Polynomial-degree-robust a posteriori estimates in a unified setting

Alexandre Ern and Martin Vohralík

INRIA Paris-Rocquencourt

Montevideo, December 12, 2014

Outline

Introduction

- 2 A guaranteed a posteriori error estimate
- Polynomial-degree-robust local efficiency

Applications

- 5 Numerical results
- 6 Conclusions and future directions

Outline

1 Introduction

- 2 A guaranteed a posteriori error estimate
- Polynomial-degree-robust local efficiency
- 4 Applications
- 5 Numerical results
- 6 Conclusions and future directions

Previous results, $-\Delta u = f$ in $\Omega \subset \mathbb{R}^d$, u = 0 on $\partial \Omega$

General result

• Prager and Synge (1947):

$$\|\nabla u + \sigma_h\|^2 + \|\nabla (u - u_h)\|^2 = \|\nabla u_h + \sigma_h\|^2$$

for any $u_h \in H^1_0(\Omega)$ and any $\sigma_h \in H(\operatorname{div}, \Omega)$ s.t. $\nabla \cdot \sigma_h = f$

- a posteriori estimate: how to practically construct σ_h?
- Hlaváček, Haslinger, Nečas, and Lovíšek (1979) & Repin (1997): global construction: unprecise/costly

Local flux reconstructions

- Ladevèze and Leguillon (1983), equilibrated face fluxes
- Destuynder and Métivet (1999), discrete flux σ_h
- Luce and Wohlmuth (2004), local efficiency
- Vejchodský (2006), mixed approach
- Kim (2007) & Ern, Nicaise, and Vohralík (2007), discontinuous Galerkin method elementwise prescription
- Braess and Schöberl (2008), Vohralík (2008), Ern and Vohralík (2009), local Neumann MFE problems

Previous results, $-\Delta u = f$ in $\Omega \subset \mathbb{R}^d$, u = 0 on $\partial \Omega$

General result

• Prager and Synge (1947):

 $\|\nabla u + \boldsymbol{\sigma}_h\|^2 + \|\nabla (u - u_h)\|^2 = \|\nabla u_h + \boldsymbol{\sigma}_h\|^2$

for any $u_h \in H^1_0(\Omega)$ and any $\sigma_h \in H(\operatorname{div}, \Omega)$ s.t. $\nabla \cdot \sigma_h = f$

- a posteriori estimate: how to practically construct σ_h?
- Hlaváček, Haslinger, Nečas, and Lovíšek (1979) & Repin (1997): global construction: unprecise/costly

Local flux reconstructions

- Ladevèze and Leguillon (1983), equilibrated face fluxes
- Destuynder and Métivet (1999), discrete flux σ_h
- Luce and Wohlmuth (2004), local efficiency
- Vejchodský (2006), mixed approach
- Kim (2007) & Ern, Nicaise, and Vohralík (2007), discontinuous Galerkin method elementwise prescription
- Braess and Schöberl (2008), Vohralík (2008), Ern and Vohralík (2009), local Neumann MFE problems

Alexandre Ern and Martin Vohralík

Unified polynomial-degree-robust a posteriori estimates 3 / 25

Previous results, $-\Delta u = f$ in $\Omega \subset \mathbb{R}^d$, u = 0 on $\partial \Omega$

General result

• Prager and Synge (1947):

 $\|\nabla u + \sigma_h\|^2 + \|\nabla (u - u_h)\|^2 = \|\nabla u_h + \sigma_h\|^2$

for any $u_h \in H^1_0(\Omega)$ and any $\sigma_h \in \mathbf{H}(\operatorname{div}, \Omega)$ s.t. $\nabla \cdot \sigma_h = f$

- a posteriori estimate: how to practically construct σ_h?
- Hlaváček, Haslinger, Nečas, and Lovíšek (1979) & Repin (1997): global construction: unprecise/costly

Local flux reconstructions

- Ladevèze and Leguillon (1983), equilibrated face fluxes
- Destuynder and Métivet (1999), discrete flux σ_h
- Luce and Wohlmuth (2004), local efficiency
- Vejchodský (2006), mixed approach
- Kim (2007) & Ern, Nicaise, and Vohralík (2007), discontinuous Galerkin method elementwise prescription
- Braess and Schöberl (2008), Vohralík (2008), Ern and Vohralík (2009), local Neumann MFE problems

Alexandre Ern and Martin Vohralík

Unified polynomial-degree-robust a posteriori estimates 3 / 25

Previous results, $-\Delta u = f$ in $\Omega \subset \mathbb{R}^d$, u = 0 on $\partial \Omega$

General result

• Prager and Synge (1947):

 $\|\nabla u + \boldsymbol{\sigma}_h\|^2 + \|\nabla (u - u_h)\|^2 = \|\nabla u_h + \boldsymbol{\sigma}_h\|^2$

for any $u_h \in H^1_0(\Omega)$ and any $\sigma_h \in \mathbf{H}(\operatorname{div}, \Omega)$ s.t. $\nabla \cdot \sigma_h = f$

- a posteriori estimate: how to practically construct σ_h?
- Hlaváček, Haslinger, Nečas, and Lovíšek (1979) & Repin (1997): global construction: unprecise/costly

Local flux reconstructions

- Ladevèze and Leguillon (1983), equilibrated face fluxes
- Destuynder and Métivet (1999), discrete flux σ_h
- Luce and Wohlmuth (2004), local efficiency
- Vejchodský (2006), mixed approach
- Kim (2007) & Ern, Nicaise, and Vohralík (2007), discontinuous Galerkin method elementwise prescription
- Braess and Schöberl (2008), Vohralík (2008), Ern and Vohralík (2009), local Neumann MFE problems

Previous results

Local potential reconstructions ($u_h \notin H_0^1(\Omega)$)

- Achdou, Bernardi, and Coquel (2003) & Karakashian and Pascal (2003), by prescription
- Carstensen and Merdon (2013), local Neumann MFE problems

Unified frameworks

- Ainsworth and Oden (1993)
- Carstensen (2005)
- Ainsworth (2010)
- Ern and Vohralík (heat equation 2010, Stokes equation 2012, nonlinear Laplace equation 2013)

Polynomial-degree-robust estimates

 Braess, Pillwein, and Schöberl (2009), conforming finite elements

Previous results

Local potential reconstructions ($u_h \notin H_0^1(\Omega)$)

- Achdou, Bernardi, and Coquel (2003) & Karakashian and Pascal (2003), by prescription
- Carstensen and Merdon (2013), local Neumann MFE problems

Unified frameworks

- Ainsworth and Oden (1993)
- Carstensen (2005)
- Ainsworth (2010)
- Ern and Vohralík (heat equation 2010, Stokes equation 2012, nonlinear Laplace equation 2013)

Polynomial-degree-robust estimates

 Braess, Pillwein, and Schöberl (2009), conforming finite elements

Previous results

Local potential reconstructions ($u_h \notin H_0^1(\Omega)$)

- Achdou, Bernardi, and Coquel (2003) & Karakashian and Pascal (2003), by prescription
- Carstensen and Merdon (2013), local Neumann MFE problems

Unified frameworks

- Ainsworth and Oden (1993)
- Carstensen (2005)
- Ainsworth (2010)
- Ern and Vohralík (heat equation 2010, Stokes equation 2012, nonlinear Laplace equation 2013)

Polynomial-degree-robust estimates

Braess, Pillwein, and Schöberl (2009), conforming finite elements

Model problem

Model problem

 $\begin{aligned} -\Delta u &= f & \text{ in } \Omega, \\ u &= 0 & \text{ on } \partial \Omega \end{aligned}$

Weak formulation

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H_0^1(\Omega)$$

Properties of the weak solution

- $u \in H_0^1(\Omega)$ (constraint)
- $\sigma \in H(\operatorname{div}, \Omega)$ (constraint)
- $\sigma = -\nabla u$ (constitutive law)
- $\nabla \cdot \boldsymbol{\sigma} = f$ (equilibrium)

Model problem

Model problem

$$-\Delta u = f \qquad \text{in } \Omega,$$
$$u = 0 \qquad \text{on } \partial \Omega$$

Weak formulation

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H^1_0(\Omega)$$

Properties of the weak solution

- $u \in H_0^1(\Omega)$ (constraint)
- $\sigma \in H(\operatorname{div}, \Omega)$ (constraint)
- $\sigma = -\nabla u$ (constitutive law)
- $\nabla \cdot \boldsymbol{\sigma} = f$ (equilibrium)

Model problem

Model problem

$$-\Delta u = f \qquad \text{in } \Omega,$$
$$u = 0 \qquad \text{on } \partial \Omega$$

Weak formulation

$$(\nabla u, \nabla v) = (f, v) \qquad \forall v \in H_0^1(\Omega)$$

Properties of the weak solution

- $u \in H_0^1(\Omega)$ (constraint)
- $\sigma \in H(\operatorname{div}, \Omega)$ (constraint)
- $\sigma = -\nabla u$ (constitutive law)
- $\nabla \cdot \boldsymbol{\sigma} = \boldsymbol{f}$ (equilibrium)

Outline

Introduction

2 A guaranteed a posteriori error estimate

Polynomial-degree-robust local efficiency

4 Applications

- 5 Numerical results
- 6 Conclusions and future directions

A posteriori error estimate

Theorem (A guaranteed a posteriori error estimate)

• Let $u \in H_0^1(\Omega)$ be the weak solution,

• $u_h \in H^1(\mathcal{T}_h) := \{ v \in L^2(\Omega), v |_K \in H^1(K) \forall K \in \mathcal{T}_h \}$ be arbitrary,

• $s_h \in H_0^1(\Omega)$ and $\sigma_h \in \mathbf{H}(\operatorname{div}, \Omega)$ with $(\nabla \cdot \sigma_h, 1)_K = (f, 1)_K$ for all $K \in \mathcal{T}_h$ be arbitrary.

$$Then \|\nabla(u-u_h)\|^2 \leq \sum_{K\in\mathcal{T}_h} \left(\|\nabla u_h + \sigma_h\|_K + \frac{n_K}{\pi} \|f - \nabla \cdot \sigma_h\|_K \right)^2 + \sum_{K\in\mathcal{T}_h} \|\nabla(u_h - s_h)\|_K^2.$$

Proof (Spirit of Prager–Synge (1947)).

