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0 Introduction

Q Equations, spaces, norms, weak formulations, residuals, and inf-sup conditions
Q Localization of the intrinsic dual residual norm

Q Schemes and temporal reconstructions with the orthogonality property

Q Reliability and local space-time efficiency
@ Reliability & local space-time efficiency
@ Units consistency, space-time anisotropy, time-evolving meshes

Q Numerical experiments
@ Heat equation and extensions
@ Wave equation

Q Conclusions
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(unavailable) exact solution v and its (computed) numerical approximation uy,.
— error certification

@ predict the error localization (in space and in time )
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Goal

HA1(Q) error Solufion
7.6e-145 2404 -1.16-03 2.26-03

—— s e o

N. Hugot, A. Imperiale, M. Vohralik, to be submitted (2025).
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e Equations, spaces, norms, weak formulations, residuals, and inf-sup conditions
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The heat equation
Find u: Q x (0, T) — R such that
ou—Au=f inQx(0,T),
u=0 onoQx(0,T),
u=0 onQxO0.
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The heat & wave equations

The heat equation The wave equation
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u=0 onQ xO0. u=0 onQ x0,
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The heat & wave equations

The heat equation The wave equation
Find u: Q x (0, T) — R such that Find u: Q x (0, T) — R such that
ou—Au=f inQx(0,T), opu—Au=1Ff inQx(0,T),
u=0 onoQ2x(0,T), u=0 onoQ2x(0,T),
u=0 onQ xO0. u=0 onQ x0,

Jdtu=0 onf xO0.

Setting
@ /:final time
@ (: space domain
@ Q:=Qx(0,T): space-time domain
@ f piecewise polynomial for simplicity
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Spaces and norms
X = L3(0, T; H}(Q)),
IVIE =V VI3

H' (Q):={ve XnNH'(0,T;[*(Q)); v=00nQ x T}

={veH (Q);v=00n02x(0,T)and Q x T},
Hy (Q):={veH'(Q); v=00n9Q x (0,T)and Q x 0},
|V|;2-/1(Q) = ||atv||%) + “VV”%?

Yri={ve XnH'(0,T;H(Q)); v=00nQ x T},

T
IvI3, = /0 {01VI2 1y + IV VI2} dt + v (-, 0)]2
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Weak formulations

The heat equation

Definition (Weak solution)

u € X such that, for all v € H'(Q),
—(U, 8llv)Q + (VU, VV)Q = (f7 V)Q'
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Weak formulations

The heat equation The wave equation

Definition (Weak solution) Definition (Weak solution)

u € X such that, forall v e H',(Q), u € Hj (Q) such that, for all v € H'(Q),
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Weak formulations

The heat equation The wave equation

Definition (Weak solution) Definition (Weak solution)

u € X such that, forall v e H',(Q), u € Hj (Q) such that, for all v € H'(Q),
—(u,0tv)q + (Vu,Vv)q = (f,v)a. —(u,0tv)g + (Vu,Vv)g = (f,v)q.

Trial space X or H; (Q), test space H'/(Q).
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Residuals and their dual norms

The heat equation
Definition (Residual)

For up, € X, R(up,) € (HH(Q)),

(R(unr), v) := (f,v)q + (Unr, OtV)q
— (Vup,, VV)q, v € H(Q).
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The heat equation The wave equation
Definition (Residual) Definition (Residual)
For up, € X, R(up,) € (HH(Q)), For up, € Hy (Q), R(un,) € (HH(Q)Y',
<R(Uh7—), V> — (f7 V)Q + (Uhﬂafv)Q <R(uh7')a V> = (fv V)Q + ( Uhr, 3tV)O
— (Vup,, VV)q, v € H(Q). — (VUp-, VV)q, v € HH(Q).

R(up.) = 0 if and only if up. = u.

Definition (Intrinsic error measure, dual norm of the residual)

HR(Uhr)H(H1T(Q))’ = sup (R(Unr), V).
’ veH':(Q)
|VIH1(Q):1
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Residuals and their dual norms

The heat equation The wave equation
Definition (Residual) Definition (Residual)
For up, € X, R(up,) € (HH(Q)), For up, € Hy (Q), R(un,) € (HH(Q)Y',
<R(Uh7—), V> = (f7 V)Q + (Uhﬂafv)Q <R(uh7')a V> = (fv V)Q + ( Uhr, 3tV)O
— (Vun,, VV)a, v € HH(Q). — (VUp-, VV)q, v € HH(Q).

v

R(up.) = 0 if and only if up. = u.

