Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors

Eric Cancès, Geneviève Dusson, Yvon Maday, Benjamin Stamm, <u>Martin Vohralík</u>

INRIA Paris

Concepción, January 12, 2016

Outline

Introduction

- Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 1 / 37

Energy minimization ($\Omega \subset \mathbb{R}^d$, d = 2, 3, polygon/polyhedron) Find $u_1 \in V := H_0^1(\Omega)$ such that $(u_1, 1) > 0$ and

$$u_1 := \arg \inf_{v \in V, \, \|v\|=1} \left\{ rac{1}{2} \|\nabla v\|^2
ight\}.$$

Laplace eigenvalue problem Find eigenvector & eigenvalue pair (u_1, λ_1) such that

$$\begin{aligned} -\Delta u_1 &= \lambda_1 u_1 & \text{ in } \Omega, \\ u_1 &= 0 & \text{ on } \partial \Omega. \end{aligned}$$

Full problem, weak formulation Find $(u_k, \lambda_k) \in V \times \mathbb{R}^+$, $k \ge 1$, with $||u_k|| = 1$, such that

 $(\nabla u_k, \nabla v) = \lambda_k(u_k, v) \qquad \forall v \in V \Rightarrow \|\nabla u_k\|^2 = \lambda_k.$

• $0 < \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_k \to \infty$ • $u_k, k \geq 1$, form an orthonormal basis of $L^2(\mathcal{U})$ measurements

Energy minimization ($\Omega \subset \mathbb{R}^d$, d = 2, 3, polygon/polyhedron) Find $u_1 \in V := H_0^1(\Omega)$ such that $(u_1, 1) > 0$ and

$$u_1 := \arg \inf_{v \in V, \|v\|=1} \left\{ rac{1}{2} \|\nabla v\|^2
ight\}$$

Laplace eigenvalue problem

Find eigenvector & eigenvalue pair (u_1, λ_1) such that

$$\begin{aligned} -\Delta u_1 &= \lambda_1 u_1 & \text{ in } \Omega, \\ u_1 &= 0 & \text{ on } \partial \Omega. \end{aligned}$$

Full problem, weak formulation Find $(u_k, \lambda_k) \in V \times \mathbb{R}^+$, $k \ge 1$, with $||u_k|| = 1$, such that

 $(\nabla u_k, \nabla v) = \lambda_k(u_k, v) \qquad \forall v \in V \Rightarrow \|\nabla u_k\|^2 = \lambda_k.$

• $0 < \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_k \to \infty$ • $u_k, k \geq 1$, form an orthonormal basis of $L^2(\mathbb{Z})$, interesting mathematical mathem

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 2 / 37

Energy minimization ($\Omega \subset \mathbb{R}^d$, d = 2, 3, polygon/polyhedron) Find $u_1 \in V := H_0^1(\Omega)$ such that $(u_1, 1) > 0$ and

$$u_1 := \arg \inf_{v \in V, \|v\|=1} \left\{ \frac{1}{2} \|\nabla v\|^2 \right\}$$

Laplace eigenvalue problem

Find eigenvector & eigenvalue pair (u_1, λ_1) such that

$$\begin{aligned} -\Delta u_1 &= \lambda_1 u_1 & \text{ in } \Omega, \\ u_1 &= 0 & \text{ on } \partial \Omega. \end{aligned}$$

Full problem, weak formulation Find $(u_k, \lambda_k) \in V \times \mathbb{R}^+$, $k \ge 1$, with $||u_k|| = 1$, such that $(\nabla u_k, \nabla v) = \lambda_k(u_k, v) \quad \forall v \in V \Rightarrow ||\nabla u_k||^2 = \lambda_k.$

• $0 < \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_k \to \infty$ • $u_k, k \geq 1$, form an orthonormal basis of L^2 (interaction interaction inter

Energy minimization ($\Omega \subset \mathbb{R}^d$, d = 2, 3, polygon/polyhedron) Find $u_1 \in V := H_0^1(\Omega)$ such that $(u_1, 1) > 0$ and

$$u_1 := \arg \inf_{v \in V, \|v\|=1} \left\{ rac{1}{2} \|\nabla v\|^2
ight\}$$

Laplace eigenvalue problem

Find eigenvector & eigenvalue pair (u_1, λ_1) such that

$$\begin{aligned} -\Delta u_1 &= \lambda_1 u_1 & \text{ in } \Omega, \\ u_1 &= 0 & \text{ on } \partial \Omega. \end{aligned}$$

Full problem, weak formulation Find $(u_k, \lambda_k) \in V \times \mathbb{R}^+$, $k \ge 1$, with $||u_k|| = 1$, such that $(\nabla u_k, \nabla v) = \lambda_k(u_k, v) \quad \forall v \in V \Rightarrow ||\nabla u_k||^2 = \lambda_k.$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 2 / 37

Energy minimization ($\Omega \subset \mathbb{R}^d$, d = 2, 3, polygon/polyhedron) Find $u_1 \in V := H_0^1(\Omega)$ such that $(u_1, 1) > 0$ and

$$u_1 := \arg \inf_{v \in V, \|v\|=1} \left\{ rac{1}{2} \|\nabla v\|^2
ight\}$$

Laplace eigenvalue problem

Find eigenvector & eigenvalue pair (u_1, λ_1) such that

$$\begin{aligned} -\Delta u_1 &= \lambda_1 u_1 & \text{ in } \Omega, \\ u_1 &= 0 & \text{ on } \partial \Omega. \end{aligned}$$

Full problem, weak formulation Find $(u_k, \lambda_k) \in V \times \mathbb{R}^+$, $k \ge 1$, with $||u_k|| = 1$, such that $(\nabla u_k, \nabla v) = \lambda_k(u_k, v) \quad \forall v \in V \Rightarrow ||\nabla u_k||^2 = \lambda_k.$

• $0 < \lambda_1 < \lambda_2 \le \ldots \le \lambda_k \to \infty$ • $u_k, k \ge 1$, form an orthonormal basis of $L^2($

Previous results, Laplace eigenvalue bounds

 Plum (1997), Goerisch and He (1989), Still (1988), Kuttler and Sigillito (1978), Moler and Payne (1968), Fox and Rheinboldt (1966), Bazley and Fox (1961), Weinberger (1956), Forsythe (1955), Kato (1949)

• . . .

Previous results, guaranteed lower bounds on λ_1

- Carstensen and Gedicke (2014): ⊕ guaranteed bound, arbitrarily coarse mesh; ⊖ a priori arguments (largest mesh element diameter), only lowest-order nonconforming FEs
- Hu, Huang, Lin (2014): ⊕ bounds in nonconforming FEs; ⊖ saturation assumption may be necessary
- Armentano and Durán (2004): ⊕ bounds in nonconforming FEs; ⊖ only asymptotic
- Šebestová and Vejchodský (2014), Kuznetsov and Repin (2013): ⊕ general guaranteed bounds; ⊖ condition on applicability, suboptimal convergence speed
- Liu and Oishi (2013): ⊕ guaranteed bound; ⊖ only lowest-order conforming FEs, auxiliary eigenvalue problem

Previous results, guaranteed lower bounds on λ_1

- Carstensen and Gedicke (2014): ⊕ guaranteed bound, arbitrarily coarse mesh; ⊖ a priori arguments (largest mesh element diameter), only lowest-order nonconforming FEs
- Hu, Huang, Lin (2014): ⊕ bounds in nonconforming FEs; ⊖ saturation assumption may be necessary
- Armentano and Durán (2004): ⊕ bounds in nonconforming FEs; ⊖ only asymptotic
- Šebestová and Vejchodský (2014), Kuznetsov and Repin (2013): ⊕ general guaranteed bounds; ⊖ condition on applicability, suboptimal convergence speed
- Liu and Oishi (2013): ⊕ guaranteed bound; ⊖ only lowest-order conforming FEs, auxiliary eigenvalue problem

Previous results, guaranteed lower bounds on λ_1

- Carstensen and Gedicke (2014):
 ⊕ guaranteed bound, arbitrarily coarse mesh;
 ⊖ a priori arguments (largest mesh element diameter), only lowest-order nonconforming FEs
- Hu, Huang, Lin (2014): ⊕ bounds in nonconforming FEs; ⊖ saturation assumption may be necessary
- Armentano and Durán (2004): ⊕ bounds in nonconforming FEs; ⊖ only asymptotic
- Šebestová and Vejchodský (2014), Kuznetsov and Repin (2013): ⊕ general guaranteed bounds; ⊖ condition on applicability, suboptimal convergence speed
- Liu and Oishi (2013): ⊕ guaranteed bound; ⊖ only lowest-order conforming FEs, auxiliary eigenvalue problem

Previous results, Laplace eigenvector bounds

- Rannacher, Westenberger, Wollner (2010), Grubišić and Ovall (2009), Durán, Padra, Rodríguez (2003), Heuveline and Rannacher (2002), Larson (2000), Maday and Patera (2000), Verfürth (1994) ...
- ... typically contain uncomputable terms, higher-order on fine enough meshes

Assumption A (Conforming variational solution)

