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Numerical approximations of PDEs

Numerical methods
@ mathematically-based algorithms evaluated by computers
@ deliver approximate solutions
@ conception: more effort = closer to the unknown solution
@ example: elastic rod
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Numerical approximation uj, and its convergence to u
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@ How large is the overall error?

@ Where (model/space/time/lineariza-
tion/algebra) is it localized?

© Can we decrease it efficiently?
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3 crucial questions & suggested answers

@ How large is the overall error? Qo error
©@ Where (model/space/time/lineariza- © Identification of
tion/algebra) is it localized? o error components,
© Can we decrease it efficiently? (working where needed).
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CDG Terminal 2E collapse in 2004 (opened in 2003)

@ no earthquake, roodmg tsunaml heavy rain, extreme temperature
@ deterministic, steady problem, PDE known, data known, implementation OK
probably numerical simulations done with insufficient precision,
| believe without error certification
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Mesh and polynomial degree
Linear and nonlinear solvers
Error in a quantity of interest

Equivalence between error and dual norm of the residual
High-order discretization & Radau reconstruction
Guaranteed upper bound

Local space-time efficiency and robustness

A posteriori estimate
Numerical experiments
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Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Commercial: get more, pay less! (balancing all error components)

Energy error
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Elastic membrane equation

—Au=f in Q,
u=0 on 920
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A posteriori error estimates: control the error

Elastic membrane equation
—Au=f in Q,
u=0 on 0Q

Guaranteed error upper bound (reliability)
IV(u—up)l <= nlun)
N e’ N— "

unknown error computable estimator

Error lower bound (efficiency)
n(un) < Cer|| V(U — un)||

@ C independent of Q, u, up, h, p

@ computable bound on C available, Cer ~ 5

@ Prager and Synge (1947), Ladeveze (1975), Babuska & Rheinboldt (1987),
Verfirth (1989), Ainsworth & Oden (1993), Destuynder & Métivet (1999),
Braess, Pillwein, & Schéberl (2009), Ern & Vohralik (2015) i erc
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Adaptive mesh refinement (linear problem with exact solvers)

Adaptive mesh refinement
@ Dorfler marking: subset M, containing ¢-fraction of the estimates

D nk(ue)? = 02 nr(ue)?

KeM, KeT,
Convergence on a sequence of adaptively refined meshes
° IV(u—uw)|| —0

@ some mesh elements may not be refined at all: 0
@ Babuska & Miller (1987), Dérfler (1996)
Optimal error decay rate wrt degrees of freedom
° |V (u—up)| < [DoF|P/¢  (replaces hP)
@ same for smooth & singular solutions: kighererderontypay-ofi-forsm—sok
@ decays to zero as fast as on a best-possible sequence of meshes
@ Morin, Nochetto, Siebert (2000), Stevenson (2005, 2007), Cascédn, Kreuzer,
Nochetto, Siebert (2008), Canuto, Nochetto, Stevenson, Verani (2017),,;— 4. e

M. Vohralik Guaranteed a posteriori error bounds and full adaptivity 10 /33



| Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Can we decrease the error efficiently? f1p adaptivity, (smooth solution)
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Can we decrease the error efficiently? /1p adaptivity, (singular solution)
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Balancing error components (nonlinear problem with inexact solvers)

Fully adaptive algorithm
o total error estimate on mesh 7, linearization step k, algebraic solver step /

K,i Kk, i ki k,i
HU -y H* < Mo disc + e lin + Mg alg
N—— ~—— ~— N~
total error discretization estimate  linearization estimate  algebraic estimate

UUA—:
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Balancing error components (nonlinear problem with inexact solvers)

Fully adaptive algorithm
@ total error estlmate on mesh 7., linearization step k, algebraic solver step /

K,i K,i
HU - U ’ < '/( d1\g + Mg lin + 'U’.zllg
~—— ~—~ N~
total error discretization estimate  linearization estimate  algebraic estimate

@ balancing error componentS' work where needed

néf’a’lg YValg max{nz ise> e, K/ 1 stopping criterion linear solver,
né"l’m < llnndmc stopping criterion nonlinear solver,