Definition (Intrinsic error measure, dual norm of the residual)

H’R/(Uh/*)H(H1T(Q))’ = sup (R(Unr), V).
’ veH'(Q)
|VIH1 (0)21
@ induced by the weak formulation (problem-dependent x fixed space & norm)
@ sometimes the only choice (sign-changing coefficients, implicit const. laws
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Inf-sup equalities, norms of the difference u — up,

The heat equation The wave equation
@ For the slightly bigger test space @ For the slightly bigger trial space
Y7 > H(Q), Yo > H} (Q),
U — Unellx = [IR(Un)l vy lu = unrllvo = IR(Un )l (111, ()
by standard inf-sup theory. by inf-sup of Steinbach & Zank (2022).
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Inf-sup equalities, norms of the difference u — up,

The heat equation The wave equation
@ For the slightly bigger test space @ For the slightly bigger trial space
Y7 > H(Q), Yo > H} (Q),
[u = Uncllx = [[R(Un)l vy lu = unrllvo = IRCUn )l (111,
by standard inf-sup theory. by inf-sup of Steinbach & Zank (2022).
@ There holds
IRCUn) (1 @)y
= sup {(uhT —u, 81“/)07 (V(uhT - U), VV)Q}
veH':(Q)
‘V‘H1(Q):1
2 2\1/2
< (Ilu = un-lig + IV (u = unr)llg) "=

-
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Inf-sup equalities, norms of the difference u — up,

The heat equation The wave equation
@ For the slightly bigger test space @ For the slightly bigger trial space
Y7 > H(Q), Yo > H} (Q),
U — Unellx = [IR(Un)l vy lu = unrllvo = IRCUn )l (111,
by standard inf-sup theory. by inf-sup of Steinbach & Zank (2022).
@ There holds @ There holds
HR(UhT) ‘(HWT(Q))/ HR(UhT)H(HWT(Q))/
= sup{(Unr—U,0tV) o~ (V(Unr—U), VV)a} = sup{(V:(tnr—U), V) q—(V(Unr—U), VV)Q}
veH':(Q) veH'1(Q)
‘V‘H1(Q):1 ‘V‘H1(Q):1
2 2\1/2
< (lu—unlig+ IIV(u—un)lig) ™" < (10(u—un )% + |V (u—up)13) "2
= [U — Unr|H1(q)- lveia L
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X

efficiency local in time but global in space
X restrictions on mesh coarsening between time steps

@ Eriksson & Johnson (1991), duality techniques & Makridakis & Nochetto
(2003), elliptic reconstruction: L2(L2) / L>(L?) / L>(L>) / higher-order norms

@ Makridakis & Nochetto (2006): Radau reconstruction Zuy,, for any order

@ Schoétzau & Wihler (2010), 7q adaptivity

@ Ern, Smears, & Vohralik (2017): local space-time efficiency in the Y norm

@ Georgoulis & Makridakis (2023), Smears (2025): efficiency in the X norm
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Previous results: wave equation

@ Bernardi & Sili (2005), reliability and efficiency but employing different spaces

@ Georgoulis, Lakkis, Makridakis, (& Virtanen) (2013, 2016), reliability but no
efficiency, L°(L2) norm

@ Chaumont-Frelet (2023), Chaumont-Frelet & Ern (2025), reliability and
efficiency but smoothness assumption and truncation
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Recall
e Q=0x(0,T)
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Context

Recall
e Q=Q0x(0,T)
° H(Q)={veH'(Q); v=00n802x(0,T)and 2 x T}
° |[viZ g = lovIg +IIVVIG
® R(un,) € (HH(Q)Y
® [ R{unr)li(rt () = SUPver,(a) (RUnr), V)

|V|H1(Q):1
@ ...elliptic setting on the space-time domain Q

° \|R(uhT)H(H1T(Q))/: dual, a priori global norm
@ a priori no localization

@ local space-time efficiency in a nonlocal norm? .
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Localization of dual norms

Theorem (Localization of dual norms)
Let R(up,) € (HfT(Q))’ be arbitrary. Let, for an index setV,

have local space—time supports, wa

ac Wh>(Q) c H(Q
v (@ 7@ form a partition of unity ..\, 12 = 1.