There holds

- $(u_h, \lambda_h) \in V \times \mathbb{R}^+$
- $||u_h|| = 1$
- (*u_h*, 1) > 0

•
$$\|\nabla u_h\|^2 = \lambda_h$$

We want to estimate first eigenvalue error

$$ilde{\eta}(u_h,\lambda_h) \leq \sqrt{\lambda_h - \lambda_1} \leq \eta(u_h,\lambda_h)$$

first eigenvector energy error

$$\|\nabla(u_1 - u_h)\| \leq \eta(u_h, \lambda_h)$$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 6 / 37

Assumption A (Conforming variational solution)

There holds

- $(u_h, \lambda_h) \in V \times \mathbb{R}^+$
- $||u_h|| = 1$
- (*u_h*, 1) > 0

•
$$\|\nabla u_h\|^2 = \lambda_h$$

We want to estimate first eigenvalue error

$$\widetilde{\eta}(u_h,\lambda_h) \leq \sqrt{\lambda_h - \lambda_1} \leq \eta(u_h,\lambda_h)$$

first eigenvector energy error

$$\|\nabla(u_1 - u_h)\| \leq \eta(u_h, \lambda_h)$$

 $(\Rightarrow \lambda_h \geq \lambda_1)$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 6 / 37

Assumption A (Conforming variational solution)

There holds

- $(u_h, \lambda_h) \in V \times \mathbb{R}^+$
- $||u_h|| = 1$
- (*u_h*, 1) > 0
- $\|\nabla u_h\|^2 = \lambda_h$

We want to estimate

first eigenvalue error

$$ilde{\eta}(u_h,\lambda_h) \leq \sqrt{\lambda_h - \lambda_1} \leq \eta(u_h,\lambda_h)$$

first eigenvector energy error

$$\|\nabla(u_1 - u_h)\| \leq \eta(u_h, \lambda_h)$$

 $(\Rightarrow \lambda_h \geq \lambda_1)$

Assumption A (Conforming variational solution)

There holds

- $(u_h, \lambda_h) \in V \times \mathbb{R}^+$
- $||u_h|| = 1$
- (*u_h*, 1) > 0
- $\|\nabla u_h\|^2 = \lambda_h$

We want to estimate

first eigenvalue error

$$ilde{\eta}(u_h,\lambda_h) \leq \sqrt{\lambda_h - \lambda_1} \leq \eta(u_h,\lambda_h)$$

Irst eigenvector energy error

$$\|\nabla(\boldsymbol{u}_1 - \boldsymbol{u}_h)\| \leq \eta(\boldsymbol{u}_h, \lambda_h)$$

 $(\Rightarrow \lambda_h \geq \lambda_1)$

Assumption A (Conforming variational solution)

There holds

- $(u_h, \lambda_h) \in V \times \mathbb{R}^+$
- $||u_h|| = 1$
- (*u_h*, 1) > 0
- $\|\nabla u_h\|^2 = \lambda_h$

We want to estimate

first eigenvalue error

$$\widetilde{\eta}(u_h,\lambda_h) \leq \sqrt{\lambda_h - \lambda_1} \leq \eta(u_h,\lambda_h)$$

Irst eigenvector energy error

$$\|
abla(u_1-u_h)\|\leq \eta(u_h,\lambda_h)\leq C_{\mathrm{eff}}\|
abla(u_1-u_h)\|$$

• C_{eff} only depends on the shape regularity of the mesh methods with the shape regularity of the shape regularity of the methods with the shape regularity of the shape

• we give computable upper bounds on Ceff Crica

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 6 / 37

 $(\Rightarrow \lambda_h \geq \lambda_1)$

The pathway

 $\|\boldsymbol{u}_1 - \boldsymbol{u}_h\| \leq \alpha_h$

Prove equivalence of the eigenvalue & eigenvector errors:

$$C\|
abla(u_1-u_h)\|^2\leq \lambda_h-\lambda_1\leq \|
abla(u_1-u_h)\|^2$$

I prove equivalence of the eigenvector error & of the dual norm of the residual:

 $\underline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \le \|\nabla(u_1 - u_h)\| \le \overline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1},$ here

 $\langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V',V} := \lambda_h(u_h, v) - (\nabla u_h, \nabla v) \qquad v \in V \\ \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} := \sup_{v \in V, \, \|\nabla v\| = 1} \langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V',V}$

• prove equivalence of the dual residual norm & its estimate: $\tilde{C}\eta(u_h, \lambda_h) \leq \bar{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \leq \eta(u_h, \lambda_h)$

The pathway

) estimate the
$$L^2(\Omega)$$
 error:

$$\|u_1 - u_h\| \le \alpha_h$$

In prove equivalence of the eigenvalue & eigenvector errors:

$$C\|\nabla(u_1-u_h)\|^2 \leq \lambda_h - \lambda_1 \leq \|\nabla(u_1-u_h)\|^2$$

I prove equivalence of the eigenvector error & of the dual norm of the residual:

 $\underline{C} \|\operatorname{Res}(u_h,\lambda_h)\|_{-1} \leq \|\nabla(u_1-u_h)\| \leq \overline{C} \|\operatorname{Res}(u_h,\lambda_h)\|_{-1},$

where

 $\langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V', V} := \lambda_h(u_h, v) - (\nabla u_h, \nabla v) \qquad v \in V \\ \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} := \sup_{v \in V, \, \|\nabla v\| = 1} \langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V', V}$

• prove equivalence of the dual residual norm & its estimate: $\tilde{C}\eta(u_h, \lambda_h) \leq \bar{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \leq \eta(u_h, \lambda_h)$

The pathway

$$\|u_1 - u_h\| \le \alpha_h$$

In prove equivalence of the eigenvalue & eigenvector errors:

$$C\|\nabla(u_1-u_h)\|^2 \leq \lambda_h - \lambda_1 \leq \|\nabla(u_1-u_h)\|^2$$

prove equivalence of the eigenvector error & of the dual norm of the residual:

 $\underline{C} \|\operatorname{Res}(u_h,\lambda_h)\|_{-1} \leq \|\nabla(u_1-u_h)\| \leq \overline{C} \|\operatorname{Res}(u_h,\lambda_h)\|_{-1},$

where

 $\langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V', V} := \lambda_h(u_h, v) - (\nabla u_h, \nabla v) \qquad v \in V \\ \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} := \sup_{v \in V, \, \|\nabla v\| = 1} \langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V', V}$

• prove equivalence of the dual residual norm & its estimate: $\tilde{C}\eta(u_h, \lambda_h) \leq \bar{C} ||\operatorname{Res}(u_h, \lambda_h)||_{-1} \leq \eta(u_h, \lambda_h)$

erc

The pathway

$$\|u_1 - u_h\| \le \alpha_h$$

In prove equivalence of the eigenvalue & eigenvector errors:

$$C \|\nabla (u_1 - u_h)\|^2 \leq \lambda_h - \lambda_1 \leq \|\nabla (u_1 - u_h)\|^2$$

prove equivalence of the eigenvector error & of the dual norm of the residual:

 $\underline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \leq \|\nabla(u_1 - u_h)\| \leq \overline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1},$ where

$$\langle \operatorname{Res}(u_h, \lambda_h), \mathbf{v} \rangle_{V', V} := \lambda_h(u_h, \mathbf{v}) - (\nabla u_h, \nabla \mathbf{v}) \quad \mathbf{v} \in V \\ \| \operatorname{Res}(u_h, \lambda_h) \|_{-1} := \sup_{\mathbf{v} \in V, \| \nabla \mathbf{v} \| = 1} \langle \operatorname{Res}(u_h, \lambda_h), \mathbf{v} \rangle_{V', V}$$

• prove equivalence of the dual residual norm & its estimate: $\tilde{C}\eta(u_h, \lambda_h) \leq \bar{C} ||\operatorname{Res}(u_h, \lambda_h)||_{-1} \leq \eta(u_h, \lambda_h)$

The pathway

) estimate the
$$L^2(\Omega)$$
 error:

$$\|u_1 - u_h\| \le \alpha_h$$

In prove equivalence of the eigenvalue & eigenvector errors:

$$C \|\nabla (u_1 - u_h)\|^2 \leq \lambda_h - \lambda_1 \leq \|\nabla (u_1 - u_h)\|^2$$

prove equivalence of the eigenvector error & of the dual norm of the residual:

 $\underline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \le \|\nabla(u_1 - u_h)\| \le \overline{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1},$ where

$$\langle \operatorname{Res}(u_h, \lambda_h), \mathbf{v} \rangle_{V', V} := \lambda_h(u_h, \mathbf{v}) - (\nabla u_h, \nabla \mathbf{v}) \quad \mathbf{v} \in \mathbf{V} \\ \| \operatorname{Res}(u_h, \lambda_h) \|_{-1} := \sup_{\mathbf{v} \in \mathbf{V}, \| \nabla \mathbf{v} \| = 1} \langle \operatorname{Res}(u_h, \lambda_h), \mathbf{v} \rangle_{V', V}$$

• prove equivalence of the dual residual norm & its estimate: $\tilde{C}\eta(u_h, \lambda_h) \leq \bar{C} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \leq \eta(u_h, \lambda_h)$

erc

Outline

- Introduction
 - Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

Outline

Introduction

- Laplace eigenvalue problem equivalences
- Generic equivalences
- Dual norm of the residual equivalences
- Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 8 / 37

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

$L^2(\Omega)$ bound

Lemma ($L^2(\Omega)$ bound via a quadratic residual inequality)