Hng tise < <nlel M,  adaptive mesh refinement
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Balancing error components (nonlinear problem with inexact solvers)

@ balancing error components: work where needed

Ki . ki : S rian [
Mo alg < Valg Mg Jin stopping criterion linear solver

@ link —inexact Newton method: Bank & Rose (1982), Hackbusch & Reusken
(1989), Deuflhard (1991), Eisenstat & Walker (1994)

-
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Balancing error components (nonlinear problem with inexact solvers)

(adaptive inexact Newton method)

@ balancing error componentS' work where needed

néf’a’lg Yalg max{nz siser "I, K/ 1 stopping criterion linear solver,
W lm < ,hnndlsc stopping criterion nonlinear solver,

0774 tise < ndm M, adaptive mesh refinement

e s ) erc
7¢a/—
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Balancing error components (nonlinear problem with inexact solvers)

Fully adaptive algorithm (adaptive inexact Newton method)
@ total error estlmate on mesh 7., linearization step k, algebraic solver step /

k,i K,i
HU - U ’ < '/( d1\g + Mg lin + '/I.zllg
~—— ~— N~
total error discretization estimate  linearization estimate  algebraic estimate
@ balancing error componentS' work where needed
nZ’a’lg Valg max{nz ise> e, lm} stopping criterion linear solver,
né"l’m < ]mndlsc stopping criterion nonlinear solver,

Hng tise < ndm M, adaptive mesh refinement

Convergence, optimal error decay rate wrt DoFs
@ Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2019)
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Balancing error components (nonlinear problem with inexact solvers)

Fully adaptive algorithm (adaptive inexact Newton method)
@ total error estlmate on mesh 7., linearization step k, algebraic solver step /

K,i K,i
HU - U ’ < '/( d1\g + Mg lin + '/I.zllg
~—— ~—~ N~
total error discretization estimate  linearization estimate  algebraic estimate

@ balancing error componentS' work where needed

néf’a’lg YValg max{nz ise> e, K/ 1 stopping criterion linear solver,
né"l’in < llnndmc stopping criterion nonlinear solver,

ki . .
0Ny gise < ndisc, Mm,  adaptive mesh refinement

Convergence, optimal error decay rate wrt DoFs
@ Gantner, Haberl, Praetorius, & Stiftner (2018), Heid & Wihler (2019)
Optimal error decay rate wrt overall computational cost
@ Haberl, Praetorius, Schimanko, & Vohralik (HAL preprint 02557718) . -— 4. er
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Including algebraic error: AU, # F,

%1077 x1077
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g 8
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4 4
2 2

Estimated algebraic errors 1, « (U}) Exact algebraic errors |V (1, — u})||«
J. Papez, U. Rude, M. Vohralik, B. Wohlmuth, preprint (2020)
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Including algebraic error: AU, * F,

x1073 x107°

35

25
3

2
25
2 15
1.5

;
]

05
05

Estimated total errors 7 (u}) Exact total errors | V(u — u})|«

L=t

M. Vohralik Guaranteed a posteriori error bounds and full adaptivity 13 /33



_ Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest
Including algebraic error: AU, # F,

Total error and its bounds Discretization and algebraic errors and their bounds
T T T ! ' dis. error
o alg. error WOF N e dis. error UB
107 ¢ total error — — dis. error LB
-------- total error UB
— = total error LB alg. error
-------- alg. error UB
~ = alg. error LB
102+ 102 __________
-4 | 4
104 ¢ 3 10 adaptive stopping criterion
1 2 3 4 5 1 2 3 4 5
MG iteration MG iteration
Total error Error components and adaptive st. crit.