• define $s \in H_0^1(\Omega)$ by $(\nabla s, \nabla v) = (\nabla u_h, \nabla v) \quad \forall v \in H_0^1(\Omega)$ • develop (Pythagoras) $\|\nabla (u - u_h)\|^2 = \|\nabla (u - s)\|^2 + \|\nabla (s - u_h)\|^2$

matic

A posteriori error estimate

Theorem (A guaranteed a posteriori error estimate)

• Let $u \in H_0^1(\Omega)$ be the weak solution,

• $u_h \in H^1(\mathcal{T}_h) := \{ v \in L^2(\Omega), v |_K \in H^1(K) \forall K \in \mathcal{T}_h \}$ be arbitrary,

• $s_h \in H_0^1(\Omega)$ and $\sigma_h \in \mathbf{H}(\operatorname{div}, \Omega)$ with $(\nabla \cdot \sigma_h, 1)_K = (f, 1)_K$ for all $K \in \mathcal{T}_h$ be arbitrary.

$$Then \|\nabla(u-u_h)\|^2 \leq \sum_{K\in\mathcal{T}_h} \left(\|\nabla u_h + \sigma_h\|_K + \frac{h_K}{\pi} \|f - \nabla \cdot \sigma_h\|_K\right)^2 + \sum_{K\in\mathcal{T}_h} \|\nabla(u_h - s_h)\|_K^2.$$

Proof (Spirit of Prager-Synge (1947)).

• define
$$s \in H_0^1(\Omega)$$
 by
 $(\nabla s, \nabla v) = (\nabla u_h, \nabla v) \quad \forall v \in H_0^1(\Omega)$
• develop (Pythagoras)
 $\|\nabla (u - u_h)\|^2 = \|\nabla (u - s)\|^2 + \|\nabla (s - u_h)\|^2$

A posteriori error estimate

Theorem (A guaranteed a posteriori error estimate)

• Let $u \in H_0^1(\Omega)$ be the weak solution,

• $u_h \in H^1(\mathcal{T}_h) := \{ v \in L^2(\Omega), v |_K \in H^1(K) \forall K \in \mathcal{T}_h \}$ be arbitrary,

• $s_h \in H_0^1(\Omega)$ and $\sigma_h \in \mathbf{H}(\operatorname{div}, \Omega)$ with $(\nabla \cdot \sigma_h, 1)_K = (f, 1)_K$ for all $K \in \mathcal{T}_h$ be arbitrary.

Then
$$\|\nabla(u-u_h)\|^2 \leq \sum_{K\in\mathcal{T}_h} \left(\|\nabla u_h + \sigma_h\|_K + \frac{h_K}{\pi}\|f - \nabla\cdot\sigma_h\|_K\right)^2 + \sum_{K\in\mathcal{T}_h} \|\nabla(u_h - s_h)\|_K^2.$$

Proof (Spirit of Prager–Synge (1947)).

• define
$$s \in H_0^1(\Omega)$$
 by
 $(\nabla s, \nabla v) = (\nabla u_h, \nabla v) \quad \forall v \in H_0^1(\Omega)$
• develop (Pythagoras)
 $\|\nabla (u - u_h)\|^2 = \|\nabla (u - s)\|^2 + \|\nabla (s - u_h)\|^2$

A posteriori error estimate

Proof (continuation).

• projection definition of *s*:

$$\|\nabla(u-u_{h})\|^{2} = \sup_{\substack{\varphi \in H_{0}^{1}(\Omega): \|\nabla\varphi\|=1 \\ \text{ dual norm of the residual}}} (\nabla(u-u_{h}), \nabla\varphi)^{2} + \underbrace{\min_{\substack{\nu \in H_{0}^{1}(\Omega) \\ \text{ distance of } u_{h} \text{ to } H_{0}^{1}(\Omega)}}_{\text{ distance of } u_{h} \text{ to } H_{0}^{1}(\Omega)} \|\nabla(v-u_{h})\|^{2}$$
• nonconformity upper bound:

$$\min_{\nu \in H_{0}^{1}(\Omega)} \|\nabla(v-u_{h})\| \leq \|\nabla(u_{h}-s_{h})\|$$
• weak solution definition, equilibrated flux, Green theorem:

$$(\nabla(u-u_{h}), \nabla\varphi) = (f, \varphi) - (\nabla u_{h}, \nabla\varphi) = (f-\nabla \cdot \sigma_{h}, \varphi) - (\nabla u_{h}+\sigma_{h}, \nabla\varphi)$$
• Cauchy–Schwarz and Poincaré inequalities:

$$-(\nabla u_{h} + \sigma_{h}, \nabla\varphi) \leq \sum_{K \in \mathcal{T}_{h}} \|\nabla u_{h} + \sigma_{h}\|_{K} \|\nabla\varphi\|_{K},$$

$$(f-\nabla \cdot \sigma_{h}, \varphi) = \sum_{K \in \mathcal{T}_{h}} (f-\nabla \cdot \sigma_{h}, \varphi-\varphi_{K})_{K} \leq \sum_{K \in \mathcal{T}_{h}} \frac{h_{K}}{\pi} \|f-\nabla \cdot \sigma_{h}\|_{K} \|\nabla\varphi\|_{K}$$

ematic

Potential and flux reconstruction

Potential and flux reconstruction

Alexandre Ern and Martin Vohralík

Local flux reconstruction

Assumption A (Galerkin orthogonality)

There holds $u_h \in H^1(\mathcal{T}_h)$ and $(\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (f, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_h^{\text{int}}.$

 ${\sf Definition}~({\sf Constr.}~{\sf of}~\sigma_h,$ Destuynder and Métivet (1999) & Braess and Schöberl (2008))

Let Assumption A be satisfied. For each $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_h^{\mathbf{a}} \in \mathbf{V}_h^{\mathbf{a}}$ and $\overline{r}_h^{\mathbf{a}} \in Q_h^{\mathbf{a}}$ by solving the local MFE problem

$$\begin{aligned} (\boldsymbol{\sigma}_{h}^{\mathbf{a}},\mathbf{v}_{h})_{\omega_{\mathbf{a}}} &- (\bar{\boldsymbol{r}}_{h}^{\mathbf{a}},\nabla\cdot\mathbf{v}_{h})_{\omega_{\mathbf{a}}} = -(\psi_{\mathbf{a}}\nabla\boldsymbol{u}_{h},\mathbf{v}_{h})_{\omega_{\mathbf{a}}} & \forall \mathbf{v}_{h}\in\mathbf{V}_{h}^{\mathbf{a}}, \\ (\nabla\cdot\boldsymbol{\sigma}_{h}^{\mathbf{a}},q_{h})_{\omega_{\mathbf{a}}} &= (\psi_{\mathbf{a}}\boldsymbol{f}-\nabla\psi_{\mathbf{a}}\cdot\nabla\boldsymbol{u}_{h},q_{h})_{\omega_{\mathbf{a}}} & \forall q_{h}\in\boldsymbol{Q}_{h}^{\mathbf{a}}, \end{aligned}$$

with mixed finite element spaces $V_h^a \times Q_h^a$ (homogeneous Neumann BC for $\mathbf{a} \in \mathcal{V}_h^{\text{int}}$ and on $\partial \omega_{\mathbf{a}} \setminus \partial \Omega$ for $\mathbf{a} \in \mathcal{V}_h^{\text{ext}}$, homogeneous Dirichlet BC on $\partial \omega_{\mathbf{a}} \cap \partial \Omega$ for $\mathbf{a} \in \mathcal{V}_h^{\text{ext}}$). Set

$${\pmb \sigma}_h := \sum_{{\mathbf a} \in \mathcal{V}_h} {\pmb \sigma}_h^{{\mathbf a}}$$

Alexandre Ern and Martin Vohralík

ematics

Local flux reconstruction

Assumption A (Galerkin orthogonality)

There holds $u_h \in H^1(\mathcal{T}_h)$ and

$$(\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (f, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_h^{\text{int}}.$$

Definition (Constr. of σ_h , Destuynder and Métivet (1999) & Braess and Schöberl (2008))

