Adaptive inexact Newton methods and adaptive regularization and space-time discretization for unsteady nonlinear problems

Martin Vohralík

INRIA Paris-Rocquencourt

in collaboration with Daniele A. Di Pietro, Alexandre Ern, and Soleiman Yousef

Sophia Antipolis, June 29, 2015

Adaptive Newton Stefan C

Full adaptivity for unsteady nonlinear problems

Real (porous media) flows

- system of PDEs
- nonlinear (degenerate)
- unsteady
- → difficult numerical approximation, large troublesome systems of nonlinear algebraic equations

Goals of this work

- derive fully computable a posteriori error upper bounds
- distinguish different error components

Full adaptivity

- time step choice & mesh adaptivity
- stopping criteria for regularization and linear and nonlinear solvers

Adaptive Newton Stefan C

Full adaptivity for unsteady nonlinear problems

Real (porous media) flows

- system of PDEs
- nonlinear (degenerate)
- unsteady
- ⇒ difficult numerical approximation, large troublesome systems of nonlinear algebraic equations

Goals of this work

- derive fully computable a posteriori error upper bounds
- distinguish different error components

Full adaptivity

- time step choice & mesh adaptivity
- stopping criteria for regularization and linear and nonlinear solvers

Nonlinear steady problems

- Ladevèze (since 1990's), guaranteed upper bound
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), p-Laplacian
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems

- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems

- Verfürth (1998), framework for energy norm control
- Ohlberger (2001), non energy-norm estimates

- Nochetto, Schmidt, Verdi (2000), Stefan problem
- Dolejší, Ern, Vohralík (2013), ADR, Richards, robustness in a space-time dual mesh-dependent norm

Nonlinear steady problems

- Ladevèze (since 1990's), guaranteed upper bound
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), p-Laplacian
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems

- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems

- Verfürth (1998), framework for energy norm control
- Ohlberger (2001), non energy-norm estimates

- Nochetto, Schmidt, Verdi (2000), Stefan problem
- Dolejší, Ern, Vohralík (2013), ADR, Richards, robustness in a space-time dual mesh-dependent norm

Nonlinear steady problems

- Ladevèze (since 1990's), guaranteed upper bound
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), p-Laplacian
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems

- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems

- Verfürth (1998), framework for energy norm control
- Ohlberger (2001), non energy-norm estimates

- Nochetto, Schmidt, Verdi (2000), Stefan problem
- Dolejší, Ern, Vohralík (2013), ADR, Richards, robustness in a space-time dual mesh-dependent norm

Nonlinear steady problems

- Ladevèze (since 1990's), guaranteed upper bound
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), p-Laplacian
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems

- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems

- Verfürth (1998), framework for energy norm control
- Ohlberger (2001), non energy-norm estimates

- Nochetto, Schmidt, Verdi (2000), Stefan problem
- Dolejší, Ern, Vohralík (2013), ADR, Richards, robustness in a space-time dual mesh-dependent norm

Previous results – adaptive strategies

Stopping criteria for algebraic solvers

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
- Arioli (2000's), comparison of the algebraic and discretization errors by a priori arguments

Adaptive inexact Newton method

- Bank and Rose (1982), combination with multigrid
- Hackbusch and Reusken (1989), damping and multigrid
- Deuflhard (1990's, 2004 book), adaptive damping and multigrid

Model errors

- Ladevèze (since 1990's), guaranteed upper bound
- Bernardi (2000's), estimation of model errors
- Babuška, Oden (2000's), verification and validation

• . . .

Previous results – adaptive strategies

Stopping criteria for algebraic solvers

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
- Arioli (2000's), comparison of the algebraic and discretization errors by a priori arguments

Adaptive inexact Newton method

- Bank and Rose (1982), combination with multigrid
- Hackbusch and Reusken (1989), damping and multigrid
- Deuflhard (1990's, 2004 book), adaptive damping and multigrid

Model errors

- Ladevèze (since 1990's), guaranteed upper bound
- Bernardi (2000's), estimation of model errors
- Babuška, Oden (2000's), verification and validation

• . . .

Previous results - adaptive strategies

Stopping criteria for algebraic solvers

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid stopping criterion
- Arioli (2000's), comparison of the algebraic and discretization errors by a priori arguments

Adaptive inexact Newton method

- Bank and Rose (1982), combination with multigrid
- Hackbusch and Reusken (1989), damping and multigrid
- Deuflhard (1990's, 2004 book), adaptive damping and multigrid

Model errors

- Ladevèze (since 1990's), guaranteed upper bound
- Bernardi (2000's), estimation of model errors
- Babuška, Oden (2000's), verification and validation

• .

Outline

2 Adaptive inexact Newton method

- A posteriori error estimate and its efficiency
- Applications
- Numerical results

3 The Stefan problem

- Dual norm a posteriori estimate and adaptivity
- Efficiency
- Energy error a posteriori estimate
- Numerical results

Outline

2 Adaptive inexact Newton method

- A posteriori error estimate and its efficiency
- Applications
- Numerical results

3 The Stefan problem

- Dual norm a posteriori estimate and adaptivity
- Efficiency
- Energy error a posteriori estimate
- Numerical results

4 Conclusions and future directions

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

 Choose initial vector U⁰. Set k := 1.
 U^{k-1} ⇒ matrix A^{k-1} and vector F^{k-1}: find U^k s.t. A^{k-1}U^k ≈ F^{k-1}.

Set U^{k,0} := U^{k-1} and i := 1.
 Do 1 algebraic solver step ⇒ U^{k,i} s.t. (R^{k,i} algebraic res.)
 A^{k-1}U^{k,i} = F^{k-1} - B^{k,i}.

• Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

Or Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

Martin Vohralík

Adaptive inexact linearization and regularization for unsteady nonlinear problems

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

- Choose initial vector U^0 . Set k := 1.
- 3 $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.
 - • Set $U^{k,0} := U^{k-1}$ and i := 1.
 - 2 Do 1 algebraic solver step \Rightarrow $U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

If O(X) = 0 (V(X) = 0) (V(X) = 0 (V(X) = 0 (V(X) = 0) (V(X) = 0 (V(X) = 0 (V(X) = 0) (V(X) = 0 (V(X) = 0 (V(X) = 0 (V(X) = 0) (V(X) = 0 (V(X) = 0

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

 Choose initial vector U⁰. Set k := 1.
 U^{k-1} ⇒ matrix A^{k-1} and vector F^{k-1}: find U^k s.t. A^{k-1}U^k ≈ F^{k-1}.

• • Set
$$U^{k,0} := U^{k-1}$$
 and $i := 1$.

2 Do 1 algebraic solver step \Rightarrow $U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

• Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

• Choose initial vector U^0 . Set k := 1.

U^{k-1} ⇒ matrix A^{k-1} and vector F^{k-1}: find U^k s.t.
 A^{k-1}U^k ≈ F^{k-1}.

Sonvergence? OK ⇒ U^k := U^{k,i}. KO ⇒ i := i + 1, back to 3.2.

• Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

Martin Vohralík

Adaptive inexact linearization and regularization for unsteady nonlinear problems

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

- Choose initial vector U^0 . Set k := 1.
- $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.

Set
$$U^{k,0} := U^{k-1}$$
 and $i := 1$.
Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($\mathbb{R}^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

Sonvergence? OK ⇒ U^k := U^{k,i}. KO ⇒ i := i + 1, back to 3.2.

If Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

- Choose initial vector U^0 . Set k := 1.
- $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.

3 • Set
$$U^{k,0} := U^{k-1}$$
 and $i := 1$.

2 Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.

• Convergence? OK \Rightarrow finish. KO \Rightarrow k := k + 1, back to 2.

Inexact iterative linearization

System of nonlinear algebraic equations Nonlinear operator $\mathcal{A}: \mathbb{R}^N \to \mathbb{R}^N$, vector $F \in \mathbb{R}^N$: find $U \in \mathbb{R}^N$ s.t. $\mathcal{A}(U) = F$

Algorithm (Inexact iterative linearization)

- Choose initial vector U^0 . Set k := 1.
- $U^{k-1} \Rightarrow matrix \mathbb{A}^{k-1}$ and vector F^{k-1} : find U^k s.t. $\mathbb{A}^{k-1}U^k \approx F^{k-1}$.

3 • Set
$$U^{k,0} := U^{k-1}$$
 and $i := 1$

2 Do 1 algebraic solver step $\Rightarrow U^{k,i}$ s.t. ($R^{k,i}$ algebraic res.)

$$\mathbb{A}^{k-1}U^{k,i}=F^{k-1}-R^{k,i}.$$

- Solution Convergence? $OK \Rightarrow U^k := U^{k,i}$. $KO \Rightarrow i := i + 1$, back to 3.2.
- Onvergence? $OK \Rightarrow finish$. $KO \Rightarrow k := k + 1$, back to 2.

