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Full adaptivity for unsteady nonlinear problems

Real (porous media) flows

@ system of PDEs
@ nonlinear (degenerate)
@ unsteady

@ = difficult numerical approximation, large troublesome
systems of nonlinear algebraic equations
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| Adaptive Newton Stefan C

Full adaptivity for unsteady nonlinear problems

Real (porous media) flows

@ system of PDEs
@ nonlinear (degenerate)
@ unsteady

@ = difficult numerical approximation, large troublesome
systems of nonlinear algebraic equations

Goals of this work

@ derive fully computable a posteriori error upper bounds
@ distinguish different error components

Full adaptivity

e time step choice & mesh adaptivity
e stopping criteria for regularization and linear and nonlinear
solvers
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Previous results — a posteriori error estimates

Nonlinear steady problems
@ Ladeveze (since 1990’s), guaranteed upper bound
@ Verflrth (1994), residual estimates
@ Carstensen and Klose (2003), p-Laplacian
@ Chaillou and Suri (2006, 2007), linearization errors
@ Kim (2007), guaranteed estimates, loc. cons. methods
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Linear unsteady problems
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@ Ohlberger (2001), non energy-norm estimates
Degenerate parabolic problems

@ Nochetto, Schmidt, Verdi (2000), Stefan problem
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Previous results — adaptive strategies

Stopping criteria for algebraic solvers
@ engineering literature, since 1950’s
@ Becker, Johnson, and Rannacher (1995), multigrid
stopping criterion
@ Arioli (2000’s), comparison of the algebraic and
discretization errors by a priori arguments
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Previous results — adaptive strategies

Stopping criteria for algebraic solvers
@ engineering literature, since 1950’s
@ Becker, Johnson, and Rannacher (1995), multigrid
stopping criterion
@ Arioli (2000’s), comparison of the algebraic and
discretization errors by a priori arguments
Adaptive inexact Newton method
@ Bank and Rose (1982), combination with multigrid
@ Hackbusch and Reusken (1989), damping and multigrid
@ Deuflhard (1990’s, 2004 book), adaptive damping and
multigrid
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Previous results — adaptive strategies

Stopping criteria for algebraic solvers
@ engineering literature, since 1950’s
@ Becker, Johnson, and Rannacher (1995), multigrid
stopping criterion
@ Arioli (2000’s), comparison of the algebraic and
discretization errors by a priori arguments
Adaptive inexact Newton method
@ Bank and Rose (1982), combination with multigrid
@ Hackbusch and Reusken (1989), damping and multigrid
@ Deuflhard (1990’s, 2004 book), adaptive damping and
multigrid
Model errors
@ Ladeveze (since 1990’s), guaranteed upper bound
@ Bernardi (2000’s), estimation of model errors
@ Babuska, Oden (2000’s), verification and validation
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Outline

0 Introduction

@ Adaptive inexact Newton method
@ A posteriori error estimate and its efficiency
@ Applications
@ Numerical results

© The Stefan problem
@ Dual norm a posteriori estimate and adaptivity
o Efficiency
@ Energy error a posteriori estimate
@ Numerical results

e Conclusions and future directions
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Outline

A posteriori estimate and its efficiency Applications Numerical results

@ Adaptive inexact Newton method

@ A posteriori error estimate and its efficiency
@ Applications
@ Numerical results
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Inexact iterative linearization

System of nonlinear algebraic equations
Nonlinear operator A:RN — RN, vector F e RV: find U € RN s.t.

AU)=F

ematics
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Inexact iterative linearization

System of nonlinear algebraic equations
Nonlinear operator A:RN — RN, vector F e RV: find U € RN s.t.

AU)=F

Algorithm (Inexact iterative linearization)
@ Choose initial vector U°. Set k := 1.

ematics
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Inexact iterative linearization

System of nonlinear algebraic equations
Nonlinear operator A:RN — RN, vector F e RV: find U € RN s.t.

A(U) = F
Algorithm (Inexact iterative linearization)
@ Choose initial vector U°. Set k := 1.
Q UK = matrix A* ' and vector F*': find U* s.t.
ARTUK ~ PR
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System of nonlinear algebraic equations
Nonlinear operator A:RN — RN, vector F e RV: find U € RN s.t.