J. Papez, U. Rude, M. Vohralik, B. Wohlmuth (2020)
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error: Ay(U,") # F, AkTUy " £ i

10 \ [ \ [ 10 \ \ \ \ \ \

107 = -

|

|

510 7 5
% % 10_1? . A A A A A 4 A 4 A Ak A
A —6 3 C ~h—A o 4
B10° — e ]
[ | —e—error up ]
| | —=—estimate i
10°% - ] —A—disc. est.
L| —#—lin. est. N
alg. est.
alg. rem. est.
107 ! \ ! ! ! ! 107 9 ‘ ! ! ! !
0 100 200 300 400 500 600 700 0 5 10 15 20 25 30 35
Algebraic iteration Algebraic iteration

M. Vohralik Guaranteed a posteriori error bounds and full adaptivity 14 /33



Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C

Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest

Nonlinear pb —V-o(Vu) = f: including linearization and algebraic
error: Ay(U,") # F, AkTUy " £ i

Dual error

-4

10

10°

10

-10

10

8 10 12
Newton iteration

M. Vohralik

14

16

18

Dual error

We T 717 17 T 17 T T T f—LT—T—9
& —e—errorup |5
—a—estimate |
10 A —A—disc. est. |5
E ——lin. est. |
10' ¢ 3
10° =
07 E
107
ol
1 2 3 4 5 6 7 8 9 10 11 12 13

Newton iteration

Guaranteed a posteriori error bounds and full adaptivity 14 /33



| Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest
Nonlinear pb —V-o(Vu) = f: including linearization and algebraic
error: A,(U,") # Fy, AK-TUy " £ Bk

S

< N0 {

"5 e\
w0

NAARZ. A
N

=

() X L WA

L%
\/\

D
N

. o)
Estimated errors 1 (1)) Exact errors ||[|| (Vi) — o(Vu,"),

Guaranteed a posteriori error bounds and full adaptivity 14 /33



_ Mesh & polynomial degree Linear & nonlinear solvers Quantity of interest
Convergence and optimal decay rate wrt DoFs & computational cost
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_ Error & residual Reconstruction Reliability Efficiency and robustness
Ouitline

e The heat equation
@ Equivalence between error and dual norm of the residual
@ High-order discretization & Radau reconstruction
@ Guaranteed upper bound
@ Local space-time efficiency and robustness
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The heat equation ow—Au=f inQx(0,T),

u=0 ondQx(0,T),
u(O) = Ug in Q
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The heat equation: f € L2(0, T; L?(Q)), up € L3(R)

The heat equation ou—Au="f inQx(0,T),

u=0 ondQx(0,T),
ul0)=uy iInQ

X = L3(0, T; H}(R)),
T
M = [ IvviZat
Y = L2(0, T; HI(Q) N H'(0, T; H(Q)),

(
VI3 = /0 1012, + IV VI dt 4 [v(T)|2

Spaces
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The heat equation: f € L2(0, T; L?(Q)), up € L3(R)

The heat equation ou—Au="f inQx(0,T),

u=0 ondQx(0,T),
ul0)=uy iInQ

X = L3(0, T; H}(R)),
T
M = [ IvviZat
Y = L2(0, T; HI(Q) N H'(0, T; H(Q)),

-
VI 12/0 1OeVIIZ, -+ () + IV VIZdt + [[v(T)]?

Spaces

Weak solution
Find u € Y with u(0) = up such that
T

.
/<8tu,v>+(Vu,Vv)dt:/ (f,v)dt VvveX
0 0
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_ Error & residual Reconstruction Reliability Efficiency and robustness
An optimal a posteriori estimate for evolutive problems

Guaranteed upper bound

N
® [lu—unlBq. 07 <2 n1 Ckerp ik (Unr)?
@ no undetermined constant: error control
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An optimal a posteriori estimate for evolutive problems

Guaranteed upper bound
2 N 2
® |[u— Uhr”?ygx(oj) <D e ZKeTh" ni,%(uhT)
@ no undetermined constant: error control
Local efficiency
° n;’%(_UhT) < CeffH_u - UhTH?,neighbors of Kx (tn—1,tm)
@ optimal space-time mesh refinement
@ local in time and in space error lower bound
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An optimal a posteriori estimate for evolutive problems

Guaranteed upper bound
N

® lu—unlZq. 07 < n i Lkernk(Unr)?

