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I Adaptive Newton Stefan C

Full adaptivity for unsteady nonlinear problems

Real (porous media) flows

system of PDEs
nonlinear (degenerate)
unsteady
⇒ difficult numerical approximation, large troublesome
systems of nonlinear algebraic equations

Goals of this work

derive fully computable a posteriori error upper bounds
distinguish different error components

Full adaptivity
time step choice & mesh adaptivity
stopping criteria for regularization and linear and nonlinear
solvers
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Previous results – a posteriori error estimates
Nonlinear steady problems

Ladevèze (since 1990’s), guaranteed upper bound
Verfürth (1994), residual estimates
Carstensen and Klose (2003), p-Laplacian
Chaillou and Suri (2006, 2007), linearization errors
Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems
Bieterman and Babuška (1982), introduction
Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems
Verfürth (1998), framework for energy norm control
Ohlberger (2001), non energy-norm estimates

Degenerate parabolic problems
Nochetto, Schmidt, Verdi (2000), Stefan problem
Dolejší, Ern, Vohralík (2013), ADR, Richards, robustness in
a space–time dual mesh-dependent norm
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Previous results – adaptive strategies
Stopping criteria for algebraic solvers

engineering literature, since 1950’s
Becker, Johnson, and Rannacher (1995), multigrid
stopping criterion
Arioli (2000’s), comparison of the algebraic and
discretization errors by a priori arguments

Adaptive inexact Newton method
Bank and Rose (1982), combination with multigrid
Hackbusch and Reusken (1989), damping and multigrid
Deuflhard (1990’s, 2004 book), adaptive damping and
multigrid

Model errors
Ladevèze (since 1990’s), guaranteed upper bound
Bernardi (2000’s), estimation of model errors
Babuška, Oden (2000’s), verification and validation
. . .

Martin Vohralík Adaptive inexact linearization and regularization for unsteady nonlinear problems 4 / 41



I Adaptive Newton Stefan C

Previous results – adaptive strategies
Stopping criteria for algebraic solvers

engineering literature, since 1950’s
Becker, Johnson, and Rannacher (1995), multigrid
stopping criterion
Arioli (2000’s), comparison of the algebraic and
discretization errors by a priori arguments

Adaptive inexact Newton method
Bank and Rose (1982), combination with multigrid
Hackbusch and Reusken (1989), damping and multigrid
Deuflhard (1990’s, 2004 book), adaptive damping and
multigrid

Model errors
Ladevèze (since 1990’s), guaranteed upper bound
Bernardi (2000’s), estimation of model errors
Babuška, Oden (2000’s), verification and validation
. . .

Martin Vohralík Adaptive inexact linearization and regularization for unsteady nonlinear problems 4 / 41



I Adaptive Newton Stefan C

Previous results – adaptive strategies
Stopping criteria for algebraic solvers

engineering literature, since 1950’s
Becker, Johnson, and Rannacher (1995), multigrid
stopping criterion
Arioli (2000’s), comparison of the algebraic and
discretization errors by a priori arguments

Adaptive inexact Newton method
Bank and Rose (1982), combination with multigrid
Hackbusch and Reusken (1989), damping and multigrid
Deuflhard (1990’s, 2004 book), adaptive damping and
multigrid

Model errors
Ladevèze (since 1990’s), guaranteed upper bound
Bernardi (2000’s), estimation of model errors
Babuška, Oden (2000’s), verification and validation
. . .

Martin Vohralík Adaptive inexact linearization and regularization for unsteady nonlinear problems 4 / 41



I Adaptive Newton Stefan C

Outline

1 Introduction

2 Adaptive inexact Newton method
A posteriori error estimate and its efficiency
Applications
Numerical results

3 The Stefan problem
Dual norm a posteriori estimate and adaptivity
Efficiency
Energy error a posteriori estimate
Numerical results

4 Conclusions and future directions

Martin Vohralík Adaptive inexact linearization and regularization for unsteady nonlinear problems 4 / 41



I Adaptive Newton Stefan C A posteriori estimate and its efficiency Applications Numerical results

Outline

1 Introduction

2 Adaptive inexact Newton method
A posteriori error estimate and its efficiency
Applications
Numerical results

3 The Stefan problem
Dual norm a posteriori estimate and adaptivity
Efficiency
Energy error a posteriori estimate
Numerical results

4 Conclusions and future directions

Martin Vohralík Adaptive inexact linearization and regularization for unsteady nonlinear problems 4 / 41



I Adaptive Newton Stefan C A posteriori estimate and its efficiency Applications Numerical results

Inexact iterative linearization

System of nonlinear algebraic equations
Nonlinear operator A :RN→ RN , vector F ∈ RN : find U ∈ RN s.t.