AU)=F
Algorithm (Inexact iterative linearization)
@ Choose initial vector U°. Set k := 1.
Q UK = matrix A* ' and vector F*': find U* s.t.
ARTUK ~ PR
Q@ O SetUKO .= Uk-1andi.=1.
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Inexact iterative linearization

System of nonlinear algebraic equations
Nonlinear operator A:RN — RN, vector F e RV: find U € RN s.t.

A(U) = F
Algorithm (Inexact iterative linearization)
@ Choose initial vector U°. Set k := 1.
Q UK = matrix A* ' and vector F*': find U* s.t.
ARTUK ~ PR

Q@ O SetUK:=Ur"andi:=1. ‘
@ Do 1 algebraic solver step = U"' s.t. (R*! algebraic res.)

Ak_1 Uk,i _ Fk—1 . Rk’i.

ooooooo
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Inexact iterative linearization

System of nonlinear algebraic equations
Nonlinear operator A:RN — RN, vector F e RV: find U € RN s.t.

A(U) = F
Algorithm (Inexact iterative linearization)
@ Choose initial vector U°. Set k := 1.
Q UK = matrix A* ' and vector F*': find U* s.t.
ARTUK ~ PR

Q@ O SetUK:=Ur"andi:=1. ‘
@ Do 1 algebraic solver step = U*' s.t. (RK' algebraic res.)
Ak_1 Uk,i _ Fk—1 _ Rk’i.

@ Convergence? OK = U¥ .= UK. KO= i :=i+1, back
fo 3.2.

ooooooo
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Inexact iterative linearization

System of nonlinear algebraic equations

Nonlinear operator A:RN — RN, vector F e RV: find U € RN s.t.

AU)=F

Algorithm (Inexact iterative linearization)
@ Choose initial vector U°. Set k := 1.
Q@ UX' = matrix A" and vector F*': find U" s.t.
ARTUK ~ PR
Q@ O SetUY:=Uk"Tandi:=1. v .
@ Do 1 algebraic solver step = U"' s.t. (R*' algebraic res.)
Ak_1 Uk,i _ Fk—1 . Rk’i.

@ Convergence? OK = U¥ .= UK. KO= i :=i+1, back
fo 3.2.

© Convergence? OK = finish. KO = k := k + 1, back to 2.

ooooooo
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Context and questions

Approximate solution
@ approximate solution U/ does not solve A(UX') = F
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Context and questions

Approximate solution
@ approximate solution U/ does not solve A(UX') = F
Numerical method

@ underlying numerical method: the vector U* is associated
with a (piecewise polynomial) approximation u,’f)"

Partial differential equation

@ underlying PDE, v its weak solution: A(u) = f
Question (Stopping criteria)

@ What is a good stopping criterion for the linear solver?

@ What is a good stopping criterion for the nonlinear solver?

v

Question (Error)

@ How big is the error ||u — u';,” | on Newton step k and
algebraic solver step i, how is it distributed?
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Model steady problem, discretization

Quasi-linear elliptic problem
—V.o(u,vVu)=f in €,
u=20 on 0f2
ep>1,q:= p%,feLq(Q)
@ example: p-Laplacian with o(u, Vu) = |VulP~?Vu
@ f piecewise polynomial for simplicity
e weak solution: u € V := W, ”(Q) such that

(o(u,Vu),Vv) = (f,v) YveV

I d
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Model steady problem, discretization

Quasi-linear elliptic problem

—Vo(u,Vu)=f in Q,
u=2~0 on 9092

° p>1,q:= 52, feLIQ)

@ example: p-Laplacian with o(u, Vu) = |VulP~?Vu
@ f piecewise polynomial for simplicity

e weak solution: u € V := W, ”(Q) such that

(o(u,Vu),Vv) = (f,v) YveV

Numerical approximation
@ (shape-regular) mesh 7, linearization step k, algebraic

step /
° u’,j’ € V(Ty) piecewise polynomial (discontinuous),
V(Th) ¢ V s’ e
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Outline