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$ Numerical method

- underlying numerical method: the vector $U^{k,i}$ is associated with a (piecewise polynomial) approximation $u_h^{k,i}$
- Partial differential equation
 - underlying PDE, *u* its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

 How big is the error ||u - u_h^{k,i}|| on Newton step k and algebraic solver step i, how is it distributed?

Martin Vohralík

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$ Numerical method

• underlying numerical method: the vector $U^{k,i}$ is associated with a (piecewise polynomial) approximation $u_h^{k,i}$

Partial differential equation

• underlying PDE, *u* its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

 How big is the error ||u - u_h^{k,i}|| on Newton step k and algebraic solver step i, how is it distributed?

Martin Vohralík

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$

Numerical method

• underlying numerical method: the vector $U^{k,i}$ is associated with a (piecewise polynomial) approximation $u_h^{k,i}$

Partial differential equation

• underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

 How big is the error ||u - u_h^{k,i}|| on Newton step k and algebraic solver step i, how is it distributed?

Martin Vohralík

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$

Numerical method

• underlying numerical method: the vector $U^{k,i}$ is associated with a (piecewise polynomial) approximation $u_h^{k,i}$

Partial differential equation

• underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

 How big is the error ||u - u_h^{k,i}|| on Newton step k and algebraic solver step i, how is it distributed?

Martin Vohralík

Approximate solution

• approximate solution $U^{k,i}$ does not solve $\mathcal{A}(U^{k,i}) = F$

Numerical method

• underlying numerical method: the vector $U^{k,i}$ is associated with a (piecewise polynomial) approximation $u_h^{k,i}$

Partial differential equation

• underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

- What is a good stopping criterion for the linear solver?
- What is a good stopping criterion for the nonlinear solver?

Question (Error)

 How big is the error ||u - u_h^{k,i}|| on Newton step k and algebraic solver step i, how is it distributed?

Martin Vohralík

Model steady problem, discretization

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = \boldsymbol{f} \qquad \text{in } \Omega, \\ \boldsymbol{u} = \boldsymbol{0} \qquad \text{on } \partial \Omega$$

• $p > 1, q := \frac{p}{p-1}, f \in L^{q}(\Omega)$

- example: *p*-Laplacian with $\sigma(u, \nabla u) = |\nabla u|^{p-2} \nabla u$
- f piecewise polynomial for simplicity
- weak solution: $u \in V := W_0^{1,p}(\Omega)$ such that

$$(\boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}), \nabla \boldsymbol{v}) = (f, \boldsymbol{v}) \qquad \forall \boldsymbol{v} \in \boldsymbol{V}$$

Numerical approximation

- (shape-regular) mesh \mathcal{T}_h , linearization step k, algebraic step i
- $u_h^{k,i} \in V(\mathcal{T}_h)$ piecewise polynomial (discontinuous), $V(\mathcal{T}_h) \not\subset V$

Model steady problem, discretization

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = \boldsymbol{f} \qquad \text{in } \Omega, \\ \boldsymbol{u} = \boldsymbol{0} \qquad \text{on } \partial \Omega$$

• $p > 1, q := \frac{p}{p-1}, f \in L^{q}(\Omega)$

- example: *p*-Laplacian with $\sigma(u, \nabla u) = |\nabla u|^{p-2} \nabla u$
- f piecewise polynomial for simplicity
- weak solution: $u \in V := W_0^{1,p}(\Omega)$ such that

$$(\sigma(u, \nabla u), \nabla v) = (f, v) \quad \forall v \in V$$

Numerical approximation

- (shape-regular) mesh T_h, linearization step k, algebraic step i
- $u_h^{k,i} \in V(\mathcal{T}_h)$ piecewise polynomial (discontinuous), $V(\mathcal{T}_h) \not\subset V$

Outline

- 2 Adaptive inexact Newton method
 - A posteriori error estimate and its efficiency
 - Applications
 - Numerical results
- 3 The Stefan problem
 - Dual norm a posteriori estimate and adaptivity
 - Efficiency
 - Energy error a posteriori estimate
 - Numerical results

4 Conclusions and future directions

Abstract assumptions

Assumption A (Total flux reconstruction)

There exists $\mathbf{t}_{h}^{k,i} \in \mathbf{H}^{q}(\operatorname{div}, \Omega)$ and $\rho_{h}^{k,i} \in L^{q}(\Omega)$ such that $\nabla \cdot \mathbf{t}_{h}^{k,i} = f - \rho_{h}^{k,i}$.

Assumption B (Discretization, linearization, and alg. fluxes) There exist fluxes $\mathbf{d}_{h}^{k,i}, \mathbf{l}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$ such that (i) $\mathbf{t}_{h}^{k,i} = \mathbf{d}_{h}^{k,i} + \mathbf{l}_{h}^{k,i} + \mathbf{a}_{h}^{k,i}$; (ii) as the linear solver converges, $\|\mathbf{a}_{h}^{k,i}\|_{q} \to 0$;

(iii) as the nonlinear solver converges, $\|\mathbf{I}_{h}^{\kappa,l}\|_{q} \to 0$.

Assumption C (Approximation property)

 $\|\sigma(u_h^{k,i}, \nabla u_h^{k,i}) + \mathbf{d}_h^{k,i}\|_q \leq C$ (residual estimator).

Abstract assumptions

Assumption A (Total flux reconstruction)

There exists
$$\mathbf{t}_{h}^{k,i} \in \mathbf{H}^{q}(\operatorname{div}, \Omega)$$
 and $\rho_{h}^{k,i} \in L^{q}(\Omega)$ such that $\nabla \cdot \mathbf{t}_{h}^{k,i} = f - \rho_{h}^{k,i}$.

Assumption B (Discretization, linearization, and alg. fluxes)

There exist fluxes $\mathbf{d}_{h}^{k,i}, \mathbf{I}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$ such that (i) $\mathbf{t}_{h}^{k,i} = \mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i} + \mathbf{a}_{h}^{k,i};$

(ii) as the linear solver converges, $\|\mathbf{a}_{h}^{k,i}\|_{q} \rightarrow 0$;

(iii) as the nonlinear solver converges, $\|\mathbf{I}_{h}^{k,i}\|_{q} \to 0$.

Assumption C (Approximation property)

 $\|\sigma(u_h^{k,i}, \nabla u_h^{k,i}) + \mathbf{d}_h^{k,i}\|_q \leq C$ (residual estimator).

Abstract assumptions

Assumption A (Total flux reconstruction)

There exists
$$\mathbf{t}_{h}^{k,i} \in \mathbf{H}^{q}(\operatorname{div}, \Omega)$$
 and $\rho_{h}^{k,i} \in L^{q}(\Omega)$ such that $\nabla \cdot \mathbf{t}_{h}^{k,i} = f - \rho_{h}^{k,i}$.

Assumption B (Discretization, linearization, and alg. fluxes)

There exist fluxes $\mathbf{d}_{h}^{k,i}, \mathbf{I}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$ such that (i) $\mathbf{t}_{h}^{k,i} = \mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i} + \mathbf{a}_{h}^{k,i};$

(ii) as the linear solver converges, $\|\mathbf{a}_{h}^{k,i}\|_{q} \rightarrow 0$;

(iii) as the nonlinear solver converges, $\||\mathbf{I}_{h}^{k,i}\|_{q} \to 0$.

Assumption C (Approximation property)

$$\|\sigma(u_h^{k,i},
abla u_h^{k,i})+ \mathbf{d}_h^{k,i}\|_q \leq C$$
 (residual estimator).

Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let

- $u \in V$ be the weak solution,
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumptions A and B hold.

Then there holds

$$\mathcal{J}_{u}(u_{h}^{k,i}) \leq \eta_{\text{disc}}^{k,i} + \eta_{\text{lin}}^{k,i} + \eta_{\text{alg}}^{k,i} + \eta_{\text{rem}}^{k,i}.$$

Moreover, under Assumption C and under appropriate stopping criteria,

$$\eta_{\text{disc}}^{k,i} + \eta_{\text{lin}}^{k,i} + \eta_{\text{alg}}^{k,i} + \eta_{\text{rem}}^{k,i} \le C\mathcal{J}_u(u_h^{k,i}),$$

up to quadrature errors

Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)

Let

- $u \in V$ be the weak solution,
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumptions A and B hold.