A(U) = F

Algorithm (Inexact iterative linearization)
1 Choose initial vector U0. Set k := 1.
2 Uk−1 ⇒ matrix Ak−1 and vector F k−1: find Uk s.t.

Ak−1Uk ≈ F k−1.

3 1 Set Uk,0 := Uk−1 and i := 1.
2 Do 1 algebraic solver step⇒ Uk,i s.t. (Rk,i algebraic res.)

Ak−1Uk,i = F k−1 − Rk,i .

3 Convergence? OK⇒ Uk := Uk,i . KO⇒ i := i + 1, back
to 3.2.

4 Convergence? OK⇒ finish. KO⇒ k := k + 1, back to 2.
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Context and questions
Approximate solution

approximate solution Uk ,i does not solve A(Uk ,i) = F
Numerical method

underlying numerical method: the vector Uk ,i is associated
with a (piecewise polynomial) approximation uk ,i

h

Partial differential equation
underlying PDE, u its weak solution: A(u) = f

Question (Stopping criteria)

What is a good stopping criterion for the linear solver?
What is a good stopping criterion for the nonlinear solver?

Question (Error)

How big is the error ‖u − uk ,i
h ‖ on Newton step k and

algebraic solver step i, how is it distributed?
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Model steady problem, discretization
Quasi-linear elliptic problem

−∇·σ(u,∇u) = f in Ω,
u = 0 on ∂Ω

p > 1, q := p
p−1 , f ∈ Lq(Ω)

example: p-Laplacian with σ(u,∇u) = |∇u|p−2∇u
f piecewise polynomial for simplicity
weak solution: u ∈ V := W 1,p

0 (Ω) such that

(σ(u,∇u),∇v) = (f , v) ∀v ∈ V

Numerical approximation

(shape-regular) mesh Th, linearization step k , algebraic
step i
uk ,i

h ∈ V (Th) piecewise polynomial (discontinuous),
V (Th) 6⊂ V
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Abstract assumptions

Assumption A (Total flux reconstruction)

There exists tk ,i
h ∈ Hq(div,Ω) and ρk ,i

h ∈ Lq(Ω) such that

∇·tk ,i
h = f − ρk ,i

h .

Assumption B (Discretization, linearization, and alg. fluxes)

There exist fluxes dk ,i
h , lk ,ih ,ak ,i

h ∈ [Lq(Ω)]d such that

(i) tk ,i
h = dk ,i

h + lk ,ih + ak ,i
h ;

(ii) as the linear solver converges, ‖ak ,i
h ‖q → 0;

(iii) as the nonlinear solver converges, ‖lk ,ih ‖q → 0.

Assumption C (Approximation property)

‖σ(uk ,i
h ,∇uk ,i

h ) + dk ,i
h ‖q ≤ C (residual estimator).
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Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)
Let

u ∈ V be the weak solution,
uk ,i

h ∈ V (Th) be arbitrary,
Assumptions A and B hold.

Then there holds

Ju(uk ,i
h ) ≤ ηk ,i

disc + ηk ,i
lin + ηk ,i

alg + ηk ,i
rem.