Let Assumption A be satisfied. For each $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_h^{\mathbf{a}} \in \mathbf{V}_h^{\mathbf{a}}$ and $\bar{r}_h^{\mathbf{a}} \in Q_h^{\mathbf{a}}$ by solving the local MFE problem

$$\begin{split} (\boldsymbol{\sigma}_{h}^{\mathbf{a}},\mathbf{v}_{h})_{\omega_{\mathbf{a}}} &- (\bar{r}_{h}^{\mathbf{a}},\nabla\cdot\mathbf{v}_{h})_{\omega_{\mathbf{a}}} = -(\psi_{\mathbf{a}}\nabla\boldsymbol{u}_{h},\mathbf{v}_{h})_{\omega_{\mathbf{a}}} & \forall \mathbf{v}_{h}\in\mathbf{V}_{h}^{\mathbf{a}}, \\ (\nabla\cdot\boldsymbol{\sigma}_{h}^{\mathbf{a}},q_{h})_{\omega_{\mathbf{a}}} = (\psi_{\mathbf{a}}\boldsymbol{f}-\nabla\psi_{\mathbf{a}}\cdot\nabla\boldsymbol{u}_{h},q_{h})_{\omega_{\mathbf{a}}} & \forall q_{h}\in\boldsymbol{Q}_{h}^{\mathbf{a}}, \end{split}$$

with mixed finite element spaces $\mathbf{V}_{h}^{\mathbf{a}} \times \mathbf{Q}_{h}^{\mathbf{a}}$ (homogeneous Neumann BC for $\mathbf{a} \in \mathcal{V}_{h}^{\text{int}}$ and on $\partial \omega_{\mathbf{a}} \setminus \partial \Omega$ for $\mathbf{a} \in \mathcal{V}_{h}^{\text{ext}}$, homogeneous Dirichlet BC on $\partial \omega_{\mathbf{a}} \cap \partial \Omega$ for $\mathbf{a} \in \mathcal{V}_{h}^{\text{ext}}$). Set

$$\sigma_h := \sum_{\mathbf{a} \in \mathcal{V}_h} \sigma_h^{\mathbf{a}}$$

Comments

 $H(div, \Omega)$ -conformity

•
$$\sigma_h^{a} \in \mathbf{H}(\operatorname{div}, \Omega) \Rightarrow \sigma_h = \sum_{\mathbf{a} \in \mathcal{V}_h} \sigma_h^{a} \in \mathbf{H}(\operatorname{div}, \Omega)$$

Neumann compatibility condition

• for $\mathbf{a} \in \mathcal{V}_h^{\text{int}}$, one needs

$$(\psi_{\mathbf{a}}f - \nabla\psi_{\mathbf{a}}\cdot\nabla u_h, 1)_{\omega_{\mathbf{a}}} = 0$$

but Assumption A gives

$$\mathbf{0} = (f, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} - (\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (\psi_{\mathbf{a}}f - \nabla \psi_{\mathbf{a}} \cdot \nabla u_h, 1)_{\omega_{\mathbf{a}}}$$

Divergence

• Neumann compatibility condition gives

$$\nabla \cdot \boldsymbol{\sigma}_{h}^{\mathbf{a}}|_{K} = \prod_{Q_{h}} (\psi_{\mathbf{a}} f - \nabla \psi_{\mathbf{a}} \cdot \nabla u_{h})|_{K} \qquad \forall K \in \mathcal{T}_{h}$$

• the fact that $\sigma_h|_K = \sum_{\mathbf{a} \in \mathcal{V}_K} \sigma_h^{\mathbf{a}}|_K$ and the partition of unity $\sum_{\mathbf{a} \in \mathcal{V}_K} \psi^{\mathbf{a}}|_K = 1|_K$ yield

$$abla \cdot \boldsymbol{\sigma}_h|_K = \Pi_{\boldsymbol{Q}_h} f|_K \qquad orall K \in \mathcal{T}_h$$

Comments

 $H(div, \Omega)$ -conformity

•
$$\sigma_h^{a} \in \mathbf{H}(\operatorname{div}, \Omega) \Rightarrow \sigma_h = \sum_{\mathbf{a} \in \mathcal{V}_h} \sigma_h^{a} \in \mathbf{H}(\operatorname{div}, \Omega)$$

Neumann compatibility condition

• for $\mathbf{a} \in \mathcal{V}_h^{\text{int}}$, one needs

$$(\psi_{\mathbf{a}}f - \nabla\psi_{\mathbf{a}}\cdot\nabla u_h, \mathbf{1})_{\omega_{\mathbf{a}}} = \mathbf{0}$$

but Assumption A gives

$$\mathbf{0} = (f, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} - (\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (\psi_{\mathbf{a}} f - \nabla \psi_{\mathbf{a}} \cdot \nabla u_h, \mathbf{1})_{\omega_{\mathbf{a}}}$$

Divergence

Neumann compatibility condition gives

$$\nabla \cdot \boldsymbol{\sigma}_{h}^{\mathbf{a}}|_{K} = \prod_{Q_{h}} (\psi_{\mathbf{a}} f - \nabla \psi_{\mathbf{a}} \cdot \nabla u_{h})|_{K} \qquad \forall K \in \mathcal{T}_{h}$$

• the fact that $\sigma_h|_K = \sum_{\mathbf{a} \in \mathcal{V}_K} \sigma_h^{\mathbf{a}}|_K$ and the partition of unity $\sum_{\mathbf{a} \in \mathcal{V}_K} \psi^{\mathbf{a}}|_K = 1|_K$ yield

$$abla \cdot \boldsymbol{\sigma}_h|_K = \Pi_{\boldsymbol{Q}_h} f|_K \qquad orall K \in \mathcal{T}_h$$

Comments

 $H(div, \Omega)$ -conformity

•
$$\sigma_h^{a} \in \mathbf{H}(\operatorname{div}, \Omega) \Rightarrow \sigma_h = \sum_{\mathbf{a} \in \mathcal{V}_h} \sigma_h^{a} \in \mathbf{H}(\operatorname{div}, \Omega)$$

Neumann compatibility condition

• for $\boldsymbol{a} \in \mathcal{V}_h^{\text{int}}$, one needs

$$(\psi_{\mathbf{a}}f - \nabla\psi_{\mathbf{a}}\cdot\nabla u_h, \mathbf{1})_{\omega_{\mathbf{a}}} = \mathbf{0}$$

but Assumption A gives

$$\mathbf{0} = (f, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} - (\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (\psi_{\mathbf{a}} f - \nabla \psi_{\mathbf{a}} \cdot \nabla u_h, \mathbf{1})_{\omega_{\mathbf{a}}}$$

Divergence

Neumann compatibility condition gives

$$\nabla \cdot \boldsymbol{\sigma}_{h}^{\mathbf{a}}|_{\mathcal{K}} = \Pi_{\boldsymbol{Q}_{h}}(\psi_{\mathbf{a}}f - \nabla \psi_{\mathbf{a}} \cdot \nabla u_{h})|_{\mathcal{K}} \qquad \forall \mathcal{K} \in \mathcal{T}_{h}$$

• the fact that $\sigma_h|_{\mathcal{K}} = \sum_{\mathbf{a} \in \mathcal{V}_{\mathcal{K}}} \sigma_h^{\mathbf{a}}|_{\mathcal{K}}$ and the partition of unity $\sum_{\mathbf{a} \in \mathcal{V}_{\mathcal{K}}} \psi^{\mathbf{a}}|_{\mathcal{K}} = 1|_{\mathcal{K}}$ yield $\nabla \cdot \sigma_h|_{\mathcal{K}} = \prod_{Q_h} f|_{\mathcal{K}} \quad \forall \mathcal{K} \in \mathcal{T}_h$

Local potential reconstruction (d = 2)

Definition (Construction of s_h)

For each $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_h^{\mathbf{a}} \in \mathbf{V}_h^{\mathbf{a}}$ and $\bar{r}_h^{\mathbf{a}} \in Q_h^{\mathbf{a}}$ by solving the local MFE problem

$$egin{aligned} &(\pmb{\sigma}_h^{\mathbf{a}}, \pmb{\mathsf{v}}_h)_{\omega_{\mathbf{a}}} - (ar{r}_h^{\mathbf{a}},
abla \cdot \pmb{\mathsf{v}}_h)_{\omega_{\mathbf{a}}} &= -(\mathbb{R}_{rac{\pi}{2}}
abla (\psi_{\mathbf{a}} u_h), \pmb{\mathsf{v}}_h)_{\omega_{\mathbf{a}}} & orall \mathbf{v}_h \in \mathbf{V}_h^{\mathbf{a}}, \ &(
abla \cdot \boldsymbol{\sigma}_h^{\mathbf{a}}, q_h)_{\omega_{\mathbf{a}}} = (\mathbf{0}, q_h)_{\omega_{\mathbf{a}}} & orall q_h \in Q_h^{\mathbf{a}}, \end{aligned}$$

with mixed finite element spaces $\mathbf{V}_h^{\mathbf{a}} \times \mathbf{Q}_h^{\mathbf{a}}$ (hom. Neumann BC on $\partial \omega_{\mathbf{a}}$ for all $\mathbf{a} \in \mathcal{V}_h$). Set

$$-\mathrm{R}_{\frac{\pi}{2}} \nabla \boldsymbol{s}_{h}^{\mathbf{a}} = \boldsymbol{\sigma}_{h}^{\mathbf{a}},$$
$$\boldsymbol{s}_{h}^{\mathbf{a}} = 0 \text{ on } \partial \omega_{\mathbf{a}},$$
$$\boldsymbol{s}_{h} := \sum_{\mathbf{a} \in \mathcal{V}_{h}} \boldsymbol{s}_{h}^{\mathbf{a}}.$$

Remark
 The same problems, only RHS/BC different.

Alexandre Ern and Martin Vohralík

Unified polynomial-degree-robust a posteriori estimates 11 / 25

Local potential reconstruction (d = 2)

Definition (Construction of s_h)

For each $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_h^{\mathbf{a}} \in \mathbf{V}_h^{\mathbf{a}}$ and $\bar{r}_h^{\mathbf{a}} \in Q_h^{\mathbf{a}}$ by solving the local MFE problem

$$egin{aligned} &(\pmb{\sigma}_h^{\mathtt{a}}, \pmb{\mathsf{v}}_h)_{\omega_{\mathtt{a}}} - (ar{r}_h^{\mathtt{a}},
abla \cdot \pmb{\mathsf{v}}_h)_{\omega_{\mathtt{a}}} &= -(\mathtt{R}_{rac{\pi}{2}}
abla (\psi_{\mathtt{a}} oldsymbol{u}_h), oldsymbol{v}_h)_{\omega_{\mathtt{a}}} & orall \mathbf{v}_h \in \mathtt{V}_h^{\mathtt{a}}, \ &(
abla \cdot oldsymbol{\sigma}_h^{\mathtt{a}}, oldsymbol{q}_h)_{\omega_{\mathtt{a}}} &= (\mathbf{0}, oldsymbol{q}_h)_{\omega_{\mathtt{a}}} & orall oldsymbol{q}_h \in oldsymbol{Q}_h^{\mathtt{a}}, \end{aligned}$$

with mixed finite element spaces $\mathbf{V}_h^{\mathbf{a}} \times \mathbf{Q}_h^{\mathbf{a}}$ (hom. Neumann BC on $\partial \omega_{\mathbf{a}}$ for all $\mathbf{a} \in \mathcal{V}_h$). Set

$$-\mathrm{R}_{rac{\pi}{2}}
abla S_h^{\mathbf{a}} = \sigma_h^{\mathbf{a}},$$

 $s_h^{\mathbf{a}} = 0 ext{ on } \partial \omega_{\mathbf{a}},$
 $s_h := \sum_{\mathbf{a} \in \mathcal{V}_h} s_h^{\mathbf{a}}.$

The same problems, only RHS/BC different.