Then there holds

$$\mathcal{J}_{u}(u_{h}^{k,i}) \leq \eta_{\text{disc}}^{k,i} + \eta_{\text{lin}}^{k,i} + \eta_{\text{alg}}^{k,i} + \eta_{\text{rem}}^{k,i}.$$

Moreover, under Assumption C and under appropriate stopping criteria,

$$\eta_{\text{disc}}^{k,i} + \eta_{\text{lin}}^{k,i} + \eta_{\text{alg}}^{k,i} + \eta_{\text{rem}}^{k,i} \leq C \mathcal{J}_u(u_h^{k,i}),$$

up to quadrature errors.

Estimators

Adaptive Newton Stefan C

• discretization estimator

$$\eta_{\mathrm{disc},\mathcal{K}}^{k,i} := 2^{\frac{1}{p}} \left(\|\boldsymbol{\sigma}(\boldsymbol{u}_{h}^{k,i}, \nabla \boldsymbol{u}_{h}^{k,i}) + \mathbf{d}_{h}^{k,i}\|_{q,\mathcal{K}} + \left\{ \sum_{\boldsymbol{e}\in\mathcal{E}_{\mathcal{K}}} h_{\boldsymbol{e}}^{1-q} \| [\![\boldsymbol{u}_{h}^{k,i}]\!]\|_{q,\boldsymbol{e}}^{q} \right\}^{\frac{1}{q}} \right)$$

- *linearization* estimator $\eta_{\text{lin},K}^{k,i} := \|\mathbf{I}_{h}^{k,i}\|_{q,K}$
- algebraic estimator

$$\eta^{k,i}_{\mathrm{alg},K} := \|\mathbf{a}^{k,i}_h\|_{q,K}$$

• algebraic remainder estimator $\eta_{\text{rem},K}^{k,i} := h_{\Omega} \| \rho_h^{k,i} \|_{q,K}$

•
$$\eta_{\cdot,\cdot}^{k,i} := \left\{ \sum_{K \in \mathcal{T}_h} (\eta_{\cdot,K}^{k,i})^q \right\}^{1/2}$$

Outline

Introduction

- 2 Adaptive inexact Newton method
 - A posteriori error estimate and its efficiency
 - Applications
 - Numerical results

3 The Stefan problem

- Dual norm a posteriori estimate and adaptivity
- Efficiency
- Energy error a posteriori estimate
- Numerical results

4 Conclusions and future directions

Nonconforming finite elements for the *p*-Laplacian

Discretization Find $u_h \in V_h$ such that

$$(\sigma(\nabla u_h), \nabla v_h) = (f_h, v_h) \quad \forall v_h \in V_h.$$

•
$$\sigma(\nabla u_h) = |\nabla u_h|^{p-2} \nabla u_h$$

- V_h the Crouzeix–Raviart space
- $f_h := \Pi_0 f$
- leads to the system of nonlinear algebraic equations

$$\mathcal{A}(U) = F$$

Nonconforming finite elements for the *p*-Laplacian

Discretization

Find $u_h \in V_h$ such that

$$(\sigma(\nabla u_h), \nabla v_h) = (f_h, v_h) \quad \forall v_h \in V_h.$$

•
$$\sigma(\nabla u_h) = |\nabla u_h|^{p-2} \nabla u_h$$

- V_h the Crouzeix–Raviart space
- $f_h := \Pi_0 f$
- leads to the system of nonlinear algebraic equations

$$\mathcal{A}(U) = F$$

Linearization

Linearization

Find $u_h^k \in V_h$ such that

$$(\boldsymbol{\sigma}^{k-1}(\nabla u_h^k), \nabla \psi_{\boldsymbol{e}}) = (f_h, \psi_{\boldsymbol{e}}) \qquad \forall \boldsymbol{e} \in \mathcal{E}_h^{\mathrm{int}}.$$

- $u_h^0 \in V_h$ yields the initial vector U^0
- fixed-point linearization

$$\boldsymbol{\sigma}^{k-1}(\boldsymbol{\xi}) := |\nabla \boldsymbol{u}_h^{k-1}|^{p-2}\boldsymbol{\xi}$$

Newton linearization

$$\sigma^{k-1}(\xi) := |\nabla u_h^{k-1}|^{p-2} \xi + (p-2) |\nabla u_h^{k-1}|^{p-4} (\nabla u_h^{k-1} \otimes \nabla u_h^{k-1}) (\xi - \nabla u_h^{k-1})$$

• leads to the system of linear algebraic equations

$$\mathbb{A}^{k-1}U^k = F^{k-1}$$

Linearization

Linearization

Find $u_h^k \in V_h$ such that

$$(\boldsymbol{\sigma}^{k-1}(\nabla u_h^k), \nabla \psi_e) = (f_h, \psi_e) \qquad \forall e \in \mathcal{E}_h^{\mathrm{int}}.$$

- $u_h^0 \in V_h$ yields the initial vector U^0
- fixed-point linearization

$$\sigma^{k-1}(\boldsymbol{\xi}) := |\nabla u_h^{k-1}|^{p-2}\boldsymbol{\xi}$$

Newton linearization

$$\sigma^{k-1}(\boldsymbol{\xi}) := |\nabla u_h^{k-1}|^{p-2} \boldsymbol{\xi} + (p-2) |\nabla u_h^{k-1}|^{p-4}$$
$$(\nabla u_h^{k-1} \otimes \nabla u_h^{k-1}) (\boldsymbol{\xi} - \nabla u_h^{k-1})$$

leads to the system of linear algebraic equations

$$\mathbb{A}^{k-1}U^k = F^{k-1}$$

Algebraic solution

Algebraic solution Find $u_h^{k,i} \in V_h$ such that

$$(\sigma^{k-1}(\nabla u_h^{k,i}), \nabla \psi_e) = (f_h, \psi_e) - R_e^{k,i} \qquad \forall e \in \mathcal{E}_h^{\text{int}}.$$

• algebraic residual vector $R^{k,i} = \{R_e^{k,i}\}_{e \in \mathcal{E}_h^{\text{int}}}$

o discrete system

$$\mathbb{A}^{k-1}U^k = F^{k-1} - R^{k,i}$$

Algebraic solution

Algebraic solution Find $u_{b}^{k,i} \in V_{b}$ such that

$$(\sigma^{k-1}(\nabla u_h^{k,i}), \nabla \psi_e) = (f_h, \psi_e) - R_e^{k,i} \qquad \forall e \in \mathcal{E}_h^{\text{int}}.$$

- algebraic residual vector $R^{k,i} = \{R_e^{k,i}\}_{e \in \mathcal{E}_h^{\text{int}}}$
- discrete system

$$\mathbb{A}^{k-1}U^k = F^{k-1} - R^{k,i}$$

Flux reconstructions

Definition (Construction of $(\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i})$)

For all
$$K \in \mathcal{T}_h$$
,
 $(\mathbf{d}_h^{k,i} + \mathbf{I}_h^{k,i})|_K := -\boldsymbol{\sigma}^{k-1} (\nabla u_h^{k,i})|_K + \frac{f_h|_K}{d} (\mathbf{x} - \mathbf{x}_K) - \sum_{e \in \mathcal{E}_K} \frac{\overline{R}_e^{k,i}}{d|D_e|} (\mathbf{x} - \mathbf{x}_K)|_{K_e}$,
where, $\overline{R}_e^{k,i} = (f_h, \psi_e) - (\boldsymbol{\sigma}^{k-1} (\nabla u_h^{k,i}), \nabla \psi_e) \quad \forall e \in \mathcal{E}_h^{\text{int}}$.
Definition (Construction of $\mathbf{d}_h^{k,i}$)
For all $K \in \mathcal{T}_h$,
 $\mathbf{d}_h^{k,i}|_K := -\boldsymbol{\sigma} (\nabla u_h^{k,i})|_K + \frac{f_h|_K}{d} (\mathbf{x} - \mathbf{x}_K) - \sum_{e \in \mathcal{E}_K} \frac{\overline{R}_e^{k,i}}{d|D_e|} (\mathbf{x} - \mathbf{x}_K)|_{K_e}$,
where $\overline{R}_e^{k,i} := (f_h, \psi_e) - (\boldsymbol{\sigma} (\nabla u_h^{k,i}), \nabla \psi_e) \quad \forall e \in \mathcal{E}_h^{\text{int}}$.

Definition (Construction of $\mathbf{a}_{h}^{k,i}$)

Set $\mathbf{a}_{h}^{k,i} := (\mathbf{d}_{h}^{k,i+\nu} + \mathbf{I}_{h}^{k,i+\nu}) - (\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i})$ for (adaptively chosen) $\nu > 0$ additional algebraic solvers steps; $\mathbf{R}^{k,i+\nu} \rightsquigarrow \rho_{h}^{k,i}$.

