Local space-time efficiency for the heat and wave equations

Martin Vohralík

in collaboration with Vít Dolejší, Alexandre Ern, Nicolas Hugot, and Alexandre Imperiale

Inria Paris & Ecole des Ponts

Heidelberg, September 4, 2025

Setting Dual norm localization Schemes & reconstructions Reliability & efficiency Numerics C

Outline

- Introduction
- Equations, spaces, norms, weak formulations, residuals, and inf-sup conditions
- Localization of the intrinsic dual residual norm
- Schemes and temporal reconstructions with the orthogonality property
- 6 Reliability and local space-time efficiency
 - Reliability & local space-time efficiency
 - Units consistency, space-time anisotropy, time-evolving meshes
- 6 Numerical experiments
 - Heat equation and extensions
 - Wave equation
- Conclusions

• provide sharp **computable bounds** on the (unknown) error between the (unavailable) exact solution \underline{u} and its (computed) numerical approximation $\underline{u}_{h\tau}$

• provide sharp **computable bounds** on the (unknown) error between the (unavailable) exact solution \underline{u} and its (computed) numerical approximation $\underline{u}_{h\tau}$ \Longrightarrow **error certification**

- provide sharp computable bounds on the (unknown) error between the (unavailable) exact solution <u>u</u> and its (computed) numerical approximation <u>u</u>_{hτ}
 ⇒ error certification
- predict the error localization (in space and in time

- provide sharp **computable bounds** on the (unknown) error between the (unavailable) exact solution \underline{u} and its (computed) numerical approximation $\underline{u}_{h\tau}$ \Rightarrow **error certification**
- predict the error localization (in space and in time, in model, in solver . . .)

- provide sharp **computable bounds** on the (unknown) error between the (unavailable) exact solution \underline{u} and its (computed) numerical approximation $\underline{u}_{h\tau}$ \Rightarrow **error certification**
- predict the error localization (in space and in time, in model, in solver . . .)
- adapt space mesh, time mesh

- provide sharp **computable bounds** on the (unknown) error between the (unavailable) exact solution \underline{u} and its (computed) numerical approximation $\underline{u}_{h\tau}$ \Longrightarrow **error certification**
- predict the error localization (in space and in time, in model, in solver . . .)
- adapt space mesh, time mesh, polynomial orders, time stepping scheme, model, regularization, solvers . . .

- provide sharp **computable bounds** on the (unknown) error between the (unavailable) exact solution \underline{u} and its (computed) numerical approximation $\underline{u}_{h\tau}$ \Longrightarrow **error certification**
- predict the error localization (in space and in time, in model, in solver ...)
- adapt space mesh, time mesh, polynomial orders, time stepping scheme, model, regularization, solvers . . .

This talk

Guaranteed a posteriori error estimate

$$|||u - u_{h\tau}|||_{\Omega \times (0,T)}^2 \le \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2$$

- provide sharp **computable bounds** on the (unknown) error between the (unavailable) exact solution \underline{u} and its (computed) numerical approximation $\underline{u}_{h\tau}$ \Rightarrow **error certification**
- predict the error localization (in space and in time, in model, in solver ...)
- adapt space mesh, time mesh, polynomial orders, time stepping scheme, model, regularization, solvers . . .

This talk

Guaranteed a posteriori error estimate

efficient

$$|||u - u_{h\tau}|||_{\Omega \times (0,T)}^2 \leq \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2 \leq \frac{C_{\text{eff}}^2}{||u - u_{h\tau}||_{\Omega \times (0,T)}^2},$$

- provide sharp **computable bounds** on the (unknown) error between the (unavailable) exact solution \underline{u} and its (computed) numerical approximation $\underline{u}_{h\tau}$ \Longrightarrow **error certification**
- predict the error localization (in space and in time, in model, in solver . . .)
- adapt space mesh, time mesh, polynomial orders, time stepping scheme, model, regularization, solvers . . .

This talk

Guaranteed a posteriori error estimate with respect to the **final time**.

efficient and robust

$$|||u-u_{h\tau}|||^2_{\Omega\times(0,T)} \leq \sum_{n=1}^N \sum_{K\in\mathcal{T}^n_h} \eta^n_K(u_{h\tau})^2 \leq C_{\mathrm{eff}}^2 |||u-u_{h\tau}|||^2_{\Omega\times(0,T)}, \ \ C_{\mathrm{eff}} \ \mathrm{indep.} \ \mathrm{of} \ \ {\color{blue}T}$$

- provide sharp **computable bounds** on the (unknown) error between the (unavailable) exact solution \underline{u} and its (computed) numerical approximation $\underline{u}_{h\tau}$ \Rightarrow **error certification**
- predict the error localization (in space and in time, in model, in solver . . .)
- adapt space mesh, time mesh, polynomial orders, time stepping scheme, model, regularization, solvers . . .

This talk

Guaranteed a posteriori error estimate **locally space-time efficient** and **robust** with respect to the **final time**.

$$\begin{split} |||u-u_{h\tau}|||_{\Omega\times(0,T)}^2 &\leq \sum_{n=1}^N \sum_{K\in\mathcal{T}_h^n} \eta_K^n (u_{h\tau})^2 \\ \eta_K^n (u_{h\tau})^2 &\leq C_{\text{eff}}^2 |||u-u_{h\tau}|||_{\omega_K\times I_n}^2 \text{ for all } 1 \leq \underline{n} \leq N \text{ and } \underline{K} \in \mathcal{T}_h^n \end{split}$$

I Setting Dual norm localization Schemes & reconstructions Reliability & efficiency Numerics C

Goal

Outline

- Introduction
- Equations, spaces, norms, weak formulations, residuals, and inf-sup conditions
- 3 Localization of the intrinsic dual residual norm
- Schemes and temporal reconstructions with the orthogonality property
- 6 Reliability and local space-time efficiency
 - Reliability & local space-time efficiency
 - Units consistency, space-time anisotropy, time-evolving meshes
- Numerical experiments
 - Heat equation and extensions
 - Wave equation
- Conclusions

Setting Dual norm localization Schemes & reconstructions Reliability & efficiency Numerics C

Outline

- Introduction
- 2 Equations, spaces, norms, weak formulations, residuals, and inf-sup conditions
- Localization of the intrinsic dual residual norm
- Schemes and temporal reconstructions with the orthogonality property
- 6 Reliability and local space-time efficiency
 - Reliability & local space-time efficiency
 - Units consistency, space-time anisotropy, time-evolving meshes
- Numerical experiments
 - Heat equation and extensions
 - Wave equation
- Conclusions

The heat & wave equations

The heat equation

Find
$$u: \Omega \times (0, T) \to \mathbb{R}$$
 such that $\partial_t u - \Delta u = f$ in $\Omega \times (0, T)$, $u = 0$ on $\partial \Omega \times (0, T)$, $u = 0$ on $\Omega \times 0$.

The heat & wave equations

The heat equation

Find
$$u: \Omega \times (0, T) \to \mathbb{R}$$
 such that $\partial_t u - \Delta u = f$ in $\Omega \times (0, T)$, $u = 0$ on $\partial \Omega \times (0, T)$, $u = 0$ on $\Omega \times 0$.

The wave equation

Find
$$u: \Omega \times (0,T) \to \mathbb{R}$$
 such that $\partial_{tt} u - \Delta u = f$ in $\Omega \times (0,T)$, $u = 0$ on $\partial \Omega \times (0,T)$, $u = 0$ on $\Omega \times 0$, $\partial_t u = 0$ on $\Omega \times 0$.

The heat & wave equations

The heat equation

Find
$$u: \Omega \times (0,T) \to \mathbb{R}$$
 such that $\partial_t u - \Delta u = f$ in $\Omega \times (0,T)$, $u = 0$ on $\partial \Omega \times (0,T)$, $u = 0$ on $\Omega \times 0$.

The wave equation

Find
$$u: \Omega \times (0,T) \to \mathbb{R}$$
 such that $\partial_{tt} u - \Delta u = f$ in $\Omega \times (0,T)$, $u = 0$ on $\partial \Omega \times (0,T)$, $u = 0$ on $\Omega \times 0$, $\partial_t u = 0$ on $\Omega \times 0$.

Setting

- T: final time
- Ω : space domain
- $Q := \Omega \times (0, T)$: space-time domain
- f piecewise polynomial for simplicity

$$X := L^2(0, T; H_0^1(\Omega)),$$

$$X := L^2(0, T; H_0^1(\Omega)),$$

 $\|v\|_X^2 := \|\nabla v\|_Q^2,$

$$\frac{\mathbf{X}}{\|\mathbf{v}\|_{X}^{2}} := \|\nabla \mathbf{v}\|_{Q}^{2} = \int_{0}^{T} \|\nabla \mathbf{v}(\cdot, t)\|_{\Omega}^{2} dt = \int_{0}^{T} \int_{\Omega} |\nabla \mathbf{v}(\mathbf{x}, t)|^{2} d\mathbf{x} dt,$$

$$\begin{split} X &:= L^2(0, T; H_0^1(\Omega)), \\ \|v\|_X^2 &:= \|\nabla v\|_Q^2, \\ H_{,T}^1(Q) &:= \big\{ v \in X \cap H^1(0, T; L^2(\Omega)); \ v = 0 \text{ on } \Omega \times T \big\} \\ &= \big\{ v \in H^1(Q); \ v = 0 \text{ on } \partial\Omega \times (0, T) \text{ and } \Omega \times T \big\}, \end{split}$$

$$\begin{split} X &:= L^2(0, T; H^1_0(\Omega)), \\ \|v\|_X^2 &:= \|\nabla v\|_Q^2, \\ H^1_{,T}(Q) &:= \big\{ v \in X \cap H^1(0, T; L^2(\Omega)); \ v = 0 \text{ on } \Omega \times T \big\} \\ &= \big\{ v \in H^1(Q); \ v = 0 \text{ on } \partial\Omega \times (0, T) \text{ and } \Omega \times T \big\}, \\ H^1_{0,}(Q) &:= \big\{ v \in H^1(Q); \ v = 0 \text{ on } \partial\Omega \times (0, T) \text{ and } \Omega \times 0 \big\}, \end{split}$$

$$\begin{split} & X := L^2(0,T;H^1_0(\Omega)), \\ & \|v\|_X^2 := \|\nabla v\|_Q^2, \\ & H^1_{,T}(Q) := \left\{ v \in X \cap H^1(0,T;L^2(\Omega)); \ v = 0 \text{ on } \Omega \times T \right\} \\ & = \left\{ v \in H^1(Q); \ v = 0 \text{ on } \partial\Omega \times (0,T) \text{ and } \Omega \times T \right\}, \\ & H^1_{0,}(Q) := \left\{ v \in H^1(Q); \ v = 0 \text{ on } \partial\Omega \times (0,T) \text{ and } \Omega \times 0 \right\}, \\ & |v|_{H^1(Q)}^2 := \|\partial_t v\|_Q^2 + \|\nabla v\|_Q^2 \end{split}$$

$$X := L^{2}(0, T; H_{0}^{1}(\Omega)),$$

$$\|v\|_{X}^{2} := \|\nabla v\|_{Q}^{2},$$

$$H_{T}^{1}(Q) := \left\{v \in X \cap H^{1}(0, T; L^{2}(\Omega)); v = 0 \text{ on } \Omega \times T\right\}$$

$$= \left\{v \in H^{1}(Q); v = 0 \text{ on } \partial\Omega \times (0, T) \text{ and } \Omega \times T\right\},$$

$$H_{0}^{1}(Q) := \left\{v \in H^{1}(Q); v = 0 \text{ on } \partial\Omega \times (0, T) \text{ and } \Omega \times 0\right\},$$

$$|v|_{H^{1}(Q)}^{2} := \|\partial_{t}v\|_{Q}^{2} + \|\nabla v\|_{Q}^{2}$$

$$Y_{T} := \left\{v \in X \cap H^{1}(0, T; H^{-1}(\Omega)); v = 0 \text{ on } \Omega \times T\right\},$$

$$\|v\|_{Y_{T}}^{2} := \int_{0}^{T} \left\{\|\partial_{t}v\|_{H^{-1}(\Omega)}^{2} + \|\nabla v\|^{2}\right\} dt + \|v(\cdot, 0)\|^{2}$$

Weak formulations

The heat equation

Definition (Weak solution)

$$u \in X$$
 such that, for all $v \in H^1_T(Q)$,

$$-(u,\partial_t v)_Q + (\nabla u,\nabla v)_Q = (f,v)_Q.$$

Weak formulations

The heat equation

Definition (Weak solution)

 $u \in X$ such that, for all $v \in H^1_{\mathcal{T}}(Q)$,

$$-(u,\partial_t v)_Q+(\nabla u,\nabla v)_Q=(f,v)_Q.$$

The wave equation

Definition (Weak solution)

$$u \in H^1_{0,T}(Q)$$
 such that, for all $v \in H^1_{T}(Q)$,

$$-(\partial_t u, \partial_t v)_Q + (\nabla u, \nabla v)_Q = (f, v)_Q.$$

Weak formulations

The heat equation

Definition (Weak solution)

 $u \in X$ such that, for all $v \in H^1_{\mathcal{T}}(Q)$,

$$-(u,\partial_t v)_Q + (\nabla u,\nabla v)_Q = (f,v)_Q.$$

The wave equation

Definition (Weak solution)

$$u \in H^1_{0,}(Q)$$
 such that, for all $v \in H^1_{T}(Q)$,
 $-(\partial_t u, \partial_t v)_Q + (\nabla u, \nabla v)_Q = (f, v)_Q$.