Let Assumption A hold and let

$$\lambda_h < \lambda_2$$

and

$$\beta_h := \left(1 - \frac{\lambda_h}{\lambda_2}\right)^{-1} \|\boldsymbol{z}_{(h)}\| < 1,$$
$$\alpha_h^2 := 2\left(1 - \sqrt{1 - \beta_h^2}\right) \le |\Omega|^{-1} (\boldsymbol{u}_h, 1)^2.$$

Then

$$\|u_1-u_h\|\leq \alpha_h.$$

Riesz representation of the residual $z_{(h)} \in V$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 9 / 37

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

$L^2(\Omega)$ bound

Lemma ($L^2(\Omega)$ bound via a quadratic residual inequality)

Let Assumption A hold and let

$$\lambda_h < \frac{\lambda_2}{\lambda_2}$$

and

$$\beta_h := \left(1 - \frac{\lambda_h}{\lambda_2}\right)^{-1} \|\boldsymbol{z}_{(h)}\| < 1,$$
$$\alpha_h^2 := 2\left(1 - \sqrt{1 - \beta_h^2}\right) \le |\Omega|^{-1} (\boldsymbol{u}_h, 1)^2.$$
$$\|\boldsymbol{u}_h - \boldsymbol{u}_h\| \le \alpha_h.$$

Riesz representation of the residual $z_{(h)} \in V$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

$L^{2}(\Omega)$ bound

Lemma ($L^2(\Omega)$ bound via a quadratic residual inequality)

Let Assumption A hold and let

$$\lambda_h < \lambda_2$$

and

$$\beta_h := \left(1 - \frac{\lambda_h}{\lambda_2}\right)^{-1} \|\boldsymbol{z}_{(h)}\| < 1,$$
$$\alpha_h^2 := 2\left(1 - \sqrt{1 - \beta_h^2}\right) \le |\Omega|^{-1} (\boldsymbol{u}_h, 1)^2.$$

Then

$$\|\boldsymbol{u}_1-\boldsymbol{u}_h\|\leq \alpha_h.$$

Riesz representation of the residual $z_{(h)} \in V$

$$(\nabla \mathbf{z}_{(h)}, \nabla \mathbf{v}) = \langle \operatorname{Res}(u_h, \lambda_h), \mathbf{v} \rangle_{V', V} \qquad \forall \mathbf{v} \in V \\ \|\nabla \mathbf{z}_{(h)}\| = \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \qquad \qquad \forall \mathbf{v} \in V$$

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds $L^2(\Omega)$ bound via a quadratic residual inequality

Sketch of the proof I.

weak solution, residual, and Riesz representation definitions:

$$(\mathbf{z}_{(h)}, u_k) = \frac{1}{\lambda_k} (\nabla u_k, \nabla \mathbf{z}_{(h)}) = \frac{1}{\lambda_k} (\lambda_h (u_h, u_k) - (\nabla u_h, \nabla u_k))$$
$$= \left(\frac{\lambda_h}{\lambda_k} - 1\right) (u_h, u_k)$$

Parseval equality for *z*(*h*)

 $\|\dot{z}_{(h)}\|^2 =$

assumption $\lambda_h < \lambda_2$:

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

Sketch of the proof I.

weak solution, residual, and Riesz representation definitions:

$$(\mathbf{z}_{(h)}, u_k) = \frac{1}{\lambda_k} (\nabla u_k, \nabla \mathbf{z}_{(h)}) = \frac{1}{\lambda_k} (\lambda_h (u_h, u_k) - (\nabla u_h, \nabla u_k))$$
$$= \left(\frac{\lambda_h}{\lambda_k} - 1\right) (u_h, u_k)$$

Parseval equality for $\dot{r}_{(h)}$:

$$\|\dot{z}_{(h)}\|^2 = \sum_{k\geq 1} (\dot{z}_{(h)}, U_k)^2$$

assumption $\lambda_h < \lambda_2$

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

Sketch of the proof I.

weak solution, residual, and Riesz representation definitions:

$$(\mathbf{z}_{(h)}, u_k) = \frac{1}{\lambda_k} (\nabla u_k, \nabla \mathbf{z}_{(h)}) = \frac{1}{\lambda_k} (\lambda_h (u_h, u_k) - (\nabla u_h, \nabla u_k))$$
$$= \left(\frac{\lambda_h}{\lambda_k} - 1\right) (u_h, u_k)$$

Parseval equality for $\dot{e}_{(h)}$:

$$\|\mathbf{z}_{(h)}\|^2 = \sum_{k\geq 1} \left(1 - \frac{\lambda_h}{\lambda_k}\right)^2 (u_h, u_k)^2$$

assumption $\lambda_h < \lambda_2$:

$$\min_{k\geq 2}\left(1-\frac{\lambda_h}{\lambda_k}\right)^2 = \left(1-\frac{\lambda_h}{\lambda_2}\right)^2 =: C_h$$

Sketch of the proof I.

weak solution, residual, and Riesz representation definitions:

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

$$(\mathbf{z}_{(h)}, u_k) = \frac{1}{\lambda_k} (\nabla u_k, \nabla \mathbf{z}_{(h)}) = \frac{1}{\lambda_k} (\lambda_h (u_h, u_k) - (\nabla u_h, \nabla u_k))$$
$$= \left(\frac{\lambda_h}{\lambda_k} - 1\right) (u_h, u_k)$$

Parseval equality for $\dot{e}_{(h)}$:

$$\|\mathbf{z}_{(h)}\|^2 = \left(\frac{\lambda_h}{\lambda_1} - 1\right)^2 (u_h, u_1)^2 + \sum_{k \ge 2} \left(1 - \frac{\lambda_h}{\lambda_k}\right)^2 (u_h, u_k)^2$$

assumption $\lambda_h < \lambda_2$:

$$\min_{k\geq 2}\left(1-\frac{\lambda_h}{\lambda_k}\right)^2 = \left(1-\frac{\lambda_h}{\lambda_2}\right)^2 =: C_h$$

Sketch of the proof I.

weak solution, residual, and Riesz representation definitions:

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

$$(\mathbf{z}_{(h)}, u_k) = \frac{1}{\lambda_k} (\nabla u_k, \nabla \mathbf{z}_{(h)}) = \frac{1}{\lambda_k} (\lambda_h (u_h, u_k) - (\nabla u_h, \nabla u_k))$$
$$= \left(\frac{\lambda_h}{\lambda_k} - 1\right) (u_h, u_k)$$

Parseval equality for $z_{(h)}$, u_k orthonormal basis:

$$\|\mathbf{z}_{(h)}\|^2 = \left(\frac{\lambda_h}{\lambda_1} - 1\right)^2 (u_h, u_1)^2 + \sum_{k \ge 2} \left(1 - \frac{\lambda_h}{\lambda_k}\right)^2 (u_h - u_1, u_k)^2$$

assumption $\lambda_h < \lambda_2$:

$$\min_{k\geq 2}\left(1-\frac{\lambda_h}{\lambda_k}\right)^2 = \left(1-\frac{\lambda_h}{\lambda_2}\right)^2 =: C_h$$

Sketch of the proof I.

weak solution, residual, and Riesz representation definitions:

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

$$(\mathbf{z}_{(h)}, u_k) = \frac{1}{\lambda_k} (\nabla u_k, \nabla \mathbf{z}_{(h)}) = \frac{1}{\lambda_k} (\lambda_h (u_h, u_k) - (\nabla u_h, \nabla u_k))$$
$$= \left(\frac{\lambda_h}{\lambda_k} - 1\right) (u_h, u_k)$$

Parseval equality for $z_{(h)}$, u_k orthonormal basis:

$$\|\mathbf{z}_{(h)}\|^{2} = \left(\frac{\lambda_{h}}{\lambda_{1}}-1\right)^{2}(u_{h},u_{1})^{2} + \sum_{k\geq 2}\underbrace{\left(1-\frac{\lambda_{h}}{\lambda_{k}}\right)^{2}}_{\geq C_{h}}(u_{h}-u_{1},u_{k})^{2}$$

assumption
$$\lambda_h < \lambda_2$$
:

$$\min_{k \ge 2} \left(1 - \frac{\lambda_h}{\lambda_k}\right)^2 = \left(1 - \frac{\lambda_h}{\lambda_2}\right)^2 =: C_h$$

Sketch of the proof II.

Parseval equality for
$$u_h - u_1$$
, $(u_h - u_1, u_1) = -\frac{1}{2} ||u_1 - u_h||^2$:
 $||z_{(h)}||^2 \ge \left(\frac{\lambda_h}{\lambda_1} - 1\right)^2 (u_h, u_1)^2 + C_h ||u_1 - u_h||^2 - \frac{C_h}{4} ||u_1 - u_h||^4$

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

dropping the first term above, $e_h := \|u_1 - u_h\|^2$: $\frac{C_h}{4}e_h^2 - C_he_h + \|z_{(h)}\|^2 \ge 0$

quadratic residual inequality in e_h , under assumption on β_h :

$$e_h \leq 2\left(1-\sqrt{1-\beta_h^2}\right)$$
 or $e_h \geq 2(1+\sqrt{1-\beta_h^2})$

sign condition (u_h , 1) > 0, assumption on α_h :

$$e_h \leq 2\left(1 - \sqrt{1 - \beta_h^2}
ight)$$

Sketch of the proof II.