Alexandre Ern and Martin Vohralík

Unified polynomial-degree-robust a posteriori estimates 11 / 25

Local potential reconstruction (d = 2)

Definition (Construction of s_h)

For each $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_h^{\mathbf{a}} \in \mathbf{V}_h^{\mathbf{a}}$ and $\bar{r}_h^{\mathbf{a}} \in Q_h^{\mathbf{a}}$ by solving the local MFE problem

$$egin{aligned} &(\pmb{\sigma}_h^{\mathtt{a}}, \pmb{\mathsf{v}}_h)_{\omega_{\mathtt{a}}} - (ar{r}_h^{\mathtt{a}},
abla \cdot \pmb{\mathsf{v}}_h)_{\omega_{\mathtt{a}}} &= -(\mathtt{R}_{rac{\pi}{2}}
abla (\psi_{\mathtt{a}} oldsymbol{u}_h), oldsymbol{v}_h)_{\omega_{\mathtt{a}}} & orall \mathbf{v}_h \in \mathtt{V}_h^{\mathtt{a}}, \ &(
abla \cdot oldsymbol{\sigma}_h^{\mathtt{a}}, oldsymbol{q}_h)_{\omega_{\mathtt{a}}} &= (\mathbf{0}, oldsymbol{q}_h)_{\omega_{\mathtt{a}}} & orall oldsymbol{q}_h \in oldsymbol{Q}_h^{\mathtt{a}}, \end{aligned}$$

with mixed finite element spaces $\mathbf{V}_h^{\mathbf{a}} \times \mathbf{Q}_h^{\mathbf{a}}$ (hom. Neumann BC on $\partial \omega_{\mathbf{a}}$ for all $\mathbf{a} \in \mathcal{V}_h$). Set

$$-\mathbf{R}_{\frac{\pi}{2}} \nabla \boldsymbol{s}_{h}^{\mathbf{a}} = \boldsymbol{\sigma}_{h}^{\mathbf{a}},$$
$$\boldsymbol{s}_{h}^{\mathbf{a}} = 0 \text{ on } \partial \omega_{\mathbf{a}},$$
$$\boldsymbol{s}_{h} := \sum_{\mathbf{a} \in \mathcal{V}_{h}} \boldsymbol{s}_{h}^{\mathbf{a}}.$$

Remark

• The same problems, only RHS/BC different.

Alexandre Ern and Martin Vohralík

Unified polynomial-degree-robust a posteriori estimates 11 / 25

Outline

Introduction

- 2 A guaranteed a posteriori error estimate
- Polynomial-degree-robust local efficiency
- 4 Applications
- 5 Numerical results
- 6 Conclusions and future directions

Continuous efficiency, flux reconstruction

Theorem (Cont. efficiency Carstensen & Funken (1999), Braess, Pillwein, & Schöberl (2009))

Let *u* be the weak solution and let $u_h \in H^1(\mathcal{T}_h)$ be arbitrary. Let $\mathbf{a} \in \mathcal{V}_h$ and let $\sigma^{\mathbf{a}} \in \mathbf{H}_*(\operatorname{div}, \omega_{\mathbf{a}})$ and $\overline{r}^{\mathbf{a}} \in L^2_*(\omega_{\mathbf{a}})$ be given by

$$\begin{aligned} (\boldsymbol{\sigma}^{\mathbf{a}}, \mathbf{v})_{\omega_{\mathbf{a}}} - (\bar{\boldsymbol{r}}^{\mathbf{a}}, \nabla \cdot \mathbf{v})_{\omega_{\mathbf{a}}} &= -(\psi_{\mathbf{a}} \nabla \boldsymbol{u}_{h}, \mathbf{v})_{\omega_{\mathbf{a}}} & \forall \mathbf{v} \in \mathbf{H}_{*}(\operatorname{div}, \omega_{\mathbf{a}}), \\ (\nabla \cdot \boldsymbol{\sigma}^{\mathbf{a}}, q)_{\omega_{\mathbf{a}}} &= (\psi_{\mathbf{a}} \boldsymbol{f} - \nabla \psi_{\mathbf{a}} \cdot \nabla \boldsymbol{u}_{h}, q)_{\omega_{\mathbf{a}}} & \forall q \in L^{2}_{*}(\omega_{\mathbf{a}}), \end{aligned}$$

with

- a ∈ V^{int}_h: L²_{*}(ω_a) := L²(ω_a) with zero mean value;
 H_{*}(div, ω_a) := H(div, ω_a) with zero normal trace on ∂ω_a;
- a ∈ V_h^{ext}: L_{*}²(ω_a) := L²(ω_a); H_{*}(div, ω_a) := H(div, ω_a) with zero normal trace on ∂ω_a \ ∂Ω.

Then there exists a constant $C_{\text{cont,PF}} > 0$ only depending on the mesh shape-regularity parameter κ_{T} such that

 $egin{array}{l} |m{\sigma}^{\mathsf{a}}+\psi_{\mathsf{a}}
abla m{\textit{u}}_{h}\|_{\omega_{\mathsf{a}}} \leq C_{ ext{cont,PF}}\|
abla (m{\textit{u}}-m{\textit{u}}_{h})\|_{\omega_{\mathsf{a}}} \end{array}$

amotic

Continuous efficiency, flux reconstruction

Theorem (Cont. efficiency Carstensen & Funken (1999), Braess, Pillwein, & Schöberl (2009))

Let *u* be the weak solution and let $u_h \in H^1(\mathcal{T}_h)$ be arbitrary. Let $\mathbf{a} \in \mathcal{V}_h$ and let $\sigma^{\mathbf{a}} \in \mathbf{H}_*(\operatorname{div}, \omega_{\mathbf{a}})$ and $\overline{r}^{\mathbf{a}} \in L^2_*(\omega_{\mathbf{a}})$ be given by

$$\begin{aligned} (\boldsymbol{\sigma}^{\mathbf{a}}, \mathbf{v})_{\omega_{\mathbf{a}}} - (\bar{\boldsymbol{r}}^{\mathbf{a}}, \nabla \cdot \mathbf{v})_{\omega_{\mathbf{a}}} &= -(\psi_{\mathbf{a}} \nabla \boldsymbol{u}_{h}, \mathbf{v})_{\omega_{\mathbf{a}}} & \forall \mathbf{v} \in \mathbf{H}_{*}(\operatorname{div}, \omega_{\mathbf{a}}), \\ (\nabla \cdot \boldsymbol{\sigma}^{\mathbf{a}}, q)_{\omega_{\mathbf{a}}} &= (\psi_{\mathbf{a}} \boldsymbol{f} - \nabla \psi_{\mathbf{a}} \cdot \nabla \boldsymbol{u}_{h}, q)_{\omega_{\mathbf{a}}} & \forall q \in L^{2}_{*}(\omega_{\mathbf{a}}), \end{aligned}$$

with

- a ∈ V^{int}_h: L²_{*}(ω_a) := L²(ω_a) with zero mean value;
 H_{*}(div, ω_a) := H(div, ω_a) with zero normal trace on ∂ω_a;
- a ∈ V_h^{ext}: L_{*}²(ω_a) := L²(ω_a); H_{*}(div, ω_a) := H(div, ω_a) with zero normal trace on ∂ω_a \ ∂Ω.

Then there exists a constant $C_{\text{cont,PF}} > 0$ only depending on the mesh shape-regularity parameter κ_T such that

$$\|\sigma^{\mathsf{a}} + \psi_{\mathsf{a}}
abla u_h\|_{\omega_{\mathsf{a}}} \leq C_{\operatorname{cont,PF}} \|\nabla(\boldsymbol{u} - \boldsymbol{u}_h)\|_{\omega_{\mathsf{a}}}.$$

amotic

Continuous efficiency, potential reconstruction (d = 2)

Assumption B (Weak continuity)

There holds

$$\langle \llbracket u_h \rrbracket, 1 \rangle_e = 0 \qquad \forall e \in \mathcal{E}_h.$$

Theorem (Continuous efficiency)