-
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have local space—time supports, wa

ac Wh>(Q) c H(Q
v (@ 7@ form a partition of unity ..\, 12 = 1.

Let R(up,) have the local space—time orthogonality property
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Localization of dual norms

Theorem (Localization of dual norms)
Let R(up,) € (HfT(Q))’ be arbitrary. Let, for an index setV,

NEREES Q) H1T Q) have local s.;.)ace—tim'e supports, wa
’ form a partition of unity Y .\, 1? =1

Let R(up,) have the local space—time orthogonality property
(R(Up,).0%) =0  VYaeVnotondQ x (0,T)andQ x 0.

Then
IR @y = DRy = IRUAR I,
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@ known from elliptic a posteriori error analysis
e generalizes to (W, *(Q))', 1 < a < oo, see Blechta, Mélek, & Vohralik (2020)
and the references therein Cezia L2
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Descriptions
@ inspired by the preceding theorem, we succeed to localize | R(up.)|| (H(Q)y
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Localization of the space-time dual norm ||R(uh7)||(H3T(Q)),

Descriptions
@ inspired by the preceding theorem, we succeed to localize ||R(uh7)||(H1T(Q)),
@ in general, localization entails overlapping ’
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Localization of the space-time dual norm HR(uhT)H(HjT(Q)),
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@ we overlap in space but not in time (localization is per time interval)
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Localization of the space-time dual norm ||R(us-)|| (4 (qyy

Descriptions
@ inspired by the preceding theorem, we succeed to localize HR(uhT)||(H1T(Q)),

@ in general, localization entails overlapping

@ we overlap in space but not in time (localization is per time interval)

° orthogonality to lowest-order space finite
element basis functions on each time interval turns out to be sufficient

@ orthogonality not for the residual: time-derivative term is integrated by parts

@ this will request to increase by one the time regularity of up,

Structural observations

@ in the elliptic case, since the problem is boundary value, to obtain
orthogonality of the residual wrt (lowest-order) finite element basis functions,
one needs to solve global a linear system
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° orthogonality to lowest-order space finite
element basis functions on each time interval turns out to be sufficient

@ orthogonality not for the residual: time-derivative term is integrated by parts

@ this will request to increase by one the time regularity of up,

Structural observations

@ in the elliptic case, since the problem is boundary value, to obtain
orthogonality of the residual wrt (lowest-order) finite element basis functions,
one needs to solve global a linear system

@ in parabolic/hyperbolic cases, no condition is prescribed on the final time
— implicit and even explicit time stepping is sufficient (no global linear
system) Leeia b
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o discrete times {t"}o<pen, t° =0and tN = T

@ time intervals /, := (t"~', t"], time steps 7" := t" — "~
@ a simplicial/affine cuboidal mesh 7, of Q

@ hat functions 2 for vertices Vy, wa support of @
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o discrete times {t"}o<pen, t° =0and tN = T

@ time intervals /, := (t"~', t"], time steps 7" := t" — "~

@ a simplicial/affine cuboidal mesh 7, of Q

@ hat functions 2 for vertices Vy, wa support of @

@ conforming finite element space Vi, := Pp(7n) N HY(Q2), p > 1
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Localization of the intrinsic dual residual norm

Theorem (Localization of the intrinsic dual residual norm)
Let up, € Hy (Q) (heat) or up, € Hy (Q) N H?(0, T; L2(2)) (wave).

V.
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where the hidden constants only depend on the space dimension d and
shape-regularity of the space and time meshes.
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Crank—Nicolson method for the heat equation

Definition (Crank—Nicolson)

Set u? := 0. Find u, 1 < n < N, such that
n—1

(A ) (P o), = (O ) e

lezia —~ £
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Leapfrog method for the wave equation

Definition (Leapfrog)

Set u? :=0and &2 := 0. Find u, 0 < n < N — 1, such that

Uttt — 2yl 4 yf!
( il 2h 4 , Vh)Q = (VUZ, VVh)Q = (f(-, tn), Vh)Q Vv € Vp.