Nonsymmetry

Trial space X or $H_0^1(Q)$, test space $H_T^1(Q)$.

The heat equation

Definition (Residual)

For
$$u_{h\tau} \in X$$
, $\mathcal{R}(u_{h\tau}) \in (H^1_{,T}(Q))'$,
 $\langle \mathcal{R}(u_{h\tau}), v \rangle := (f, v)_Q + (u_{h\tau}, \partial_t v)_Q - (\nabla u_{h\tau}, \nabla v)_Q$, $v \in H^1_{,T}(Q)$.

The heat equation

Definition (Residual)

For
$$u_{h\tau} \in X$$
, $\mathcal{R}(u_{h\tau}) \in (H^1_{,T}(Q))'$,
 $\langle \mathcal{R}(u_{h\tau}), v \rangle := (f, v)_Q + (u_{h\tau}, \partial_t v)_Q - (\nabla u_{h\tau}, \nabla v)_Q, v \in H^1_{,T}(Q).$

The wave equation

Definition (Residual)

For
$$u_{h\tau} \in H^1_{0,}(Q)$$
, $\mathcal{R}(u_{h\tau}) \in (H^1_{,T}(Q))'$, $\langle \mathcal{R}(u_{h\tau}), v \rangle := (f, v)_Q + (\partial_t u_{h\tau}, \partial_t v)_Q - (\nabla u_{h\tau}, \nabla v)_Q$, $v \in H^1_{,T}(Q)$.

The heat equation

Definition (Residual)

$$\langle \mathcal{R}(u_{h\tau}), v \rangle := (f, v)_Q + (u_{h\tau}, \partial_t v)_Q - (\nabla u_{h\tau}, \nabla v)_Q, v \in H^1_{,T}(Q).$$

For $u_{h\tau} \in X$, $\mathcal{R}(u_{h\tau}) \in (H^1_{\tau}(Q))'$,

The wave equation

Definition (Residual)

For
$$u_{h\tau} \in H^1_{0,}(Q)$$
, $\mathcal{R}(u_{h\tau}) \in (H^1_{,T}(Q))'$, $\langle \mathcal{R}(u_{h\tau}), v \rangle := (f, v)_Q + (\partial_t u_{h\tau}, \partial_t v)_Q - (\nabla u_{h\tau}, \nabla v)_Q$, $v \in H^1_{,T}(Q)$.

Characterization

$$\mathcal{R}(u_{h\tau}) = 0$$
 if and only if $u_{h\tau} = u$.

The heat equation

Definition (Residual)

For
$$u_{h\tau} \in X$$
, $\mathcal{R}(u_{h\tau}) \in (H^1_{,T}(Q))'$,
 $\langle \mathcal{R}(u_{h\tau}), v \rangle := (f, v)_Q + (u_{h\tau}, \partial_t v)_Q - (\nabla u_{h\tau}, \nabla v)_Q$, $v \in H^1_{,T}(Q)$.

The wave equation

Definition (Residual)

For
$$u_{h\tau} \in H^1_{0,}(Q)$$
, $\mathcal{R}(u_{h\tau}) \in (H^1_{,T}(Q))'$, $\langle \mathcal{R}(u_{h\tau}), v \rangle := (f, v)_Q + (\partial_t u_{h\tau}, \partial_t v)_Q - (\nabla u_{h\tau}, \nabla v)_Q, v \in H^1_{,T}(Q)$.

Characterization

$$\mathcal{R}(u_{h\tau}) = 0$$
 if and only if $u_{h\tau} = u$.

<u>Definition</u> (Intrinsic error measure, dual norm of the residual)

$$\|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'} := \sup_{\substack{v \in H^1_{,T}(Q) \\ |v|_{H^1(Q)} = 1}} \langle \mathcal{R}(u_{h\tau}), v \rangle.$$

The heat equation

Definition (Residual)

For
$$u_{h\tau} \in X$$
, $\mathcal{R}(u_{h\tau}) \in (H^1_{,T}(Q))'$,
 $\langle \mathcal{R}(u_{h\tau}), v \rangle := (f, v)_Q + (u_{h\tau}, \partial_t v)_Q - (\nabla u_{h\tau}, \nabla v)_Q$, $v \in H^1_{,T}(Q)$.

The wave equation

Definition (Residual)

For
$$u_{h_{\tau}} \in H^{1}_{0,}(Q)$$
, $\mathcal{R}(u_{h_{\tau}}) \in (H^{1}_{,T}(Q))'$,
 $\langle \mathcal{R}(u_{h_{\tau}}), v \rangle := (f, v)_{Q} + (\partial_{t}u_{h_{\tau}}, \partial_{t}v)_{Q}$

$$- (\nabla u_{h_{\tau}}, \nabla v)_{Q}, v \in H^{1}_{,T}(Q).$$

Characterization

$$\mathcal{R}(u_{h\tau})=0$$
 if and only if $u_{h\tau}=u$.

Definition (Intrinsic error measure, dual norm of the residual)

$$\|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'} := \sup_{\substack{v \in H^1_{,T}(Q) \\ |v|_{H^1(Q)} = 1}} \langle \mathcal{R}(u_{h\tau}), v \rangle.$$

- induced by the weak formulation (problem-dependent × fixed space & norm)
- sometimes the only choice (sign-changing coefficients, implicit const. laws

Inf-sup equalities, norms of the difference $u-u_{h\tau}$

The heat equation

• For the slightly bigger test space $Y_T \supset H^1_{,T}(Q)$,

$$||u - u_{h\tau}||_{X} = ||\mathcal{R}(u_{h\tau})||_{(Y_T)'}$$

by standard inf-sup theory.

Inf-sup equalities, norms of the difference $u - u_{h\tau}$

The heat equation

• For the slightly bigger test space $Y_T \supset H^1_{,T}(Q)$,

$$||u - u_{h\tau}||_{X} = ||\mathcal{R}(u_{h\tau})||_{(Y_T)'}$$

by standard inf-sup theory.

The wave equation

• For the slightly bigger trial space $Y_0 \supset H_0^1(Q)$,

$$\|u - u_{h\tau}\|_{\frac{Y_0}{T}} = \|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'}$$

by inf-sup of Steinbach & Zank (2022).

Inf-sup equalities, norms of the difference $u - u_{h\tau}$

The heat equation

• For the slightly bigger test space $Y_T \supset H^1_{,T}(Q)$,

$$||u - u_{h\tau}||_{X} = ||\mathcal{R}(u_{h\tau})||_{(Y_{\tau})'}$$

by standard inf-sup theory.

There holds

$$\begin{aligned} & \|\mathcal{R}(u_{h\tau})\|_{(H^{1}_{,T}(Q))'} \\ &= \sup_{v \in H^{1}_{,T}(Q)} \{(u_{h\tau} - u, \partial_{t}v)_{Q} - (\nabla(u_{h\tau} - u), \nabla v)_{Q}\} \\ &|v|_{H^{1}(Q)} = 1 \\ &< (\|u - u_{h\tau}\|_{Q}^{2} + \|\nabla(u - u_{h\tau})\|_{Q}^{2})^{1/2}. \end{aligned}$$

The wave equation

• For the slightly bigger trial space $Y_0 \supset H_0^1(Q)$,

$$\|u - u_{h\tau}\|_{\frac{Y_0}{}} = \|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'}$$

by inf-sup of Steinbach & Zank (2022).

Inf-sup equalities, norms of the difference $u - u_{h\tau}$

The heat equation

• For the slightly bigger test space $Y_T \supset H^1_T(Q)$,

$$\|u-u_{h\tau}\|_{\mathbf{X}}=\|\mathcal{R}(u_{h\tau})\|_{(\mathbf{Y}_{\mathbf{T}})'}$$

by standard inf-sup theory.

There holds

$$\begin{aligned} & \|\mathcal{R}(u_{h\tau})\|_{(H^{1}_{,T}(Q))'} \\ &= \sup_{v \in H^{1}_{,T}(Q)} \{(u_{h\tau} - u, \partial_{t}v)_{Q} - (\nabla(u_{h\tau} - u), \nabla v)_{Q}\} \\ &|v|_{H^{1}(Q)} = 1 \\ &< (\|u - u_{h\tau}\|_{Q}^{2} + \|\nabla(u - u_{h\tau})\|_{Q}^{2})^{1/2}. \end{aligned}$$

The wave equation

• For the slightly bigger trial space $Y_0 \supset H_0^1(Q)$,

$$||u - u_{h\tau}||_{Y_0} = ||\mathcal{R}(u_{h\tau})||_{(H^1_{,\tau}(Q))'}$$

by inf-sup of Steinbach & Zank (2022).

There holds

 $= |u - u_{h\tau}|_{H^1(Q)}.$

$$\begin{aligned} & \|\mathcal{R}(u_{h\tau})\|_{(H^{1}_{,T}(Q))'} \\ &= \sup_{v \in H^{1}_{,T}(Q)} \left\{ (\partial_{t}(u_{h\tau} - u), \partial_{t}v)_{Q} - (\nabla(u_{h\tau} - u), \nabla v)_{Q} \right\} \\ & |v|_{H^{1}(Q)} = 1 \\ &< (\|\partial_{t}(u - u_{h\tau})\|_{Q}^{2} + \|\nabla(u - u_{h\tau})\|_{Q}^{2})^{1/2} \end{aligned}$$

- Picasso / Verfürth (1998), work with the energy norm of X:
 - \checkmark upper bound $\|u-u_{h\tau}\|_{X}^{2} \leq C^{2} \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{n}^{n}} \eta_{K}^{n}(u_{h\tau})^{2}$
 - X constrained lower bound (number of elements $|\mathcal{T}_h^n|$ and time step τ linked)
- Repin (2002), guaranteed upper bound

- - M. Vohralík

- Picasso / Verfürth (1998), work with the energy norm of X:
 - \checkmark upper bound $\|u-u_{h\tau}\|_{X}^{2} \leq C^{2} \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{n}^{n}} \eta_{K}^{n}(u_{h\tau})^{2}$
 - **X** constrained lower bound (number of elements $|\mathcal{T}_{h}^{n}|$ and time step τ linked)
- Repin (2002), guaranteed upper bound
- Verfürth (2003) (cf. also Bergam, Bernardi, & Mghazli (2005)), Y norm:

- Picasso / Verfürth (1998), work with the energy norm of X:
 - \checkmark upper bound $\|u-u_{h\tau}\|_{X}^{2} \leq C^{2} \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{n}^{n}} \eta_{K}^{n}(u_{h\tau})^{2}$
 - **X** constrained lower bound (number of elements $|\mathcal{T}_{h}^{n}|$ and time step τ linked)
- Repin (2002), guaranteed upper bound
- Verfürth (2003) (cf. also Bergam, Bernardi, & Mghazli (2005)), Y norm:
 - ✓ upper bound $||u \mathcal{I}u_{h\tau}||_{\mathbf{Y}}^2 \leq C^2 \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n(u_{h\tau})^2$
 - \checkmark efficiency $\sum_{K \in \mathcal{T}_n^n} \eta_K^n(u_{h\tau})^2 \leq C^2 \|u \mathcal{I}u_{h\tau}\|_{Y(I_n)}^2$
 - ✓ robustness with respect to the final time T, no link $|T_h^n| \leftrightarrow \tau$
 - x efficiency local in time but global in space
 - x restrictions on mesh coarsening between time steps
- Eriksson & Johnson (1991), duality techniques & Makridakis & Nochetto
- Makridakis & Nochetto (2006): Radau reconstruction $\mathcal{I}u_{h\tau}$ for any order