@ Adaptive inexact Newton method
@ A posteriori error estimate and its efficiency

pd
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Abstract assumptions

Assumption A (Total flux reconstruction)

There exists t’;," € H9(div, Q) and p’,g’i € L9(Q2) such that
V‘tﬁ’i =f- pg’i.

ematics

-— o el

Martin Vohralik Adaptive inexact linearization and regularization for unsteady nonlinear problems 8/41



| Adaptive Newton Stefan C A posteriori estimate and its efficiency Applications Numerical results

Abstract assumptions

Assumption A (Total flux reconstruction)

There exists tg" e H9(div, Q) andp’,;” € L9(Q2) such that
V‘tﬁi =f— p;’i.

Assumption B (Discretization, linearization, and alg. fluxes)
There exist fluxes di” 1" al"’ € [L9(Q)]¢ such that

() ty' =dp + 1" +ap;

(i) as the linear solver converges, ||a',§" lg = 0;

(ii) as the nonlinear solver converges, Hlf,”

q—0.
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Abstract assumptions

Assumption A (Total flux reconstruction)

There exists tg" e H9(div, Q) andp’,;” € L9(Q2) such that
V‘tﬁi =f— pg’i.

Assumption B (Discretization, linearization, and alg. fluxes)
There exist fluxes di” 1" al"’ € [L9(Q)]¢ such that

() ty' =dp + 1" +ap;

(ii) as the linear solver converges, |[a\"||q — O;

(iii) as the nonlinear solver converges, Hlf,” q— 0.

Assumption C (Approximation property)

ematics

Ha(uﬁ”, Vu,’;’i) + dg’i]]q < C (residual estimator).
TTTTe—
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Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let
@ u € V be the weak solution,

° u’g” € V(Tr) be arbitrary,
@ Assumptions A and B hold.
Then there holds

Kiv ki | ki ki ki
ju(uh ) S ,/ + ,/]in + }/ulg + nrerln‘

disc

V.
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Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let
@ u € V be the weak solution,

° u’,ﬁ”' € V(Tr) be arbitrary,
@ Assumptions A and B hold.
Then there holds
k,i K,i ki | ki -
ju(uhﬂ) < Udi'slc + ,'/]in/ + )}ulgl + nrl(e}lll
Moreover, under Assumption C and under appropriate stopping
criteria,
k,i ki | ki - k,i
Taine + in + Ualg +1ten < CTu(uy),

up to quadrature errors.

: informatics g math

ematics
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Estimators

@ discretization estimator

1
q
Ki o kv aki 1—
T]dISCK =25 lor(up”, Vup')+dy g k+ E he q”[[u ]]qu

ecéy

@ linearization estimator i .
Ming = 15 gk

@ algebraic estimator ki

nl = lal ok

@ algebraic remainder est/mator
T’remK hQ”ph qu

' _ 1/q
o =0 % (%)*
KeTh z

&zw;ﬂ.u/ﬂmmm

Martin Vohralik Adaptive inexact linearization and regularization for unsteady nonlinear problems 10/ 41



Q Introduction

e Adaptive inexact Newton method
@ A posteriori error estimate and its efficiency
@ Applications
@ Numerical results

Q The Stefan problem

Dual norm a posteriori estimate and adaptivity
@ Efficiency

@ Energy error a posteriori estimate

@ Numerical results

®

0 Conclusions and future directions
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Nonconforming finite elements for the p-Laplacian

Discretization
Find u, € Vj such that

(6(Vun),Vvp) = (fa,vn)  Vvh € V.

I d
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Nonconforming finite elements for the p-Laplacian

Discretization
Find u, € Vj such that

(6(Vun),Vvp) = (fh,vh) Vv e V.