Parseval equality for
$$u_h - u_1$$
, $(u_h - u_1, u_1) = -\frac{1}{2} ||u_1 - u_h||^2$:

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

$$\| \mathbf{z}_{(h)} \|^{2} \geq \left(\frac{\lambda_{h}}{\lambda_{1}} - 1 \right)^{2} (u_{h}, u_{1})^{2} + C_{h} \| u_{1} - u_{h} \|^{2} - \frac{C_{h}}{4} \| u_{1} - u_{h} \|^{4}$$

dropping the first term above, $e_h := \|u_1 - u_h\|^2$: $\frac{C_h}{4}e_h^2 - C_he_h + \|z_{(h)}\|^2 \ge 0$

quadratic residual inequality in e_h , under assumption on β_h :

$$\boldsymbol{e}_h \leq 2\left(1-\sqrt{1-\beta_h^2}\right) \quad \text{or} \quad \boldsymbol{e}_h \geq 2(1+\sqrt{1-\beta_h^2})$$

sign condition $(u_h, 1) > 0$, assumption on α_h :

$$\mathbf{e}_h \leq \mathbf{2} \left(1 - \sqrt{1 - eta_h^2}
ight)$$

Sketch of the proof II.

Parseval equality for
$$u_h - u_1$$
, $(u_h - u_1, u_1) = -\frac{1}{2} ||u_1 - u_h||^2$:

$$\|z_{(h)}\|^{2} \geq \left(\frac{\lambda_{h}}{\lambda_{1}}-1\right)^{2} (u_{h},u_{1})^{2}+C_{h}\|u_{1}-u_{h}\|^{2}-\frac{C_{h}}{4}\|u_{1}-u_{h}\|^{4}$$

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

dropping the first term above, $e_h := ||u_1 - u_h||^2$:

$$rac{C_h}{4} e_h^2 - C_h e_h + \| \, \imath_{(h)} \|^2 \geq 0$$

quadratic residual inequality in e_h , under assumption on β_h :

$$e_h \leq 2\left(1-\sqrt{1-\beta_h^2}\right)$$
 or $e_h \geq 2(1+\sqrt{1-\beta_h^2})$

sign condition $(u_h, 1) > 0$, assumption on α_h :

$$\mathbf{e}_h \leq \mathbf{2} \left(1 - \sqrt{1 - eta_h^2}
ight)$$

TC
$L^{2}(\Omega)$ bound via a quadratic residual inequality

Sketch of the proof II.

Parseval equality for
$$u_h - u_1$$
, $(u_h - u_1, u_1) = -\frac{1}{2} ||u_1 - u_h||^2$:

$$\|z_{(h)}\|^{2} \geq \left(\frac{\lambda_{h}}{\lambda_{1}}-1\right)^{2} (u_{h}, u_{1})^{2}+C_{h}\|u_{1}-u_{h}\|^{2}-\frac{C_{h}}{4}\|u_{1}-u_{h}\|^{4}$$

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

dropping the first term above, $e_h := ||u_1 - u_h||^2$:

$$rac{C_h}{4} e_h^2 - C_h e_h + \| arepsilon_{(h)} \|^2 \geq 0$$

quadratic residual inequality in e_h , under assumption on β_h :

$$e_h \leq 2\left(1-\sqrt{1-\beta_h^2}\right)$$
 or $e_h \geq 2(1+\sqrt{1-\beta_h^2})$

sign condition $(u_h, 1) > 0$, assumption on α_h :

$$\mathbf{e}_h \leq 2\left(1-\sqrt{1-eta_h^2}
ight)$$

Outline

Introduction

Laplace eigenvalue problem equivalences

Generic equivalences

- Dual norm of the residual equivalences
- Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 11 / 37

Theorem (Eigenvalue error – eigenvector error equivalence)

Under the above assumptions, there holds

$$\frac{1}{2}\left(1-\frac{\lambda_1}{\lambda_2}\right)\left(1-\frac{\alpha_h^2}{4}\right)\|\nabla(u_1-u_h)\|^2 \leq \lambda_h - \lambda_1 \leq \|\nabla(u_1-u_h)\|^2,$$

as well as $\|
abla(u_1-u_h)\|^2 - \lambda_1 lpha_h^2 \leq \lambda_h - \lambda_h^2$

Key arguments of the proof

• there holds

$$\lambda_h - \lambda_1 = \|\nabla (u_h - u_1)\|^2 - \lambda_1 \|u_1 - u_h\|^2$$

• drop the second term or estimate it with $||u_1 - u_h|| \le \alpha_h$ • use $||\nabla v||^2 = \sum_{k\ge 1} \lambda_k (v, u_k)^2$ for $v = u_1 - u_h$: $||\nabla (u_1 - u_h)||^2 - \lambda_1 ||u_1 - u_h||^2 \ge (\lambda_2 - \lambda_1) ||u_1 - u_h||^2 - \frac{\lambda_2 - \lambda_1}{4} ||u_1 - u_h||^2$

Theorem (Eigenvalue error – eigenvector error equivalence)

Under the above assumptions, there holds

$$\frac{1}{2}\left(1-\frac{\lambda_1}{\lambda_2}\right)\left(1-\frac{\alpha_h^2}{4}\right)\|\nabla(u_1-u_h)\|^2 \leq \lambda_h-\lambda_1 \leq \|\nabla(u_1-u_h)\|^2,$$

as well as $\|\nabla(u_1-u_h)\|^2 - \lambda_1 \alpha_h^2 \leq \lambda_h - \lambda_1.$

Key arguments of the proof

• there holds

$$\lambda_h - \lambda_1 = \|\nabla (u_h - u_1)\|^2 - \lambda_1 \|u_1 - u_h\|^2$$

• drop the second term or estimate it with $||u_1 - u_h|| \le \alpha_h$ • use $||\nabla v||^2 = \sum_{k\ge 1} \lambda_k (v, u_k)^2$ for $v = u_1 - u_h$: $||\nabla (u_1 - u_h)||^2 - \lambda_1 ||u_1 - u_h||^2 \ge (\lambda_2 - \lambda_1) ||u_1 - u_h||^2 - \frac{\lambda_2 - \lambda_1}{4} ||u_1 - u_h||^2$

Theorem (Eigenvalue error – eigenvector error equivalence)

Under the above assumptions, there holds

$$\frac{1}{2}\left(1-\frac{\lambda_1}{\lambda_2}\right)\left(1-\frac{\alpha_h^2}{4}\right)\|\nabla(u_1-u_h)\|^2 \leq \lambda_h-\lambda_1 \leq \|\nabla(u_1-u_h)\|^2,$$

as well as $\|\nabla(u_1-u_h)\|^2 - \lambda_1 \alpha_h^2 \leq \lambda_h - \lambda_1.$

Key arguments of the proof

there holds

$$\lambda_h - \lambda_1 = \|\nabla (u_h - u_1)\|^2 - \lambda_1 \|u_1 - u_h\|^2$$

• drop the second term or estimate it with $||u_1 - u_h|| \le \alpha_h$ • use $||\nabla v||^2 = \sum_{k\ge 1} \lambda_k (v, u_k)^2$ for $v = u_1 - u_h$:

Theorem (Eigenvalue error – eigenvector error equivalence)

Under the above assumptions, there holds

$$\frac{1}{2}\left(1-\frac{\lambda_1}{\lambda_2}\right)\left(1-\frac{\alpha_h^2}{4}\right)\|\nabla(u_1-u_h)\|^2 \leq \lambda_h-\lambda_1 \leq \|\nabla(u_1-u_h)\|^2,$$

as well as $\|\nabla(u_1-u_h)\|^2 - \lambda_1 \alpha_h^2 \leq \lambda_h - \lambda_1.$

Key arguments of the proof

• there holds

$$\lambda_h - \lambda_1 = \|\nabla (u_h - u_1)\|^2 - \lambda_1 \|u_1 - u_h\|^2$$

• drop the second term or estimate it with $||u_1 - u_h|| \le \alpha_h$ • use $||\nabla v||^2 = \sum_{k\ge 1} \lambda_k (v, u_k)^2$ for $v = u_1 - u_h$: $||\nabla (u_1 - u_h)||^2 - \lambda_1 ||u_1 - u_h||^2 \ge (\lambda_2 - \lambda_1) ||u_1 - u_h||^2 - \frac{\lambda_2 - \lambda_1}{||u_1 - u_h||^2} ||u_1 - u_h||^2$

Theorem (Eigenvalue error – eigenvector error equivalence)

Under the above assumptions, there holds

$$\frac{1}{2}\left(1-\frac{\lambda_1}{\lambda_2}\right)\left(1-\frac{\alpha_h^2}{4}\right)\|\nabla(u_1-u_h)\|^2 \leq \lambda_h-\lambda_1 \leq \|\nabla(u_1-u_h)\|^2,$$

as well as $\|\nabla(u_1-u_h)\|^2 - \lambda_1 \alpha_h^2 \leq \lambda_h - \lambda_1.$

