. + ,OagVZ)> = Qa a € {g,w},

Sg+Sy=1,

Py — Pw = Pe(Sw)
@ unsteady, nonlinear, and degenerate problem
@ coupled system of PDEs & algebraic constraints
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Realistic environmental problem

Incompressible two-phase flow in porous media
Find saturations s, and pressures p,, « € {g,w}, such that

kra SW
ouos.) ~ V(5= k(p, 1 pugv2) ) = el
Sg+Sy=1,
Py — Pw = Pe(Sw)

@ unsteady, nonlinear, and degenerate problem
@ coupled system of PDEs & algebraic constraints

Carbon capture & geological storage

M. Vohralik Can we trust results from numerical simulations?
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M. Vohralik, M.-F. Wheeler, Computational Geosciences (2013)
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video.avi
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Three-phase, three-components (black-oil) problem
(collaboration IFPEN)

Gas saturation AMRError

1.209e-01 0.31 0.5  0.68 8.709e-0 0.000e+00 0.2
L [y

5 0.5 o
LU

Gas saturation A posteriori error estimate
M. Vohralik, S. Yousef, Computer Methods in Applied Mechanics and Engineering (2018)
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Three-phase, three-components (black-oil) problem
(collaboration IFPEN)

Gas saturation AMRError

1.209e-01 0.31 0.5  0.68 8.709e-0 0.000e+00 0.2

VST

5 0.5  0.75
LU

Gas saturation A posteriori error estimate
M. Vohralik, S. Yousef, Computer Methods in Applied Mechanics and Engineering (2018)

@ certify the error
©Q localize it
© decrease it efficiently via adaptivity

M. Vohralik Can we trust results from numerical simulations? 17 /17



|
Laplace eigenvalue problem —Au = Au: inclusion

bounds on eigenvalues and adaptivity

70

60 [~

40

~————t—— Upper bound

——¥—— Lower bound

20 L
10000 no of unknowns

XD
POPDD

First eigenvalue inclusion Adaptively refined mesh
E. Cancés, G. Dusson, Y. Maday, B. Stamm, M. Vohralik, SIAM Journal on Numerical Analysis (2018)
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Laplace eigenvalue problem —Au = Au: inclusion
bounds on eigenvalues and adaptivity

no of unknowns | 2494 3390 4508 7602 13640 18163 23494 30533
rel. error est. | 48% 32% 22% 11% 6.1% 4.5% 3.2% 2.4%

70

60 [~

50 [~

~————t—— Upper bound

———¥—— Lower bound

30 -

20 1
10000 no of unknowns

First eigenvalue inclusion Adaptively refined mesh
E. Cancés, G. Dusson, Y. Maday, B. Stamm, M. Vohralik, SIAM Journal on Numerical Analysis (2018)

M. Vohralik Can we trust results from numerical simulations? 18/17
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