@ o(Vup) = \Vuh|p—2Vuh

@ Vj, the Crouzeix—Raviart space

@ fh:=Nof

@ leads to the system of nonlinear algebraic equations

A(U) =F

I d
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Linearization

Linearization
Find uf € Vj, such that

(" N(VUE), Vibe) = (faythe) Ve € EM.

pd
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Linearization

Linearization
Find uf € Vj, such that

(" (VUf), Vo) = (fa,he) Ve e &M
@ u? € V), yields the initial vector U°
@ fixed-point linearization

o' (&) = |Vuy TIP3

@ Newton linearization

o &) = VU PR+ (p - 2) vy P

(Vuk" @ VUi (& - vui)

@ leads to the system of linear algebraic equations

AK-Tyk = Fk=1 7 e
Crsia
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Algebraic solution

Algebraic solution
Find u"’ € V4 such that

(K (VUR"), Vi) = (f, he) — RE' Ve e &M

I d
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Algebraic solution

Algebraic solution
Find u"’ € V4 such that

(K (VUR"), Vi) = (f, he) — RE' Ve e &M

@ algebraic residual vector %/ = {R’e‘”}eegihm
@ discrete system

Akf1 Uk — ka1 - Rk’i

I d
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Flux reconstructions

e : ki | ki
Definition (Construction of (d' + I}""))

For all K € T,

(A o= — ok (VU |+ h|K(x XK) Z

. ecéy
where, R&" = (fo, t0e) — (¢ (VUF'), Vipe)  Vee 5;,m.

ematics

/
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Flux reconstructions

. . ki K.i
Definition (Construction of (d" + I;"))
For all K € Tp,
(s 4k =0 (Tl () Z TR

. ecék
where, Re’ = (fo, 00e) — (X (VUF'), Vpe) Ve e &,

Definition (Construction of dﬁ")
For all K € Tp, fuli
Kip . ki i
th|K_ —U(VUhI)’K—’_ d x XK Z d’De x XK)‘K67

where RE' = (fy, ve) — (c(VUr), we) Vee g,

ooooooo
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Flux reconstructions

Definition (Construction of (dg’i + IZ"))
For all K € Tp,
(s 4k =0 (Tl () Z TR

. ecék
where, Re’ = (fo, 00e) — (X (VUF'), Vpe) Ve e &,

Definition (Construction of dﬁ”)
For all K € Tp,

- SO 1
dilic = o (il + MR (- Z d,De (X~ XKk,
where RE" .= (f,, ve) — (o(Vu )we) Veesmt.

Definition (Construction of a',‘;")

Seta := (d 4 157y — (d" + I} for (adaptively chosen)
v > 0 additional algebraic solvers steps; RF/ ~ ¢

p—
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Verification of the assumptions

Lemma (Assumptions A and B)

Assumptions A and B hold.

I d
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Verification of the assumptions

Lemma (Assumptions A and B)

Assumptions A and B hold.

Comments

° ||aﬁ”||q7K—>0 as the linear solver converges by definition.

@ |[15]| 4.k — 0 as the nonlinear solver converges by the

construction of I},
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Verification of the assumptions

Lemma (Assumptions A and B)

Assumptions A and B hold.

Comments

° ||aﬁ”||q7K—>0 as the linear solver converges by definition.

@ |[15]| 4.k — 0 as the nonlinear solver converges by the

construction of I},

Lemma (Assumption C)

Assumption C holds.
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Verification of the assumptions

Lemma (Assumptions A and B)

Assumptions A and B hold.

Comments

° ||aﬁ”||q7K—>0 as the linear solver converges by definition.

@ |[15]| 4.k — 0 as the nonlinear solver converges by the

construction of I},

Lemma (Assumption C)

Assumption C holds.

Comments

o d*' close to (V')
@ approximation properties of Raviart—-Thomas—Nédélec

spaces R
&zzca/-
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Summary

Discretization methods

@ conforming finite elements

@ nonconforming finite elements
@ discontinuous Galerkin

@ various finite volumes

@ mixed finite elements
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Summary

Discretization methods

@ conforming finite elements

@ nonconforming finite elements
@ discontinuous Galerkin

@ various finite volumes

@ mixed finite elements

Linearizations

o fixed point
@ Newton
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Summary