T
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Reliable and locally space-time efficient a posteriori error estimates

Theorem (A posteriori error estimates)

Let up, € Hy (Q) (heat) or up, € Hy (Q) N H?(0, T; L%(Q2)) (wave) be piecewise
polynomials (order p in space, order q in time).
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where the hidden constants only depend on the space dimension d,
shape-regularity of the space and time meshes, and p and q.
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Residual-based estimators
Mk (Unr) = hicxi, If = Onitine + Atk

TV i
volume residual

1/2
-1—{ > hF><In|||IVUhT]]'nF”%><IE}

Ferint

TV
face normal component jump

-

lrezia L2
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Estimators

Residual-based estimators
n(Unr) == hkxi,|If — Ortns + Dunr||kxi,

volume residual

1/2

2
+9 Y heeIIVUn-ne|7,
FeFit

face normal component jump

Equilibrated fluxes estimators (reliability constant becomes 1)
one € L2(0, T; H(div, Q) with (f — dytupy — Veopr, kxi, V1 <n< N, VYK e T,

-
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h2
K|
i (Unr)? = %Hf — OnUnr — Veone i

equilibrium (time)
+ I VUnr + o,

constitutive law (space) r
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Reliability and local space-time efficiency
@ Reliability & local space-time efficiency
@ Units consistency, space-time anisotropy, time-evolving meshes

@ Heat equation and extensions
@ Wave equation
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@ Vi = (f— Onlpr + Aup:) ki,
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Inspection of the local efficiency proof (element residual)

@ Vi = (f— Onlpr + Aup:) ki,
@ space-time bubble vk ,, product of the barycentric coordinates on K and of
the barycentric coordinates on /,
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Inspection of the local efficiency proof (element residual)

® Vk = (f = Onln + AUnr)|kxiy

@ space-time bubble vk ,, product of the barycentric coordinates on K and of
the barycentric coordinates on /,

@ norm equivalence in finite-dimensional spaces:

(Vic,ns Vi) Kt S (Vikons VKV, K x Iy

-

M. Vohralik Local space-time efficiency: heat & wave equations 20/ 35



| Setting Dual norm localization Schemes & reconstructions Reliability & efficiency Numerics C Reliability & efficiency Extensions

Inspection of the local efficiency proof (element residual)

@ Vk = (f — Onlnr + Ap) ki,
@ space-time bubble vk ,, product of the barycentric coordinates on K and of
the barycentric coordinates on /,
@ norm equivalence in finite-dimensional spaces:
(Vic,ns Vi) Kt S (Vikons VKV, K x Iy

@ inverse inequality separately in space and in time:

P ||V @rcnvin) | s, S 19KnVical ke,

~I|

o aviea)ll, S 1¥rnvicnllg,,
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Inspection of the local efficiency proof (element residual)

@ Vkni= (f — OnlUpr + AUps )| kx1,

@ space-time bubble vk ,, product of the barycentric coordinates on K and of
the barycentric coordinates on /,

@ norm equivalence in finite-dimensional spaces:

(Vic,ns Vi) Kt S (Vikons VKV, K x Iy
@ inverse inequality separately in space and in time:
hKHv(d’K,nVK,n)HKX/n < H@bK,nVK,nHKX/n;
Tn“()t(wK,nVK,n)“KX/n S HTPK,nVK,nHKX/,7

@ congruently, in \v\,z_,1(o) = [|0v||4 + ||V V|3, the physical units are different
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Inspection of the local efficiency proof (element residual)

@ Vk = (f— Onln: + AUp:)|kx, .
@ space-time bubble 1k ,,, product of the barycentric coordinates on K and of
p . P
the barycentric coordinates on /,
@ norm equivalence in finite-dimensional spaces:
(Vic,ns Vi) Kt S (Vikons VKV, K x Iy
@ inverse inequality separately in space and in time:
hK"v(¢K,nVK,n)“Kx/n S HwK,nVK,nHKx/n’
1] £
0k Vi)l s, S 10kl e,