@ no undetermined constant: error control
Local efficiency

° n;’%(UhT) < Cesrllu — UhTH?,neighbors of Kx(tn=1,tm)

@ optimal space-time mesh refinement

@ local in time and in space error lower bound
Robustness

@ C.r independent of data, domain €, final time T, meshes, solution v,

polynomial degrees of uy, in space and in time
Asymptotic exactness
N
° Zn:1 ZKeTh” nﬂ(UhT)Z/HU - Uh‘r”%Qx(oj) \l 1
@ overestimation factor goes to one with increasing effort
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An optimal a posteriori estimate for evolutive problems

Guaranteed upper bound
O ||lu—unlBq. o) < D01 Skern mi(Unr)?
@ no undetermined constant: error control
Local efficiency
® n(Un) < Cesrl|u — UhTH?,neighbors of Kx(tn—1,t")
@ optimal space-time mesh refinement
@ local in time and in space error lower bound
Robustness
@ C.r independent of data, domain €, final time T, meshes, solution v,
polynomial degrees of uy, in space and in time
Asymptotic exactness
© Sy Skern mi(Une )/ [1U = tnr |2 g, 0.7y 1
@ overestimation factor goes to one with increasing effort
Small evaluation cost
@ estimators 7 (uUx,) can be evaluated cheaply (locally) lisda=. i
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Previous results (heat equation)

@ Picasso / Verfurth (1998), work with the energy norm X:

7 upper bound [[u — un, |3 < C 54 X e it (Unr)?
X constrained lower bound (h and 7 strongly linked)
@ Repin (2002), guaranteed upper bound
@ Verfurth (2003) (cf. also Bergam, Bernardi, and Mghazli (2005)), work with the
Y norm:
7/ upper bound [|u — un, |3 < C 0Ly Skero ni(Unr)?
v efficiency Yy i (Un, )2 < Cllu = unr %,

v robustness with respect to the final time T, no link h— 7
X efficiency local in time but global in space
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Weak solution
Find u € Y with u(0) = up such that

T T
/<a,u,v>+(w,w)dt:/ (f,v)dt  vYveX
0 0
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Equivalence between error and residual

Theorem (Parabolic inf—sup

For every p € Y, we have
2

)
lol2 = | sup / (Orp, V) + (Yo, TV) dt| + [|o(0) 2.
veX,||vllx=1/0
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Equivalence between error and residual

Theorem (Parabolic inf—sup

For every p € Y, we have
2

T
||<P||%:[ sup /<3r%v>+(V%VV)dT + [l ()]
VeX?HV”X:1 0

Residual of v, ¢ Y

@ R(up,) € X', the misfit of up, in the weak formulation:
T
R V) = [ (1)~ @ V)~ (T TV)E v E X

0
@ dual norm of the residual
IR(Unr)llx = sup  (R(Upr), V)

veX, |lvlx=1
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Equivalence between error and residual

Theorem (Parabolic inf—sup

For every p € Y, we have
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T
||<P||%:[ sup /<3r%v>+(V%VV)dT + [l ()]
VeX?HV”X:1 0

Residual of v, ¢ Y

@ R(up,) € X', the misfit of up, in the weak formulation:
T
R V) = [ (1)~ @ V)~ (T TV)E v E X

0
@ dual norm of the residual
IR(Unr)llx = sup  (R(Upr), V)

veX, |lvlx=1

Y norm error is the dual X norm of the residual + IC error

2 2 2
[ = tn Iy = [R(tn-) % + llto = unr-(0)
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Proof of the parabolic inf—sup identity: ¢ € Y

@ let w, € X be defined by, a.e. in (0, T),
(YW, VV) = (Orp,v)  YWeH(Q) = VWil = 1010111 (g
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Proof of the parabolic inf—sup identity: ¢ € Y

@ let w, € X be defined by, a.e. in (0, T),
(YW, VV) = (Orp,v)  YWeH(Q) = VWil = 1010111 (g

@ using [ 2(drp, @) dt = [[o(T)|2 - [|£(0)|12 gives
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Approximate solution and Radau reconstruction

Approximate solution r
v Up (1), t € Iy, is a piecewise continuous polynomial in space |n —e

1= {vy € HI(Q), Vhlx € Ppu(K) VK eT"} e

X Uup, is a piecewise discontinuous polynomial in time
X up¢ Y = impossible to estimate ||u—up.||y

P —

740/- 2
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Approximate solution and Radau reconstruction

Approximate solution r
v Up (1), t € Iy, is a piecewise continuous polynomial in space |n —e