Discretization methods

@ conforming finite elements

@ nonconforming finite elements
@ discontinuous Galerkin

@ various finite volumes

@ mixed finite elements

Linearizations

o fixed point
@ Newton

Linear solvers

@ independent of the linear solver

I d
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Summary

Discretization methods

@ conforming finite elements

@ nonconforming finite elements
@ discontinuous Galerkin

@ various finite volumes

@ mixed finite elements

Linearizations

o fixed point
@ Newton

Linear solvers

@ independent of the linear solver

I d

...all Assumptions A to C verified s s
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Numerical experiment |

Model problem
@ p-Laplacian

V-(|VuP2vVu)=f inQ,
Uu=up o0onoo

@ weak solution (used to impose the Dirichlet BC)

1 1)2 112\ 261 11}
_ o= _ =
U(X7Y)=—pT((X—§) +—3) ) +pT(§>
@ tested values p=1.5and 10
@ nonconforming finite elements
: m[n&amx,mamnmmkx
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Error and estimators as a function of CG iterations,
p = 10, 6th level mesh, 6th Newton step.

100 7 T T 100 10— T T T T ——
107 5 — [ M ]
[ NSRS e o o Shananan |
ol 1, : : : . A
R 1 3 ERS
[[~e=ermorup
r ] [|~e- estimate
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Error and estimators as a function of Newton
iterations, p = 10, 6th level mesh

Dual error

Dual error
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Effectivity indices, p = 10
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A posteriori estimate and its efficiency Applications Numerical results

Newton and algebraic iterations, p = 10

Number of Newton iterations

Number of algebraic solver iterations
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Numerical experiment I

Model problem
@ p-Laplacian

V-(|VulP2vVu)=f inQ,
u=up onoQ2

@ weak solution (used to impose the Dirichlet BC)
u(r,0) = ré sin(62)

@ p = 4, L-shape domain, singularity in the origin
(Carstensen and Klose (2003))
@ nonconforming finite elements
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Error distribution on an adaptively refined mesh
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Energy error and overall performance

A posteriori estimate and its efficiency Applications Numerical results
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Outline

© The Stefan problem
@ Dual norm a posteriori estimate and adaptivity
o Efficiency
@ Energy error a posteriori estimate
@ Numerical results
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The Stefan problem

The Stefan problem

ou— Ap(u)=f inQx (0, T),
u(-,0) = uo inQ,
B(u)y=0 on 0Q x (0, T)
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The Stefan problem

The Stefan problem

ou—Ap(u)=f inQx(0,T),
u(-,0) = up in Q,
B(u)y=0 on 0Q x (0, T)

Nomenclature

@ u enthalpy, S(u) temperature

@ [: Ls-Lipschitz continuous, 5(s) = 0in (0, 1), strictly
increasing otherwise

@ phase change, degenerate parabolic problem

@ Uy € L?(Q), f € L2(0,T;L2(Q))
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The Stefan problem

The Stefan problem

ou—Ap(u)=f inQx(0,T),
u(-,0) = up in Q,
B(u)y=0 on 0Q x (0, T)

Nomenclature

@ u enthalpy, S(u) temperature
@ [: Ls-Lipschitz continuous, 5(s) = 0in (0, 1), strictly
increasing otherwise
@ phase change, degenerate parabolic problem
@ Uy € L?(Q), f € L2(0,T;L2(Q))
Context

@ Ph.D. thesis of Soleiman Yousef

@ collaboration with IFP Energies Nouvelles s’ S

Martin Vohralik Adaptive inexact linearization and regularization for unsteady nonlinear problems 25/ 41



| Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

Numerical practice: regularization

Regularization of 5, parameter ¢

1,
05 |
B(u), 5(u)
1 05 /7705 1, 15 2
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Discretization
o ...

Question (Stopping and balancing criteria)

@ What is a good choice of the
e reqgularization parameter ¢ ?
o time step?
@ space mesh?
@ What is a good stopping criterion for the
e nonlinear solver?
o linear solver?

Question (Error)

@ How big is the error on time step n, space
mesh K", regularization parameter ¢, linearization step k,
and algebraic solver step | ? How big are the individual

components? How is error distributed in time and space? |...
——
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Questions

Discretization
o ...

Question (Stopping and balancing criteria)

@ What is a good choice of the
e regularization parameter ¢ ?
e time step?
e space mesh?

ematics
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Questions

Discretization
o ...