Moreover, under Assumption C and under appropriate stopping
criteria,

ηk ,i
disc + ηk ,i

lin + ηk ,i
alg + ηk ,i

rem ≤ CJu(uk ,i
h ),

up to quadrature errors.
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Estimators

discretization estimator

ηk ,i
disc,K := 2

1
p

(
‖σ(uk ,i

h ,∇uk ,i
h )+dk ,i

h ‖q,K +

{∑
e∈EK

h1−q
e ‖[[uk ,i

h ]]‖qq,e

} 1
q
)

linearization estimator
ηk ,i

lin,K := ‖lk ,ih ‖q,K
algebraic estimator

ηk ,i
alg,K := ‖ak ,i

h ‖q,K

algebraic remainder estimator
ηk ,i

rem,K := hΩ‖ρk ,i
h ‖q,K

ηk ,i
· :=

{∑
K∈Th

(
ηk ,i
·,K
)q

}1/q
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Nonconforming finite elements for the p-Laplacian

Discretization
Find uh ∈ Vh such that

(σ(∇uh),∇vh) = (fh, vh) ∀vh ∈ Vh.

σ(∇uh) = |∇uh|p−2∇uh

Vh the Crouzeix–Raviart space
fh := Π0f
leads to the system of nonlinear algebraic equations

A(U) = F
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Linearization

Linearization
Find uk

h ∈ Vh such that

(σk−1(∇uk
h ),∇ψe) = (fh, ψe) ∀e ∈ E int

h .

u0
h ∈ Vh yields the initial vector U0

fixed-point linearization

σk−1(ξ) := |∇uk−1
h |p−2ξ

Newton linearization

σk−1(ξ) := |∇uk−1
h |p−2ξ + (p − 2)|∇uk−1

h |p−4

(∇uk−1
h ⊗∇uk−1

h )(ξ −∇uk−1
h )

leads to the system of linear algebraic equations

Ak−1Uk = F k−1
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h ∈ Vh yields the initial vector U0

fixed-point linearization

σk−1(ξ) := |∇uk−1
h |p−2ξ

Newton linearization

σk−1(ξ) := |∇uk−1
h |p−2ξ + (p − 2)|∇uk−1

h |p−4

(∇uk−1
h ⊗∇uk−1

h )(ξ −∇uk−1
h )

leads to the system of linear algebraic equations

Ak−1Uk = F k−1
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Algebraic solution

Algebraic solution
Find uk ,i

h ∈ Vh such that

(σk−1(∇uk ,i
h ),∇ψe) = (fh, ψe)− Rk ,i

e ∀e ∈ E int
h .

algebraic residual vector Rk ,i = {Rk ,i
e }e∈E int

h

discrete system

Ak−1Uk = F k−1 − Rk ,i
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Flux reconstructions

Definition (Construction of (dk ,i
h + lk ,ih ))

For all K ∈ Th,

(dk ,i
h +lk ,ih )|K :=−σk−1(∇uk ,i

h )|K +
fh|K
d

(x−xK )−
∑
e∈EK

Rk ,i
e

d |De|
(x−xK )|Ke ,

where, Rk ,i
e = (fh, ψe)− (σk−1(∇uk ,i

h ),∇ψe) ∀e ∈ E int
h .

Definition (Construction of dk ,i
h )

For all K ∈ Th,

dk ,i
h |K := −σ(∇uk ,i

h )|K +
fh|K
d

(x− xK )−
∑
e∈EK

R̄k ,i
e

d |De|
(x− xK )|Ke ,

where R̄k ,i
e := (fh, ψe)− (σ(∇uk ,i

h ),∇ψe) ∀e ∈ E int
h .

Definition (Construction of ak ,i
h )

Set ak ,i
h := (dk ,i+ν

h + lk ,i+νh )− (dk ,i
h + lk ,ih ) for (adaptively chosen)

ν > 0 additional algebraic solvers steps; Rk ,i+ν  ρk ,i
h .

Martin Vohralík Adaptive inexact linearization and regularization for unsteady nonlinear problems 14 / 41



I Adaptive Newton Stefan C A posteriori estimate and its efficiency Applications Numerical results

Flux reconstructions

Definition (Construction of (dk ,i
h + lk ,ih ))

For all K ∈ Th,

(dk ,i
h +lk ,ih )|K :=−σk−1(∇uk ,i

h )|K +
fh|K
d

(x−xK )−
∑
e∈EK

Rk ,i
e

d |De|
(x−xK )|Ke ,

where, Rk ,i
e = (fh, ψe)− (σk−1(∇uk ,i

h ),∇ψe) ∀e ∈ E int
h .