VI = {vh € H}(Q), Vhlx € Pp(K) YKeT"} —
X Uup, is a piecewise discontinuous polynomial in time
X up¢ Y = impossible to estimate ||u—up.||y

. Uhr
Radau reconstruction

/ Tup € Y, Tup |, € Qg1 (I VJ) (Makridakis—Nochetto)
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Approximate solution and Radau reconstruction

Approximate solution r
v Up (1), t € Iy, is a piecewise continuous polynomial in space |n —e

V/? 2_{Vh€H (Q), Vh’KEPpK(K) VKET”} —
X Uup, is a piecewise discontinuous polynomial in time
X up¢ Y = impossible to estimate ||u—up.||y

. Uhr
Radau reconstruction

/ Tup € Y, Tup |, € Qg1 (I VJ) (Makridakis—Nochetto)

/ (0T Unss Vine) + (V Upye, Vi) dt = / (F. Vi) dt ¥ Vir € Qg (In: V)
In

n

-

&Z;’ i erc
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Approximate solution r
v Up (1), t € Iy, is a piecewise continuous polynomial in space |n —e

V/? 2_{Vh€H (Q), Vh’KEPpK(K) VKET”} —
X Uup, is a piecewise discontinuous polynomial in time
X up¢ Y = impossible to estimate ||u—up.||y

. Uhr
Radau reconstruction

/ Tup € Y, Tup |, € Qg1 (I VJ) (Makridakis—Nochetto)
/ (0T Unss Vine) + (V Upye, Vi) dt = / (F. Vi) dt ¥ Vir € Qg (In: V)

n In

v final norm: || — up. |12 = ||u = Zup |5 + || Unr — ZUn |5

7 s 5 FC
known, computable 77 :
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Results in the Y norm

Theorem (Reliability in the Y norm)

Suppose no data oscillation for simplicity. Then, for any o, « L?(0, T; H(div, Q))
with V.o, — f — 0:Zup., there holds

.
||u—IuhT||2Yg/0 o hr + VZUpk |2 dt.

zea— ’
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Proof of the upper bound

@ equivalence error-residual (no error in the initial condition):

”U—IUm—HY = sup <R(Iuh7')’v>
veX, ||v||x=1

‘erc
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Proof of the upper bound

@ equivalence error-residual (no error in the initial condition):
||U_IUhT||Y = sup <R(Iuh7')’v>

veX, ||v]x=1
@ Green theorem

-
/ (ohr, VZIUp )+ (Von,Zup)dt =0
0
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Proof of the upper bound

@ equivalence error-residual (no error in the initial condition):
lu—Tuplly = sup  (R(Zup),v)

veX, ||v]x=1
@ Green theorem

-
/ (ohr, VZIUp )+ (Von,Zup)dt =0
0

@ residual definition, Cauchy—Schwarz inequality:

(R(Zupy), v>:/OT(f, V)—(0tZup,, v)—(VZup,, Vv)dt

7
:/ (f—atIUhT—V'O'hT, V)—(VIUhT—I—O'hT,VV) dt
0 NV

=0
T 1
<{ [ lom+9Zup | at}* vix
0

M. Vohralik Guaranteed a posteriori error bounds and full adaptivity 24 /33
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Equilibrated flux reconstruction

Definition (Equilibrated flux reconstruction)

For each time-step interval /, and for each vertex a < V", let

an._ : 2
oyl = arg min / IVh + $aVUn- |5, dt.
Vhe Vhir In

V~Vh:'L/)a(f—a[ZUhT)—Vwa'vuhT

PR —

LA — .
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Equilibrated flux reconstruction

Definition (Equilibrated flux reconstruction)

For each time-step interval /, and for each vertex a < V", let

an._ : 2
oyl = arg min / IVh + $aVUn- |5, dt.
Vhe Vhir In

V~Vh:'L/)a(f—a[ZUhT)—Vwa'vuhT

Then set N

— a,n
o =33 %"

n=1aey"

e o—

LA —
M. Vohralik Guaranteed a posteriori error bounds and full adaptivity 25/ 33



| Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Error & residual Reconstruction Reliability Efficiency and robustness