Key arguments of the proof

• there holds

$$\lambda_h - \lambda_1 = \|\nabla (u_h - u_1)\|^2 - \lambda_1 \|u_1 - u_h\|^2$$

• drop the second term or estimate it with $||u_1 - u_h|| \le \alpha_h$ • use $||\nabla v||^2 = \sum_{k\ge 1} \lambda_k (v, u_k)^2$ for $v = u_1 - u_h$: $||\nabla (u_1 - u_h)||^2 - \lambda_1 ||u_1 - u_h||^2 \ge (\lambda_2 - \lambda_1) ||u_1 - u_h||^2 - \frac{\lambda_2 - \lambda_1}{u_1 - u_h} ||u_1 - u_h||^2$

Theorem (Eigenvector error – dual norm of the residual equivalence)

Under the above assumptions, there holds

$$\left(\frac{\|\nabla(u_1 - u_h)\|^2}{\lambda_1} + 1\right)^{-1} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1}^2$$

$$\leq \|\nabla(u_1 - u_h)\|^2 \leq \left(1 - \frac{\lambda_h}{\lambda_2}\right)^{-2} \left(1 - \frac{\alpha_h^2}{4}\right)^{-1} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1}^2,$$

$$\|\nabla(u_1-u_h)\|^2 \leq \|\operatorname{Res}(u_h,\lambda_h)\|_{-1}^2 + 2\lambda_h \alpha_h^2.$$

Theorem (Eigenvector error – dual norm of the residual equivalence)

Under the above assumptions, there holds

$$\left(\frac{\|\nabla(u_1 - u_h)\|^2}{\lambda_1} + 1\right)^{-1} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1}^2$$

$$\leq \|\nabla(u_1 - u_h)\|^2 \leq \left(1 - \frac{\lambda_h}{\lambda_2}\right)^{-2} \left(1 - \frac{\alpha_h^2}{4}\right)^{-1} \|\operatorname{Res}(u_h, \lambda_h)\|_{-1}^2,$$

as well as

$$\|\nabla(u_1-u_h)\|^2 \leq \|\operatorname{Res}(u_h,\lambda_h)\|_{-1}^2 + 2\lambda_h \alpha_h^2.$$

Key arguments of the proof I.

Equivalences Estimates Application Numerics Extension C

• use
$$\|\nabla v\|^2 = \sum_{k \ge 1} \lambda_k (v, u_k)^2$$
 for $v = z_{(h)}$:

$$\|\nabla \mathbf{r}_{(h)}\|^2 = \sum_{k\geq 1} \lambda_k (\mathbf{r}_{(h)}, u_k)^2 = \sum_{k\geq 1} \lambda_k \left(1 - \frac{\lambda_h}{\lambda_k}\right)^2 (u_h, u_k)^2$$

• obtain as in the $L^2(\Omega)$ bound lemma:

$$\|\nabla z_{(h)}\|^2 \ge C_h \|\nabla (u_1 - u_h)\|^2 - \frac{C_h}{4} \|\nabla (u_1 - u_h)\|^2 \alpha_h^2$$

• estimate in the other direction:

$$\begin{split} \|\nabla \mathbf{z}_{(h)}\|^{2} &\leq \lambda_{1} \left(\frac{\lambda_{h}}{\lambda_{1}}-1\right)^{2} (u_{h},u_{1})^{2} + \sum_{k\geq 2} \lambda_{k} (u_{h}-u_{1},u_{k})^{2} \\ &\leq \lambda_{1} \left(\frac{\lambda_{h}}{\lambda_{1}}-1\right)^{2} + \|\nabla (u_{1}-u_{h})\|^{2} \end{split}$$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Generic Residual Residual and eigenvalue bounds

Key arguments of the proof II.

• for the last estimate:

$$\begin{split} \|\nabla(u_1 - u_h)\|^2 \\ &= (\nabla(u_1 - u_h), \nabla(u_1 - u_h)) \\ &= \lambda_1(u_1, u_1 - u_h) + \langle \operatorname{Res}(u_h, \lambda_h), u_1 - u_h \rangle_{V', V} - \lambda_h(u_h, u_1 - u_h) \\ &= \langle \operatorname{Res}(u_h, \lambda_h), u_1 - u_h \rangle_{V', V} + \frac{\lambda_1 + \lambda_h}{2} \|u_1 - u_h\|^2 \end{split}$$

• Young inequality:

$$\|\nabla(u_1 - u_h)\|^2 \le \|\operatorname{Res}(u_h, \lambda_h)\|_{-1}^2 + (\lambda_1 + \lambda_h)\|u_1 - u_h\|^2$$

• finish by $\lambda_h \geq \lambda_1 \& L^2(\Omega)$ bound $||u_1 - u_h|| \leq \alpha_h$

Outline

Introduction

Laplace eigenvalue problem equivalences

Generic equivalences

• Dual norm of the residual equivalences

- Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 15 / 37

Weak solution

 $(\nabla u_1, \nabla v) = \lambda_1(u_1, v) \ \forall v \in V \Rightarrow -\nabla u_1 \in \mathsf{H}(\mathrm{div}, \Omega), \nabla \cdot (-\nabla u_1) = \lambda_1 u_1$

Ideal discrete imitation $(-\nabla u_h \notin \mathbf{H}(\operatorname{div}, \Omega))$

$$\boldsymbol{\sigma}_h := \arg\min_{\mathbf{v}_h \in \mathbf{V}_h, \, \nabla \cdot \mathbf{v}_h = \lambda_h u_h} \| \nabla u_h + \mathbf{v}_h \|$$

• $V_h \subset H(\operatorname{div}, \Omega) \Rightarrow$ global minimization, too expensive

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 16 / 37

Motivation

Weak solution

 $(\nabla u_1, \nabla v) = \lambda_1(u_1, v) \ \forall v \in V \Rightarrow -\nabla u_1 \in \mathbf{H}(\operatorname{div}, \Omega), \nabla \cdot (-\nabla u_1) = \lambda_1 u_1$

Ideal discrete imitation $(-\nabla u_h \notin \mathbf{H}(\operatorname{div}, \Omega))$

$$\sigma_h := \arg\min_{\mathbf{v}_h \in \mathbf{V}_h, \, \nabla \cdot \mathbf{v}_h = \lambda_h u_h} \| \nabla u_h + \mathbf{v}_h \|$$

• $V_h \subset H(\operatorname{div}, \Omega) \Rightarrow$ global minimization, too expensive

Guaranteed bounds for eigenvalues & eigenvectors

16/37

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Motivation

Weak solution

 $(\nabla u_1, \nabla v) = \lambda_1(u_1, v) \ \forall v \in V \Rightarrow -\nabla u_1 \in \mathsf{H}(\operatorname{div}, \Omega), \nabla \cdot (-\nabla u_1) = \lambda_1 u_1$

Ideal discrete imitation $(-\nabla u_h \notin H(\operatorname{div}, \Omega))$

$$\sigma_h := \arg\min_{\mathbf{v}_h \in \mathbf{V}_h, \, \nabla \cdot \mathbf{v}_h = \lambda_h u_h} \| \nabla u_h + \mathbf{v}_h \|$$

• $V_h \subset H(\operatorname{div}, \Omega) \Rightarrow$ global minimization, too expensive

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 16 / 37

Weak solution

 $(\nabla u_1, \nabla v) = \lambda_1(u_1, v) \ \forall v \in V \Rightarrow -\nabla u_1 \in \mathbf{H}(\operatorname{div}, \Omega), \nabla \cdot (-\nabla u_1) = \lambda_1 u_1$

Ideal discrete imitation $(-\nabla u_h \notin \mathbf{H}(\operatorname{div}, \Omega))$

$$\boldsymbol{\sigma}_h := \arg\min_{\mathbf{v}_h \in \mathbf{V}_h, \, \nabla \cdot \mathbf{v}_h = \lambda_h u_h} \| \nabla u_h + \mathbf{v}_h \|$$

• $V_h \subset H(\operatorname{div}, \Omega) \Rightarrow$ global minimization, too expensive

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Weak solution

 $(\nabla u_1, \nabla v) = \lambda_1(u_1, v) \ \forall v \in V \Rightarrow -\nabla u_1 \in \mathbf{H}(\operatorname{div}, \Omega), \nabla \cdot (-\nabla u_1) = \lambda_1 u_1$

Ideal discrete imitation $(-\nabla u_h \notin \mathbf{H}(\operatorname{div}, \Omega))$

$$\boldsymbol{\sigma}_h := \arg \min_{\mathbf{v}_h \in \mathbf{V}_h, \, \nabla \cdot \mathbf{v}_h = \lambda_h u_h} \| \nabla u_h + \mathbf{v}_h \|$$

• $V_h \subset H(\operatorname{div}, \Omega) \Rightarrow$ global minimization, too expensive

Local flux reconstruction (partition of unity cut-off)

$$\sigma_{h}^{\mathbf{a}} := \arg \min_{\mathbf{v}_{h} \in \mathbf{V}_{h}^{\mathbf{a}}, \nabla \cdot \mathbf{v}_{h} = ?} \| \underbrace{\psi_{\mathbf{a}}}_{\mathbf{v}_{\mathbf{a}}} \nabla u_{h} + \mathbf{v}_{h} \|_{\omega_{\mathbf{a}}}$$

$$\bullet \sigma_{h} := \sum_{\mathbf{a} \in \mathcal{V}_{h}} \sigma_{h}^{\mathbf{a}}, \text{ local minimizations}$$
Destuynder & Métivet (1999), Braess & Schöberl (2008)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds $H_0^1(\Omega)$ - and $\mathbf{H}(\operatorname{div}, \Omega)$ -conforming local residual liftings