Question (Stopping and balancing criteria)

@ What is a good choice of the
e regularization parameter ¢ ?
e time step?
e space mesh?
@ What is a good stopping criterion for the
e nonlinear solver?
e linear solver?
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Questions

Discretization
o ...

Question (Stopping and balancing criteria)

@ What is a good choice of the
e regularization parameter ¢ ?
e time step?
e space mesh?
@ What is a good stopping criterion for the
e nonlinear solver?
e linear solver?

Question (Error)

o How big is the error ||ul,, — u"“"'|| on time step n, space

mesh K", reqularization parameter ¢, linearization step k,
and algebraic solver step i ? How big are the individual

components? How is error distributed in time and space? |..
o T
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Functional spaces

X =20, T;Hi(Q), Z=H(0,T,H'(Q)
Weak formulation
ueZ  with g(u) € X,
u(-,0) = up in Q,
(Oru, ©)(8) + (VB(U), Vo)(8) = (f,0)(s) Ve € H{(Q),s€ (0, T)
Approximate solution (with linearization and regularization)
uez, ol e 20, T L3Q), B e X,
u;'l_k\/n is affine in time on 1, vi<n<N

Residual ’R(u;f) € X’ and its dual norm, ¢ € X

(R( >.p>xaxz'/;{<af( ), @) +( Vo)l (s)ds,
IR x =  sup (RS, o)xx

B informatics ¥ mathematics
vEX, |lpll x=1 &tm—



| Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

Setting

Functional spaces
X =20, T;Hi(Q), Z=H(0,T,H'(Q)
Weak formulation
ue”Z with g(u) € X,
u(-,0) = u in Q,
(Oru, @)(8) + (VB(U), V)(s) = (f,)(S) Ve € H3(R),5€(0,T)
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Setting

Functional spaces
X :=L20,T;H}(Q), Z:=H'(0,T;H ()
Weak formulation
ueZ  with g(u) € X,
u(-,0) = u in Q,
(O, 9)(5) + (VB(U), Ve)(8) = (F,9)(8) Ve € H}(Q),5€ (0, T)
Approximate solution (with linearization and regularization)
uez,  oauf e 20, T L2(Q), B e X,
u;f|/n is affine in time on I, vi<n<N
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Setting

Functional spaces
X =120, T:HI(Q)), Z:=H'0,T;H(Q))
Weak formulation
ueZ withpg(u) e X
u(-,0) = u in Q,
(O, 9)(5) + (VB(U), Ve)(8) = (F,9)(8) Ve € H}(Q),5€ (0, T)
Approximate solution (with linearization and regularization)
uez,  oauf e 20, T L2(Q), B e X,
u;f|/n is affine in time on I, vi<n<N

Residual R(u:¥) € X’ and its dual norm, ¢ € X
T
(R(U1). ohx x = / (0=, )+ (V(5(0) = 5(u,)), Vo)l (s)ds,
0

k
IR(WS) Ix = sup  (R(UEH), ¢)x x I
" oeX Jolx—t T /47577 5
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Estimate distinguishing different error components

Assumption A (Equilibrated flux reconstruction)

Foralln> 1,k >1,ande > 0, there existstZ’“k € H(div; Q) s.t.
(VAP ) = (F7, 1) — (D * 1)k VK € K.
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Estimate distinguishing different error components

Assumption A (Equilibrated flux reconstruction)

Foralln> 1,k >1,ande > 0, there existstZ"k € H(div; Q) s.t.
(VAR 1) = (7, 1)k — (U, 1), VK € K.

Theorem (An estimate distinguishing the error components)

Let Assumption A hold. Then, forany n > 1,k > 1,and ¢ > 0,

k k k
IR(up ™ lx; < nBH 4+ mimc™ + niek 4+ nio.
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Estimate distinguishing different error components

Assumption A (Equilibrated flux reconstruction)

Foralln > 1,k >1,ande > 0, there existstZ"k € H(div; Q) s.t.
(VAR 1) = (77, 1)k — (Brup = 1)k VK € K.