Equilibrated flux reconstruction

Definition (Equilibrated flux reconstruction)
For each time-step interval /, and for each vertex a < V", let

an ._ - -
ol = arg min /HVhJF%VUhT”wa dt.
Vhe Vhir In
vvh:wa(f—atZUhT)—VdJa'VUhT

Then set N

. a,n
o= Y o

n=1aey"

Comments
v/ satisfies o, € L?(0, T; H(div, Q)) with V-0, = f — 0:Zup,

@ works on the common refinement 7.7 of the patch wa
v/ uncouples to g, elliptic problems posed in V‘,";”

&’z”, ‘erc
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Guaranteed upper bound

Theorem (Guaranteed upper bound)
In the absence of data oscillation (f and uy piecewise polynomial), there holds

N
Ju=thel, <35 S [ lom+ITunelfe+ 19 —Zem )l dt
n=1Ke7n~n

7 i S EFC
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_ Error & residual Reconstruction Reliability Efficiency and robustness
Local space-time efficiency and robustness

Local error contributions

U~ Upr [Pan = lor(u - Zup )l 1 + IV (U= Zup,)| 2, dt
&y (wa)

IV (Unr — Zup,) %, dt

n
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Local space-time efficiency and robustness

Local error contributions
U~ Unr an = /, 10w = Zup )+ ) + IV = Zup )2, dt
+/||V(uhT—IuhT)llia dt

n

recall

T T
=l = [0~ Zun)lf, oy dt+ [ 19— Zun)

i
4 / IV (Unr — Tun) 2 dt
0
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Local space-time efficiency and robustness

Local error contributions

U — UpePan = [ 100U —Zun)|? 1, + IV(u—Zup,)|?, dt
EY ln ( a)

IV (Un, — Zup,)|?, dt

n

Theorem (Local space-time efficiency and robustness)

For each time-step interval |, and for each element K € T", there holds, in the
absence of data oscillation,

/ et + Tt e + 19 (thr — Tt )3t < G Y Ju = 2.

acVy
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Local space-time efficiency and robustness

Local error contributions

U — b 2an = [ 10U —Zup)lI? () + V(U = Zup)|
EY In ( a)

[

dt

IV (Un, — Zup,)|?, dt

n

Theorem (Local space-time efficiency and robustness)

For each time-step interval |, and for each element K € T", there holds, in the
absence of data oscillation,

/ ot + Tt [ + |Vt — T )t < o 3 | = thrlZgo.

acVy

Comments .
v local in space and time

v Cer Only depends on shape regularity = robustness w.r.t the final time T and
the polynomial degrees p and g
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Unknowns
@ reference pressure P
@ phase saturations S := (Sp)pep
@ component molar fractions Cp := (Cp c)cec, 0f phase p € P




| Estimates & adaptivity Heat equation Multi-phase-compositional Darcy C Estimate Numerics Mass balance

Multi-phase multi-compositional flows

Unknowns
@ reference pressure P
@ phase saturations S := (Sp)pep
@ component molar fractions Cp := (Cp.c)cec, Of phase p € P
Constitutive laws
@ phase pressure = reference pressure + capillary pressure
@ Darcy’s law
Up(Pp) := —K(V Py + ppgV2)
@ component fluxes
HC = Z Op’c7 Hp’C = I/pCpVCuP(Pp)
pEPe
@ amount of moles of component ¢ per unit volume
/c = ¢ Z CpSpCp,c

PEP:

-

&z< -

it
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Multi-phase multi-compositional flows

Governing PDEs
@ conservation of mass for components

8{[0 + V'ec = qc \V/C S C
@ + boundary & initial conditions
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Multi-phase multi-compositional flows

Governing PDEs
@ conservation of mass for components
@ + boundary & initial conditions

Closure algebraic equations
@ conservation of pore volume: >_, ¢ Sp =

@ conservation of the quantity of the matter: Zcec Cpc=1forallpecq
@ thermodynamic equilibrium

-

&z’? s Favatastrms ‘erc
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Multi-phase multi-compositional flows

Governing PDEs
@ conservation of mass for components
@ + boundary & initial conditions

Closure algebraic equations
@ conservation of pore volume: >_, ¢ Sp =

@ conservation of the quantity of the matter: Zcec Cpc=1forallpecq
@ thermodynamic equilibrium