@ congruently, in \v\,z_,1(o) = [|0v||4 + ||V V|3, the physical units are different
@ — space-time weighted mesh-dependent norm imposed on the test space

VIEna) Z ST AP0V, + BRIV VIR, )
n=1KeTy"
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@ — units /, space-time anisotropy v/, time-evolving meshes v/ VS
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@ incomplete interior penalty discontinuous Galerkin space discretization with
polynomial degrees p=1,2,3
@ Crank—Nicolson in time
@ space and time meshes both uniformly refined: m=1,2,3
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Setting

Setting
@ incomplete interior penalty discontinuous Galerkin space discretization with
polynomial degrees p =1,2,3
@ Crank—Nicolson in time
@ space and time meshes both uniformly refined: m=1,2,3
Effectivity indices

@ dual norm .

- > 1
‘(HTT(Q))/ + Jumps

e 1=
© IR (Uhr)

@ (weighted) L2 norm:

lo 1 = ! (< 1 possible)

T2 .
(772|u — une |13 + W2V (u — up,)|13) /2 4 jumps

lezia —~ £
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Viscous Burgers equation

ou—V-(eVu—¢(u))=0 inQ
@ :-—102o0rc=10"*
® o(u) = (v?/2,u?/2)T
@ Q=(-1,1)x(-1,1)
o 7T =1

&&W e



Viscous Burgers equation

ou—V-(eVu—¢(u))=0 inQ

@:=107%0rcs=10"*
® p(u) = (U?/2,u2/2)T
@ Q=(—-1,1)x(-1,1)
e T=1

Exact solution
°

ps

1
u(x,y,t) = (1 + exp (X+y2—421—t>)



Exact and approximate solutions, ¢ = 1072

' " h=1/12, tau=2.50E-03, P2 — " N=1/24, tau=1.56E-04, P3 ——
"""\  exact b 1 . exact - b 1
08| R 0.8 -
06 | B 0.6 |-
04 ‘1 g 0.4
0.2 0.2
0r 0
-0I.2 -Ol.l ) 0 ) 0.1 0.2 -0.2 -0.1 . 0 . 0.1 0.2 -0.2 -0.1 . 0 . 0.1 0.2
P; approximation on P> approximation on P53 approximation on
{h1, 71} {h2, 2} {h3, 73}

V. Dolejsi, A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2013)
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Effectivity indices for varying e and (hy, 7o)

€ 10-2 102 102 10—4
(ho,70) | (1/6,0.05) | (1/6,0.2) (1/6,0.0125) |(1/6,0.05)
m p ie /e H1 ie I‘ewa ie ie H ie /e H1
1 1 [1.85 1.15[2.21 1.28 3.00 0.81 |[1.45 0.71
2 1 [1.71 135|238 1.12 245 1.03 |1.68 1.06
3 1 [1.25 1.36|2.15 0.90 1.33 1.03 |1.82 1.34
1 2 [2.15 1.01 [3.13 1.71 369 067 |1.38 0.62
2 2 |165 0.94 |2.74 158 2.16 0.49 |1.41 0.62
3 2 |153 1.08|2.38 1.52 1.83 0.58 |1.54 0.69
1 3 [1.71 059 [2.74 1.47 3.00 0.34 [1.26 0.31
2 3 |1.75 0.73 |2.63 1.67 3.15 0.46 |1.13 0.21
3 3 |254 097|277 1.73 — 0.69 |1.03 0.15

-
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Degenerate advection-diffusion equation

Degenerate advection-diffusion problem (Kacur 2001)

otu — V-(2euVu — ¢p(u)) =0 inQ

@ =102

@ ¢(u) =0.5(u?0)"
@ Q=(0,1)x (0,1)
e 7T =1
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Degenerate advection-diffusion equation