Martin Vohralík

Flux reconstructions

Definition (Construction of $(\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i})$)

For all
$$K \in \mathcal{T}_h$$
,
 $(\mathbf{d}_h^{k,i} + \mathbf{l}_h^{k,i})|_K := -\sigma^{k-1}(\nabla u_h^{k,i})|_K + \frac{f_h|_K}{d}(\mathbf{x} - \mathbf{x}_K) - \sum_{e \in \mathcal{E}_K} \frac{R_e^{k,i}}{d|D_e|}(\mathbf{x} - \mathbf{x}_K)|_{K_e}$,
where, $R_e^{k,i} = (f_h, \psi_e) - (\sigma^{k-1}(\nabla u_h^{k,i}), \nabla \psi_e) \quad \forall e \in \mathcal{E}_h^{\text{int}}$.
Definition (Construction of $\mathbf{d}_h^{k,i}$)
For all $K \in \mathcal{T}_h$,
 $\mathbf{d}_h^{k,i}|_K := -\sigma(\nabla u_h^{k,i})|_K + \frac{f_h|_K}{d}(\mathbf{x} - \mathbf{x}_K) - \sum_{e \in \mathcal{E}_K} \frac{\overline{R}_e^{k,i}}{d|D_e|}(\mathbf{x} - \mathbf{x}_K)|_{K_e}$,
where $\overline{R}_e^{k,i} := (f_h, \psi_e) - (\sigma(\nabla u_h^{k,i}), \nabla \psi_e) \quad \forall e \in \mathcal{E}_h^{\text{int}}$.

Definition (Construction of $\mathbf{a}_{h}^{K,I}$

Set $\mathbf{a}_{h}^{k,i} := (\mathbf{d}_{h}^{k,i+\nu} + \mathbf{I}_{h}^{k,i+\nu}) - (\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i})$ for (adaptively chosen) $\nu > 0$ additional algebraic solvers steps; $\mathbf{R}^{k,i+\nu} \rightsquigarrow \rho_{h}^{k,i}$.

Martin Vohralík

Flux reconstructions

Definition (Construction of $(\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i})$)

For all $K \in \mathcal{T}_h$. $\begin{aligned} (\mathbf{d}_{h}^{k,i}+\mathbf{I}_{h}^{k,i})|_{\mathcal{K}} &:= -\boldsymbol{\sigma}^{k-1}(\nabla u_{h}^{k,i})|_{\mathcal{K}} + \frac{f_{h}|_{\mathcal{K}}}{\boldsymbol{\sigma}}(\mathbf{x}-\mathbf{x}_{\mathcal{K}}) - \sum_{e \in \mathcal{E}_{\mathcal{K}}} \frac{R_{e}^{k,i}}{\boldsymbol{\sigma}|D_{e}|}(\mathbf{x}-\mathbf{x}_{\mathcal{K}})|_{\mathcal{K}_{e}}, \\ \text{where, } R_{e}^{k,i} &= (f_{h},\psi_{e}) - (\boldsymbol{\sigma}^{k-1}(\nabla u_{h}^{k,i}),\nabla\psi_{e}) \quad \forall e \in \mathcal{E}_{h}^{\text{int}}. \end{aligned}$ Definition (Construction of $\mathbf{d}_{h}^{k,i}$) For all $K \in \mathcal{T}_h$. $\begin{aligned} \mathbf{d}_{h}^{k,i}|_{\mathcal{K}} &:= -\boldsymbol{\sigma}(\nabla u_{h}^{k,i})|_{\mathcal{K}} + \frac{f_{h}|_{\mathcal{K}}}{d}(\mathbf{x} - \mathbf{x}_{\mathcal{K}}) - \sum_{e \in \mathcal{E}_{K}} \frac{\bar{R}_{e}^{k,i}}{d|D_{e}|}(\mathbf{x} - \mathbf{x}_{\mathcal{K}})|_{\mathcal{K}_{e}}, \\ \text{where } \bar{R}_{e}^{k,i} &:= (f_{h}, \psi_{e}) - (\boldsymbol{\sigma}(\nabla u_{h}^{k,i}), \nabla \psi_{e}) \quad \forall e \in \mathcal{E}_{h}^{\text{int}}. \end{aligned}$ Definition (Construction of $\mathbf{a}_{b}^{k,i}$) Set $\mathbf{a}_{h}^{k,i} := (\mathbf{d}_{h}^{k,i+\nu} + \mathbf{I}_{h}^{k,i+\nu}) - (\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i})$ for (adaptively chosen)

 $\nu > 0$ additional algebraic solvers steps; $R^{k,i+\nu} \rightsquigarrow \rho_h^{k,i}$.

Martin Vohralík

Lemma (Assumptions A and B)

Assumptions A and B hold.

Comments

||**a**_h^{k,i}||_{q,K}→0 as the linear solver converges by definition.
 ||**I**_h^{k,i}||_{q,K}→0 as the nonlinear solver converges by the construction of **I**_h^{k,i}.

Lemma (Assumption C)

Assumption C holds.

- $\mathbf{d}_h^{k,i}$ close to $\sigma(\nabla u_h^{k,i})$
- approximation properties of Raviart–Thomas–Nédélec spaces

Lemma (Assumptions A and B)

Assumptions A and B hold.

Comments

*||a_h^{k,i}||_{q,K}→*0 as the linear solver converges by definition.
 *||I_h^{k,i}||_{q,K}→*0 as the nonlinear solver converges by the construction of *I_h^{k,i}*.

Lemma (Assumption C)

Assumption C holds.

- $\mathbf{d}_h^{k,i}$ close to $\sigma(\nabla u_h^{k,i})$
- approximation properties of Raviart–Thomas–Nédélec spaces

Lemma (Assumptions A and B)

Assumptions A and B hold.

Comments

- $\|\mathbf{a}_{h}^{k,i}\|_{q,K} \rightarrow 0$ as the linear solver converges by definition.
- ||I_h^{k,i}||_{q,K}→0 as the nonlinear solver converges by the construction of I_h^{k,i}.

Lemma (Assumption C)

Assumption C holds.

- $\mathbf{d}_h^{k,i}$ close to $\sigma(\nabla u_h^{k,i})$
- approximation properties of Raviart–Thomas–Nédélec spaces

Lemma (Assumptions A and B)

Assumptions A and B hold.

Comments

- $\|\mathbf{a}_{h}^{k,i}\|_{q,K} \rightarrow 0$ as the linear solver converges by definition.
- ||I_h^{k,i}||_{q,K}→0 as the nonlinear solver converges by the construction of I_h^{k,i}.

Lemma (Assumption C)

Assumption C holds.

- $\mathbf{d}_{h}^{k,i}$ close to $\sigma(\nabla u_{h}^{k,i})$
- approximation properties of Raviart–Thomas–Nédélec spaces

Discretization methods

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin
- various finite volumes
- mixed finite elements

Linearizations

- fixed point
- Newton
- Linear solvers
 - independent of the linear solver
- ... all Assumptions A to C verified

Discretization methods

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin
- various finite volumes
- mixed finite elements

Linearizations

- fixed point
- Newton

Linear solvers

- independent of the linear solver
- ... all Assumptions A to C verified

Discretization methods

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin
- various finite volumes
- mixed finite elements

Linearizations

- fixed point
- Newton

Linear solvers

• independent of the linear solver

Discretization methods

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin
- various finite volumes
- mixed finite elements

Linearizations

- fixed point
- Newton

Linear solvers

- independent of the linear solver
- ... all Assumptions A to C verified

Outline

2 Adaptive inexact Newton method

- A posteriori error estimate and its efficiency
- Applications
- Numerical results

3 The Stefan problem

- Dual norm a posteriori estimate and adaptivity
- Efficiency
- Energy error a posteriori estimate
- Numerical results

4 Conclusions and future directions

Numerical experiment I

Model problem

• *p*-Laplacian

$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega,$$
$$u = u_{\text{D}} \quad \text{on } \partial \Omega$$

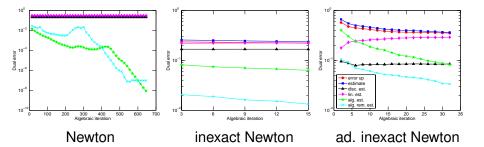
• weak solution (used to impose the Dirichlet BC)

$$u(x,y) = -\frac{p-1}{p} \left((x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 \right)^{\frac{p}{2(p-1)}} + \frac{p-1}{p} \left(\frac{1}{2} \right)^{\frac{p}{p-1}}$$

- tested values p = 1.5 and 10
- nonconforming finite elements

Adaptive Newton Stefan C A posteriori estimate and its efficiency Applications Numerical results

Error and estimators as a function of CG iterations, p = 10, 6th level mesh, 6th Newton step.