Theorem (An estimate distinguishing the error components)

Let Assumption A hold. Then, forany n > 1,k > 1,and ¢ > 0,
n,e,k

k k
IR(up ) lxy < B + nid™ + e + s

2
k k ,€,K €,k
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Efficiency assumptions

Assumption B (Technicalities)

All the meshes are shape-regular and all the approximations
are piecewise polynomial.
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Efficiency assumptions

Assumption B (Technicalities)

All the meshes are shape-regular and all the approximations
are piecewise polynomial.

Residual estimators

2
Nenkn\~ ._ _n }: 2 11 £n n,en,k n,en,kn 2
(nres,l ) =T hK”f _8tuh n n_|_v,|h n n||K>
Kelcn—Ln

2
77k . ,,k
(mes) =77 30 el lneliE
Fe}'i,n—Ln
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Efficiency assumptions

Assumption B (Technicalities)

All the meshes are shape-regular and all the approximations
are piecewise polynomial.

Residual estimators

2
nen, ki ._.n 2 (1 £n n,en,k n,en,kn 12
(nr®) =" 3D BRI = B v 2
Kelcn—Ln

2
s€n,Ki . J€n, kK 2
(m2s*) =" 3 el L e 2
Fe}'i,n—Ln

Assumption C (Approximation property)

For all1 < n < N, there holds

2 2
o Z ng’sn’kn _i_tZﬁn,an%( <C <(n$;q,kn) + (nrf;f’ré,kn) >

KEIC”*L"
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Efficiency assumptions

Theorem (Efficiency)

Let, for all 1 < n < N, the stopping and balancing criteria be
satisfied with the parameters small enough. Let Assumptions B
and C hold. Then

ng),enykn + 77{7H,fn,kn + nlg,gen,kn + 77!_7,En,kn 5 HR(u#en’kn)HXI/f

lin
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Relation residual-energy norm

Energy estimate (by the Gronwall lemma)
L L
o llu = un 3+ W = Unr) G 1) + 18() = Buns) 3,

> (1R () e+ 110 = Un) (5 0) 2,1y

/
Martin Vohralik Adaptive inexact linearization and regularization for unsteady nonlinear problems 32/ 41



| Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

Relation residual-energy norm

Energy estimate (by the Gronwall lemma)

L
o llu = un 3+ W = Unr) G 1) + 18() = Buns) 3,

Ls
<7 (IR (Un) 3 + 11w = ) 0) 121y )

Theorem (Temperature and enthalpy errors, tight Gronwall)
Let up € Z such that 5(up,) € X be arbitrary. There holds

L L
1= Une o+ (W = U)o T 1 +18() = Bun) I,

i
v2f <IIB(U)— (), + / 18(4) — Blum)I, e sds)dt

(267 = 1)]|(t — th ), O) sy + IR ()|

< =B
-2
T t
+2/ (R(Um)@ﬂr/ IR (Up) i/efsds> dt 5.
0 0 s 0 e
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Linearization stopping criterion

Linearization stopping criterion
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Regularization stopping criterion

Regularization stopping criterion
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Equilibrating time and space errors

Equilibrating time and space errors
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Effectivity indices (dual norm of the residual)
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Effectivity indices (energy norm)
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Actual and estimated error distribution
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Computational efficiency
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Conclusions and future directions

Entire adaptivity
@ only a necessary humber of algebraic/linearization
solver iterations

@ “online decisions”: algebraic step / linearization step /
regularization / space mesh refinement / time step
modification

@ important computational savings
@ guaranteed and robust a posteriori error estimates

I d

informatics gFmathematics
V122,77 5

Martin Vohralik Adaptive inexact linearization and regularization for unsteady nonlinear problems 40/ 41



| Adaptive Newton Stefan C

Conclusions and future directions

Entire adaptivity
@ only a necessary humber of algebraic/linearization
solver iterations

@ “online decisions”: algebraic step / linearization step /
regularization / space mesh refinement / time step
modification

@ important computational savings
@ guaranteed and robust a posteriori error estimates

Future directions
@ other coupled nonlinear systems
@ convergence and optimality
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Thank you for your attention!
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