Definition (Mixed local Neumann problems: equilibrated flux)

For all $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_h^{\mathbf{a}} \in \mathbf{V}_h^{\mathbf{a}}$ by solving

Definition (Conforming local Neumann problems: lifted residual)

For each $\mathbf{a} \in \mathcal{V}_h$, define $r_h^{\mathbf{a}} \in X_h^{\mathbf{a}} \subset H^1(\omega_{\mathbf{a}})$ by

$$(\nabla r_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = \langle \operatorname{Res}(u_h, \lambda_h), \psi_{\mathbf{a}} v_h \rangle_{V', V} \qquad \forall v_h \in X_h^{\mathbf{a}}.$$

Then set

$$r_h := \sum_{\mathbf{a}\in\mathcal{V}_h} \psi_{\mathbf{a}} r_h^{\mathbf{a}} \in V.$$

Babuška & Strouboulis (2001), Repin (2008)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

informatics **/**mathematics

$H_0^1(\Omega)$ - and $\mathbf{H}(\operatorname{div}, \Omega)$ -conforming local residual liftings

Generic

Definition (Mixed local Neumann problems: equilibrated flux)

For all $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_h^{\mathbf{a}} \in \mathbf{V}_h^{\mathbf{a}}$ by solving

Equivalences Estimates Application Numerics Extension C

$$\begin{aligned} \sigma_h^{\mathbf{a}} &:= \arg \min_{\substack{\mathbf{v}_h \in \mathbf{V}_h^a, \\ \nabla \cdot \mathbf{v}_h = \Pi_{\mathcal{Q}_h}(\psi_{\mathbf{a}} \lambda_h u_h - \nabla u_h \cdot \nabla \psi_{\mathbf{a}})}} \|\psi_{\mathbf{a}} \nabla u_h + \mathbf{v}_h\|_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_h, \\ \end{aligned} \\ \text{and set} \qquad \sigma_h &:= \sum_{\mathbf{a} \in \mathcal{V}_h} \sigma_h^{\mathbf{a}} \in \mathbf{H}(\operatorname{div}, \Omega), \ \nabla \cdot \sigma_h = \lambda_h u_h. \end{aligned}$$

Definition (Conforming local Neumann problems: lifted residual)

For each $\mathbf{a} \in \mathcal{V}_h$, define $r_h^{\mathbf{a}} \in X_h^{\mathbf{a}} \subset H^1(\omega_{\mathbf{a}})$ by

$$(\nabla r_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = \langle \operatorname{Res}(u_h, \lambda_h), \psi_{\mathbf{a}} v_h \rangle_{V', V} \qquad \forall v_h \in X_h^{\mathbf{a}}.$$

Then set

$$r_h := \sum_{\mathbf{a}\in\mathcal{V}_h} \psi_{\mathbf{a}} r_h^{\mathbf{a}} \in V.$$

Babuška & Strouboulis (2001), Repin (2008)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

informatics *mathematics*

Residual Residual and eigenvalue bounds

$H_0^1(\Omega)$ - and $\mathbf{H}(\operatorname{div}, \Omega)$ -conforming local residual liftings

Generic

Definition (Mixed local Neumann problems: equilibrated flux)

For all $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_h^{\mathbf{a}} \in \mathbf{V}_h^{\mathbf{a}}$ by solving

Equivalences Estimates Application Numerics Extension C

$$\begin{split} \boldsymbol{\sigma}_{h}^{\mathbf{a}} &:= \arg \min_{\substack{\mathbf{v}_{h} \in \mathbf{V}_{h}^{\mathbf{a}}, \\ \nabla \cdot \mathbf{v}_{h} = \Pi_{\mathcal{Q}_{h}}(\psi_{\mathbf{a}} \lambda_{h} u_{h} - \nabla u_{h} \cdot \nabla \psi_{\mathbf{a}})} \|\psi_{\mathbf{a}} \nabla u_{h} + \mathbf{v}_{h}\|_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_{h}, \\ \end{split}$$
and set
$$\boldsymbol{\sigma}_{h} &:= \sum_{\mathbf{a} \in \mathcal{V}_{h}} \boldsymbol{\sigma}_{h}^{\mathbf{a}} \in \mathbf{H}(\operatorname{div}, \Omega), \, \nabla \cdot \boldsymbol{\sigma}_{h} = \lambda_{h} u_{h}. \end{split}$$

Definition (Conforming local Neumann problems: lifted residual)

For each $\mathbf{a} \in \mathcal{V}_h$, define $r_h^{\mathbf{a}} \in X_h^{\mathbf{a}} \subset H^1(\omega_{\mathbf{a}})$ by

$$(\nabla r_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = \langle \operatorname{Res}(u_h, \lambda_h), \psi_{\mathbf{a}} v_h \rangle_{V', V} \quad \forall v_h \in X_h^{\mathbf{a}}.$$

Then set

$$r_h := \sum_{\mathbf{a}\in\mathcal{V}_h} \psi_{\mathbf{a}} r_h^{\mathbf{a}} \in V.$$

Babuška & Strouboulis (2001), Repin (2008)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

informatics **/**mathematics

Residual Residual and eigenvalue bounds

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds $H_0^1(\Omega)$ - and $\mathbf{H}(\operatorname{div}, \Omega)$ -conforming local residual liftings

Definition (Mixed local Neumann problems: equilibrated flux)

For all $\mathbf{a} \in \mathcal{V}_h$, prescribe $\sigma_h^{\mathbf{a}} \in \mathbf{V}_h^{\mathbf{a}}$ by solving

$$\begin{split} \boldsymbol{\sigma}_{h}^{\mathbf{a}} &:= \arg \min_{\substack{\mathbf{v}_{h} \in \mathbf{V}_{h}^{\mathbf{a}}, \\ \nabla \cdot \mathbf{v}_{h} = \Pi_{\mathcal{Q}_{h}}(\psi_{\mathbf{a}} \lambda_{h} u_{h} - \nabla u_{h} \cdot \nabla \psi_{\mathbf{a}})} \|\psi_{\mathbf{a}} \nabla u_{h} + \mathbf{v}_{h}\|_{\omega_{\mathbf{a}}} \quad \forall \mathbf{a} \in \mathcal{V}_{h}, \\ \end{split}$$
and set
$$\boldsymbol{\sigma}_{h} &:= \sum_{\mathbf{a} \in \mathcal{V}_{h}} \boldsymbol{\sigma}_{h}^{\mathbf{a}} \in \mathbf{H}(\operatorname{div}, \Omega), \, \nabla \cdot \boldsymbol{\sigma}_{h} = \lambda_{h} u_{h}. \end{split}$$

Definition (Conforming local Neumann problems: lifted residual)

For each $\mathbf{a} \in \mathcal{V}_h$, define $r_h^{\mathbf{a}} \in X_h^{\mathbf{a}} \subset H^1(\omega_{\mathbf{a}})$ by

$$(\nabla r_h^{\mathbf{a}}, \nabla v_h)_{\omega_{\mathbf{a}}} = \langle \operatorname{Res}(u_h, \lambda_h), \psi_{\mathbf{a}} v_h \rangle_{V', V} \qquad \forall v_h \in X_h^{\mathbf{a}}.$$

Then set

$$r_h := \sum_{\mathbf{a} \in \mathcal{V}_h} \psi_{\mathbf{a}} r_h^{\mathbf{a}} \in \mathbf{V}.$$

Babuška & Strouboulis (2001), Repin (2008)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

informatics **/**mathematics

erc

Numerical assumptions

Assumption B (Galerkin orthogonality of the residual to ψ_a)

There holds, for all $\mathbf{a} \in \mathcal{V}_{h}^{\text{int}}$,

 $\lambda_h(u_h, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} - (\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = \langle \operatorname{Res}(u_h, \lambda_h), \psi_{\mathbf{a}} \rangle_{V', V} = \mathbf{0}.$

 $u_h \in \mathbb{P}_p(\mathcal{T}_h)$, p > 1, and spaces $\mathbf{V}_h \times Q_h$ are of degree p + 1.

Numerical assumptions

Assumption B (Galerkin orthogonality of the residual to ψ_{a})

There holds, for all $\mathbf{a} \in \mathcal{V}_{b}^{\text{int}}$,

 $\lambda_h(u_h, \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} - (\nabla u_h, \nabla \psi_{\mathbf{a}})_{\omega_{\mathbf{a}}} = \langle \operatorname{Res}(u_h, \lambda_h), \psi_{\mathbf{a}} \rangle_{V', V} = \mathbf{0}.$

Assumption C (Shape regularity & piecewise polynomial form)

The meshes \mathcal{T}_h are shape regular. There holds

 $u_h \in \mathbb{P}_p(\mathcal{T}_h), p \geq 1$, and spaces $\mathbf{V}_h \times Q_h$ are of degree p + 1.