- Picasso / Verfürth (1998), work with the energy norm of X:
 - \checkmark upper bound $||u-u_{h\tau}||_X^2 \leq C^2 \sum_{n=1}^N \sum_{K \in \mathcal{T}^n} \eta_K^n(u_{h\tau})^2$
 - **X** constrained lower bound (number of elements $|\mathcal{T}_{h}^{n}|$ and time step τ linked)
- Repin (2002), guaranteed upper bound
- Verfürth (2003) (cf. also Bergam, Bernardi, & Mghazli (2005)), Y norm:
 - \checkmark upper bound $\|u \mathcal{I}u_{h\tau}\|_{Y}^{2} \leq C^{2} \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}^{n}} \eta_{K}^{n}(u_{h\tau})^{2}$
 - \checkmark efficiency $\sum_{K \in \mathcal{T}_n^n} \eta_K^n(u_{h\tau})^2 \leq C^2 \|u \mathcal{I}u_{h\tau}\|_{Y(I_n)}^2$
 - ✓ robustness with respect to the final time T, no link $|T_h^n| \leftrightarrow \tau$
 - x efficiency local in time but global in space
 - x restrictions on mesh coarsening between time steps
- Eriksson & Johnson (1991), duality techniques & Makridakis & Nochetto (2003), elliptic reconstruction: $L^2(L^2) / L^{\infty}(L^2) / L^{\infty}(L^{\infty}) / \text{higher-order norms}$
- Makridakis & Nochetto (2006): Radau reconstruction *Iup*, for any order
- Schötzau & Wihler (2010), τα adaptivity
- Ern, Smears, & Vohralík (2017): local space-time efficiency in the Y norm
- Georgoulis & Makridakis (2023), Smears (2025): efficiency in the X norm

- Picasso / Verfürth (1998), work with the energy norm of X:
 - ✓ upper bound $\|u u_{h\tau}\|_{X}^{2} \leq C^{2} \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{n}^{n}} \eta_{K}^{n}(u_{h\tau})^{2}$
 - **X** constrained lower bound (number of elements $|\mathcal{T}_{h}^{n}|$ and time step τ linked)
- Repin (2002), guaranteed upper bound
- Verfürth (2003) (cf. also Bergam, Bernardi, & Mghazli (2005)), Y norm:
 - \checkmark upper bound $\|u \mathcal{I}u_{h\tau}\|_{Y}^{2} \leq C^{2} \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}^{n}} \eta_{K}^{n}(u_{h\tau})^{2}$
 - \checkmark efficiency $\sum_{K \in \mathcal{T}_n^n} \eta_K^n(u_{h\tau})^2 \leq C^2 \|u \mathcal{I}u_{h\tau}\|_{Y(I_n)}^2$
 - ✓ robustness with respect to the final time T, no link $|T_h^n| \leftrightarrow \tau$
 - x efficiency local in time but global in space
 - x restrictions on mesh coarsening between time steps
- Eriksson & Johnson (1991), duality techniques & Makridakis & Nochetto (2003), elliptic reconstruction: $L^2(L^2) / L^{\infty}(L^2) / L^{\infty}(L^{\infty}) / \text{higher-order norms}$
- Makridakis & Nochetto (2006): Radau reconstruction $\mathcal{I}u_{h\tau}$ for any order
- Schötzau & Wihler (2010), τg adaptivity
- Ern, Smears, & Vohralík (2017): local space-time efficiency in the Y norm
- Georgoulis & Makridakis (2023), Smears (2025): efficiency in the X norm

- Bernardi & Süli (2005), reliability and efficiency but employing different spaces
- Georgoulis, Lakkis, Makridakis, (& Virtanen) (2013, 2016), reliability but no efficiency, $L^{\infty}(L^2)$ norm
- Chaumont-Frelet (2023), Chaumont-Frelet & Ern (2025), reliability and efficiency but smoothness assumption and truncation
- Dong, Mascotto, & Wang (2024), $L^{\infty}(L^2)$ norm
- Grote, Lakkis, & Santos (2025), space-time mesh adaptivity

- Bernardi & Süli (2005), reliability and efficiency but employing different spaces
- Georgoulis, Lakkis, Makridakis, (& Virtanen) (2013, 2016), reliability but no efficiency, $L^{\infty}(L^2)$ norm
- Chaumont-Frelet (2023), Chaumont-Frelet & Ern (2025), reliability and efficiency but smoothness assumption and truncation
- Dong, Mascotto, & Wang (2024), $L^{\infty}(L^2)$ norm
- Grote, Lakkis, & Santos (2025), space-time mesh adaptivity

- Bernardi & Süli (2005), reliability and efficiency but employing different spaces
- Georgoulis, Lakkis, Makridakis, (& Virtanen) (2013, 2016), reliability but no efficiency, $L^{\infty}(L^2)$ norm
- Chaumont-Frelet (2023), Chaumont-Frelet & Ern (2025), reliability and efficiency but smoothness assumption and truncation
- Dong, Mascotto, & Wang (2024), $L^{\infty}(L^2)$ norm
- Grote, Lakkis, & Santos (2025), space-time mesh adaptivity

- Bernardi & Süli (2005), reliability and efficiency but employing different spaces
- Georgoulis, Lakkis, Makridakis, (& Virtanen) (2013, 2016), reliability but no efficiency, $L^{\infty}(L^2)$ norm
- Chaumont-Frelet (2023), Chaumont-Frelet & Ern (2025), reliability and efficiency but smoothness assumption and truncation
- Dong, Mascotto, & Wang (2024), $L^{\infty}(L^2)$ norm
- Grote, Lakkis, & Santos (2025), space-time mesh adaptivity

- Bernardi & Süli (2005), reliability and efficiency but employing different spaces
- Georgoulis, Lakkis, Makridakis, (& Virtanen) (2013, 2016), reliability but no efficiency, $L^{\infty}(L^2)$ norm
- Chaumont-Frelet (2023), Chaumont-Frelet & Ern (2025), reliability and efficiency but smoothness assumption and truncation
- Dong, Mascotto, & Wang (2024), $L^{\infty}(L^2)$ norm
- Grote, Lakkis, & Santos (2025), space-time mesh adaptivity

Outline

- Introduction
- 2 Equations, spaces, norms, weak formulations, residuals, and inf-sup conditions
- 3 Localization of the intrinsic dual residual norm
- Schemes and temporal reconstructions with the orthogonality property
- 6 Reliability and local space-time efficiency
 - Reliability & local space-time efficiency
 - Units consistency, space-time anisotropy, time-evolving meshes
- Numerical experiments
 - Heat equation and extensions
 - Wave equation
- Conclusions

Context

Recall

•
$$Q = \Omega \times (0, T)$$

•
$$H^1_{\mathcal{T}}(Q) = \{ v \in H^1(Q); \ v = 0 \text{ on } \partial\Omega \times (0, T) \text{ and } \Omega \times T \}$$

$$|v|_{H^1(Q)}^2 = \|\partial_t v\|_Q^2 + \|\nabla v\|_Q^2$$

•
$$\mathcal{R}(u_{h\tau}) \in (H^1_{T}(Q))'$$

•
$$\|\mathcal{R}(u_{h\tau})\|_{(H^1_{,\tau}(Q))'} = \sup_{\substack{v \in H^1_{,\tau}(Q) \\ |v|_{H^1(Q)} = 1}} \langle \mathcal{R}(u_{h\tau}), v \rangle$$

Context

Recall

- $Q = \Omega \times (0, T)$
- $H^1_{\mathcal{T}}(Q) = \{ v \in H^1(Q); v = 0 \text{ on } \partial\Omega \times (0, T) \text{ and } \Omega \times T \}$
- $|v|_{H^1(Q)}^2 = \|\partial_t v\|_Q^2 + \|\nabla v\|_Q^2$
- $\mathcal{R}(u_{h\tau}) \in (H^1_{T}(Q))'$
- $\|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'} = \sup_{\substack{v \in H^1_{,T}(Q) \\ |v|_{H^1(Q)} = 1}} \langle \mathcal{R}(u_{h\tau}), v \rangle$
- ... elliptic setting on the space-time domain Q

Context

Recall

- $Q = \Omega \times (0, T)$
- $H^1_{\mathcal{T}}(Q) = \{ v \in H^1(Q); v = 0 \text{ on } \partial\Omega \times (0, T) \text{ and } \Omega \times T \}$
- $|v|_{H^1(Q)}^2 = \|\partial_t v\|_Q^2 + \|\nabla v\|_Q^2$
- $\mathcal{R}(u_{h\tau}) \in (H^1_{\mathcal{T}}(Q))'$
- $\|\mathcal{R}(u_{h\tau})\|_{(H^1_{,\tau}(Q))'} = \sup_{\substack{v \in H^1_{,\tau}(Q) \\ |v|_{H^1(Q)} = 1}} \langle \mathcal{R}(u_{h\tau}), v \rangle$
- ... elliptic setting on the space-time domain Q

Observations, questions

- $\|\mathcal{R}(u_{h\tau})\|_{(H^1_{\tau}(Q))'}$: dual, a priori global norm
- a priori no localization
- local space-time efficiency in a nonlocal norm?

Localization of dual norms

Theorem (Localization of dual norms)

Let
$$\mathcal{R}(u_{h\tau}) \in (H^1_{.T}(Q))'$$
 be arbitrary. Let, for an index set \mathcal{V} ,

$$\psi^{\mathbf{a}} \in W^{1,\infty}(Q) \subset H^1_{,T}(Q)$$

 $\begin{cases} \text{have local space-time supports, } \overline{\omega_{\mathbf{a}}} \\ \text{form a partition of unity } \sum_{\mathbf{a} \in \mathcal{V}} \psi^{\mathbf{a}} = 1. \end{cases}$

Localization of dual norms

Theorem (Localization of dual norms)

Let
$$\mathcal{R}(u_{h\tau}) \in (H^1_{.T}(Q))'$$
 be arbitrary. Let, for an index set \mathcal{V} ,

$$\psi^{a} \in W^{1,\infty}(Q) \subset H^{1}_{,T}(Q) \quad \begin{cases} \text{have local space-time supports, } \overline{\omega_{a}} \\ \text{form a partition of unity } \sum_{a \in \mathcal{V}} \psi^{a} = 1. \end{cases}$$

Let $\mathcal{R}(u_{h\tau})$ have the local space–time orthogonality property

$$\langle \mathcal{R}(u_{h\tau}), \psi^{\mathbf{a}} \rangle = \mathbf{0}$$
 $\forall \mathbf{a} \in \mathcal{V} \text{ not on } \partial \Omega \times (0, T) \text{ and } \Omega \times \mathbf{0}.$

Localization of dual norms

Theorem (Localization of dual norms)

Let
$$\mathcal{R}(u_{h\tau}) \in (H^1_{\mathcal{T}}(Q))'$$
 be arbitrary. Let, for an index set \mathcal{V} ,

$$\psi^{\mathbf{a}} \in W^{1,\infty}(Q) \subset H^1_{,T}(Q) \quad \begin{cases} \text{have local space-time supports, } \overline{\omega_{\mathbf{a}}} \\ \text{form a partition of unity } \sum_{\mathbf{a} \in \mathcal{V}} \psi^{\mathbf{a}} = 1. \end{cases}$$

Let $\mathcal{R}(u_{h\tau})$ have the local space–time orthogonality property

$$\langle \mathcal{R}(u_{h\tau}), \psi^{a} \rangle = 0$$
 $\forall a \in \mathcal{V} \text{ not on } \partial\Omega \times (0, T) \text{ and } \Omega \times 0.$

$$\|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'}^2 \lesssim \sum_{\mathbf{a} \in \mathcal{V}} \|\mathcal{R}(u_{h\tau})\|_{(H^1_0(\omega_{\mathbf{a}}))'}^2 \lesssim \|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'}^2.$$

Localization of dual norms

Theorem (Localization of dual norms)

Let $\mathcal{R}(u_{h\tau}) \in (H^1_{\mathcal{T}}(Q))'$ be arbitrary. Let, for an index set \mathcal{V} ,

$$\psi^{\mathbf{a}} \in W^{1,\infty}(Q) \subset H^1_{,T}(Q) \quad \begin{cases} \text{have local space-time supports, } \overline{\omega_{\mathbf{a}}} \\ \text{form a partition of unity } \sum_{\mathbf{a} \in \mathcal{V}} \psi^{\mathbf{a}} = 1. \end{cases}$$

Let $\mathcal{R}(u_{h\tau})$ have the local space–time **orthogonality property**

$$\langle \mathcal{R}(u_{h\tau}), \psi^{a} \rangle = 0$$
 $\forall a \in \mathcal{V} \text{ not on } \partial\Omega \times (0, T) \text{ and } \Omega \times 0.$

Then

$$\|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'}^2 \lesssim \sum_{\mathbf{a} \in \mathcal{V}} \|\mathcal{R}(u_{h\tau})\|_{(H^1_0(\omega_{\mathbf{a}}))'}^2 \lesssim \|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'}^2.$$