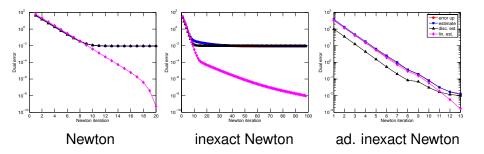


Martin Vohralík

Adaptive inexact linearization and regularization for unsteady nonlinear problems 18

Adaptive Newton Stefan C A posteriori estimate and its efficiency Applications Numerical results

Error and estimators as a function of Newton iterations, p = 10, 6th level mesh

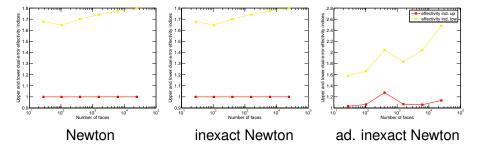


Martin Vohralík

Adaptive inexact linearization and regularization for unsteady nonlinear problems 19 / 41

I Adaptive Newton Stefan C A posteriori estimate and its efficiency Applications Numerical results

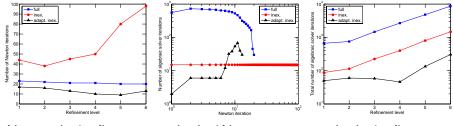
Effectivity indices, p = 10



Martin Vohralík

Adaptive inexact linearization and regularization for unsteady nonlinear problems 20

Newton and algebraic iterations, p = 10



Newton it. / refinement alg. it. / Newton step

alg. it. / refinement

Martin Vohralík

Numerical experiment II

Model problem

p-Laplacian

$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega,$$
$$u = u_{\text{D}} \quad \text{on } \partial \Omega$$

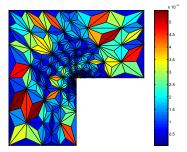
• weak solution (used to impose the Dirichlet BC)

$$u(r,\theta)=r^{\frac{7}{8}}\sin(\theta\frac{7}{8})$$

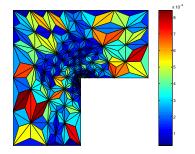
- p = 4, L-shape domain, singularity in the origin (Carstensen and Klose (2003))
- nonconforming finite elements

Adaptive Newton Stefan C A posteriori estimate and its efficiency Applications Numerical results

Error distribution on an adaptively refined mesh



Estimated error distribution



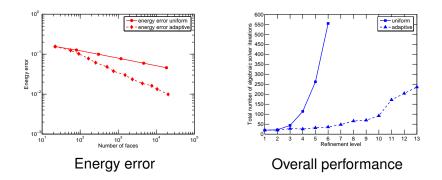
Exact error distribution

Martin Vohralík

Adaptive inexact linearization and regularization for unsteady nonlinear problems

Adaptive Newton Stefan C A posteriori estimate and its efficiency Applications Numerical results

Energy error and overall performance



24/41

Martin Vohralík

Outline

Introduction

2 Adaptive inexact Newton method

- A posteriori error estimate and its efficiency
- Applications
- Numerical results

3 The Stefan problem

- Dual norm a posteriori estimate and adaptivity
- Efficiency
- Energy error a posteriori estimate
- Numerical results

4 Conclusions and future directions

Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

The Stefan problem

The Stefan problem

$$\begin{array}{ll} \partial_t u - \Delta\beta(u) = f & \text{in } \Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{in } \Omega, \\ \beta(u) = 0 & \text{on } \partial\Omega \times (0, T) \end{array}$$

Nomenclature

- *u* enthalpy, $\beta(u)$ temperature
- β: L_β-Lipschitz continuous, β(s) = 0 in (0, 1), strictly increasing otherwise
- phase change, degenerate parabolic problem
- $u_0 \in L^2(\Omega), f \in L^2(0, T; L^2(\Omega))$

Context

- Ph.D. thesis of Soleiman Yousef
- collaboration with IFP Energies Nouvelles

Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

The Stefan problem

The Stefan problem

$$\begin{array}{ll} \partial_t u - \Delta \beta(u) = f & \text{in } \Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{in } \Omega, \\ \beta(u) = 0 & \text{on } \partial \Omega \times (0, T) \end{array}$$

Nomenclature

- *u* enthalpy, $\beta(u)$ temperature
- β: L_β-Lipschitz continuous, β(s) = 0 in (0, 1), strictly increasing otherwise
- phase change, degenerate parabolic problem

•
$$u_0 \in L^2(\Omega), f \in L^2(0, T; L^2(\Omega))$$

Context

- Ph.D. thesis of Soleiman Yousef
- collaboration with IFP Energies Nouvelles

Adaptive inexact linearization and regularization for unsteady nonlinear problems 25 / 41

Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

The Stefan problem

The Stefan problem

$$\begin{array}{ll} \partial_t u - \Delta \beta(u) = f & \text{in } \Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \text{in } \Omega, \\ \beta(u) = 0 & \text{on } \partial \Omega \times (0, T) \end{array}$$

Nomenclature

- *u* enthalpy, $\beta(u)$ temperature
- β: L_β-Lipschitz continuous, β(s) = 0 in (0, 1), strictly increasing otherwise
- phase change, degenerate parabolic problem

•
$$u_0 \in L^2(\Omega), f \in L^2(0, T; L^2(\Omega))$$

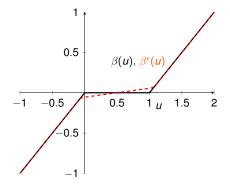
Context

- Ph.D. thesis of Soleiman Yousef
- collaboration with IFP Energies Nouvelles

I Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

Numerical practice: regularization

Regularization of β , parameter ϵ



Martin Vohralík

Adaptive Newton Stefan C

Discretization

• . . .

Question (Stopping and balancing criteria)

- What is a good choice of the
 - regularization parameter ε?
 - time step?
 - space mesh?
- What is a good stopping criterion for the
 - nonlinear solver?
 - linear solver?

Question (Error)

 How big is the error ||u|_{In} - u^{n, ε, k, i}_h|| on time step n, space mesh Kⁿ, regularization parameter ε, linearization step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?

Martin Vohralík

Adaptive Newton Stefan C

Discretization

...

Question (Stopping and balancing criteria)

- What is a good choice of the
 - regularization parameter ϵ ?
 - time step?
 - space mesh?
- What is a good stopping criterion for the
 - onlinear solver?
 - Inear solver?

Question (Error)

 How big is the error ||u|_{In} - u^{n, ε, k, i}_h|| on time step n, space mesh Kⁿ, regularization parameter ε, linearization step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?

Martin Vohralík

Adaptive Newton Stefan C

Discretization

• . . .

Question (Stopping and balancing criteria)

- What is a good choice of the
 - regularization parameter ε?
 - time step?
 - space mesh?
- What is a good stopping criterion for the
 - nonlinear solver?
 - linear solver?

Question (Error)

 How big is the error ||u|_{In} - u^{n, ε, k, i}_h|| on time step n, space mesh Kⁿ, regularization parameter ε, linearization step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?

Adaptive Newton Stefan C

Discretization

• . . .

Question (Stopping and balancing criteria)

- What is a good choice of the
 - regularization parameter ε?
 - time step?
 - space mesh?
- What is a good stopping criterion for the
 - nonlinear solver?
 - Inear solver?

Question (Error)

 How big is the error ||u|_{In} - u^{n,ε,k,i}_h|| on time step n, space mesh Kⁿ, regularization parameter ε, linearization step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?