Definition (Construction of dk ,i
h )

For all K ∈ Th,

dk ,i
h |K := −σ(∇uk ,i

h )|K +
fh|K
d

(x− xK )−
∑
e∈EK

R̄k ,i
e

d |De|
(x− xK )|Ke ,

where R̄k ,i
e := (fh, ψe)− (σ(∇uk ,i

h ),∇ψe) ∀e ∈ E int
h .

Definition (Construction of ak ,i
h )

Set ak ,i
h := (dk ,i+ν

h + lk ,i+νh )− (dk ,i
h + lk ,ih ) for (adaptively chosen)

ν > 0 additional algebraic solvers steps; Rk ,i+ν  ρk ,i
h .

Martin Vohralík Adaptive inexact linearization and regularization for unsteady nonlinear problems 14 / 41



I Adaptive Newton Stefan C A posteriori estimate and its efficiency Applications Numerical results

Flux reconstructions

Definition (Construction of (dk ,i
h + lk ,ih ))

For all K ∈ Th,

(dk ,i
h +lk ,ih )|K :=−σk−1(∇uk ,i

h )|K +
fh|K
d

(x−xK )−
∑
e∈EK

Rk ,i
e

d |De|
(x−xK )|Ke ,

where, Rk ,i
e = (fh, ψe)− (σk−1(∇uk ,i

h ),∇ψe) ∀e ∈ E int
h .

Definition (Construction of dk ,i
h )

For all K ∈ Th,

dk ,i
h |K := −σ(∇uk ,i

h )|K +
fh|K
d

(x− xK )−
∑
e∈EK

R̄k ,i
e

d |De|
(x− xK )|Ke ,

where R̄k ,i
e := (fh, ψe)− (σ(∇uk ,i

h ),∇ψe) ∀e ∈ E int
h .

Definition (Construction of ak ,i
h )

Set ak ,i
h := (dk ,i+ν

h + lk ,i+νh )− (dk ,i
h + lk ,ih ) for (adaptively chosen)

ν > 0 additional algebraic solvers steps; Rk ,i+ν  ρk ,i
h .

Martin Vohralík Adaptive inexact linearization and regularization for unsteady nonlinear problems 14 / 41



I Adaptive Newton Stefan C A posteriori estimate and its efficiency Applications Numerical results

Verification of the assumptions

Lemma (Assumptions A and B)
Assumptions A and B hold.

Comments

‖ak ,i
h ‖q,K→0 as the linear solver converges by definition.

‖lk ,ih ‖q,K→0 as the nonlinear solver converges by the
construction of lk ,ih .

Lemma (Assumption C)
Assumption C holds.

Comments

dk ,i
h close to σ(∇uk ,i

h )

approximation properties of Raviart–Thomas–Nédélec
spaces
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Summary

Discretization methods

conforming finite elements
nonconforming finite elements
discontinuous Galerkin
various finite volumes
mixed finite elements

Linearizations

fixed point
Newton

Linear solvers

independent of the linear solver

. . . all Assumptions A to C verified
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1 Introduction

2 Adaptive inexact Newton method
A posteriori error estimate and its efficiency
Applications
Numerical results

3 The Stefan problem
Dual norm a posteriori estimate and adaptivity
Efficiency
Energy error a posteriori estimate
Numerical results
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Numerical experiment I

Model problem

p-Laplacian

∇·(|∇u|p−2∇u) = f in Ω,

u = uD on ∂Ω

weak solution (used to impose the Dirichlet BC)

u(x , y) = −p−1
p

(
(x − 1

2)2 + (y − 1
2)2
) p

2(p−1)
+ p−1

p

(
1
2

) p
p−1

tested values p = 1.5 and 10
nonconforming finite elements
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Error and estimators as a function of CG iterations,
p = 10, 6th level mesh, 6th Newton step.
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Error and estimators as a function of Newton
iterations, p = 10, 6th level mesh
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Effectivity indices, p = 10
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Newton and algebraic iterations, p = 10
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Numerical experiment II