- known from elliptic a posteriori error analysis
- generalizes to $(W_0^{1,\alpha}(Q))'$, $1 \le \alpha \le \infty$, see Blechta, Málek, & Vohralík (2020) and the references therein

Localization of the space-time dual norm $\|\mathcal{R}(u_{h_{\tau}})\|_{(H^1_{\tau}(Q))'}$

Descriptions

- ullet inspired by the preceding theorem, we succeed to localize $\|\mathcal{R}(u_{h au})\|_{(H^1_{ au}(Q))'}$
- in general, localization entails overlapping
- we overlap in space but not in time (localization is per time interval)
- ψ^a above is a space-time function; orthogonality to lowest-order space finite element basis functions on each time interval turns out to be sufficient
- orthogonality not for the residual: time-derivative term is integrated by parts
- ullet this will request to increase by one the time regularity of u_h

- in the elliptic case, since the problem is boundary value, to obtain orthogonality of the residual wrt (lowest-order) finite element basis functions, one needs to solve global a linear system
- in parabolic/hyperbolic cases, no condition is prescribed on the final time
 implicit and even explicit time stepping is sufficient (no global linear
 - system)

Localization of the space-time dual norm $\|\mathcal{R}(u_{h\tau})\|_{(H^1_{\tau}(Q))'}$

Descriptions

- ullet inspired by the preceding theorem, we succeed to localize $\|\mathcal{R}(u_{h au})\|_{(H^1_{ au}(Q))'}$
- in general, localization entails overlapping
- we overlap in space but not in time (localization is per time interval)
- ψ^a above is a space-time function; orthogonality to lowest-order space finite element basis functions on each time interval turns out to be sufficient
- orthogonality not for the residual: time-derivative term is integrated by parts
- ullet this will request to increase by one the time regularity of u_{h_2}

- in the elliptic case, since the problem is boundary value, to obtain orthogonality of the residual wrt (lowest-order) finite element basis functions, one needs to solve global a linear system
- in parabolic/hyperbolic cases, no condition is prescribed on the final time
 implicit and even explicit time stepping is sufficient (no global linear

Localization of the space-time dual norm $\|\mathcal{R}(u_{h\tau})\|_{(H^1_{\tau}(Q))'}$

Descriptions

- ullet inspired by the preceding theorem, we succeed to localize $\|\mathcal{R}(u_{h au})\|_{(H^1_{ au}(Q))'}$
- in general, localization entails overlapping
- we overlap in space but not in time (localization is per time interval)
- ψ^a above is a space-time function; orthogonality to lowest-order space finite element basis functions on each time interval turns out to be sufficient
- orthogonality not for the residual: time-derivative term is integrated by parts
- this will request to increase by one the time regularity of $u_{h\tau}$

- in the elliptic case, since the problem is boundary value, to obtain orthogonality of the residual wrt (lowest-order) finite element basis functions, one needs to solve global a linear system
- in parabolic/hyperbolic cases, no condition is prescribed on the final time

 ⇒ implicit and even explicit time stepping is sufficient (no global linear

Localization of the space-time dual norm $\|\mathcal{R}(u_{h\tau})\|_{(H^1_{\tau}(Q))'}$

Descriptions

- ullet inspired by the preceding theorem, we succeed to localize $\|\mathcal{R}(u_{h au})\|_{(H^1_{ au}(Q))'}$
- in general, localization entails overlapping
- we overlap in space but not in time (localization is per time interval)
- ψ^a above is a space-time function; **orthogonality** to lowest-order **space finite element basis functions** on **each time interval** turns out to be sufficient
- orthogonality not for the residual: time-derivative term is integrated by parts
- this will request to increase by one the time regularity of $u_{h\tau}$

- in the elliptic case, since the problem is boundary value, to obtain orthogonality of the residual wrt (lowest-order) finite element basis functions, one needs to solve global a linear system
- in parabolic/hyperbolic cases, no condition is prescribed on the final time => implicit and even explicit time stepping is sufficient (no global linear

Localization of the space-time dual norm $\|\mathcal{R}(u_{h\tau})\|_{(H^1_{\tau}(Q))'}$

Descriptions

- ullet inspired by the preceding theorem, we succeed to localize $\|\mathcal{R}(u_{h au})\|_{(H^1_{ au}(Q))'}$
- in general, localization entails overlapping
- we overlap in space but not in time (localization is per time interval)
- ψ^a above is a space-time function; **orthogonality** to lowest-order **space finite element basis functions** on **each time interval** turns out to be sufficient
- orthogonality not for the residual: time-derivative term is integrated by parts
- this will request to increase by one the time regularity of $u_{h\tau}$

- in the elliptic case, since the problem is boundary value, to obtain orthogonality of the residual wrt (lowest-order) finite element basis functions, one needs to solve global a linear system
- in parabolic/hyperbolic cases, no condition is prescribed on the final time
 implicit and even explicit time stepping is sufficient (no global linear

Localization of the space-time dual norm $\|\mathcal{R}(u_{h\tau})\|_{(H^1_{\tau}(Q))'}$

Descriptions

- ullet inspired by the preceding theorem, we succeed to localize $\|\mathcal{R}(u_{h au})\|_{(H^1_{ au}(Q))'}$
- in general, localization entails overlapping
- we overlap in space but not in time (localization is per time interval)
- ψ^a above is a space-time function; **orthogonality** to lowest-order **space finite element basis functions** on **each time interval** turns out to be sufficient
- orthogonality not for the residual: time-derivative term is integrated by parts
- ullet this will request to increase by one the time regularity of $u_{h au}$

- in the elliptic case, since the problem is boundary value, to obtain orthogonality of the residual wrt (lowest-order) finite element basis functions, one needs to solve global a linear system
- in parabolic/hyperbolic cases, no condition is prescribed on the final time
 implicit and even explicit time stepping is sufficient (no global linear system)

Localization of the space-time dual norm $\|\mathcal{R}(u_{h\tau})\|_{(H^1_{\tau}(Q))'}$

Descriptions

- ullet inspired by the preceding theorem, we succeed to localize $\|\mathcal{R}(u_{h au})\|_{(H^1_{ au}(Q))'}$
- in general, localization entails overlapping
- we overlap in space but not in time (localization is per time interval)
- ψ^a above is a space-time function; **orthogonality** to lowest-order **space finite element basis functions** on **each time interval** turns out to be sufficient
- orthogonality not for the residual: time-derivative term is integrated by parts
- this will request to increase by one the time regularity of $u_{h\tau}$

- in the elliptic case, since the problem is boundary value, to obtain orthogonality of the residual wrt (lowest-order) finite element basis functions, one needs to solve global a linear system
- in parabolic/hyperbolic cases, no condition is prescribed on the final time
 implicit and even explicit time stepping is sufficient (no global linear system)

Localization of the space-time dual norm $\|\mathcal{R}(u_{h\tau})\|_{(H^1_{\tau}(Q))'}$

Descriptions

- ullet inspired by the preceding theorem, we succeed to localize $\|\mathcal{R}(u_{h au})\|_{(H^1_{ au}(Q))'}$
- in general, localization entails overlapping
- we overlap in space but not in time (localization is per time interval)
- ψ^a above is a space-time function; **orthogonality** to lowest-order **space finite element basis functions** on **each time interval** turns out to be sufficient
- orthogonality not for the residual: time-derivative term is integrated by parts
- ullet this will request to increase by one the time regularity of $u_{h au}$

- in the elliptic case, since the problem is boundary value, to obtain orthogonality of the residual wrt (lowest-order) finite element basis functions, one needs to solve global a linear system
- in parabolic/hyperbolic cases, no condition is prescribed on the final time
 implicit and even explicit time stepping is sufficient (no global linear system)

Discrete setting

- discrete times $\{t^n\}_{0 \le n \le N}$, $t^0 = 0$ and $t^N = T$
- time intervals $I_n := (t^{n-1}, t^n]$, time steps $\tau^n := t^n t^{n-1}$
- a simplicial/affine cuboidal mesh \mathcal{T}_h of Ω
- hat functions ψ^{a} for vertices \mathcal{V}_{h} , $\overline{\omega_{a}}$ support of ψ^{a}
- conforming finite element space $V_h := \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \geq 1$

Discrete setting

- discrete times $\{t^n\}_{0 \le n \le N}$, $t^0 = 0$ and $t^N = T$
- time intervals $I_n := (t^{n-1}, t^n]$, time steps $\tau^n := t^n t^{n-1}$
- a simplicial/affine cuboidal mesh \mathcal{T}_h of Ω
- hat functions ψ^{a} for vertices \mathcal{V}_{h} , $\overline{\omega_{a}}$ support of ψ^{a}
- conforming finite element space $V_h := \mathcal{P}_p(\mathcal{T}_h) \cap H_0^1(\Omega), p \geq 1$

Localization of the intrinsic dual residual norm

Theorem (Localization of the intrinsic dual residual norm)

Let
$$u_{h\tau} \in H_{0,}^{1}(Q)$$
 (heat) or $u_{h\tau} \in H_{0,}^{1}(Q) \cap H^{2}(0, T; L^{2}(\Omega))$ (wave).

Localization of the intrinsic dual residual norm

Theorem (Localization of the intrinsic dual residual norm)

Let
$$u_{h\tau} \in H^1_{0,}(Q)$$
 (heat) or $u_{h\tau} \in H^1_{0,}(Q) \cap H^2(0,T;L^2(\Omega))$ (wave). Let $\mathcal{R}(u_{h\tau}) \in (H^1_{,T}(Q))'$ be the heat or the wave residual.

Localization of the intrinsic dual residual norm

Theorem (Localization of the intrinsic dual residual norm)

Let $u_{h\tau} \in H_{0,}^1(Q)$ (heat) or $u_{h\tau} \in H_{0,}^1(Q) \cap H^2(0, T; L^2(\Omega))$ (wave). Let $\mathcal{R}(u_{h\tau}) \in (H_{T}^1(Q))'$ be the heat or the wave residual. Let the following **orthogonality property** hold:

$$(f,\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} - (\partial_{tt}u_{h\tau},\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} - (\nabla u_{h\tau},\nabla\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} = 0 \quad \forall 1 \leq n \leq N, \, \forall \mathbf{a} \in \mathcal{V}_h.$$

Localization of the intrinsic dual residual norm

Theorem (Localization of the intrinsic dual residual norm)

Let $u_{h\tau} \in H_0^1(Q)$ (heat) or $u_{h\tau} \in H_0^1(Q) \cap H^2(0, T; L^2(\Omega))$ (wave). Let $\mathcal{R}(u_{h_{\tau}}) \in (H^1_{\tau}(Q))'$ be the heat or the wave residual. Let the following orthogonality property hold:

$$(f,\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} - (\partial_{tt}u_{h\tau},\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} - (\nabla u_{h\tau},\nabla\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} = 0 \quad \forall 1 \leq n \leq N, \, \forall \mathbf{a} \in \mathcal{V}_h.$$

Then

$$\|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'}^2 \lesssim \sum_{n=1}^N \sum_{\boldsymbol{a} \in \mathcal{V}_h} \|\mathcal{R}(u_{h\tau})\|_{(H^1_0(\omega_{\boldsymbol{a}} \times I_n))'}^2 \lesssim \|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'}^2,$$

Localization of the intrinsic dual residual norm

Theorem (Localization of the intrinsic dual residual norm)

Let $u_{h\tau} \in H_{0,}^1(Q)$ (heat) or $u_{h\tau} \in H_{0,}^1(Q) \cap H^2(0,T;L^2(\Omega))$ (wave). Let $\mathcal{R}(u_{h\tau}) \in (H_{,T}^1(Q))'$ be the heat or the wave residual. Let the following **orthogonality property** hold:

$$(f,\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} - (\partial_{\mathbf{t}^{\mathbf{t}}} u_{h\tau},\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} - (\nabla u_{h\tau},\nabla\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} = 0 \quad \forall 1 \leq n \leq N, \, \forall \mathbf{a} \in \mathcal{V}_h.$$

Then

$$\|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'}^2 \lesssim \sum_{n=1}^N \sum_{\boldsymbol{a} \in \mathcal{V}_h} \|\mathcal{R}(u_{h\tau})\|_{(H^1_0(\omega_{\boldsymbol{a}} \times I_n))'}^2 \lesssim \|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'}^2,$$

where the hidden constants only depend on the space dimension d and shape-regularity of the space and time meshes.