Let u be the weak solution and let $u_h \in H^1(\mathcal{T}_h)$ satisfying Assumption B be arbitrary. Let $\mathbf{a} \in \mathcal{V}_h$ and let $\sigma^{\mathbf{a}} \in \mathbf{H}_*(\operatorname{div}, \omega_{\mathbf{a}})$ and $\overline{r}^{\mathbf{a}} \in L^2_*(\omega_{\mathbf{a}})$ be given by

$$\begin{aligned} (\boldsymbol{\sigma}^{\mathbf{a}}, \mathbf{v})_{\omega_{\mathbf{a}}} - (\bar{\boldsymbol{r}}^{\mathbf{a}}, \nabla \cdot \mathbf{v})_{\omega_{\mathbf{a}}} &= -(\mathbf{R}_{\frac{\pi}{2}} \nabla (\psi_{\mathbf{a}} \boldsymbol{u}_{h}), \mathbf{v})_{\omega_{\mathbf{a}}} \quad \forall \mathbf{v} \in \mathbf{H}_{*}(\operatorname{div}, \omega_{\mathbf{a}}), \\ (\nabla \cdot \boldsymbol{\sigma}^{\mathbf{a}}, q)_{\omega_{\mathbf{a}}} &= (\mathbf{0}, q)_{\omega_{\mathbf{a}}} \quad \forall q \in L^{2}_{*}(\omega_{\mathbf{a}}), \end{aligned}$$

with $L^2_*(\omega_a) := L^2(\omega_a)$ with zero mean value and $\mathbf{H}_*(\operatorname{div}, \omega_a) := \mathbf{H}(\operatorname{div}, \omega_a)$ with zero normal trace on $\partial \omega_a$. Then there exists $C_{\operatorname{cont,bPF}} > 0$ only depending on κ_T such that

 $\|\boldsymbol{\sigma}^{\mathsf{a}} + \mathrm{R}_{\frac{\pi}{2}} \nabla(\psi_{\mathsf{a}} u_h)\|_{\omega_{\mathsf{a}}} \leq C_{\mathrm{cont, bPF}} \|\nabla(\boldsymbol{u} - u_h)\|_{\omega_{\mathsf{a}}}.$

Continuous efficiency, potential reconstruction (d = 2)

Assumption B (Weak continuity)

There holds

$$\langle \llbracket u_h \rrbracket, 1 \rangle_e = 0 \qquad \forall e \in \mathcal{E}_h.$$

Theorem (Continuous efficiency)

Let u be the weak solution and let $u_h \in H^1(\mathcal{T}_h)$ satisfying Assumption B be arbitrary. Let $\mathbf{a} \in \mathcal{V}_h$ and let $\sigma^{\mathbf{a}} \in \mathbf{H}_*(\operatorname{div}, \omega_{\mathbf{a}})$ and $\overline{r}^{\mathbf{a}} \in L^2_*(\omega_{\mathbf{a}})$ be given by

$$\begin{aligned} (\boldsymbol{\sigma}^{\mathbf{a}},\mathbf{v})_{\omega_{\mathbf{a}}} - (\bar{\boldsymbol{r}}^{\mathbf{a}},\nabla\cdot\mathbf{v})_{\omega_{\mathbf{a}}} &= -(\mathbf{R}_{\frac{\pi}{2}}\nabla(\psi_{\mathbf{a}}\boldsymbol{u}_{h}),\mathbf{v})_{\omega_{\mathbf{a}}} \quad \forall \mathbf{v}\in\mathbf{H}_{*}(\operatorname{div},\omega_{\mathbf{a}}),\\ (\nabla\cdot\boldsymbol{\sigma}^{\mathbf{a}},q)_{\omega_{\mathbf{a}}} &= (\mathbf{0},q)_{\omega_{\mathbf{a}}} \quad \forall q\in L^{2}_{*}(\omega_{\mathbf{a}}), \end{aligned}$$

with $L^2_*(\omega_{\mathbf{a}}) := L^2(\omega_{\mathbf{a}})$ with zero mean value and $\mathbf{H}_*(\operatorname{div}, \omega_{\mathbf{a}}) := \mathbf{H}(\operatorname{div}, \omega_{\mathbf{a}})$ with zero normal trace on $\partial \omega_{\mathbf{a}}$. Then there exists $C_{\operatorname{cont, bPF}} > 0$ only depending on $\kappa_{\mathcal{T}}$ such that $\|\boldsymbol{\sigma}^{\mathbf{a}} + \mathbf{R}_{\frac{\pi}{2}} \nabla(\psi_{\mathbf{a}} u_h)\|_{\omega_{\mathbf{a}}} \leq C_{\operatorname{cont, bPF}} \|\nabla(\boldsymbol{u} - u_h)\|_{\omega_{\mathbf{a}}}.$

amotic

Continuous efficiency, potential reconstruction (d = 2)

Assumption B (Weak continuity)

There holds

$$\langle \llbracket u_h \rrbracket, 1 \rangle_e = 0 \qquad \forall e \in \mathcal{E}_h.$$

Theorem (Continuous efficiency)

Let u be the weak solution and let $u_h \in H^1(\mathcal{T}_h)$ satisfying Assumption B be arbitrary. Let $\mathbf{a} \in \mathcal{V}_h$ and let $\sigma^{\mathbf{a}} \in \mathbf{H}_*(\operatorname{div}, \omega_{\mathbf{a}})$ and $\overline{r}^{\mathbf{a}} \in L^2_*(\omega_{\mathbf{a}})$ be given by

$$\begin{split} (\boldsymbol{\sigma}^{\mathbf{a}}, \mathbf{v})_{\omega_{\mathbf{a}}} - (\bar{\boldsymbol{r}}^{\mathbf{a}}, \nabla \cdot \mathbf{v})_{\omega_{\mathbf{a}}} &= -(\mathbf{R}_{\frac{\pi}{2}} \nabla (\psi_{\mathbf{a}} \boldsymbol{u}_{h}), \mathbf{v})_{\omega_{\mathbf{a}}} \quad \forall \mathbf{v} \in \mathbf{H}_{*}(\operatorname{div}, \omega_{\mathbf{a}}), \\ (\nabla \cdot \boldsymbol{\sigma}^{\mathbf{a}}, q)_{\omega_{\mathbf{a}}} &= (\mathbf{0}, q)_{\omega_{\mathbf{a}}} \qquad \forall q \in L^{2}_{*}(\omega_{\mathbf{a}}), \end{split}$$

with $L^2_*(\omega_{\mathbf{a}}) := L^2(\omega_{\mathbf{a}})$ with zero mean value and $\mathbf{H}_*(\operatorname{div}, \omega_{\mathbf{a}}) := \mathbf{H}(\operatorname{div}, \omega_{\mathbf{a}})$ with zero normal trace on $\partial \omega_{\mathbf{a}}$. Then there exists $C_{\operatorname{cont,bPF}} > 0$ only depending on $\kappa_{\mathcal{T}}$ such that

$$\| \boldsymbol{\sigma}^{\mathsf{a}} + \mathrm{R}_{rac{\pi}{2}}
abla(\psi_{\mathsf{a}} u_h) \|_{\omega_{\mathsf{a}}} \leq \mathcal{C}_{\mathrm{cont, bPF}} \| \nabla(\boldsymbol{u} - u_h) \|_{\omega_{\mathsf{a}}}.$$

Continuous efficiency, potential reconstruction (d = 2)

Proof (sketch).

- equivalent primal formulation: $\|\sigma^{\mathbf{a}} + \tau_{h}^{\mathbf{a}}\|_{\omega_{\mathbf{a}}} = \|\nabla r_{\mathbf{a}}\|_{\omega_{\mathbf{a}}},$ where $r_{\mathbf{a}} \in H^{1}_{*}(\omega_{\mathbf{a}}) := \{ \mathbf{v} \in H^{1}(\omega_{\mathbf{a}}); (\mathbf{v}, 1)_{\omega_{\mathbf{a}}} = 0 \}$ solves $(\nabla r_{\mathbf{a}}, \nabla \mathbf{v})_{\omega_{\mathbf{a}}} = -(\mathbf{R}_{\frac{\pi}{2}}\nabla(\psi_{\mathbf{a}}u_{h}), \nabla \mathbf{v})_{\omega_{\mathbf{a}}} \quad \forall \mathbf{v} \in H^{1}_{*}(\omega_{\mathbf{a}})$
- dual norm characterization

$$\|\nabla r_{\mathbf{a}}\|_{\omega_{\mathbf{a}}} = \sup_{v \in H^{1}_{*}(\omega_{\mathbf{a}}); \, \|\nabla v\|_{\omega_{\mathbf{a}}} = 1} (\nabla r_{\mathbf{a}}, \nabla v)_{\omega_{\mathbf{a}}}$$

- arbitrary $\tilde{u} \in H^1(\omega_{\mathbf{a}})$ with $(\tilde{u}, 1)_{\omega_{\mathbf{a}}} = (u_h, 1)_{\omega_{\mathbf{a}}}$ if $\mathbf{a} \in \mathcal{V}_h^{\text{int}}$ and $\tilde{u} = 0$ on $\partial \omega_{\mathbf{a}} \cap \partial \Omega$ if $\mathbf{a} \in \mathcal{V}_h^{\text{ext}}$: $(R_{\frac{\pi}{2}} \nabla(\psi_{\mathbf{a}} \tilde{u}), \nabla v)_{\omega_{\mathbf{a}}} = 0$
- Cauchy–Schwarz:

 $(\nabla r_{\mathbf{a}}, \nabla v)_{\omega_{\mathbf{a}}} = (\mathrm{R}_{\frac{\pi}{2}} \nabla (\psi_{\mathbf{a}}(\tilde{u} - u_{h})), \nabla v)_{\omega_{\mathbf{a}}} \le \|\nabla (\psi_{\mathbf{a}}(\tilde{u} - u_{h}))\|_{\omega_{\mathbf{a}}}$

• broken Poincaré–Friedrichs inequality:

 $\|\nabla(\psi_{\mathbf{a}}(\tilde{\textit{u}}-\textit{u}_{h}))\|_{\omega_{\mathbf{a}}} \leq (1+C_{\mathrm{bPF},\omega_{\mathbf{a}}}h_{\omega_{\mathbf{a}}}\|\nabla\psi_{\mathbf{a}}\|_{\infty,\omega_{\mathbf{a}}})\|\nabla(\textit{u}-\textit{u}_{h})\|_{\omega_{\mathbf{a}}} \quad \text{entry}$

Mixed finite elements stability (d = 2)

Assumption C (Piecewise polynomial approximation and data)

The approximation u_h and the datum f are piecewise polynomial and the MFE reconstructions are chosen correspondingly.