Model problem

p-Laplacian

∇·(|∇u|p−2∇u) = f in Ω,

u = uD on ∂Ω

weak solution (used to impose the Dirichlet BC)

u(r , θ) = r
7
8 sin(θ 7

8)

p = 4, L-shape domain, singularity in the origin
(Carstensen and Klose (2003))
nonconforming finite elements
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Error distribution on an adaptively refined mesh
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Energy error and overall performance
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1 Introduction
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The Stefan problem

The Stefan problem

∂tu −∆β(u) = f in Ω× (0,T ),

u(·,0) = u0 in Ω,

β(u) = 0 on ∂Ω× (0,T )

Nomenclature

u enthalpy, β(u) temperature
β: Lβ-Lipschitz continuous, β(s) = 0 in (0,1), strictly
increasing otherwise
phase change, degenerate parabolic problem
u0 ∈ L2(Ω), f ∈ L2(0,T ; L2(Ω))

Context

Ph.D. thesis of Soleiman Yousef
collaboration with IFP Energies Nouvelles
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Numerical practice: regularization

Regularization of β, parameter ε

−1 −0.5 0.5 1 1.5 2

−1

−0.5

0.5

1

u

β(u), βε(u)
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Questions
Discretization

. . .
Question (Stopping and balancing criteria)

What is a good choice of the
regularization parameter ε?
time step?
space mesh?

What is a good stopping criterion for the
nonlinear solver?
linear solver?

Question (Error)

How big is the error ‖u|In − un,ε,k ,i
h ‖ on time step n, space

mesh Kn, regularization parameter ε, linearization step k,
and algebraic solver step i? How big are the individual
components? How is error distributed in time and space?
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Setting

Functional spaces

X := L2(0,T ; H1
0 (Ω)), Z := H1(0,T ; H−1(Ω))

Weak formulation
u ∈ Z with β(u) ∈ X ,
u(·,0) = u0 in Ω,

〈∂tu, ϕ〉(s) + (∇β(u),∇ϕ)(s) = (f , ϕ)(s) ∀ϕ ∈ H1
0 (Ω), s ∈ (0,T )

Approximate solution (with linearization and regularization)
uε,khτ ∈ Z , ∂tu

ε,k
hτ ∈ L2(0,T ; L2(Ω)), β(uε,khτ ) ∈ X ,

uε,khτ |In is affine in time on In ∀1 ≤ n ≤ N

Residual R(uε,khτ ) ∈ X ′ and its dual norm, ϕ ∈ X

〈R(uε,khτ ), ϕ〉X ′,X :=

∫ T

0

{
〈∂t (u−uε,khτ ), ϕ〉+(∇(β(u)−β(uε,khτ )),∇ϕ)

}
(s)ds,

‖R(uε,khτ )‖X ′ := sup
ϕ∈X , ‖ϕ‖X =1

〈R(uε,khτ ), ϕ〉X ′,X
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Residual R(uε,khτ ) ∈ X ′ and its dual norm, ϕ ∈ X

〈R(uε,khτ ), ϕ〉X ′,X :=

∫ T

0

{
〈∂t (u−uε,khτ ), ϕ〉+(∇(β(u)−β(uε,khτ )),∇ϕ)
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ϕ∈X , ‖ϕ‖X =1

〈R(uε,khτ ), ϕ〉X ′,X
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Estimate distinguishing different error components
Assumption A (Equilibrated flux reconstruction)

For all n ≥ 1, k ≥ 1, and ε > 0, there exists tn,ε,k
h ∈ H(div; Ω) s.t.

(∇·tn,ε,k
h ,1)K = (f n,1)K − (∂tu

n,ε,k
h ,1)K ∀K ∈ Kn.

Theorem (An estimate distinguishing the error components)

Let Assumption A hold. Then, for any n ≥ 1, k ≥ 1, and ε > 0,

‖R(un,ε,k
h )‖X ′n ≤ η

n,ε,k
sp + ηn,ε,k

tm + ηn,ε,k
reg + ηn,ε,k

lin .