Setting

Adaptive Newton Stefan C

Functional spaces $Z := H^1(0, T; H^{-1}(\Omega))$ $X := L^2(0, T; H_0^1(\Omega)),$ $u \in Z$ with $\beta(u) \in X$, Approximate solution (with linearization and regularization) $u_{b-}^{\epsilon,k} \in \mathbb{Z}, \qquad \partial_t u_{b-}^{\epsilon,k} \in L^2(0,T;L^2(\Omega)), \qquad \beta(u_{b-}^{\epsilon,k}) \in \mathbb{X},$ **Residual** $\mathcal{R}(u_{b_{\tau}}^{\epsilon,k}) \in X'$ and its dual norm, $\varphi \in X$ $\|\mathcal{R}(u_{h_{\tau}}^{\epsilon,k})\|_{X'} := \sup_{\varphi \in X, \|\varphi\|_{X} = 1} \langle \mathcal{R}(u_{h_{\tau}}^{\epsilon,k}), \varphi \rangle_{X',X} \quad \text{formula}$

Adaptive inexact linearization and regularization for unsteady nonlinear problems 28 / 41

Setting

Adaptive Newton Stefan C

Functional spaces

$$X := L^2(0, T; H^1_0(\Omega)),$$

$$Z:=H^1(0,T;H^{-1}(\Omega))$$

Weak formulation

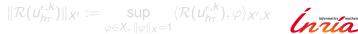
 $u \in Z$ with $\beta(u) \in X$,

 $u(\cdot,0) = u_0$ in Ω ,

$\langle \partial_t u, \varphi \rangle(s) + (\nabla \beta(u), \nabla \varphi)(s) = (f, \varphi)(s) \quad \forall \varphi \in H^1_n(\Omega), s \in (0, T)$

Approximate solution (with linearization and regularization) $u_{b-}^{\epsilon,k} \in \mathbb{Z}, \qquad \partial_t u_{b-}^{\epsilon,k} \in L^2(0,T;L^2(\Omega)), \qquad \beta(u_{b-}^{\epsilon,k}) \in \mathbb{X},$

Residual $\mathcal{R}(u_{b_{\tau}}^{\epsilon,k}) \in X'$ and its dual norm, $\varphi \in X$



Setting

Adaptive Newton Stefan C

Functional spaces

$$X := L^2(0, T; H^1_0(\Omega)),$$

$$Z:=H^1(0,T;H^{-1}(\Omega))$$

Weak formulation

 $u \in Z$ with $\beta(u) \in X$, $u(\cdot,0) = u_0$ in Ω , $\langle \partial_t u, \varphi \rangle(s) + (\nabla \beta(u), \nabla \varphi)(s) = (f, \varphi)(s) \quad \forall \varphi \in H^1_0(\Omega), s \in (0, T)$ Approximate solution (with linearization and regularization) $u_{h_{\tau}}^{\epsilon,k} \in Z, \qquad \partial_t u_{h_{\tau}}^{\epsilon,k} \in L^2(0,T;L^2(\Omega)), \qquad \beta(u_{h_{\tau}}^{\epsilon,k}) \in X,$ $u_{h_{\tau}}^{\epsilon,k}|_{I_{n}}$ is affine in time on I_{n} $\forall 1 \leq n \leq N$ **Residual** $\mathcal{R}(u_{h_{\tau}}^{\epsilon,\kappa}) \in X'$ and its dual norm, $\varphi \in X$

Setting

Adaptive Newton Stefan C

Functional spaces

$$X := L^2(0, T; H^1_0(\Omega)),$$

$$Z:=H^1(0,T;H^{-1}(\Omega))$$

Weak formulation

 $u \in Z \quad \text{with } \beta(u) \in X,$ $u(\cdot, 0) = u_0 \quad \text{in } \Omega,$ $\langle \partial_t u, \varphi \rangle(s) + (\nabla \beta(u), \nabla \varphi)(s) = (f, \varphi)(s) \quad \forall \varphi \in H_0^1(\Omega), s \in (0, T)$

Approximate solution (with linearization and regularization)

$$\begin{split} u_{h\tau}^{\epsilon,k} \in Z, \qquad & \partial_t u_{h\tau}^{\epsilon,k} \in L^2(0,T;L^2(\Omega)), \qquad \beta(u_{h\tau}^{\epsilon,k}) \in X, \\ & u_{h\tau}^{\epsilon,k}|_{I_n} \text{ is affine in time on } I_n \qquad \forall 1 \le n \le N \end{split}$$

 $\begin{aligned} & \operatorname{\mathsf{Residual}} \, \mathcal{R}(u_{h_{\tau}}^{\epsilon,k}) \in X' \text{ and its dual norm, } \varphi \in X \\ & \langle \mathcal{R}(u_{h_{\tau}}^{\epsilon,k}), \varphi \rangle_{X',X} := \int_0^T \Bigl\{ \langle \partial_t (u - u_{h_{\tau}}^{\epsilon,k}), \varphi \rangle + (\nabla (\beta(u) - \beta(u_{h_{\tau}}^{\epsilon,k})), \nabla \varphi) \Bigr\} (s) \mathrm{d}s, \\ & \| \mathcal{R}(u_{h_{\tau}}^{\epsilon,k}) \|_{X'} := \sup_{\varphi \in X, \, \|\varphi\|_X = 1} \langle \mathcal{R}(u_{h_{\tau}}^{\epsilon,k}), \varphi \rangle_{X',X} \end{aligned}$

1 Introduction

2 Adaptive inexact Newton method

- A posteriori error estimate and its efficiency
- Applications
- Numerical results

3 The Stefan problem

- Dual norm a posteriori estimate and adaptivity
- Efficiency
- Energy error a posteriori estimate
- Numerical results

4 Conclusions and future directions

Estimate distinguishing different error components

Dual norm estimate Efficiency Energy estimate Numerical results

Assumption A (Equilibrated flux reconstruction)

For all $n \ge 1$, $k \ge 1$, and $\epsilon > 0$, there exists $\mathbf{t}_h^{n,\epsilon,k} \in \mathbf{H}(\operatorname{div}; \Omega)$ s.t. $(\nabla \cdot \mathbf{t}_h^{n,\epsilon,k}, 1)_{\mathcal{K}} = (f^n, 1)_{\mathcal{K}} - (\partial_t u_h^{n,\epsilon,k}, 1)_{\mathcal{K}} \quad \forall \mathcal{K} \in \mathcal{K}^n.$

Theorem (An estimate distinguishing the error components)

Let Assumption A hold. Then, for any $n \ge 1$, $k \ge 1$, and $\epsilon > 0$, $\|\mathcal{R}(u_h^{n,\epsilon,k})\|_{X'_n} \le \eta_{sp}^{n,\epsilon,k} + \eta_{tm}^{n,\epsilon,k} + \eta_{reg}^{n,\epsilon,k} + \eta_{lin}^{n,\epsilon,k}$.

$$\begin{aligned} (\eta_{\mathrm{sp}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{K}^{n}} \left(\eta_{\mathrm{R},K}^{n,\epsilon,k} + \|\mathbf{l}_{h}^{n,\epsilon,k} + \mathbf{t}_{h}^{n,\epsilon,k}\|_{K} \right)^{2}, \\ (\eta_{\mathrm{tm}}^{n,\epsilon,k})^{2} &:= \int_{I_{n}} \sum_{K \in \mathcal{K}^{n}} \|\nabla \Pi^{n} \beta(u_{h}^{n,\epsilon,k})(t) - \nabla \Pi^{n} \beta(u_{h\tau}^{n,\epsilon,k})(t^{n})\|_{K}^{2} \,\mathrm{d}t, \\ (\eta_{\mathrm{reg}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{K}^{n}} \|\nabla \Pi^{n} \beta(u_{h\tau}^{n,\epsilon,k})(t^{n}) - \nabla \Pi^{n} \beta_{\epsilon}(u_{h}^{n,\epsilon,k})(t^{n})\|_{K}^{2}, \\ (\eta_{\mathrm{lin}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{K}^{n}} \|\nabla \Pi^{n} \beta_{\epsilon}(u_{h\tau}^{n,\epsilon,k})(t^{n}) - \mathbf{l}_{h}^{n,\epsilon,k}\|_{K}^{2} \end{aligned}$$

Adaptive Newton Stefan C

Adaptive inexact linearization and regularization for unsteady nonlinear problems

Estimate distinguishing different error components

Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

Assumption A (Equilibrated flux reconstruction)

For all
$$n \ge 1$$
, $k \ge 1$, and $\epsilon > 0$, there exists $\mathbf{t}_h^{n,\epsilon,k} \in \mathbf{H}(\operatorname{div}; \Omega)$ s.t.
 $(\nabla \cdot \mathbf{t}_h^{n,\epsilon,k}, 1)_{\mathcal{K}} = (f^n, 1)_{\mathcal{K}} - (\partial_t u_h^{n,\epsilon,k}, 1)_{\mathcal{K}} \quad \forall \mathcal{K} \in \mathcal{K}^n.$

Theorem (An estimate distinguishing the error components)

Let Assumption A hold. Then, for any $n \ge 1$, $k \ge 1$, and $\epsilon > 0$, $\|\mathcal{R}(u_h^{n,\epsilon,k})\|_{X'_n} \le \eta_{sp}^{n,\epsilon,k} + \eta_{tm}^{n,\epsilon,k} + \eta_{reg}^{n,\epsilon,k} + \eta_{lin}^{n,\epsilon,k}$.