Theorem (MFE stability / continuous right inverse of the divergence operator Braess, Pillwein, and Schöberl (2009): Costabel and McIntosh (201

Let u be the weak solution and let u_h , f, and the reconstructions satisfy Assumption C. Then there exists a constant $C_{st} > 0$ only depending on the shape-regularity parameter κ_T such that

$$\|\boldsymbol{\sigma}_h^{\mathbf{a}} + \boldsymbol{\tau}_h^{\mathbf{a}}\|_{\omega_{\mathbf{a}}} \leq C_{\mathrm{st}}\|\boldsymbol{\sigma}^{\mathbf{a}} + \boldsymbol{\tau}_h^{\mathbf{a}}\|_{\omega_{\mathbf{a}}},$$

with $\tau_h^{\mathbf{a}} = \psi_{\mathbf{a}} \nabla u_h$ for the flux reconstruction and $\tau_h^{\mathbf{a}} = \mathbf{R}_{\frac{\pi}{2}} \nabla (\psi_{\mathbf{a}} u_h)$ for the potential reconstruction.

Mixed finite elements stability (d = 2)

Assumption C (Piecewise polynomial approximation and data)

The approximation u_h and the datum f are piecewise polynomial and the MFE reconstructions are chosen correspondingly.

Theorem (MFE stability / continuous right inverse of the divergence operator Braess, Pillwein, and Schöberl (2009); Costabel and McIntosh (2010))

Let u be the weak solution and let u_h , f, and the reconstructions satisfy Assumption C. Then there exists a constant $C_{st} > 0$ only depending on the shape-regularity parameter κ_T such that

$$\| \boldsymbol{\sigma}^{\mathsf{a}}_{h} + \boldsymbol{\tau}^{\mathsf{a}}_{h} \|_{\omega_{\mathsf{a}}} \leq C_{\mathrm{st}} \| \boldsymbol{\sigma}^{\mathsf{a}} + \boldsymbol{\tau}^{\mathsf{a}}_{h} \|_{\omega_{\mathsf{a}}},$$

with $\tau_h^{\mathbf{a}} = \psi_{\mathbf{a}} \nabla u_h$ for the flux reconstruction and $\tau_h^{\mathbf{a}} = \mathbf{R}_{\frac{\pi}{2}} \nabla (\psi_{\mathbf{a}} u_h)$ for the potential reconstruction.

Polynomial-degree-robust efficiency

Theorem (Polynomial-degree-robust efficiency)

Let u be the weak solution and let Assumptions A, B, and C hold. Then

$$egin{aligned} \|
abla u_h + m{\sigma}_h \|_{K} &\leq C_{ ext{st}} C_{ ext{cont,PF}} \sum_{m{a} \in \mathcal{V}_K} \|
abla (u - u_h) \|_{\omega_{m{a}}}, \ \|
abla (u_h - m{s}_h) \|_{K} &\leq C_{ ext{st}} C_{ ext{cont,bPF}} \sum_{m{a} \in \mathcal{V}_K} \|
abla (u - u_h) \|_{\omega_{m{a}}}. \end{aligned}$$

Remarks

 C_{st} can be bounded by solving the local Neumann problems by conforming FEs: find r^a_h ∈ V^a_h ⊂ H¹_{*}(ω_a) s.t.

$$(\nabla r_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = -(\tau_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} + (g^{\mathbf{a}}, v_h)_{\omega_{\mathbf{a}}} \quad \forall v_h \in V_h^{\mathbf{a}};$$

then $\mathcal{C}_{ ext{st}} \leq \|m{ au}_h^{ extbf{a}} + m{\sigma}_h^{ extbf{a}}\|_{\omega_{ extbf{a}}} / \|
abla r_h^{ extbf{a}}\|_{\omega_{ extbf{a}}}$

• \Rightarrow maximal overestimation factor guaranteed

Polynomial-degree-robust efficiency

Theorem (Polynomial-degree-robust efficiency)

Let u be the weak solution and let Assumptions A, B, and C hold. Then

$$\begin{split} \|\nabla u_h + \boldsymbol{\sigma}_h\|_{\mathcal{K}} &\leq C_{\mathrm{st}} C_{\mathrm{cont},\mathrm{PF}} \sum_{\mathbf{a} \in \mathcal{V}_{\mathcal{K}}} \|\nabla (u - u_h)\|_{\omega_{\mathbf{a}}}, \\ \|\nabla (u_h - \boldsymbol{s}_h)\|_{\mathcal{K}} &\leq C_{\mathrm{st}} C_{\mathrm{cont},\mathrm{bPF}} \sum_{\mathbf{a} \in \mathcal{V}_{\mathcal{K}}} \|\nabla (u - u_h)\|_{\omega_{\mathbf{a}}}. \end{split}$$

Remarks

 C_{st} can be bounded by solving the local Neumann problems by conforming FEs: find r^a_h ∈ V^a_h ⊂ H¹_{*}(ω_a) s.t.

$$(\nabla r_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = -(\boldsymbol{\tau}_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} + (g^{\mathbf{a}}, v_h)_{\omega_{\mathbf{a}}} \qquad \forall v_h \in V_h^{\mathbf{a}};$$

then $\mathit{C}_{ ext{st}} \leq \| m{ au}_h^{ extbf{a}} + m{\sigma}_h^{ extbf{a}} \|_{\omega_{ extbf{a}}} / \|
abla \mathit{t}_h^{ extbf{a}} \|_{\omega_{ extbf{a}}}$

⇒ maximal overestimation factor guaranteed

Outline

Introduction

- 2 A guaranteed a posteriori error estimate
- 3 Polynomial-degree-robust local efficiency

Applications

- 5 Numerical results
- 6 Conclusions and future directions

Conforming finite elements

Conforming finite elements

Find $u_h \in V_h$ such that

$$(\nabla u_h, \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h.$$

- $V_h := \mathbb{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega), p \ge 1$
- Assumption A: take $v_h = \psi_a$
- $V_h \subset H_0^1(\Omega)$: $s_h := u_h$, no need for Assumption B

Conforming finite elements

Conforming finite elements

Find $u_h \in V_h$ such that

$$(\nabla u_h, \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h.$$

•
$$V_h := \mathbb{P}_p(\mathcal{T}_h) \cap H^1_0(\Omega), p \ge 1$$

- Assumption A: take $v_h = \psi_a$
- $V_h \subset H_0^1(\Omega)$: $s_h := u_h$, no need for Assumption B

Nonconforming finite elements

Nonconforming finite elements

Find $u_h \in V_h$ such that

$$(\nabla u_h, \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h.$$

•
$$V_h := \mathbb{P}_p(\mathcal{T}_h), p \ge 1, v_h \in V_h \text{ satisfy}$$

 $\langle \llbracket v_h \rrbracket, q_h \rangle_e = 0 \qquad \forall q_h \in \mathbb{P}_{p-1}(e), \forall e \in \mathcal{E}_h$

• Assumption A: take $v_h = \psi_a$

• Assumption B: building requirement for the space V_h

Nonconforming finite elements

Nonconforming finite elements

Find $u_h \in V_h$ such that

$$(\nabla u_h, \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h.$$

•
$$V_h := \mathbb{P}_p(\mathcal{T}_h), p \ge 1, v_h \in V_h$$
 satisfy
 $\langle \llbracket v_h \rrbracket, q_h \rangle_e = 0 \qquad \forall q_h \in \mathbb{P}_{p-1}(e), \forall e \in \mathcal{E}_h$

- Assumption A: take $v_h = \psi_a$
- Assumption B: building requirement for the space V_h

Discontinuous Galerkin finite elements

Discontinuous Galerkin finite elements

Find $u_h \in V_h$ such that

 $\sum_{K\in\mathcal{T}_h} (\nabla u_h, \nabla v_h)_K - \sum_{e\in\mathcal{E}_h} \{\langle \{\!\!\{\nabla u_h\}\!\} \cdot \mathbf{n}_e, [\![v_h]\!]\rangle_e + \theta \langle \{\!\!\{\nabla v_h\}\!\} \cdot \mathbf{n}_e, [\![u_h]\!]\rangle_e \}$

+
$$\sum_{\boldsymbol{e}\in\mathcal{E}_h}\langle \alpha h_{\boldsymbol{e}}^{-1}\llbracket u_h \rrbracket, \llbracket v_h \rrbracket \rangle_{\boldsymbol{e}} = (f, v_h) \qquad \forall v_h \in V_h$$

•
$$V_h := \mathbb{P}_p(\mathcal{T}_h), p \ge 1$$

• Assumption A: take $v_h = \psi_a$ for $\theta = 0$, otherwise:

• estimates for the discrete gradient

$$\mathfrak{G}(u_h) := \nabla u_h - \theta \sum_{e \in \mathcal{E}_h} \mathfrak{l}_e(\llbracket u_h \rrbracket)$$

• jumps lifting operator $\mathfrak{l}_e: L^2(e) \to [\mathbb{P}_0(\mathcal{T}_h)]^2$

 $(\mathfrak{l}_{e}(\llbracket u_{h} \rrbracket), \mathbf{v}_{h}) = \langle \{\!\!\{\mathbf{v}_{h}\}\!\!\} \cdot \mathbf{n}_{e}, \llbracket u_{h} \rrbracket \rangle_{e} \qquad \forall \mathbf{v}_{h} \in \llbracket \mathbb{P}_{0}(\mathcal{T}_{h}) \rrbracket^{2}$