Dual norm of the residual equivalences

Theorem (Dual norm of the residual equivalences)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ verifying Assumption B be arbitrary. Then

 $< \|\operatorname{Res}(u_h, \lambda_h)\|_{-1} \leq \|\nabla u_h + \sigma_h\|.$

• $C_{\rm st}$ and $C_{\rm cont PE}$ independent of the polynomial degree p • we can compute upper bounds on $C_{\rm st}$ and $C_{\rm cont PF}$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 19/37

Dual norm of the residual equivalences

Theorem (Dual norm of the residual equivalences)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ verifying Assumption B be arbitrary. Then

 $\frac{\langle \operatorname{Res}(u_h,\lambda_h),r_h\rangle_{V',V}}{\|\nabla r_h\|} \leq \|\operatorname{Res}(u_h,\lambda_h)\|_{-1} \leq \|\nabla u_h + \sigma_h\|.$

Moreover, under Assumption C, there holds

 $\|\nabla u_h + \boldsymbol{\sigma}_h\| \leq (d+1)C_{\mathrm{st}}C_{\mathrm{cont},\mathrm{PF}}\|\mathrm{Res}(u_h,\lambda_h)\|_{-1}.$

*C*_{st} and *C*_{cont,PF} independent of the polynomial degree *p*we can compute upper bounds on *C*_{st} and *C*_{cont,PF}

Ern & Vohralík (2015)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 19 / 37

Dual norm of the residual equivalences

Theorem (Dual norm of the residual equivalences)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ verifying Assumption B be arbitrary. Then

$$\frac{\langle \operatorname{Res}(u_h,\lambda_h),r_h\rangle_{V',V}}{\|\nabla r_h\|} \leq \|\operatorname{Res}(u_h,\lambda_h)\|_{-1} \leq \|\nabla u_h + \sigma_h\|.$$

Moreover, under Assumption C, there holds

 $\|\nabla u_h + \boldsymbol{\sigma}_h\| \leq (d+1)C_{\mathrm{st}}C_{\mathrm{cont},\mathrm{PF}}\|\mathrm{Res}(u_h,\lambda_h)\|_{-1}.$

*C*_{st} and *C*_{cont,PF} independent of the polynomial degree *p*we can compute upper bounds on *C*_{st} and *C*_{cont,PF}

Ern & Vohralík (2015)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 19 / 37

Dual norm of the residual bounds

Sketch of the proof.

equilibrated flux σ_h definition, Green's theorem, CS inequality:

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

$$\langle \operatorname{Res}(u_h, \lambda_h), \mathbf{v} \rangle_{\mathbf{V}', \mathbf{V}} = \lambda_h(u_h, \mathbf{v}) - (\nabla u_h, \nabla \mathbf{v}) = (\nabla \cdot \boldsymbol{\sigma}_h, \mathbf{v}) - (\nabla u_h, \nabla \mathbf{v})$$
$$= -(\nabla u_h + \boldsymbol{\sigma}_h, \nabla \mathbf{v}) \le \|\nabla u_h + \boldsymbol{\sigma}_h\| \|\nabla \mathbf{v}\|$$

dual norm and residual lifting *r_h* definitions:

$$\sup_{v \in V, \|\nabla v\|=1} \langle \operatorname{Res}(u_h, \lambda_h), v \rangle_{V', V}$$

$$\geq \frac{\langle \operatorname{Res}(u_h, \lambda_h), r_h \rangle_{V', V}}{\|\nabla r_h\|} = \frac{\sum_{\mathbf{a} \in \mathcal{V}_h} \langle \operatorname{Res}(u_h, \lambda_h), \psi_{\mathbf{a}} r_h^{\mathbf{a}} \rangle_{V', V}}{\|\nabla r_h\|}$$

$$= \frac{\sum_{\mathbf{a} \in \mathcal{V}_h} \|\nabla r_h^{\mathbf{a}}\|_{\omega_{\mathbf{a}}}^2}{\|\nabla r_h\|} \geq \frac{\left\{\sum_{\mathbf{a} \in \mathcal{V}_h} \|\nabla r_h^{\mathbf{a}}\|_{\omega_{\mathbf{a}}}^2\right\}^{\frac{1}{2}}}{(d+1)^{\frac{1}{2}} C_{\operatorname{cont, PF}}}$$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Dual norm of the residual bounds

Sketch of the proof.

equilibrated flux σ_h definition, Green's theorem, CS inequality:

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds.

$$\langle \operatorname{Res}(u_h, \lambda_h), \mathbf{v} \rangle_{\mathbf{V}', \mathbf{V}} = \lambda_h(u_h, \mathbf{v}) - (\nabla u_h, \nabla \mathbf{v}) = (\nabla \cdot \boldsymbol{\sigma}_h, \mathbf{v}) - (\nabla u_h, \nabla \mathbf{v})$$

= $-(\nabla u_h + \boldsymbol{\sigma}_h, \nabla \mathbf{v}) \le \|\nabla u_h + \boldsymbol{\sigma}_h\| \|\nabla \mathbf{v}\|$

dual norm and residual lifting r_h definitions:

$$\begin{split} \sup_{\boldsymbol{v}\in\boldsymbol{V}, \|\nabla\boldsymbol{v}\|=1} &\langle \operatorname{Res}(\boldsymbol{u}_h, \lambda_h), \boldsymbol{v} \rangle_{\boldsymbol{V}', \boldsymbol{V}} \\ \geq \frac{\langle \operatorname{Res}(\boldsymbol{u}_h, \lambda_h), \boldsymbol{r}_h \rangle_{\boldsymbol{V}', \boldsymbol{V}}}{\|\nabla\boldsymbol{r}_h\|} = \frac{\sum_{\mathbf{a}\in\mathcal{V}_h} \langle \operatorname{Res}(\boldsymbol{u}_h, \lambda_h), \psi_{\mathbf{a}} \boldsymbol{r}_h^{\mathbf{a}} \rangle_{\boldsymbol{V}', \boldsymbol{V}}}{\|\nabla\boldsymbol{r}_h\|} \\ = \frac{\sum_{\mathbf{a}\in\mathcal{V}_h} \|\nabla\boldsymbol{r}_h^{\mathbf{a}}\|_{\omega_{\mathbf{a}}}^2}{\|\nabla\boldsymbol{r}_h\|} \geq \frac{\left\{\sum_{\mathbf{a}\in\mathcal{V}_h} \|\nabla\boldsymbol{r}_h^{\mathbf{a}}\|_{\omega_{\mathbf{a}}}^2\right\}^{\frac{1}{2}}}{(d+1)^{\frac{1}{2}} C_{\operatorname{cont}, \operatorname{PF}}} \end{split}$$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Dual norm of the residual bounds

Sketch of the proof.

equilibrated flux σ_h definition, Green's theorem, CS inequality:

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

$$\langle \operatorname{Res}(u_h, \lambda_h), \mathbf{v} \rangle_{\mathbf{V}', \mathbf{V}} = \lambda_h(u_h, \mathbf{v}) - (\nabla u_h, \nabla \mathbf{v}) = (\nabla \cdot \boldsymbol{\sigma}_h, \mathbf{v}) - (\nabla u_h, \nabla \mathbf{v})$$
$$= -(\nabla u_h + \boldsymbol{\sigma}_h, \nabla \mathbf{v}) \le \|\nabla u_h + \boldsymbol{\sigma}_h\| \|\nabla \mathbf{v}\|$$

dual norm and residual lifting r_h definitions:

$$\begin{split} \sup_{\boldsymbol{v}\in\boldsymbol{V},\,\|\nabla\boldsymbol{v}\|=1} &\langle \operatorname{Res}(\boldsymbol{u}_h,\lambda_h),\boldsymbol{v}\rangle_{\boldsymbol{V}',\boldsymbol{V}} \\ \geq \frac{\langle \operatorname{Res}(\boldsymbol{u}_h,\lambda_h),\boldsymbol{r}_h\rangle_{\boldsymbol{V}',\boldsymbol{V}}}{\|\nabla\boldsymbol{r}_h\|} = \frac{\sum_{\boldsymbol{a}\in\mathcal{V}_h} \langle \operatorname{Res}(\boldsymbol{u}_h,\lambda_h),\psi_{\boldsymbol{a}}\boldsymbol{r}_h^{\boldsymbol{a}}\rangle_{\boldsymbol{V}',\boldsymbol{V}}}{\|\nabla\boldsymbol{r}_h\|} \\ = \frac{\sum_{\boldsymbol{a}\in\mathcal{V}_h} \|\nabla\boldsymbol{r}_h^{\boldsymbol{a}}\|_{\omega_{\boldsymbol{a}}}^2}{\|\nabla\boldsymbol{r}_h\|} \geq \frac{\left\{\sum_{\boldsymbol{a}\in\mathcal{V}_h} \|\nabla\boldsymbol{r}_h^{\boldsymbol{a}}\|_{\omega_{\boldsymbol{a}}}^2\right\}^{\frac{1}{2}}}{(d+1)^{\frac{1}{2}}C_{\operatorname{cont,PF}}} \end{split}$$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Outline

Introduction

Laplace eigenvalue problem equivalences

- Generic equivalences
- Dual norm of the residual equivalences

• Representation of the residual and eigenvalue bounds

- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 20 / 37

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

Bounds on the Riesz representation of the residual

Lemma (Poincaré–Friedrichs bound on $|| z_{(h)} ||$)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ be arbitrary. There holds $\|\mathbf{z}_{(h)}\| \leq \frac{1}{\sqrt{\lambda_1}} \|\nabla \mathbf{z}_{(h)}\|.$