$$\begin{aligned} (\eta_{\mathrm{sp}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{K}^{n}} \left(\eta_{\mathrm{R},K}^{n,\epsilon,k} + \|\mathbf{I}_{h}^{n,\epsilon,k} + \mathbf{t}_{h}^{n,\epsilon,k}\|_{K} \right)^{2}, \\ (\eta_{\mathrm{tm}}^{n,\epsilon,k})^{2} &:= \int_{I_{n}} \sum_{K \in \mathcal{K}^{n}} \|\nabla \Pi^{n} \beta(u_{h}^{n,\epsilon,k})(t) - \nabla \Pi^{n} \beta(u_{h\tau}^{n,\epsilon,k})(t^{n})\|_{K}^{2} \,\mathrm{d}t, \\ (\eta_{\mathrm{reg}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{K}^{n}} \|\nabla \Pi^{n} \beta(u_{h\tau}^{n,\epsilon,k})(t^{n}) - \nabla \Pi^{n} \beta_{\epsilon}(u_{h}^{n,\epsilon,k})(t^{n})\|_{K}^{2}, \\ (\eta_{\mathrm{lin}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{K}^{n}} \|\nabla \Pi^{n} \beta_{\epsilon}(u_{h\tau}^{n,\epsilon,k})(t^{n}) - \mathbf{I}_{h}^{n,\epsilon,k}\|_{K}^{2} \end{aligned}$$

Adaptive inexact linearization and regularization for unsteady nonlinear problems

Estimate distinguishing different error components

Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

Assumption A (Equilibrated flux reconstruction)

For all
$$n \ge 1$$
, $k \ge 1$, and $\epsilon > 0$, there exists $\mathbf{t}_h^{n,\epsilon,k} \in \mathbf{H}(\operatorname{div}; \Omega)$ s.t.
 $(\nabla \cdot \mathbf{t}_h^{n,\epsilon,k}, 1)_{\mathcal{K}} = (f^n, 1)_{\mathcal{K}} - (\partial_t u_h^{n,\epsilon,k}, 1)_{\mathcal{K}} \qquad \forall \mathcal{K} \in \mathcal{K}^n.$

Theorem (An estimate distinguishing the error components)

Let Assumption A hold. Then, for any $n \ge 1$, $k \ge 1$, and $\epsilon > 0$, $\|\mathcal{R}(u_h^{n,\epsilon,k})\|_{X'_n} \le \eta_{sp}^{n,\epsilon,k} + \eta_{tm}^{n,\epsilon,k} + \eta_{reg}^{n,\epsilon,k} + \eta_{lin}^{n,\epsilon,k}$.

$$\begin{aligned} (\eta_{\mathrm{sp}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{K}^{n}} \left(\eta_{\mathrm{R},K}^{n,\epsilon,k} + \|\mathbf{I}_{h}^{n,\epsilon,k} + \mathbf{t}_{h}^{n,\epsilon,k}\|_{K} \right)^{2}, \\ (\eta_{\mathrm{tm}}^{n,\epsilon,k})^{2} &:= \int_{I_{n}} \sum_{K \in \mathcal{K}^{n}} \|\nabla \Pi^{n} \beta(u_{h}^{n,\epsilon,k})(t) - \nabla \Pi^{n} \beta(u_{h\tau}^{n,\epsilon,k})(t^{n})\|_{K}^{2} \,\mathrm{d}t, \\ (\eta_{\mathrm{reg}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{K}^{n}} \|\nabla \Pi^{n} \beta(u_{h\tau}^{n,\epsilon,k})(t^{n}) - \nabla \Pi^{n} \beta_{\epsilon}(u_{h}^{n,\epsilon,k})(t^{n})\|_{K}^{2}, \\ (\eta_{\mathrm{lin}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{K}^{n}} \|\nabla \Pi^{n} \beta_{\epsilon}(u_{h\tau}^{n,\epsilon,k})(t^{n}) - \mathbf{I}_{h}^{n,\epsilon,k}\|_{K}^{2} \end{aligned}$$

Adaptive inexact linearization and regularization for unsteady nonlinear problems

- A posteriori error estimate and its efficiency
- Applications
- Numerical results

The Stefan problem 3

Efficiency

- Energy error a posteriori estimate
- Numerical results

Assumption B (Technicalities)

All the meshes are shape-regular and all the approximations are piecewise polynomial.

Residual estimators

$$\left(\eta_{\text{res},1}^{n,\epsilon_n,k_n} \right)^2 := \tau^n \sum_{K \in \mathcal{K}^{n-1,n}} h_K^2 \| f^n - \partial_t u_h^{n,\epsilon_n,k_n} + \nabla \cdot \mathbf{I}_h^{n,\epsilon_n,k_n} \|_K^2$$
$$\left(\eta_{\text{res},2}^{n,\epsilon_n,k_n} \right)^2 := \tau^n \sum_{F \in \mathcal{F}^{1,n-1,n}} h_F \| [\![\mathbf{I}_h^{n,\epsilon_n,k_n}]\!] \cdot \mathbf{n}_F \|_F^2$$

Assumption C (Approximation property)

For all $1 \le n \le N$, there holds

$$\tau^{n} \sum_{K \in K n = 1, n} \|\mathbf{I}_{h}^{n, \epsilon_{n}, k_{n}} + \mathbf{t}_{h}^{n, \epsilon_{n}, k_{n}}\|_{K}^{2} \leq C\left(\left(\eta_{\mathrm{res}, 1}^{n, \epsilon_{n}, k_{n}}\right)^{2} + \left(\eta_{\mathrm{res}, 2}^{n, \epsilon_{n}, k_{n}}\right)^{2}\right)$$

Martin Vohralík

Adaptive inexact linearization and regularization for unsteady nonlinear problems

Assumption B (Technicalities)

All the meshes are shape-regular and all the approximations are piecewise polynomial.

Residual estimators

$$\left(\eta_{\text{res},1}^{n,\epsilon_n,k_n} \right)^2 := \tau^n \sum_{K \in \mathcal{K}^{n-1,n}} h_K^2 \| f^n - \partial_t u_h^{n,\epsilon_n,k_n} + \nabla \cdot \mathbf{I}_h^{n,\epsilon_n,k_n} \|_K^2 ,$$
$$\left(\eta_{\text{res},2}^{n,\epsilon_n,k_n} \right)^2 := \tau^n \sum_{F \in \mathcal{F}^{1,n-1,n}} h_F \| [\![\mathbf{I}_h^{n,\epsilon_n,k_n}]\!] \cdot \mathbf{n}_F \|_F^2$$

Assumption C (Approximation property)

For all $1 \le n \le N$, there holds

$$\tau^{n} \sum_{K \in \mathcal{K}^{n-1,n}} \|\mathbf{I}_{h}^{n,\epsilon_{n},k_{n}} + \mathbf{t}_{h}^{n,\epsilon_{n},k_{n}}\|_{K}^{2} \leq C\left(\left(\eta_{\mathrm{res},1}^{n,\epsilon_{n},k_{n}}\right)^{2} + \left(\eta_{\mathrm{res},2}^{n,\epsilon_{n},k_{n}}\right)^{2}\right)$$

Martin Vohralík

Adaptive inexact linearization and regularization for unsteady nonlinear problems

Assumption B (Technicalities)

All the meshes are shape-regular and all the approximations are piecewise polynomial.

Residual estimators

$$\begin{pmatrix} \eta_{\mathrm{res},1}^{n,\epsilon_n,k_n} \end{pmatrix}^2 := \tau^n \sum_{K \in \mathcal{K}^{n-1,n}} h_K^2 \| f^n - \partial_t u_h^{n,\epsilon_n,k_n} + \nabla \cdot \mathbf{I}_h^{n,\epsilon_n,k_n} \|_K^2 ,$$
$$\begin{pmatrix} \eta_{\mathrm{res},2}^{n,\epsilon_n,k_n} \end{pmatrix}^2 := \tau^n \sum_{F \in \mathcal{F}^{\mathrm{i},n-1,n}} h_F \| [\![\mathbf{I}_h^{n,\epsilon_n,k_n}]\!] \cdot \mathbf{n}_F \|_F^2$$

Assumption C (Approximation property)

For all $1 \le n \le N$, there holds

$$\tau^{n} \sum_{K \in \mathcal{K}^{n-1,n}} \|\mathbf{I}_{h}^{n,\epsilon_{n},k_{n}} + \mathbf{t}_{h}^{n,\epsilon_{n},k_{n}}\|_{K}^{2} \leq C\left(\left(\eta_{\mathrm{res},1}^{n,\epsilon_{n},k_{n}}\right)^{2} + \left(\eta_{\mathrm{res},2}^{n,\epsilon_{n},k_{n}}\right)^{2}\right).$$

Theorem (Efficiency)