 $\bullet \ \Rightarrow \text{modified Galerkin orthogonality}$

$$(\mathfrak{G}(u_h),
abla\psi_{\mathbf{a}})_{\omega_{\mathbf{a}}}=(f,\psi_{\mathbf{a}})_{\omega_{\mathbf{a}}}$$

 $\forall \mathbf{a} \in \mathcal{V}_{b}^{\text{int}}$

Discontinuous Galerkin finite elements

Discontinuous Galerkin finite elements

Find $u_h \in V_h$ such that

 $\sum_{K\in\mathcal{T}_h} (\nabla u_h, \nabla v_h)_K - \sum_{e\in\mathcal{E}_h} \{\langle \{\!\!\{\nabla u_h\}\!\} \cdot \mathbf{n}_e, [\![v_h]\!]\rangle_e + \theta \langle \{\!\!\{\nabla v_h\}\!\} \cdot \mathbf{n}_e, [\![u_h]\!]\rangle_e \}$

+
$$\sum_{e \in \mathcal{E}_h} \langle \alpha h_e^{-1} \llbracket u_h \rrbracket, \llbracket v_h \rrbracket \rangle_e = (f, v_h) \qquad \forall v_h \in V_h$$

V_h := P_p(T_h), p ≥ 1
Assumption A: take v_h = ψ_a for θ = 0, otherwise:

• estimates for the discrete gradient

$$\mathfrak{G}(u_h) := \nabla u_h - \theta \sum_{e \in \mathcal{E}_h} \mathfrak{l}_e(\llbracket u_h \rrbracket)$$

• jumps lifting operator $\mathfrak{l}_e: L^2(e) \to [\mathbb{P}_0(\mathcal{T}_h)]^2$

 $(\mathfrak{l}_{e}(\llbracket u_{h} \rrbracket), \mathbf{v}_{h}) = \langle \{\!\!\{\mathbf{v}_{h}\}\!\!\} \cdot \mathbf{n}_{e}, \llbracket u_{h} \rrbracket \rangle_{e} \qquad \forall \mathbf{v}_{h} \in \llbracket \mathbb{P}_{0}(\mathcal{T}_{h}) \rrbracket^{2}$

ullet \Rightarrow modified Galerkin orthogonality

$$(\mathfrak{G}(U_h), \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (f, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}}$$

Alexandre Ern and Martin Vohralík

 $\forall \mathbf{a} \in \mathcal{V}_h^{\text{int}}$

Discontinuous Galerkin finite elements

Discontinuous Galerkin finite elements

Find $u_h \in V_h$ such that

 $\sum_{K\in\mathcal{T}_h} (\nabla u_h, \nabla v_h)_K - \sum_{e\in\mathcal{E}_h} \{ \langle \{\!\!\{\nabla u_h\}\!\} \cdot \mathbf{n}_e, [\![v_h]\!] \rangle_e + \theta \langle \{\!\!\{\nabla v_h\}\!\} \cdot \mathbf{n}_e, [\![u_h]\!] \rangle_e \}$

+
$$\sum_{e \in \mathcal{E}_h} \langle \alpha h_e^{-1} \llbracket u_h \rrbracket, \llbracket v_h \rrbracket \rangle_e = (f, v_h) \qquad \forall v_h \in V_h$$

•
$$V_h := \mathbb{P}_p(\mathcal{T}_h), p \ge 1$$

• Assumption A: take $v_h = \psi_a$ for $\theta = 0$, otherwise:

• estimates for the discrete gradient

$$\mathfrak{G}(u_h) := \nabla u_h - \theta \sum_{e \in \mathcal{E}_h} \mathfrak{l}_e(\llbracket u_h \rrbracket)$$

• jumps lifting operator $\mathfrak{l}_e: L^2(e) \to [\mathbb{P}_0(\mathcal{T}_h)]^2$

 $(\mathfrak{l}_{e}(\llbracket u_{h} \rrbracket), \mathbf{v}_{h}) = \langle \{\!\!\{\mathbf{v}_{h}\}\!\!\} \cdot \mathbf{n}_{e}, \llbracket u_{h} \rrbracket\rangle_{e} \qquad \forall \mathbf{v}_{h} \in [\mathbb{P}_{0}(\mathcal{T}_{h})]^{2}$

 $\bullet \ \Rightarrow \text{modified Galerkin orthogonality}$

$$(\mathfrak{G}(u_h),
abla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = (f, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} \qquad \forall \mathbf{a} \in \mathcal{V}_h^{\mathrm{int}}$$

.

Discontinuous Galerkin finite elements: Assumption B

Nonsymmetric and incomplete versions

• broken Poincaré–Friedrichs inequality with jumps:

$$\begin{aligned} \|\nabla(\psi_{\mathbf{a}}(\tilde{u}-u_{h}))\|_{\omega_{\mathbf{a}}} &\leq (1+C_{\mathrm{bPF},\omega_{\mathbf{a}}}h_{\omega_{\mathbf{a}}}\|\nabla\psi_{\mathbf{a}}\|_{\infty,\omega_{\mathbf{a}}})\|\nabla(u-u_{h})\|_{\omega_{\mathbf{a}}} \\ &+C_{\mathrm{bPF},\omega_{\mathbf{a}}}h_{\omega_{\mathbf{a}}}\|\nabla\psi_{\mathbf{a}}\|_{\infty,\omega_{\mathbf{a}}} \left\{\sum_{e\in\mathcal{E}_{h}^{\mathrm{int}},\,\mathbf{a}\in e}h_{e}^{-1}\|\Pi_{e}^{0}\llbracket u_{h}]\!]\|_{e}^{2}\right\}^{1/2} \end{aligned}$$

• include the jump terms in the error and estimators Symmetric version

• discrete gradient & satisfies

$$(\mathfrak{G}(u_h), \mathrm{R}_{\frac{\pi}{2}} \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = \mathbf{0} \qquad \forall \mathbf{a} \in \mathcal{V}_h$$

- modified potential reconstruction: local MFE problems with
 - $\tau_h^{\mathbf{a}} := \psi_{\mathbf{a}} \mathrm{R}_{\frac{\pi}{2}} \mathfrak{G}(u_h) \text{ and } g^{\mathbf{a}} := (\mathrm{R}_{\frac{\pi}{2}} \nabla \psi_{\mathbf{a}}) \cdot \mathfrak{G}(u_h)$
- Iocal efficiency

$$\|\mathfrak{G}(u_h - s_h)\|_{\mathcal{K}} \leq C_{\mathrm{st}}C_{\mathrm{cont,P}} \sum \|\mathfrak{G}(u - u_h)\|_{\omega_{\mathbf{0}}}$$

Discontinuous Galerkin finite elements: Assumption B

Nonsymmetric and incomplete versions

• broken Poincaré–Friedrichs inequality with jumps:

$$\begin{aligned} \|\nabla(\psi_{\mathbf{a}}(\tilde{u}-u_{h}))\|_{\omega_{\mathbf{a}}} &\leq (1+C_{\mathrm{bPF},\omega_{\mathbf{a}}}h_{\omega_{\mathbf{a}}}\|\nabla\psi_{\mathbf{a}}\|_{\infty,\omega_{\mathbf{a}}})\|\nabla(u-u_{h})\|_{\omega_{\mathbf{a}}} \\ &+C_{\mathrm{bPF},\omega_{\mathbf{a}}}h_{\omega_{\mathbf{a}}}\|\nabla\psi_{\mathbf{a}}\|_{\infty,\omega_{\mathbf{a}}} \left\{\sum_{e\in\mathcal{E}_{h}^{\mathrm{int}},\,\mathbf{a}\in e}h_{e}^{-1}\|\Pi_{e}^{0}\llbracket u_{h}]\!]\|_{e}^{2}\right\}^{1/2} \end{aligned}$$

- include the jump terms in the error and estimators Symmetric version
 - discrete gradient & satisfies

$$(\mathfrak{G}(u_h), \mathrm{R}_{rac{\pi}{2}} \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = \mathbf{0} \qquad \forall \mathbf{a} \in \mathcal{V}_h$$

- modified potential reconstruction: local MFE problems with
 - $\boldsymbol{\tau}_h^{\mathbf{a}} := \psi_{\mathbf{a}} \mathrm{R}_{\frac{\pi}{2}} \mathfrak{G}(\boldsymbol{u}_h) \text{ and } \boldsymbol{g}^{\mathbf{a}} := (\mathrm{R}_{\frac{\pi}{2}} \nabla \psi_{\mathbf{a}}) \cdot \mathfrak{G}(\boldsymbol{u}_h)$
- Iocal efficiency

$$\|\mathfrak{G}(u_h - s_h)\|_{\mathcal{K}} \leq C_{\mathrm{st}} C_{\mathrm{cont}, \mathrm{P}} \sum_{\mathbf{a} \in \mathcal{V}_{\mathcal{K}}} \|\mathfrak{G}(u - u_h)\|_{\omega_{\mathbf{a}}}$$

Mixed finite elements

Mixed finite elements

Find a couple $(\sigma_h, \bar{u}_h) \in \mathbf{V}_h imes Q_h$ such that

$$egin{aligned} & (m{\sigma}_h, m{v}_h) - (ar{u}_h,
abla \cdot m{v}_h) = 0 & & orall m{v}_h \in m{V}_h, \ & (
abla \cdot m{\sigma}_h, m{q}_h) = (f, m{q}_h) & & orall m{q}_h \in m{Q}_h. \end{aligned}$$

 postprocessed solution u_h ∈ V_h, V_h := ℙ_p(T_h), p ≥ 1, v_h ∈ V_h satisfy

 $\langle \llbracket v_h \rrbracket, q_h \rangle_e = 0 \qquad \forall q_h \in \mathbb{P}_{p'}(e), \, \forall e \in \mathcal{E}_h$

- Assumption A: no need for flux reconstruction, σ_h comes from the discretization
- Assumption B satisfied, building requirement for the space V_h