Outline

- Introduction
- 2 Equations, spaces, norms, weak formulations, residuals, and inf-sup conditions
- 3 Localization of the intrinsic dual residual norm
- Schemes and temporal reconstructions with the orthogonality property
- 6 Reliability and local space-time efficiency
 - Reliability & local space-time efficiency
 - Units consistency, space-time anisotropy, time-evolving meshes
- Numerical experiments
 - Heat equation and extensions
 - Wave equation
- Conclusions

Crank–Nicolson method for the heat equation

Definition (Crank-Nicolson)

Set $u_h^0 := 0$. Find u_h^n , $1 \le n \le N$, such that

$$\left(\frac{u_h^n-u_h^{n-1}}{\tau^n},v_h\right)_{\Omega}+\left(\nabla\frac{u_h^n+u_h^{n-1}}{2},\nabla v_h\right)_{\Omega}=\left(\frac{f(\cdot,t^n)+f(\cdot,t^{n-1})}{2},v_h\right)_{\Omega} \quad \forall v_h \in V_h.$$

Crank–Nicolson method for the heat equation

Definition (Crank-Nicolson)

Set $u_h^0 := 0$. Find u_h^n , $1 \le n \le N$, such that

$$\left(\frac{u_h^n-u_h^{n-1}}{\tau^n},v_h\right)_{\Omega}+\left(\nabla\frac{u_h^n+u_h^{n-1}}{2},\nabla v_h\right)_{\Omega}=\left(\frac{f(\cdot,t^n)+f(\cdot,t^{n-1})}{2},v_h\right)_{\Omega}\qquad\forall v_h\in V_h.$$

• $u_{h\tau}|_{I_n} := u_h^n \in X$: OK to define the heat residual $\mathcal{R}(u_{h\tau})$

Crank-Nicolson method for the heat equation

Definition (Crank-Nicolson)

Set $u_h^0 := 0$. Find u_h^n , $1 \le n \le N$, such that

$$\left(\frac{u_h^n-u_h^{n-1}}{\tau^n},v_h\right)_{\Omega}+\left(\nabla\frac{u_h^n+u_h^{n-1}}{2},\nabla v_h\right)_{\Omega}=\left(\frac{f(\cdot,t^n)+f(\cdot,t^{n-1})}{2},v_h\right)_{\Omega}\qquad\forall v_h\in V_h.$$

• $u_{h\tau}|_{I_n}:=u_h^n\in X$: OK to define the heat residual $\mathcal{R}(u_{h\tau})$

Setting Dual norm localization Schemes & reconstructions Reliability & efficiency Numerics C

Crank–Nicolson method for the heat equation

Definition (Crank-Nicolson)

$$\left(\frac{u_h^n-u_h^{n-1}}{\tau^n},v_h\right)_{\Omega}+\left(\nabla\frac{u_h^n+u_h^{n-1}}{2},\nabla v_h\right)_{\Omega}=\left(\frac{f(\cdot,t^n)+f(\cdot,t^{n-1})}{2},v_h\right)_{\Omega}\qquad\forall v_h\in V_h.$$

- $u_{h\tau}|_{I_n}:=u_h^n\in X$: OK to define the heat residual $\mathcal{R}(u_{h\tau})$
- but we will need $\partial_t u_{h\tau}$ (reg. increase)

ng Dual norm localization Schemes & reconstructions Reliability & efficiency Numerics C

Crank–Nicolson method for the heat equation

Definition (Crank-Nicolson)

$$\left(\frac{u_h^n-u_h^{n-1}}{\tau^n},v_h\right)_{\Omega}+\left(\nabla\frac{u_h^n+u_h^{n-1}}{2},\nabla v_h\right)_{\Omega}=\left(\frac{f(\cdot,t^n)+f(\cdot,t^{n-1})}{2},v_h\right)_{\Omega}\qquad\forall v_h\in V_h.$$

- $u_{h\tau}|_{I_n}:=u_h^n\in X$: OK to define the heat residual $\mathcal{R}(u_{h\tau})$
- but we will need $\partial_t u_{h\tau}$ (reg. increase) $\Longrightarrow u_{h\tau} \in H^1_{0,}(Q)$

ing Dual norm localization Schemes & reconstructions Reliability & efficiency Numerics C

Crank–Nicolson method for the heat equation

Definition (Crank-Nicolson)

$$\left(\frac{u_h^n-u_h^{n-1}}{\tau^n},v_h\right)_{\Omega}+\left(\nabla\frac{u_h^n+u_h^{n-1}}{2},\nabla v_h\right)_{\Omega}=\left(\frac{f(\cdot,t^n)+f(\cdot,t^{n-1})}{2},v_h\right)_{\Omega}\qquad\forall v_h\in V_h.$$

- $u_{h\tau}|_{I_n} := u_h^n \in X$: OK to define the heat residual $\mathcal{R}(u_{h\tau})$
- but we will need $\partial_t u_{h\tau}$ (reg. increase) $\Longrightarrow u_{h\tau} \in H^1_{0,}(Q)$
- continuous & piecewise affine (Radau) reconstruction from u_h^n

Crank–Nicolson method for the heat equation

Definition (Crank-Nicolson)

$$\left(\frac{u_h^n-u_h^{n-1}}{\tau^n},v_h\right)_{\Omega}+\left(\nabla\frac{u_h^n+u_h^{n-1}}{2},\nabla v_h\right)_{\Omega}=\left(\frac{f(\cdot,t^n)+f(\cdot,t^{n-1})}{2},v_h\right)_{\Omega}\qquad\forall v_h\in V_h.$$

- $u_{h\tau}|_{I_n}:=u_h^n\in X$: OK to define the heat residual $\mathcal{R}(u_{h\tau})$
- but we will need $\partial_t u_{h\tau}$ (reg. increase) $\Longrightarrow u_{h\tau} \in H^1_{0,}(Q)$
- continuous & piecewise affine (Radau) reconstruction from u_h^n

Crank–Nicolson method for the heat equation

Definition (Crank-Nicolson)

Set $u_h^0 := 0$. Find u_h^n , $1 \le n \le N$, such that

$$\Big(\frac{u_h^n-u_h^{n-1}}{\tau^n},v_h\Big)_{\Omega}+\Big(\nabla\frac{u_h^n+u_h^{n-1}}{2},\nabla v_h\Big)_{\Omega}=\Big(\frac{f(\cdot,t^n)+f(\cdot,t^{n-1})}{2},v_h\Big)_{\Omega}\qquad\forall v_h\in V_h.$$

- $u_{h\tau}|_{I_n} := u_h^n \in X$: OK to define the heat residual $\mathcal{R}(u_{h\tau})$
- but we will need $\partial_t u_{h\tau}$ (reg. increase) $\Longrightarrow u_{h\tau} \in H^1_{0,}(Q)$
- continuous & piecewise affine (Radau) reconstruction from u_h^n
- equivalently

$$(\partial_t u_{h\tau}, v_h)_{\Omega \times I_n} + (\nabla u_{h\tau}, \nabla v_h)_{\Omega \times I_n} = (f, v_h)_{\Omega \times I_n} \quad \forall v_h \in V_h$$

 $U_{h\tau}$

Setting Dual norm localization Schemes & reconstructions Reliability & efficiency Numerics C

Crank–Nicolson method for the heat equation

Definition (Crank-Nicolson)

Set $u_h^0 := 0$. Find u_h^n , $1 \le n \le N$, such that

$$\left(\frac{u_h^n-u_h^{n-1}}{\tau^n},v_h\right)_{\Omega}+\left(\nabla\frac{u_h^n+u_h^{n-1}}{2},\nabla v_h\right)_{\Omega}=\left(\frac{f(\cdot,t^n)+f(\cdot,t^{n-1})}{2},v_h\right)_{\Omega}\qquad\forall v_h\in V_h.$$

- $u_{h\tau}|_{I_n} := u_h^n \in X$: OK to define the heat residual $\mathcal{R}(u_{h\tau})$
- but we will need $\partial_t u_{h\tau}$ (reg. increase) $\Longrightarrow u_{h\tau} \in H^1_{0}(Q)$
- continuous & piecewise affine (Radau) reconstruction from u_h^n
- equivalently

$$(\partial_t u_{h\tau}, v_h)_{\Omega \times I_n} + (\nabla u_{h\tau}, \nabla v_h)_{\Omega \times I_n} = (f, v_h)_{\Omega \times I_n} \quad \forall v_h \in V_h$$

 $u_{h\tau}$

Orthogonality condition satisfied

$$(f,\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} - (\partial_t u_{h\tau},\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} - (\nabla u_{h\tau},\nabla\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} = 0 \quad \forall 1 \leq n \leq N, \ \forall \mathbf{a} \in \mathcal{V}_h.$$

Definition (Leapfrog)

Set $u_h^0 := 0$ and $\dot{u}_h^0 := 0$. Find u_h^n , $0 \le n \le N-1$, such that

$$\left(\frac{u_h^{n+1}-2u_h^n+u_h^{n-1}}{\tau^2},v_h\right)_{\Omega}+\left(\nabla u_h^n,\nabla v_h\right)_{\Omega}=\left(f(\cdot,t^n),v_h\right)_{\Omega}\qquad\forall v_h\in V_h.$$

Definition (Leapfrog)

Set $u_h^0 := 0$ and $\dot{u}_h^0 := 0$. Find u_h^n , $0 \le n \le N - 1$, such that

$$\left(\frac{u_h^{n+1}-2u_h^n+u_h^{n-1}}{\tau^2},v_h\right)_{\Omega}+\left(\nabla u_h^n,\nabla v_h\right)_{\Omega}=\left(f(\cdot,t^n),v_h\right)_{\Omega}\qquad\forall v_h\in V_h.$$

• $u_{h\tau} \in H_0^1(Q)$ would be OK to define the wave residual $\mathcal{R}(u_{h\tau})$

Definition (Leapfrog)

Set $u_h^0 := 0$ and $\dot{u}_h^0 := 0$. Find u_h^n , $0 \le n \le N - 1$, such that

$$\left(\frac{u_h^{n+1}-2u_h^n+u_h^{n-1}}{\tau^2},v_h\right)_{\Omega}+\left(\nabla u_h^n,\nabla v_h\right)_{\Omega}=\left(f(\cdot,t^n),v_h\right)_{\Omega}\qquad\forall v_h\in V_h.$$

- $u_{h\tau} \in H^1_{0,}(Q)$ would be OK to define the wave residual $\mathcal{R}(u_{h\tau})$
- but we will need $\partial_{tt}u_{h\tau}$ (regularity increase)

Definition (Leapfrog)

Set $u_h^0 := 0$ and $\dot{u}_h^0 := 0$. Find u_h^n , $0 \le n \le N - 1$, such that

$$\left(\frac{u_h^{n+1}-2u_h^n+u_h^{n-1}}{\tau^2},v_h\right)_{\Omega}+\left(\nabla u_h^n,\nabla v_h\right)_{\Omega}=\left(f(\cdot,t^n),v_h\right)_{\Omega}\qquad\forall v_h\in V_h.$$

- $u_{h\tau} \in H_0^1(Q)$ would be OK to define the wave residual $\mathcal{R}(u_{h\tau})$
- but we will need $\partial_{tt}u_{h\tau}$ (regularity increase) $\Longrightarrow u_{h\tau} \in H^2(0,T;L^2(\Omega))$

Definition (Leapfrog)

Set $u_h^0 := 0$ and $\dot{u}_h^0 := 0$. Find u_h^n , $0 \le n \le N-1$, such that

$$\left(\frac{u_h^{n+1}-2u_h^n+u_h^{n-1}}{\tau^2},v_h\right)_{\Omega}+\left(\nabla u_h^n,\nabla v_h\right)_{\Omega}=\left(f(\cdot,t^n),v_h\right)_{\Omega}\qquad\forall v_h\in V_h.$$

- $u_{h\tau} \in H_0^1(Q)$ would be OK to define the wave residual $\mathcal{R}(u_{h\tau})$
- but we will need $\partial_t u_{h\tau}$ (regularity increase) $\Longrightarrow u_{h\tau} \in H^2(0, T; L^2(\Omega))$
- suitable C^1 and piecewise 3rd order reconstruction from u_h^n

Setting Dual norm localization Schemes & reconstructions Reliability & efficiency Numerics C

Leapfrog method for the wave equation

Definition (Leapfrog)

Set $u_h^0 := 0$ and $\dot{u}_h^0 := 0$. Find u_h^n , $0 \le n \le N - 1$, such that

$$\left(\frac{u_h^{n+1}-2u_h^n+u_h^{n-1}}{\tau^2},v_h\right)_{\Omega}+\left(\nabla u_h^n,\nabla v_h\right)_{\Omega}=\left(f(\cdot,t^n),v_h\right)_{\Omega}\qquad\forall v_h\in V_h.$$

- $u_{h\tau} \in H_0^1(Q)$ would be OK to define the wave residual $\mathcal{R}(u_{h\tau})$
- but we will need $\partial_t u_{h\tau}$ (regularity increase) $\Longrightarrow u_{h\tau} \in H^2(0, T; L^2(\Omega))$
- suitable C^1 and piecewise 3rd order reconstruction from u_h^n

Orthogonality condition satisfied

$$(f, \psi^{\mathbf{a}})_{\omega_{\mathbf{a}} \times I_n} - (\partial_{tt} u_{h\tau}, \psi^{\mathbf{a}})_{\omega_{\mathbf{a}} \times I_n} - (\nabla u_{h\tau}, \nabla \psi^{\mathbf{a}})_{\omega_{\mathbf{a}} \times I_n} = 0 \quad \forall 1 \leq n \leq N, \ \forall \mathbf{a} \in \mathcal{V}_h.$$

Outline

- Reliability and local space-time efficiency
 - Reliability & local space-time efficiency
 - Units consistency, space-time anisotropy, time-evolving meshes
- - Heat equation and extensions
 - Wave equation

- Reliability and local space-time efficiency
 - Reliability & local space-time efficiency
 - Units consistency, space-time anisotropy, time-evolving meshes
- - Heat equation and extensions
 - Wave equation

Theorem (A posteriori error estimates)

Let $u_{h\tau} \in H_0^1(Q)$ (heat) or $u_{h\tau} \in H_0^1(Q) \cap H^2(0, T; L^2(\Omega))$ (wave) be piecewise polynomials (order p in space, order q in time).