Degenerate advection-diffusion problem (Kacur 2001)

otu — V-(2euVu — ¢(u)) =0 inQ
@ =102
® ¢(u)=0.5(u?0)"
@ Q=(0,1) x(0,1)

e 7T =1
Exact solution
°

. v(x—vi—Xp)
u(x, y, 1) = { 1 —exp (728 ) for x < vt + xo,

0 for x > vt + xp

@ xo = 1/4 is the initial position of the front

-
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Exact and approximate solutions
h=1/8, taU=1.00E'02, PL ~—— h=1/16, tau=5.00E°03, P2 —— h=1/32, ta=1.25E-03, P3 ———
N 1 exact - b 1
08| 08 08
0.6 0.6 - 0.6
04t 04 b 04
02} 02| 0.2
o or 0
04 05 o6 07 08 09 04_ 05 07 08 09 02 5 o7 o8 oo
Py approximation on P> apprOXImatlon on P3 approx|mat|on on
{hy, 71} {he, m2} {h, 73}

V. Dolejsi, A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2013)
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Errors, estimators, and effectivity indices, (ho, 70) = (1/8,0.05)

m p TR (ayy | 7 R NG nc Tlqd n le Iy pt

11 9.91 E-dS 1.00E-02 6.02E-03 2.77E-02 2.31E-02 2.17E-03 6.62E-02|1.76 0.97

2 1 7.39E-03 7.71E-03 5.68E-03 1.62E-02 7.71E-03 1.23E-03 3.66E-02|1.55 1.02
(0.42) (0.37) (008 (0.78) (159) (0.82) (0.86)

3 1 4.58E-03 4.52E-03 4.95E-03 8.33E-03 1.86E-03 5.22E-04 1.89E-02|1.47 1.16
(0.69) (0.77)  (020) (0.96) (205) (1.23) (0.95)

12 2.62E-03 3.30E-03 5.40E-03 9.33E-03 6.27E-03 6.74E-04 2.35E-02|1.97 0.73
2 2 1.11E-03 1.43E-03 1.93E-03 4.22E-03 1.09E-03 2.67E-04 8.34E-03|1.56 0.62

(1.23) (1.21)  (1.48) (1.14) (252) (1.34) (1.50)
32 4.26E-04 5.63E-04 6.13E-04 1.84E-03 1.51E-04 1.00E-04 3.06E-03[1.35 0.57
(1.38) (1.34) (1.65) (1.20) (285 (1.42) (1.45)

13 6.48E-04 8.83E-04 1.03E-03 3.57E-03 1.19E-03 2.31E-04 6.47E-03|1.53 0.36
2 3 1.94E-04 2.63E-04 1.45E-04 1.21E-03 1.07E-04 6.39E-05 1.69E-03|1.21 0.25

(1.74) (1.74)  (2.84) (156) (3.48) (1.85 (1.93)
33 4.42E-05 7.58E-05 2.58E-05 4.04E-04 7.47E-06 1.67E-05 5.07E-04|1.13 0.21
(2.13) (1.80) (249) (158) (3.84) (1.94) (1.74)

-
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Porous medium equation

ou—V-(K(u)Vu)=0 inQ

e K(u) = slulF 1,

@ kx=20rr=4

@ Q= (-6,6)x(—6,6)
o 7T =1

lrezia L2



Porous medium equation

Porous medium equation

ou—V-(K(Uu)Vu)=0 inQ

® K(u) = klul" I,
@ r=20rx=4
@ Q= (-6,6) x (—6,6)

o 7T =1
Barenblatt solution
o

1
1 k—1 x24+y2 ]=1|"
“(X’y’t)_{t+1 [1_ 4r2 (z‘+1)1/n]+



Exact and approximate solutions, x = 4

0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1

0 0

-0.2 L L L L L -0.1 L L L L L -0.1 L L L L L
-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
P; approximation on P, approximation on P53 approximation on
{h, 7} {h, 2} {hs, 73}

V. Dolejsi, A. Ern, M. Vohralik, SIAM Journal on Numerical Analysis (2013)

g
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Errors, estimators, and effectivity indices, (ho, 70) = (0.5,0.02)