Mixed finite elements

Mixed finite elements

Find a couple $(\sigma_h, \bar{u}_h) \in \mathbf{V}_h imes Q_h$ such that

$$egin{aligned} &(\pmb{\sigma}_h, \pmb{\mathsf{v}}_h) - (ar{u}_h,
abla \cdot \pmb{\mathsf{v}}_h) = 0 & \forall \pmb{\mathsf{v}}_h \in \pmb{\mathsf{V}}_h, \ &(
abla \cdot \pmb{\sigma}_h, q_h) = (f, q_h) & \forall q_h \in Q_h. \end{aligned}$$

postprocessed solution u_h ∈ V_h, V_h := ℙ_p(T_h), p ≥ 1, v_h ∈ V_h satisfy

$$\langle \llbracket v_h \rrbracket, q_h
angle_e = 0 \qquad \forall q_h \in \mathbb{P}_{p'}(e), \ \forall e \in \mathcal{E}_h$$

- Assumption A: no need for flux reconstruction, *σ_h* comes from the discretization
- Assumption B satisfied, building requirement for the space V_h

Outline

1 Introduction

- 2 A guaranteed a posteriori error estimate
- Polynomial-degree-robust local efficiency

Applications

- 5 Numerical results
- 6 Conclusions and future directions

Numerics: discontinuous Galerkin

Model problem

$$\begin{aligned} -\Delta u &= f \quad \text{in } \Omega :=]0,1[\times]0,1[,\\ u &= u_{\mathrm{D}} \quad \text{on } \partial \Omega \end{aligned}$$

Exact solution

$$u(\mathbf{x}) = (c_1 + c_2(1 - x_1) + e^{-\alpha x_1})(c_1 + c_2(1 - x_2) + e^{-\alpha x_2})$$

$$c_1 = -e^{-\alpha}, \quad c_2 = -1 - c_1, \quad \alpha = 10$$

Discretization

incomplete interior penalty discontinuous Galerkin method

Numerics: discontinuous Galerkin

Model problem

$$\begin{aligned} -\Delta u &= f \quad \text{in } \Omega :=]0,1[\times]0,1[,\\ u &= u_{\mathrm{D}} \quad \text{on } \partial \Omega \end{aligned}$$

Exact solution

$$u(\mathbf{x}) = (c_1 + c_2(1 - x_1) + e^{-\alpha x_1})(c_1 + c_2(1 - x_2) + e^{-\alpha x_2})$$

$$c_1 = -e^{-\alpha}, \quad c_2 = -1 - c_1, \quad \alpha = 10$$

Discretization

incomplete interior penalty discontinuous Galerkin method

Numerics: discontinuous Galerkin

Model problem

$$\begin{aligned} -\Delta u &= f \quad \text{in } \Omega :=]0,1[\times]0,1[,\\ u &= u_{\mathrm{D}} \quad \text{on } \partial \Omega \end{aligned}$$

Exact solution

$$u(\mathbf{x}) = (c_1 + c_2(1 - x_1) + e^{-\alpha x_1})(c_1 + c_2(1 - x_2) + e^{-\alpha x_2})$$

$$c_1 = -e^{-\alpha}, \quad c_2 = -1 - c_1, \quad \alpha = 10$$

Discretization

incomplete interior penalty discontinuous Galerkin method

Estimates, errors, effectivity indices (calc. V. Dolejší)

<u> </u>	11							eff	reff	
n p	$\ \nabla(u-u_h)\ $	$\ u - u_h\ _{\mathrm{DG}}$	$\ \nabla u_h + \sigma_h\ $	$\ \nabla (u_h - s_h)\ $	$\eta_{\rm osc}$	η	η_{DG}	/ ^{cn}	/ _{DG}	
$h_0/1$ 1	1.21E+00	1.22E+00	1.24E+00	1.07E-01	5.56E-02	1.30E+00	1.31E+00	1.07	1.07	
$h_0/2$	6.18E-01	6.22E-01	6.38E-01	5.09E-02	7.02E-03	6.47E-01	6.50E-01	1.05	1.05	
	(0.97)	(0.97)	(0.96)	(1.07)	(2.99)	(1.01)	(1.01)			
$h_0/4$	3.12E-01	3.13E-01	3.22E-01	2.43E-02	8.80E-04	3.24E-01	3.25E-01	1.04	1.04	
	(0.99)	(0.99)	(0.99)	(1.07)	(3.00)	(1.00)	(1.00)			
$h_0/8$	1.56E-01	1.57E-01	1.61E-01	1.18E-02	1.10E-04	1.62E-01	1.63E-01	1.04	1.04	
	(1.00)	(1.00)	(1.00)	(1.05)	(3.00)	(1.00)	(1.00)			
$h_0/1 2$	1.50E-01	1.53E-01	1.49E-01	2.76E-02	5.10E-03	1.56E-01	1.59E-01	1.04	1.04	
$h_0/2$	3.85E-02	3.92E-02	3.83E-02	7.99E-03	3.22E-04	3.94E-02	4.01E-02	1.03	1.02	
	(1.96)	(1.96)	(1.96)	(1.79)	(3.98)	(1.98)	(1.98)			
$h_0/4$	9.70E-03	9.88E-03	9.68E-03	2.12E-03	2.02E-05	9.93E-03	1.01E-02	1.02	1.02	
	(1.99)	(1.99)	(1.98)	(1.92)	(4.00)	(1.99)	(1.99)			
$h_0/8$	2.43E-03	2.48E-03	2.43E-03	5.42E-04	1.26E-06	2.49E-03	2.54E-03	1.02	1.02	
	(1.99)	(1.99)	(1.99)	(1.96)	(4.00)	(1.99)	(1.99)			
$h_0/1 \ 3$	1.32E-02	1.34E-02	1.29E-02	2.52E-03	3.58E-04	1.35E-02	1.37E-02	1.03	1.03	
$h_0/2$	1.67E-03	1.69E-03	1.65E-03	3.13E-04	1.13E-05	1.70E-03	1.71E-03	1.01	1.01	
	(2.98)	(2.98)	(2.97)	(3.01)	(4.99)	(3.00)	(3.00)	1		
$h_0/4$	2.11E-04	2.13E-04	2.09E-04	3.83E-05	3.53E-07	2.12E-04	2.15E-04	1.01	1.01	
	(2.99)	(2.99)	(2.99)	(3.03)	(5.00)	(3.00)	(3.00)	1		
$h_0/8$	2.64E-05	2.67E-05	2.61E-05	4.69E-06	1.10E-08	2.66E-05	2.69E-05	1.01	1.01	
	(3.00)	(3.00)	(3.00)	(3.03)	(5.00)	(3.00)	(3.00)			
$h_0/1$ 4	9.36E-04	9.54E-04	9.05E-04	2.41E-04	2.12E-05	9.57E-04	9.74E-04	1.02	1.02	
$h_0/2$	5.93E-05	6.05E-05	5.77E-05	1.68E-05	3.36E-07	6.04E-05	6.16E-05	1.02	1.02	
	(3.98)	(3.98)	(3.97)	(3.84)	(5.98)	(3.99)	(3.98)	1		
$h_0/4$	3.72E-06	3.80E-06	3.63E-06	1.10E-06	5.31E-09	3.80E-06	3.87E-06	1.02	1.02	
	(3.99)	(3.99)	(3.99)	(3.94)	(5.98)	(3.99)	(3.99)			
$h_0/8$	2.33E-07	2.38E-07	2.27E-07	7.02E-08	8.30E-11	2.38E-07	2.43E-07	1.02	1.02	
	(4.00)	(4.00)	(4.00)	(3.97)	(6.00)	(4.00)	(3.99)			
$h_0/1 \ 5$	5.41E-05	5.50E-05	5.22E-05	1.38E-05	1.06E-06	5.50E-05	5.58E-05	1.02	1.02	
$h_0/2$	1.70E-06	1.72E-06	1.65E-06	4.39E-07	9.35E-09	1.72E-06	1.74E-06	1.01	1.01	
	(4.99)	(5.00)	(4.98)	(4.98)	(6.82)	(5.00)	(5.00)	1		
$h_0/4$	5.32E-08	5.39E-08	5.19E-08	1.40E-08	7.67E-11	5.38E-08	5.45E-08	1.01	1.01	
	(5.00)	(5.00)	(4.99)	(4.97)	(6.93)	(5.00)	(5.00)	1		1
$h_0/8$	1.66E-09	1.69E-09	1.62E-09	4.41E-10	5.99E-13	1.68E-09	1.70E-09	1.01	1.01	
	(5.00)	(5.00)	(5.00)	(4.99)	(7.00)	(5.00)	(5.00)	1	U	2

Alexandre Ern and Martin Vohralík

Unified polynomial-degree-robust a posteriori estimates 23 / 25

Outline

1 Introduction

- 2 A guaranteed a posteriori error estimate
- Polynomial-degree-robust local efficiency
- Applications
- 5 Numerical results
- 6 Conclusions and future directions

Conclusions and future directions

Conclusions

 polynomial-degree robust estimates, unified framework for most standard numerical methods

Future directions

- extension to *d* space dimensions
- polynomial-degree- and data-robust estimates
- convergence and optimality
- optimal hp-refinement strategies

Conclusions and future directions

Conclusions

 polynomial-degree robust estimates, unified framework for most standard numerical methods

Future directions

- extension to *d* space dimensions
- polynomial-degree- and data-robust estimates
- convergence and optimality
- optimal *hp*-refinement strategies

Bibliography

Bibliography

- ERN A., VOHRALÍK M., Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, HAL Preprint 00921583, submitted for publication.
- ERN A., VOHRALÍK M., Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, *SIAM J. Sci. Comput.* **35** (2013), A1761–A1791.

Thank you for your attention!