Reliable and locally space-time efficient a posteriori error estimates

Theorem (A posteriori error estimates)

Let $u_{h\tau} \in H_0^1(Q)$ (heat) or $u_{h\tau} \in H_0^1(Q) \cap H^2(0,T;L^2(\Omega))$ (wave) be piecewise polynomials (order p in space, order q in time). Let $\mathcal{R}(u_{h\tau}) \in (H^1_{\mathcal{T}}(Q))'$ be the heat or the wave residual.

Theorem (A posteriori error estimates)

Let $u_{h\tau} \in H_0^1(Q)$ (heat) or $u_{h\tau} \in H_0^1(Q) \cap H^2(0, T; L^2(\Omega))$ (wave) be piecewise polynomials (order p in space, order q in time). Let $\mathcal{R}(u_{h\tau}) \in (H^1_{\tau}(Q))'$ be the heat or the wave residual. Let the following orthogonality property hold:

$$(f,\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} - (\partial_{\mathbf{t}^{\mathbf{t}}} u_{h\tau},\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} - (\nabla u_{h\tau},\nabla\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} = 0 \quad \forall 1 \leq n \leq N, \, \forall \mathbf{a} \in \mathcal{V}_h.$$

Reliable and locally space-time efficient a posteriori error estimates

Theorem (A posteriori error estimates)

Let $u_{h\tau} \in H_0^1(Q)$ (heat) or $u_{h\tau} \in H_0^1(Q) \cap H^2(0,T;L^2(\Omega))$ (wave) be piecewise polynomials (order p in space, order q in time). Let $\mathcal{R}(u_{h\tau}) \in (H^1_{\tau}(Q))'$ be the heat or the wave residual. Let the following orthogonality property hold:

$$(f,\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} - (\partial_{\mathbf{t}^{\mathbf{t}}} u_{h\tau},\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} - (\nabla u_{h\tau},\nabla\psi^{\mathbf{a}})_{\omega_{\mathbf{a}}\times I_n} = 0 \quad \forall 1 \leq n \leq N, \ \forall \mathbf{a} \in \mathcal{V}_h.$$

Then

$$\|\mathcal{R}(u_{h\tau})\|_{(H^{1}_{,T}(Q))'}^{2} \lesssim \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}^{n}} \eta_{K}^{n}(u_{h\tau})^{2} \lesssim \|\mathcal{R}(u_{h\tau})\|_{(H^{1}_{,T}(Q))'}^{2}$$
$$\eta_{K}^{n}(u_{h\tau}) \lesssim \|\mathcal{R}(u_{h\tau})\|_{(H^{1}_{h}(\omega_{K} \times I_{h}))'}$$

where the hidden constants only depend on the space dimension d, shape-regularity of the space and time meshes, and p and q.

Reliable and locally space-time efficient a posteriori error estimates

Theorem (A posteriori error estimates)

Let $u_{h\tau} \in H_0^1(Q)$ (heat) or $u_{h\tau} \in H_0^1(Q) \cap H^2(0, T; L^2(\Omega))$ (wave) be piecewise polynomials (order p in space, order q in time). Let $\mathcal{R}(u_{h\tau}) \in (H^1_{\mathcal{T}}(Q))'$ be the heat or the wave residual. Let the following orthogonality property hold:

$$(f,\psi^{\boldsymbol{a}})_{\omega_{\boldsymbol{a}}\times I_n} - (\partial_{\boldsymbol{t}\boldsymbol{t}}u_{h\tau},\psi^{\boldsymbol{a}})_{\omega_{\boldsymbol{a}}\times I_n} - (\nabla u_{h\tau},\nabla\psi^{\boldsymbol{a}})_{\omega_{\boldsymbol{a}}\times I_n} = 0 \quad \forall 1\leq n\leq N, \, \forall \boldsymbol{a}\in\mathcal{V}_h.$$

Then

$$\begin{split} \|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'}^2 \lesssim \sum_{n=1}^N \sum_{K \in \mathcal{T}_h^n} \eta_K^n(u_{h\tau})^2 \lesssim \|\mathcal{R}(u_{h\tau})\|_{(H^1_{,T}(Q))'}^2 \leq \|\frac{\partial_t(u - u_{h\tau})}{\partial_t(u - u_{h\tau})}\|_Q^2 + \|\nabla(u - u_{h\tau})\|_Q^2 \\ \eta_K^n(u_{h\tau}) \lesssim \|\mathcal{R}(u_{h\tau})\|_{(H^1_0(\omega_K \times I_n))'}^2 \leq \left(\|\frac{\partial_t(u - u_{h\tau})}{\partial_t(u - u_{h\tau})}\|_{\omega_K \times I_n}^2 + \|\nabla(u - u_{h\tau})\|_{\omega_K \times I_n}^2\right)^{1/2} \end{split}$$

where the hidden constants only depend on the space dimension d, shape-regularity of the space and time meshes, and p and q.

Residual-based estimators

$$\eta_{K}^{n}(u_{h\tau}) := \underbrace{h_{K\times I_{n}} \|f - \partial_{tt} u_{h\tau} + \Delta u_{h\tau}\|_{K\times I_{n}}}_{\text{volume residual}} + \left\{ \sum_{F \in \mathcal{F}_{K}^{\text{int}}} \underbrace{h_{F\times I_{n}} \|\llbracket \nabla u_{h\tau} \rrbracket \cdot \pmb{n}_{F} \|_{F\times I_{n}}^{2}}_{\text{face normal component jump}} \right\}^{1/2}$$

Estimators

Residual-based estimators

$$\eta_K^n(u_{h au}) := \underbrace{h_{K imes I_n} \|f - \partial_{tt} u_{h au} + \Delta u_{h au}\|_{K imes I_n}}_{ ext{volume residual}} + \left\{ \sum_{F \in \mathcal{F}_K^{int}} \underbrace{h_{F imes I_n} \|\llbracket
abla u_{h au}
rbrack \cdot m{n}_F \|_{F imes I_n}^2}_{ ext{face normal component jump}}
ight\}^{1/2}$$

Equilibrated fluxes estimators (reliability constant becomes 1)

$$\sigma_{h\tau} \in L^2(0,T; H(\operatorname{div},\Omega)) \text{ with } (f - \partial_{tt} u_{h\tau} - \nabla \cdot \sigma_{h\tau}, 1)_{K \times I_n} \quad \forall 1 \leq n \leq N, \ \forall K \in \mathcal{T}_h,$$

Residual-based estimators

$$\eta_K^n(u_{h au}) := \underbrace{h_{K imes I_n} \|f - \partial_{tt} u_{h au} + \Delta u_{h au}\|_{K imes I_n}}_{ ext{volume residual}} + \left\{ \sum_{F \in \mathcal{F}_K^{int}} \underbrace{h_{F imes I_n} \|\llbracket
abla u_{h au}
rbrack \cdot m{n}_F \|_{F imes I_n}^2}_{ ext{face normal component jump}}
ight\}^{1/2}$$

Equilibrated fluxes estimators (reliability constant becomes 1)

$$\sigma_{h\tau} \in \boldsymbol{L}^2(0,T;\boldsymbol{H}(\operatorname{div},\Omega)) \text{ with } (f-\partial_{tt}u_{h\tau}-\nabla\cdot\boldsymbol{\sigma}_{h\tau},1)_{K\times I_n} \quad \forall 1\leq n\leq N, \ \forall K\in\mathcal{T}_h,$$

$$\eta_K^n(u_{h\tau})^2:=\underbrace{\frac{h_{K\times I_n}^2}{\pi^2}\|f-\partial_{tt}u_{h\tau}-\nabla\cdot\boldsymbol{\sigma}_{h\tau}\|_{K\times I_n}^2}_{\text{equilibrium (time)}} + \underbrace{\|\nabla u_{h\tau}+\boldsymbol{\sigma}_{h\tau}\|_{K\times I_n}^2}_{\text{constitutive law (space)}}$$

Outline

- Reliability and local space-time efficiency
 - Reliability & local space-time efficiency
 - Units consistency, space-time anisotropy, time-evolving meshes
- - Heat equation and extensions
 - Wave equation

Inspection of the local efficiency proof (element residual)

- $V_{K,n} := (f \partial_{tt} u_{h\tau} + \Delta u_{h\tau})|_{K \times I_n}$
- space-time bubble $\psi_{K,n}$, product of the barycentric coordinates on K and of the barycentric coordinates on I_n
- norm equivalence in finite-dimensional spaces

$$(v_{K,n},v_{K,n})_{K\times I_n}\lesssim (v_{K,n},\psi_{K,n}v_{K,n})_{K\times I_n}$$

inverse inequality separately in space and in time:

$$h_{K} \|\nabla(\psi_{K,n} v_{K,n})\|_{K \times I_{n}} \lesssim \|\psi_{K,n} v_{K,n}\|_{K \times I_{n}} \tau^{n} \|\partial_{t}(\psi_{K,n} v_{K,n})\|_{K \times I_{n}} \lesssim \|\psi_{K,n} v_{K,n}\|_{K \times I_{n}}$$

- congruently, in $|v|_{H^1(\Omega)}^2 = ||\partial_t v||_{\Omega}^2 + ||\nabla v||_{\Omega}^2$, the physical units are different
- ullet \Longrightarrow space-time weighted mesh-dependent norm imposed on the test spaces

$$|v|_{H^1(\mathcal{O})}^2 := \sum_{n=1}^N \sum_{K \in \mathcal{T}_n} \left\{ (\tau^n)^2 \|\partial_t v\|_{K \times I_n}^2 + h_K^2 \|\nabla v\|_{K \times I_n}^2 \right\}$$

Inspection of the local efficiency proof (element residual)

- $V_{K,n} := (f \partial_{tt} u_{h\tau} + \Delta u_{h\tau})|_{K \times I_n}$
- space-time bubble $\psi_{K,n}$, product of the barycentric coordinates on K and of the barycentric coordinates on I_n
- norm equivalence in finite-dimensional spaces:

$$v_{K,n}, v_{K,n})_{K \times I_n} \lesssim (v_{K,n}, \psi_{K,n} v_{K,n})_{K \times I_n}$$

inverse inequality separately in space and in time:

$$\frac{h_{K} \|\nabla(\psi_{K,n} v_{K,n})\|_{K \times I_{n}}}{\tau^{n} \|\partial_{t}(\psi_{K,n} v_{K,n})\|_{K \times I_{n}}} \lesssim \|\psi_{K,n} v_{K,n}\|_{K \times I_{n}}$$

- ullet congruently, in $\|v\|_{H^1(O)}^2 = \|\partial_t v\|_Q^2 + \|\nabla v\|_Q^2$, the physical units are different
- space-time weighted mesh-dependent norm imposed on the test space

$$|v|^2_{H^1(\mathcal{Q})} := \sum_{n=1}^N \sum_{K \in \mathcal{T}_n^n} \{ (au^n)^2 \| \partial_t v \|^2_{K imes I_n} + h_K^2 \|
abla v \|^2_{K imes I_n} \}$$

ullet \Longrightarrow units \checkmark , space-time anisotropy \checkmark , time-evolving meshes \checkmark

Inspection of the local efficiency proof (element residual)