(ηn,ε,k
sp )2 := τn

∑
K∈Kn

(
ηn,ε,k

R,K + ‖ln,ε,kh + tn,ε,k
h ‖K

)2
,

(ηn,ε,k
tm )2 :=

∫
In

∑
K∈Kn

‖∇Πnβ(un,ε,k
h )(t)−∇Πnβ(un,ε,k

hτ )(tn)‖2K dt ,

(ηn,ε,k
reg )2 := τn

∑
K∈Kn

‖∇Πnβ(un,ε,k
hτ )(tn)−∇Πnβε(u

n,ε,k
h )(tn)‖2K ,

(ηn,ε,k
lin )2 := τn

∑
K∈Kn

‖∇Πnβε(u
n,ε,k
hτ )(tn)− ln,ε,kh ‖2K
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Efficiency assumptions

Assumption B (Technicalities)
All the meshes are shape-regular and all the approximations
are piecewise polynomial.

Residual estimators(
ηn,εn,kn

res,1

)2
:= τn

∑
K∈Kn−1,n

h2
K‖f n − ∂tu

n,εn,kn
h +∇·ln,εn,kn

h ‖2K ,(
ηn,εn,kn

res,2

)2
:= τn

∑
F∈F i,n−1,n

hF‖[[ln,εn,kn
h ]]·nF‖2F

Assumption C (Approximation property)
For all 1 ≤ n ≤ N, there holds

τn
∑

K∈Kn−1,n

‖ln,εn,kn
h + tn,εn,kn

h ‖2K ≤ C
((

ηn,εn,kn
res,1

)2
+
(
ηn,εn,kn

res,2

)2
)
.
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Efficiency assumptions

Theorem (Efficiency)
Let, for all 1 ≤ n ≤ N, the stopping and balancing criteria be
satisfied with the parameters small enough. Let Assumptions B
and C hold. Then

ηn,εn,kn
sp + ηn,εn,kn

tm + ηn,εn,kn
reg + ηn,εn,kn

lin . ‖R(un,εn,kn
h )‖X ′n .
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Relation residual–energy norm
Energy estimate (by the Gronwall lemma)

Lβ
2
‖u − uhτ‖2X ′ +

Lβ
2
‖(u − uhτ )(·,T )‖2H−1(Ω) + ‖β(u)− β(uhτ )‖2QT

≤
Lβ
2

(2eT − 1)
(
‖R(uhτ )‖2X ′ + ‖(u − uhτ )(·,0)‖2H−1(Ω)

)
Theorem (Temperature and enthalpy errors, tight Gronwall)

Let uhτ ∈ Z such that β(uhτ ) ∈ X be arbitrary. There holds
Lβ
2
‖u − uhτ‖2X ′+

Lβ
2
‖(u − uhτ )(·,T )‖2H−1(Ω)+‖β(u)− β(uhτ )‖2QT

+ 2
∫ T

0

(
‖β(u)− β(uhτ )‖2Qt

+

∫ t

0
‖β(u)− β(uhτ )‖2Qs

et−s ds
)

dt

≤
Lβ
2

{
(2eT − 1)‖(u − uhτ )(·,0)‖2H−1(Ω) + ‖R(uhτ )‖2X ′

+ 2
∫ T

0

(
‖R(uhτ )‖2X ′t +

∫ t

0
‖R(uhτ )‖2X ′s e

t−s ds
)

dt

}
.
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Linearization stopping criterion

Linearization stopping criterion

ηn,ε,k
lin ≤ Γlin

(
ηn,ε,k

sp + ηn,ε,k
tm + ηn,ε,k

reg
)
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Regularization stopping criterion

Regularization stopping criterion
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Equilibrating time and space errors
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Effectivity indices (dual norm of the residual)
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Actual and estimated error distribution
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Computational efficiency
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Figure: Number of cumulated Newton iterations vs. error estimate
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Conclusions and future directions

Entire adaptivity

only a necessary number of algebraic/linearization
solver iterations
“online decisions”: algebraic step / linearization step /
regularization / space mesh refinement / time step
modification
important computational savings
guaranteed and robust a posteriori error estimates

Future directions

other coupled nonlinear systems
convergence and optimality
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Thank you for your attention!
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