Mathematical issues
@ coupled system PDE — algebraic constraints
@ unsteady, nonlinear
@ elliptic—degenerate parabolic type
@ dominant advection

&’7/7/, erc
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A posteriori error estimate

Theorem (Multi-phase multi-compositional Darcy flow)

Under Assumption A, there holds )

2
dual residual norm < < > (s’ 4+ nilel + n{fnkc' + ng;gk k)2
ceC
1
with 77n ki = / nf;'c)z dt , , e =sp,tm,lin, alg, rem.
I kepn |
4 T erc
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A posteriori error estimate

Theorem (Multi-phase multi-compositional Darcy flow)

Under Assumption A, there holds

2
Wlthnnk':— / Z 77?;2'0 dt , , e =sp,tm,lin, alg, rem.

N

: 2
dual residual norm < S~ (nGfs’ + nel + nll + ng;gk )

ceC
1

In Kemn

Comments

immediate extension of the results of the steady case

still matrix-vector multiplication on each element

same element matrices Sx, My, and Ax or Ay

input: available normal face fluxes, reference pressure, phase saturations,

and component molar fractions

same physical units of estimators of all error components LisieimAn B
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3 phases, 3 components (black-oil) problem: permeability

Permeability X,Y Permeability 2z

4.910e-12 Je-11 2e-11 4.9106-11 2.450e-12 4e-12 5.5e-12 7e-12  8.580e-12
[RENEREE

HHHIHHH\ _ “\mm\m—mm\HIH,H

s
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3 phases, 3 components (black-oil) problem: gas saturation and a
posteriori estimate

Gas saturation AMRError

1.209e-01 0.31 0.5 0.68 8.709e-01

H\H‘HHHH\|HH\HH‘HHH

0.000e+00 0.25 0.5 0.75 1.000e+00,

o R LR P e

e ‘:‘:0”:‘:':’:'::::;.;:'
2

T “0‘0’:‘:”
X

““:’1

&’zr, erc
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3 phases, 3 components (black-oil): alg. solver & mesh adaptivity

100

_k_k
T 9
LoL

Error components
-
o
b

T ] [ T T T ]
800 —e—standard resolution

—— adaptive resolution

Yoot R
* standard stopping criterion
Wi | pping |

600 -

400 -

- adaptive stopping criterio

—e— total estimator 200 |-

——algebraic estimator

1t
Number of BiCGStab iterations

—— rel. alg. residual 3 ol ‘ ‘ ‘

T T T T | | L 1 = |
0 10 20 30 40 50 60 0 0.5 1 1.5

BiCGStab iteration Time (seconds) 108
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3 phases, 3 components (black-oil): alg.

Numerics Mass balance

solver & mesh adaptivity

100

_k_k
T 9
LoL

10~4

Error components
-
o
b

10-5
10-6

E E o 800 [ —
- Cneenen S —e—standard resolution
R R kS —+— adaptive resolution
o 3t standard stopping criterion 5
FoL W ‘ pping E 2 600 i
= E Q
F I
L ] n
\ 8 400} f
F adaptive stopping criterio Y Bl S
—e— total estimator g 3 200
—— algebraic estimator E
—— rel. alg. residual E z ol ‘ ‘ ‘

T T T T 1 1 I = =

0 10 20 30 40 50 60 0 0.5 1 1.5

BiCGStab iteration Time (seconds) 108
Linear solver | Resolution| AMR | Estimators | Gain
steps time time | evaluation |factor
Standard resolution 66386 1023s - - -
Adaptive resolution 20184 201s 42s 26s 3.8
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2 phases: recovering water mass balance

x10™

original mass balance misfit (m3s~") corrected mass balance misfit (m?s—1)
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2 phases: recovering oil mass balance

original mass balance misfit (m3s~") corrected mass balance misfit (m?s—1)
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2 phases: recovering oil mass balance

original mass balance misfit (m?s~1) corrected mass balance misfit (m?s~1)
Setting

@ fully implicit discretization

@ cell-centered finite volumes on a square mesh

@ time step 260 (60 days), 1st Newton linearization, GMRes iteration 195
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