- $V_{K,n} := (f \partial_{tt} u_{h\tau} + \Delta u_{h\tau})|_{K \times I_n}$
- space-time bubble $\psi_{K,n}$, product of the barycentric coordinates on K and of the barycentric coordinates on I_n
- norm equivalence in finite-dimensional spaces:

$$(v_{K,n}, v_{K,n})_{K\times I_n} \lesssim (v_{K,n}, \psi_{K,n}v_{K,n})_{K\times I_n}$$

• inverse inequality separately in space and in time:

$$\frac{h_K}{\|\nabla(\psi_{K,n}v_{K,n})\|_{K\times I_n}} \lesssim \|\psi_{K,n}v_{K,n}\|_{K\times I_n}
\tau^n \|\partial_t(\psi_{K,n}v_{K,n})\|_{K\times I_n} \lesssim \|\psi_{K,n}v_{K,n}\|_{K\times I_n}$$

- congruently, in $|v|_{H^1(Q)}^2 = \|\partial_t v\|_Q^2 + \|\nabla v\|_Q^2$, the physical units are different
- ullet space-time weighted mesh-dependent norm imposed on the test space

$$|v|_{H^1(Q)}^2 := \sum_{n=1}^N \sum_{K \in \mathcal{T}_k^n} \left\{ (\tau^n)^2 \|\partial_t v\|_{K \times I_n}^2 + h_K^2 \|\nabla v\|_{K \times I_n}^2 \right\}$$

ullet \Longrightarrow units \checkmark , space-time anisotropy \checkmark , time-evolving meshes \checkmark

Inspection of the local efficiency proof (element residual)

- $V_{K,n} := (f \partial_{tt} u_{h\tau} + \Delta u_{h\tau})|_{K \times I_n}$
- space-time bubble $\psi_{K,n}$, product of the barycentric coordinates on K and of the barycentric coordinates on I_n
- norm equivalence in finite-dimensional spaces:

$$(V_{K,n}, V_{K,n})_{K \times I_n} \lesssim (V_{K,n}, \psi_{K,n} V_{K,n})_{K \times I_n}$$

• inverse inequality separately in space and in time:

$$\frac{h_{K} \|\nabla(\psi_{K,n} \mathbf{v}_{K,n})\|_{K \times I_{n}}}{\tau^{n} \|\partial_{t}(\psi_{K,n} \mathbf{v}_{K,n})\|_{K \times I_{n}}} \lesssim \|\psi_{K,n} \mathbf{v}_{K,n}\|_{K \times I_{n}},$$

- congruently, in $|v|_{H^1(Q)}^2 = \|\partial_t v\|_Q^2 + \|\nabla v\|_Q^2$, the physical units are different
- ullet space-time weighted mesh-dependent norm imposed on the test space

$$|v|_{H^1(Q)}^2 := \sum_{n=1}^N \sum_{K \in \mathcal{T}_k^n} \left\{ (\tau^n)^2 \|\partial_t v\|_{K \times I_n}^2 + h_K^2 \|\nabla v\|_{K \times I_n}^2 \right\}$$

 ■ units ✓, space-time anisotropy ✓, time-evolving meshes ✓

Inspection of the local efficiency proof (element residual)

- $V_{K,n} := (f \partial_{tt} u_{h\tau} + \Delta u_{h\tau})|_{K \times I_n}$
- space-time bubble $\psi_{K,n}$, product of the barycentric coordinates on K and of the barycentric coordinates on I_n
- norm equivalence in finite-dimensional spaces:

$$(V_{K,n}, V_{K,n})_{K\times I_n} \lesssim (V_{K,n}, \psi_{K,n}V_{K,n})_{K\times I_n}$$

• inverse inequality separately in space and in time:

$$\frac{h_{K}}{\|\nabla(\psi_{K,n}v_{K,n})\|_{K\times I_{n}}} \lesssim \|\psi_{K,n}v_{K,n}\|_{K\times I_{n}},$$

$$\tau^{n}\|\partial_{t}(\psi_{K,n}v_{K,n})\|_{K\times I_{n}} \lesssim \|\psi_{K,n}v_{K,n}\|_{K\times I_{n}},$$

- ullet congruently, in $|v|_{H^1(Q)}^2 = \|\partial_t v\|_Q^2 + \|\nabla v\|_Q^2$, the physical units are different
- space-time weighted mesh-dependent norm imposed on the test space

$$|v|_{H^{1}(Q)}^{2} := \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}^{n}} \left\{ (\tau^{n})^{2} \|\partial_{t}v\|_{K \times I_{n}}^{2} + h_{K}^{2} \|\nabla v\|_{K \times I_{n}}^{2} \right\}$$

■ ⇒ units ✓, space-time anisotropy ✓, time-evolving meshes ✓

- \bullet $V_{K,n} := (f \partial_{tt} u_{h\tau} + \Delta u_{h\tau})|_{K \times I_n}$
- space-time bubble $\psi_{K,n}$, product of the barycentric coordinates on K and of the barycentric coordinates on I_n
- norm equivalence in finite-dimensional spaces:

$$(V_{K,n}, V_{K,n})_{K\times I_n} \lesssim (V_{K,n}, \psi_{K,n}V_{K,n})_{K\times I_n}$$

• inverse inequality separately in space and in time:

$$\frac{h_{K}}{|\nabla(\psi_{K,n}v_{K,n})|}_{K\times I_{n}} \lesssim \|\psi_{K,n}v_{K,n}\|_{K\times I_{n}},
\tau^{n} \|\partial_{t}(\psi_{K,n}v_{K,n})\|_{K\times I_{n}} \lesssim \|\psi_{K,n}v_{K,n}\|_{K\times I_{n}},$$

- congruently, in $|v|_{H^1(Q)}^2 = \|\partial_t v\|_Q^2 + \|\nabla v\|_Q^2$, the physical units are different
- space-time weighted mesh-dependent norm imposed on the test space

$$|v|_{H^{1}(Q)}^{2} := \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{n}^{n}} \left\{ (\tau^{n})^{2} \|\partial_{t}v\|_{K \times I_{n}}^{2} + h_{K}^{2} \|\nabla v\|_{K \times I_{n}}^{2} \right\}$$

■ units ✓, space-time anisotropy ✓, time-evolving meshes ✓

Inspection of the local efficiency proof (element residual)

- $V_{K,n} := (f \partial_{tt} u_{h\tau} + \Delta u_{h\tau})|_{K \times I_n}$
- space-time bubble $\psi_{K,n}$, product of the barycentric coordinates on K and of the barycentric coordinates on I_n
- norm equivalence in finite-dimensional spaces:

$$(v_{K,n}, v_{K,n})_{K\times I_n} \lesssim (v_{K,n}, \psi_{K,n}v_{K,n})_{K\times I_n}$$

• inverse inequality separately in space and in time:

$$\frac{h_{K}}{\|\nabla(\psi_{K,n}v_{K,n})\|_{K\times I_{n}}} \lesssim \|\psi_{K,n}v_{K,n}\|_{K\times I_{n}},$$

$$\tau^{n}\|\partial_{t}(\psi_{K,n}v_{K,n})\|_{K\times I_{n}} \lesssim \|\psi_{K,n}v_{K,n}\|_{K\times I_{n}},$$

- ullet congruently, in $|v|_{H^1(Q)}^2 = \|\partial_t v\|_Q^2 + \|\nabla v\|_Q^2$, the physical units are different
- space-time weighted mesh-dependent norm imposed on the test space

$$|v|_{H^{1}(Q)}^{2} := \sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}^{n}} \left\{ (\tau^{n})^{2} \|\partial_{t}v\|_{K \times I_{n}}^{2} + h_{K}^{2} \|\nabla v\|_{K \times I_{n}}^{2} \right\}$$

■ units ✓, space-time anisotropy ✓, time-evolving meshes ✓

Setting Dual norm localization Schemes & reconstructions Reliability & efficiency Numerics C Heat Wave

Outline

- Introduction
- 2 Equations, spaces, norms, weak formulations, residuals, and inf-sup conditions
- 3 Localization of the intrinsic dual residual norm
- Schemes and temporal reconstructions with the orthogonality property
- 6 Reliability and local space-time efficiency
 - Reliability & local space-time efficiency
 - Units consistency, space-time anisotropy, time-evolving meshes
- Numerical experiments
 - Heat equation and extensions
 - Wave equation
- Conclusions

Setting Dual norm localization Schemes & reconstructions Reliability & efficiency Numerics C Heat Wa

Outline

- Introduction
- 2 Equations, spaces, norms, weak formulations, residuals, and inf-sup conditions
- Localization of the intrinsic dual residual norm
- 4 Schemes and temporal reconstructions with the orthogonality property
- Seliability and local space-time efficiency
 - Reliability & local space-time efficiency
 - Units consistency, space-time anisotropy, time-evolving meshes
- 6 Numerical experiments
 - Heat equation and extensions
 - Wave equation
- Conclusions

Setting Dual norm localization Schemes & reconstructions Reliability & efficiency Numerics C Heat Wave

Setting

Setting

- incomplete interior penalty discontinuous Galerkin space discretization with polynomial degrees p = 1, 2, 3
- Crank–Nicolson in time
- space and time meshes both uniformly refined: m = 1, 2, 3

Effectivity indices

dual norm

$$i_{\mathsf{e}} := \frac{\eta}{\|\mathcal{R}(u_{h\tau})\|_{(H^1_{\cdot T}(\mathcal{Q}))'} + \mathsf{jumps}} \geq 1$$

• (weighted) L² norm:

$$i_{\mathsf{e},H^1} := \frac{\eta}{\left(au^{-2} \|u - u_{h au}\|_Q^2 + h^{-2} \|
abla (u - u_{h au})\|_Q^2
ight)^{1/2} + \mathsf{jumps}} (< 1 \; \mathsf{possible})$$

Setting Dual norm localization Schemes & reconstructions Reliability & efficiency Numerics C Heat Wave

Setting

Setting

- incomplete interior penalty discontinuous Galerkin space discretization with polynomial degrees p = 1, 2, 3
- Crank-Nicolson in time
- space and time meshes both uniformly refined: m = 1, 2, 3

Effectivity indices

dual norm

$$i_{\mathsf{e}} := \frac{\eta}{\|\mathcal{R}(u_{h\tau})\|_{(H^1_{\tau}(Q))'} + \mathsf{jumps}} \geq 1$$

• (weighted) L² norm:

$$i_{\mathrm{e},H^1} := rac{\eta}{\left(au^{-2}\|u-u_{h au}\|_Q^2 + h^{-2}\|
abla(u-u_{h au})\|_Q^2
ight)^{1/2} + \mathrm{jumps}} (< 1 \; \mathrm{possible})$$

Viscous Burgers equation

Viscous Burgers equation

$$\partial_t u - \nabla \cdot (\varepsilon \nabla u - \phi(u)) = 0$$
 in Q

- $\varepsilon = 10^{-2} \text{ or } \varepsilon = 10^{-4}$
- $\phi(u) = (u^2/2, u^2/2)^T$
- $\Omega = (-1,1) \times (-1,1)$
- T = 1

Exact solution

$$u(x, y, t) = \left(1 + \exp\left(\frac{x + y + 1 - t}{2\varepsilon}\right)\right)^{-1}$$

Viscous Burgers equation

Viscous Burgers equation

$$\partial_t u - \nabla \cdot (\varepsilon \nabla u - \phi(u)) = 0$$
 in Q

- $\varepsilon = 10^{-2} \text{ or } \varepsilon = 10^{-4}$
- $\phi(u) = (u^2/2, u^2/2)^T$
- $\Omega = (-1,1) \times (-1,1)$
- T = 1

Exact solution

•

$$u(x, y, t) = \left(1 + \exp\left(\frac{x + y + 1 - t}{2\varepsilon}\right)\right)^{-1}$$

Exact and approximate solutions, $\varepsilon = 10^{-2}$

Effectivity indices for varying ε and (h_0, τ_0)

-	ε		10 ⁻²		10^{-2}		10^{-2}		10^{-4}		
	(h_0, τ_0)		(1/6, 0.05)		(1/6, 0.2)		(1/6, 0.0125)		(1/6, 0.05)		
	m	p	i _e	i_{e,H^1}	i _e	i_{e,H^1}	i _e	i_{e,H^1}	i _e	i_{e,H^1}	
	1	1	1.85	1.15	2.21	1.28	3.00	0.81	1.45	0.71	
	2	1	1.71	1.35	2.38	1.12	2.45	1.03	1.68	1.06	
	3	1	1.25	1.36	2.15	0.90	1.33	1.03	1.82	1.34	
-	1	2	2.15	1.01	3.13	1.71	3.69	0.67	1.38	0.62	
	2	2	1.65	0.94	2.74	1.58	2.16	0.49	1.41	0.62	
	3	2	1.53	1.08	2.38	1.52	1.83	0.58	1.54	0.69	
-	1	3	1.71	0.59	2.74	1.47	3.00	0.34	1.26	0.31	
	2	3	1.75	0.73	2.63	1.67	3.15	0.46	1.13	0.21	
	3	3	2.54	0.97	2.77	1.73	_	0.69	1.03	0.15	