Wave

K=2 k=4
m p ”R(uhr)H(mT(Q))/ nF R 7INC me qd n lo o | le ie;H‘
11 7.90E-03 5.90E-03 1.32E-02 9.10E-03 3.23E-02 7.08E-05 5.88E-02|3.46 0.92|4.68 0.98
21 8.36E-03 4.64E-03 1.71E-02 8.46E-03 1.11E-02 3.99E-05 4.03E-02|2.40 1.46|3.72 1.62
(-0.08) (0.35) (-0.38) (0.10) (1.54) (0.83) (0.54)
31 8.91E-03 4.38E-03 2.18E-02 9.56E-03 3.44E-03 1.83E-05 3.87E-02|2.09 2.49|3.38 2.68
(-0.09) (0.08) (-0.35) (-0.18) (1.69) (1.13)  (0.06)
12 1.09E-03 1.06E-02 1.06E-01 3.12E-02 1.35E-02 1.74E-04 1.61E-01|4.99 3.22|5.13 3.18
22 4.02E-04 8.04E-03 8.12E-02 2.37E-02 5.16E-03 6.40E-05 1.18E-01|4.90 3.89|5.05 3.84
(1.43) (0.40) (0.39) (0.40) (1.39) (1.45) (0.45)
32 1.28E-04 5.22E-03 5.33E-02 1.55E-02 1.69E-03 2.23E-05 7.57E-02|4.84 4.26|4.97 4.30
(1.65) (0.62) (0.61) (0.61) (1.61) (1.52) (0.64)
13 6.53E-04 2.26E-02 3.27E-01 7.58E-02 8.39E-03 1.36E-04 4.33E-01|5.67 5.01]5.67 4.88
23 1.78E-04 9.26E-03 1.38E-01 3.13E-02 3.14E-03 3.51E-05 1.82E-01|5.76 5.17|5.78 5.03
(1.87) (1.29) (1.24) (1.27) (1.42) (1.95) (1.25)
33 3.83E-05 3.41E-03 5.08E-02 1.15E-02 1.14E-03 8.89E-06 6.68E-02|5.80 5.21|5.85 5.10
(2.22) (1.44) (1.44) (1.45) (1.46) (1.98) (1.44)
M. Vohralik

-
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s
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Exact and approximate error, k =4, t=T,p=2, m=2

n T

nr er
457E-05 1.91E-03
/]
v Vv 3.81E-05 1.60E-03
: sy
4 447 = 305805 = 128603
: i
o e T 228E05 T 957E-04
v W - & ex;Em
i 1.52E-05 .38E-
/]
B 7.61E-06 3.19E-04
- -6.0 :
0%0 30 0 30 60 124812 %60 -30 .0 30 60 2.90E-10
Estimators 7y Local error upper bounds
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Data and solution

Q=(0,1) % (0,2)
fr(t) = —sin(dn(t — 1)) x e (1)

x —0.5)? + (y — 1.5)2
(x.y) = exp X0 L= 19)
0.1
2.0e+00
0.50 []‘5
—0.754 1
— 05
I—5.3e-109
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Error and estimators

Remarks:
@ cumulated local errors,
for K € T, and
1<n<N:
n 1/2
> (ke (unr))?
=0
@ local H' norms in place
of the dual norm:
HH,}?’(UhT)“(H1 wg X)) = |V|H1 (wk X In)
Equilibrated HA1(Q) error Solution
1.0e-134 6.2e-04 ?69 145 24904 -1.1e-03 2.2e-03 ) . i
el o e = quadrature err. ignored
AP
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Estimator values

Effectivity indices

T T T -
| —e— Reference error (|u — Unc|H1(0) —%¥— Averaged flux /[
—%— Averaged flux 7.8 1 —4— Equilibrated flux
L —A— Equilibrated flux
10 | —-- slope =2.0 7.6
7.4
/ / — <fe 72
105 / 70
- 6.8
— o e
6.4 ‘/
3x1072 4x1072 6x 1072 1071 3x1072 4x1072 6x1072 107!

Mesh cell size (h)

Mesh cell size (h)

N. Hugot, A. Imperiale, M. Vohralik, to be submitted’(2025).
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Conclusions

Take-away messages
@ inexpensive (explicit) estimators of the global error

@ same methodology for both parabolic & hyperbolic problems
@ localization of global space-time norms with an orthogonality property
@ covers implicit & explicit time-stepping as well as time-evolving meshes
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@ same methodology for both parabolic & hyperbolic problems

@ localization of global space-time norms with an orthogonality property

@ covers implicit & explicit time-stepping as well as time-evolving meshes
Outlook

@ local space-time efficiency = use local-space-time mesh refinement?

@ convergence, optimality?
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