Let, for all $1 \le n \le N$, the stopping and balancing criteria be satisfied with the parameters small enough. Let Assumptions B and C hold. Then

$$\eta_{\mathrm{sp}}^{n,\epsilon_n,k_n} + \eta_{\mathrm{tm}}^{n,\epsilon_n,k_n} + \eta_{\mathrm{reg}}^{n,\epsilon_n,k_n} + \eta_{\mathrm{lin}}^{n,\epsilon_n,k_n} \lesssim \|\mathcal{R}(u_h^{n,\epsilon_n,k_n})\|_{X_n'}$$

- A posteriori error estimate and its efficiency
- Applications
- Numerical results

The Stefan problem 3

- Energy error a posteriori estimate
- Numerical results

Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

Relation residual-energy norm

Energy estimate (by the Gronwall lemma) $\frac{L_{\beta}}{2} \|u - u_{h\tau}\|_{X'}^2 + \frac{L_{\beta}}{2} \|(u - u_{h\tau})(\cdot, T)\|_{H^{-1}(\Omega)}^2 + \|\beta(u) - \beta(u_{h\tau})\|_{Q_T}^2$ $\leq \frac{L_{\beta}}{2} (2e^{T} - 1) \left(\|\mathcal{R}(u_{h\tau})\|_{X'}^{2} + \|(u - u_{h\tau})(\cdot, 0)\|_{H^{-1}(\Omega)}^{2} \right)$

Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

Relation residual-energy norm

Energy estimate (by the Gronwall lemma) $\frac{L_{\beta}}{2} \|u - u_{h\tau}\|_{X'}^2 + \frac{L_{\beta}}{2} \|(u - u_{h\tau})(\cdot, T)\|_{H^{-1}(\Omega)}^2 + \|\beta(u) - \beta(u_{h\tau})\|_{Q_T}^2$ $\leq \frac{L_{\beta}}{2} (2e^{T} - 1) \left(\|\mathcal{R}(u_{h\tau})\|_{X'}^{2} + \|(u - u_{h\tau})(\cdot, 0)\|_{H^{-1}(\Omega)}^{2} \right)$ Theorem (Temperature and enthalpy errors, tight Gronwall) Let $u_{h\tau} \in Z$ such that $\beta(u_{h\tau}) \in X$ be arbitrary. There holds $\frac{L_{\beta}}{2} \|u - u_{h\tau}\|_{X'}^2 + \frac{L_{\beta}}{2} \|(u - u_{h\tau})(\cdot, T)\|_{H^{-1}(\Omega)}^2 + \|\beta(u) - \beta(u_{h\tau})\|_{Q_{T}}^2$ $+2\int_0^t \left(\|\beta(u)-\beta(u_{h\tau})\|_{Q_t}^2+\int_0^t \|\beta(u)-\beta(u_{h\tau})\|_{Q_s}^2e^{t-s}\,\mathrm{d}s\right)\mathrm{d}t$ $\leq \frac{L_{\beta}}{2} \bigg\{ (2e^{T}-1) \| (u-u_{h\tau})(\cdot,0) \|_{H^{-1}(\Omega)}^{2} + \| \mathcal{R}(u_{h\tau}) \|_{X'}^{2}$ $+2\int_0^T \left(\|\mathcal{R}(\boldsymbol{u}_{h\tau})\|_{\boldsymbol{X}_t'}^2 + \int_0^t \|\mathcal{R}(\boldsymbol{u}_{h\tau})\|_{\boldsymbol{X}_s'}^2 e^{t-s} \,\mathrm{d}s \right) \,\mathrm{d}t \bigg\}.$ ematic

1 Introduction

Adaptive inexact Newton method

- A posteriori error estimate and its efficiency
- Applications
- Numerical results

3 The Stefan problem

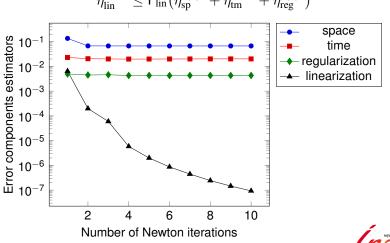
- Dual norm a posteriori estimate and adaptivity
- Efficiency
- Energy error a posteriori estimate
- Numerical results

4 Conclusions and future directions

I Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

Linearization stopping criterion

Linearization stopping criterion

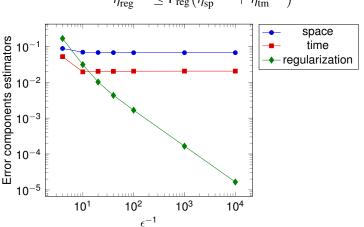


 $\eta_{\text{lin}}^{n,\epsilon,k} \leq \Gamma_{\text{lin}} (\eta_{\text{sp}}^{n,\epsilon,k} + \eta_{\text{tm}}^{n,\epsilon,k} + \eta_{\text{reg}}^{n,\epsilon,k})$

Adaptive Newton Stefan Dual norm estimate Efficiency Energy estimate Numerical results

Regularization stopping criterion

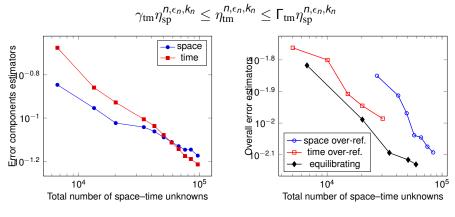
Regularization stopping criterion



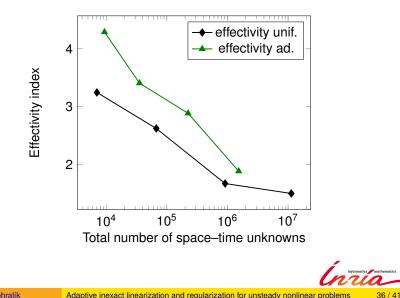
$$\eta_{\mathrm{reg}}^{n,\epsilon,\kappa_n} \leq \Gamma_{\mathrm{reg}} (\eta_{\mathrm{sp}}^{n,\epsilon,\kappa_n} + \eta_{\mathrm{tm}}^{n,\epsilon,\kappa_n})$$

Equilibrating time and space errors

Equilibrating time and space errors

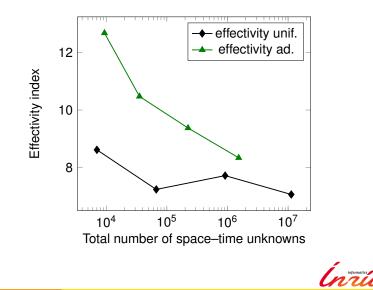


Dual norm estimate Efficiency Energy estimate Numerical results Adaptive Newton Stefan C Effectivity indices (dual norm of the residual)



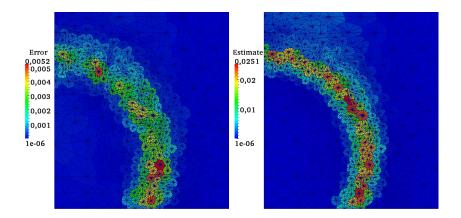
Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

Effectivity indices (energy norm)



I Adaptive Newton Stefan C Dual norm estimate Efficiency Energy estimate Numerical results

Actual and estimated error distribution



Martin Vohralík

Computational efficiency

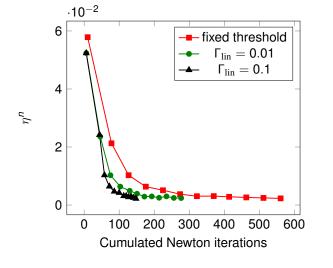


Figure: Number of cumulated Newton iterations vs. error estimate

Martin Vohralík

Introduction

Adaptive inexact Newton method

- A posteriori error estimate and its efficiency
- Applications
- Numerical results

3 The Stefan problem

- Dual norm a posteriori estimate and adaptivity
- Efficiency
- Energy error a posteriori estimate
- Numerical results

4 Conclusions and future directions

Conclusions and future directions

Entire adaptivity

- only a necessary number of algebraic/linearization solver iterations
- "online decisions": algebraic step / linearization step / regularization / space mesh refinement / time step modification
- important computational savings
- guaranteed and robust a posteriori error estimates

Future directions

- other coupled nonlinear systems
- convergence and optimality

Conclusions and future directions

Entire adaptivity

- only a necessary number of algebraic/linearization solver iterations
- "online decisions": algebraic step / linearization step / regularization / space mesh refinement / time step modification
- important computational savings
- guaranteed and robust a posteriori error estimates

Future directions

- other coupled nonlinear systems
- convergence and optimality

Bibliography

- ERN A., VOHRALÍK M., Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35 (2013), A1761–A1791.
- DI PIETRO D. A., VOHRALÍK M., YOUSEF S., Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem, *Math. Comp.* 84 (2015), 153–186.

Thank you for your attention!