V. Dolejší, A. Ern, M. Vohralík, SIAM Journal on Numerical Analysis (2013)

Heat Wave

Degenerate advection-diffusion equation

Degenerate advection-diffusion problem (Kačur 2001)

$$\partial_t u - \nabla \cdot (2\varepsilon u \nabla u - \phi(u)) = 0$$
 in Q

- $\varepsilon = 10^{-2}$
- $\phi(u) = 0.5(u^2, 0)^{\mathsf{T}}$
- $\Omega = (0,1) \times (0,1)$
- *T* = 1

Exact solution

$$u(x, y, t) = \begin{cases} 1 - \exp\left(\frac{v(x - vt - x_0)}{2\varepsilon}\right) & \text{for } x \le vt + x_0, \\ 0 & \text{for } x > vt + x_0 \end{cases}$$

• $x_0 = 1/4$ is the initial position of the front

Degenerate advection-diffusion equation

Degenerate advection-diffusion problem (Kačur 2001)

$$\partial_t u - \nabla \cdot (2\varepsilon u \nabla u - \phi(u)) = 0$$
 in Q

- $\varepsilon = 10^{-2}$
- $\phi(u) = 0.5(u^2, 0)^{\mathsf{T}}$
- $\Omega = (0,1) \times (0,1)$
- *T* = 1

Exact solution

•

$$u(x, y, t) = \begin{cases} 1 - \exp\left(\frac{v(x - vt - x_0)}{2\varepsilon}\right) & \text{for } x \le vt + x_0, \\ 0 & \text{for } x > vt + x_0 \end{cases}$$

• $x_0 = 1/4$ is the initial position of the front

Exact and approximate solutions

Errors, estimators, and effectivity indices, $(h_0, \tau_0) = (1/8, 0.05)$

m	p	$\ \mathcal{R}(u_{h\tau})\ _{(H^1_{,T}(Q))'}$	η_{F}	η_{R}	$\eta_{\sf NC}$	η IC	$\eta_{\sf qd}$	η	i _e	<i>i</i> _{e,<i>H</i>¹}
1	1	9.91E-03	1.00E-02	6.02E-03	2.77E-02	2.31E-02	2.17E-03	6.62E-02	1.76	0.97
2	1	7.39E-03	7.71E-03	5.68E-03	1.62E-02	7.71E-03	1.23E-03	3.66E-02	1.55	1.02
		(0.42)	(0.37)	(0.08)	(0.78)	(1.59)	(0.82)	(0.86)		
3	1	4.58E-03	4.52E-03	4.95E-03	8.33E-03	1.86E-03	5.22E-04	1.89E-02	1.47	1.16
		(0.69)	(0.77)	(0.20)	(0.96)	(2.05)	(1.23)	(0.95)		
1	2	2.62E-03	3.30E-03	5.40E-03	9.33E-03	6.27E-03	6.74E-04	2.35E-02	1.97	0.73
2	2	1.11E-03	1.43E-03	1.93E-03	4.22E-03	1.09E-03	2.67E-04	8.34E-03	1.56	0.62
		(1.23)	(1.21)	(1.48)	(1.14)	(2.52)	(1.34)	(1.50)		
3	2	4.26E-04	5.63E-04	6.13E-04	1.84E-03	1.51E-04	1.00E-04	3.06E-03	1.35	0.57
		(1.38)	(1.34)	(1.65)	(1.20)	(2.85)	(1.42)	(1.45)		
1	3	6.48E-04	8.83E-04	1.03E-03	3.57E-03	1.19E-03	2.31E-04	6.47E-03	1.53	0.36
2	3	1.94E-04	2.63E-04	1.45E-04	1.21E-03	1.07E-04	6.39E-05	1.69E-03	1.21	0.25
		(1.74)	(1.74)	(2.84)	(1.56)	(3.48)	(1.85)	(1.93)		
3	3	4.42E-05	7.58E-05	2.58E-05	4.04E-04	7.47E-06	1.67E-05	5.07E-04	1.13	0.21
		(2.13)	(1.80)	(2.49)	(1.58)	(3.84)	(1.94)	(1.74)		

Porous medium equation

Porous medium equation

$$\partial_t u - \nabla \cdot (\mathbf{K}(u)\nabla u) = 0$$
 in Q

- $K(u) = \kappa |u|^{\kappa 1} I$,
- $\kappa = 2 \text{ or } \kappa = 4$
- $\Omega = (-6,6) \times (-6,6)$
- \bullet T=1

Barenblatt solution

$$u(x, y, t) = \left\{ \frac{1}{t+1} \left[1 - \frac{\kappa - 1}{4\kappa^2} \frac{x^2 + y^2}{(t+1)^{1/\kappa}} \right]_+^{\frac{\kappa}{\kappa - 1}} \right\}^{\frac{1}{\kappa}}$$

Porous medium equation

Porous medium equation

$$\partial_t u - \nabla \cdot (\mathbf{K}(u)\nabla u) = 0$$
 in Q

- $K(u) = \kappa |u|^{\kappa 1}I$,
- $\kappa = 2 \text{ or } \kappa = 4$
- $\Omega = (-6,6) \times (-6,6)$
- \bullet T=1

Barenblatt solution

•

$$u(x, y, t) = \left\{ \frac{1}{t+1} \left[1 - \frac{\kappa - 1}{4\kappa^2} \frac{x^2 + y^2}{(t+1)^{1/\kappa}} \right]_+^{\frac{\kappa}{\kappa - 1}} \right\}^{\frac{1}{\kappa}}$$

Exact and approximate solutions, $\kappa = 4$

Errors, estimators, and effectivity indices, $(h_0, \tau_0) = (0.5, 0.02)$

$\kappa=2$												$\kappa = 4$	
m	р	$\ \mathcal{R}(u_{h\tau})\ _{(H^1_{\cdot,T}(Q))'}$	η_{F}	η_{R}	$\eta_{\sf NC}$	η_{IC}	$\eta_{\sf qd}$	η	i _e	i_{e,H^1}	i _e	i_{e,H^1}	
1	1	7.90E-03	5.90E-03	1.32E-02	9.10E-03	3.23E-02	7.08E-05	5.88E-02	3.46	0.92	4.68	0.98	
2	1	8.36E-03	4.64E-03	1.71E-02	8.46E-03	1.11E-02	3.99E-05	4.03E-02	2.40	1.46	3.72	1.62	
		(80.0-)	(0.35)	(-0.38)	(0.10)	(1.54)	(0.83)	(0.54)					
3	1	8.91E-03	4.38E-03	2.18E-02	9.56E-03	3.44E-03	1.83E-05	3.87E-02	2.09	2.49	3.38	2.68	
		(-0.09)	(0.08)	(-0.35)	(-0.18)	(1.69)	(1.13)	(0.06)					
1	2	1.09E-03	1.06E-02	1.06E-01	3.12E-02	1.35E-02	1.74E-04	1.61E-01	4.99	3.22	5.13	3.18	
2	2	4.02E-04	8.04E-03	8.12E-02	2.37E-02	5.16E-03	6.40E-05	1.18E-01	4.90	3.89	5.05	3.84	
		(1.43)	(0.40)	(0.39)	(0.40)	(1.39)	(1.45)	(0.45)					
3	2	1.28E-04	5.22E-03	5.33E-02	1.55E-02	1.69E-03	2.23E-05	7.57E-02	4.84	4.26	4.97	4.30	
		(1.65)	(0.62)	(0.61)	(0.61)	(1.61)	(1.52)	(0.64)					
1	3	6.53E-04	2.26E-02	3.27E-01	7.58E-02	8.39E-03	1.36E-04	4.33E-01	5.67	5.01	5.67	4.88	
2	3	1.78E-04	9.26E-03	1.38E-01	3.13E-02	3.14E-03	3.51E-05	1.82E-01	5.76	5.17	5.78	5.03	
		(1.87)	(1.29)	(1.24)	(1.27)	(1.42)	(1.95)	(1.25)					
3	3	3.83E-05	3.41E-03	5.08E-02	1.15E-02	1.14E-03	8.89E-06	6.68E-02	5.80	5.21	5.85	5.10	
		(2.22)	(1.44)	(1.44)	(1.45)	(1.46)	(1.98)	(1.44)					

Exact and approximate error, $\kappa = 4$, t = T, p = 2, m = 2

Outline

- Introduction
- Equations, spaces, norms, weak formulations, residuals, and inf-sup conditions
- Localization of the intrinsic dual residual norm
- 4 Schemes and temporal reconstructions with the orthogonality property
- Seliability and local space-time efficiency
 - Reliability & local space-time efficiency
 - Units consistency, space-time anisotropy, time-evolving meshes
- 6 Numerical experiments
 - Heat equation and extensions
 - Wave equation
- Conclusions

Data and solution

$$\Omega = (0,1) \times (0,2)$$

$$f_{T}(t) = -\sin(4\pi(t-1)) \times e^{-\left(\frac{t-1}{0.1}\right)^{2}}$$

$$f_{X}(x,y) = \exp\left(-\frac{(x-0.5)^{2} + (y-1.5)^{2}}{0.1^{2}}\right)$$

$$0.75$$

$$0.00$$

$$0.25$$

$$0.00$$

$$0.25$$

$$0.00$$

$$0.25$$

$$0.00$$

$$0.25$$

$$0.00$$

$$0.25$$

$$0.00$$

$$0.75$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.50$$

$$0.$$

Remarks:

 cumulated local errors. for $K \in \mathcal{T}_h$ and 1 < n < N:

$$\left\{ \sum_{i=0}^{n} (\eta_{K}^{i}(u_{h\tau}))^{2} \right\}^{1/2}$$

 local H¹ norms in place of the dual norm:

$$||\|\mathcal{R}(u_{h\tau})\|_{(H_0^1(\omega_K\times I_n))'}\leq |v|_{H^1(\omega_K\times I_n)}^2$$

quadrature err. ignored

N. Hugot, A. Imperiale, M. Vohralík, to be submitted

Convergence rates and effectivity indices

N. Hugot, A. Imperiale, M. Vohralík, to be submitted (2025).

Outline

- Introduction
- 2 Equations, spaces, norms, weak formulations, residuals, and inf-sup conditions
- 3 Localization of the intrinsic dual residual norm
- Schemes and temporal reconstructions with the orthogonality property
- 6 Reliability and local space-time efficiency
 - Reliability & local space-time efficiency
 - Units consistency, space-time anisotropy, time-evolving meshes
- Numerical experiments
 - Heat equation and extensions
 - Wave equation
- Conclusions

Conclusions

Take-away messages

- inexpensive (explicit) estimators of the global error (× estimates of local quantities of interest for a price of a solution of a backward problem)
- same methodology for both parabolic & hyperbolic problems
- localization of global space-time norms with an orthogonality property
- covers implicit & explicit time-stepping as well as time-evolving meshes

Conclusions

Take-away messages

- inexpensive (explicit) estimators of the global error (× estimates of local quantities of interest for a price of a solution of a backward problem)
- same methodology for both parabolic & hyperbolic problems
- localization of global space-time norms with an orthogonality property
- covers implicit & explicit time-stepping as well as time-evolving meshes

Outlook

- local space-time efficiency ⇒ use local-space-time mesh refinement?
- convergence, optimality?

Conclusions

Take-away messages

- inexpensive (explicit) estimators of the global error (× estimates of local quantities of interest for a price of a solution of a backward problem)
- same methodology for both parabolic & hyperbolic problems
- localization of global space-time norms with an orthogonality property
- covers implicit & explicit time-stepping as well as time-evolving meshes

Outlook

- local space-time efficiency ⇒ use local-space-time mesh refinement?
- convergence, optimality?

References

DOLEJŠÍ V., ERN A., VOHRALÍK M. A framework for robust a posteriori error control in unsteady nonlinear advection-diffusion problems, *SIAM J. Numer. Anal.* **51** (2013), 773–793.

HUGOT N., IMPERIALE A., VOHRALÍK M. Reliable and locally space-time efficient a posteriori estimates for the transient acoustic wave equation. To be submitted, 2025.

Conclusions

Take-away messages

- inexpensive (explicit) estimators of the global error (× estimates of local quantities of interest for a price of a solution of a backward problem)
- same methodology for both parabolic & hyperbolic problems
- localization of global space-time norms with an orthogonality property
- covers implicit & explicit time-stepping as well as time-evolving meshes

Outlook

- local space-time efficiency ⇒ use local-space-time mesh refinement?
- convergence, optimality?

References

Thank you for your attention!