Bounds on the Riesz representation of the residual

Lemma (Poincaré–Friedrichs bound on $|| \mathbf{z}_{(h)} ||$)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ be arbitrary. There holds

$$\|\boldsymbol{\boldsymbol{z}}_{(h)}\| \leq \frac{1}{\sqrt{\lambda_1}} \|\operatorname{Res}(\boldsymbol{u}_h, \lambda_h)\|_{-1}.$$

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

Bounds on the Riesz representation of the residual

<u>Lemma (Poincaré–Friedrichs</u> bound on $||z_{(h)}||$)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ be arbitrary. There holds

$$\|\boldsymbol{z}_{(h)}\| \leq \frac{1}{\sqrt{\lambda_1}} \|\operatorname{Res}(\boldsymbol{u}_h, \lambda_h)\|_{-1}.$$

Lemma (Elliptic regularity bound on $\|z_{(h)}\|$)

Let $(u_h, \lambda_h) \in V \times \mathbb{R}$ satisfy Assumption B and let the solution $\zeta_{(h)}$ of $(\nabla \zeta_{(h)}, \nabla \mathbf{v}) = (\mathbf{z}_{(h)}, \mathbf{v})$ $\forall v \in V$

belong to
$$H^{1+\delta}(\Omega)$$
, $0 < \delta \le 1$, with

$$\inf_{\boldsymbol{v}_h \in \boldsymbol{V}_h} \|\nabla(\zeta_{(h)} - \boldsymbol{v}_h)\| \le C_{\mathrm{I}} h^{\delta} |\zeta_{(h)}|_{H^{1+\delta}(\Omega)},$$
 $|\zeta_{(h)}|_{H^{1+\delta}(\Omega)} \le C_{\mathrm{S}} \|\boldsymbol{z}_{(h)}\|.$

Then

$$\|\boldsymbol{z}_{(h)}\| \leq C_{\mathrm{I}}C_{\mathrm{S}}h^{\delta}\|\mathrm{Res}(\boldsymbol{u}_{h},\lambda_{h})\|_{-1}.$$

Equivalences Estimates Application Numerics Extension C Generic Residual Residual and eigenvalue bounds

Estimates of eigenvalues via domain inclusion

$$egin{array}{lll} \Omega\subset\Omega^+&\Rightarrow&\lambda_k\geq\lambda_k(\Omega^+),\ \Omega\supset\Omega^-&\Rightarrow&\lambda_k\leq\lambda_k(\Omega^-), \end{array} &orall k\geq1 \end{array}$$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 22/37

Outline

Introduction

- Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 22 / 37

Outline

Introduction

- 2 Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 22 / 37

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 23 / 37

Guaranteed bounds for the first eigenvalue

Theorem (Eigenvalue bounds)

Let $0 < \underline{\lambda_2} \le \lambda_2$ and $0 < \underline{\lambda_1} \le \lambda_1$. Let $\lambda_h < \underline{\lambda_2}$ and let Assumptions A and B hold. With σ_h and r_h from above, let

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

rc

Guaranteed bounds for the first eigenvalue

Theorem (Eigenvalue bounds)

Let $0 < \underline{\lambda_2} \le \lambda_2$ and $0 < \underline{\lambda_1} \le \lambda_1$. Let $\lambda_h < \underline{\lambda_2}$ and let Assumptions A and B hold. With σ_h and r_h from above, let

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for the first eigenvalue

Theorem (Eigenvalue bounds)

Let $0 < \underline{\lambda_2} \le \lambda_2$ and $0 < \underline{\lambda_1} \le \lambda_1$. Let $\lambda_h < \underline{\lambda_2}$ and let Assumptions A and B hold. With σ_h and r_h from above, let

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for the first eigenvalue

Theorem (Eigenvalue bounds)

Let $0 < \underline{\lambda_2} \le \lambda_2$ and $0 < \underline{\lambda_1} \le \lambda_1$. Let $\lambda_h < \underline{\lambda_2}$ and let Assumptions A and B hold. With σ_h and r_h from above, let

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Outline

Introduction

- 2) Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 23 / 37

Guaranteed bounds for the first eigenvector

Theorem (Eigenvector bounds)

Under the assumptions of the eigenvalue theorem,

 $\|\nabla(u_1-u_h)\|\leq \eta.$

Moreover, under Assumption C,

Guaranteed bounds for the first eigenvector

Theorem (Eigenvector bounds)

Under the assumptions of the eigenvalue theorem,

 $\|\nabla(u_1-u_h)\|\leq \eta.$

Moreover, under Assumption C,

Comments

Eigenvalue bounds

- guaranteed
- optimally convergent
- improvement of the upper bound
- valid under explicit, a posteriori verifiable conditions

Eigenvector bounds

- efficient and polynomial-degree robust
- $\|\nabla u_h + \sigma_h\|^2 = \sum_{K \in \mathcal{T}_h} \|\nabla u_h + \sigma_h\|_K^2 \Rightarrow$ adaptivity-ready
- maximal overestimation guaranteed
- valid under explicit, a posteriori verifiable conditions

Comments

Eigenvalue bounds

- guaranteed
- optimally convergent
- improvement of the upper bound
- valid under explicit, a posteriori verifiable conditions

Eigenvector bounds

• efficient and polynomial-degree robust

•
$$\|\nabla u_h + \sigma_h\|^2 = \sum_{K \in \mathcal{T}_h} \|\nabla u_h + \sigma_h\|_K^2 \Rightarrow$$
adaptivity-ready

- maximal overestimation guaranteed
- valid under explicit, a posteriori verifiable conditions

Outline

Introduction

- 2) Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 25 / 37

Improved bounds for the first eigenvalue

Theorem (Elliptic regularity eigenvalue bounds)

Let the elliptic regularity bound on $\| \mathbf{z}_{(h)} \|$ hold. Let

$$\begin{split} \overbrace{\left(1-\frac{\lambda_{h}}{\lambda_{2}}\right)^{-1}}^{n} C_{1}C_{S}h^{\delta} \|\nabla u_{h}+\sigma_{h}\| =: \beta_{h} < 1, \\ \alpha_{h}^{2} := 2\left(1-\sqrt{1-\beta_{h}^{2}}\right) \leq |\Omega|^{-1}(u_{h},1)^{2}. \end{split}$$
Then
$$\lambda_{1} \geq \lambda_{h} - \overbrace{\left(1+4\lambda_{h}\gamma_{h}^{2}\right)}^{1} \|\nabla u_{h}+\sigma_{h}\|^{2}, \\ \lambda_{1} \leq \lambda_{h} + 2\lambda_{h}\gamma_{h}^{2} \|\nabla u_{h}+\sigma_{h}\|^{2} - \frac{\lambda_{1}}{2} \left(\sqrt{1+\frac{4}{\lambda_{1}}\frac{\langle \operatorname{Res}(u_{h},\lambda_{h}), r_{h}\rangle_{V',V}^{2}}{\|\nabla r_{h}\|^{2}}} - 1\right). \end{split}$$

Improved bounds for the first eigenvalue

Theorem (Elliptic regularity eigenvalue bounds)

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 26 / 37

Improved bounds for the first eigenvalue

Theorem (Elliptic regularity eigenvalue bounds)

Let the elliptic regularity bound on
$$\| \mathbf{z}_{(h)} \|$$
 hold. Let

$$\overbrace{\left(1 - \frac{\lambda_h}{\lambda_2}\right)^{-1} C_I C_S h^{\delta}}^{\gamma_h \setminus 0} \| \nabla u_h + \sigma_h \| =: \beta_h < 1,$$

$$\alpha_h^2 := 2 \left(1 - \sqrt{1 - \beta_h^2}\right) \le |\Omega|^{-1} (u_h, 1)^2.$$
Then

$$\lambda_1 \ge \lambda_h - \overbrace{\left(1 + 4\lambda_h \gamma_h^2\right)}^{\gamma_h} \| \nabla u_h + \sigma_h \|^2,$$

$$\lambda_1 \le \lambda_h + 2\lambda_h \gamma_h^2 \| \nabla u_h + \sigma_h \|^2 - \frac{\lambda_1}{2} \left(\sqrt{1 + \frac{4}{\lambda_1} \frac{\langle \operatorname{Res}(u_h, \lambda_h), r_h \rangle_{V', V}^2}{\| \nabla r_h \|^2}} - 1 \right).$$

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 26 / 37

Improved bounds for the first eigenvector

Theorem (Elliptic regularity eigenvector bounds)

Let the assumptions of the elliptic regularity eigenvalue theorem be verified. Then

$$\|\nabla(\boldsymbol{u}_1 - \boldsymbol{u}_h)\|^2 \leq (1 + 4\lambda_h \gamma_h^2) \|\nabla \boldsymbol{u}_h + \boldsymbol{\sigma}_h\|^2.$$

Moreover, under Assumption C, this estimator is efficient as above.

Outline

Introduction

- 2) Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- 4 Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 27 / 37

Application to conforming finite elements

Finite element method

Find $(u_h, \lambda_h) \in V_h \times \mathbb{R}^+$ with $||u_h|| = 1$ and $(u_h, 1) > 0$, where $V_h := \mathbb{P}_p(\mathcal{T}_h) \cap V$, $p \ge 1$, such that,

$$(\nabla u_h, \nabla v_h) = \lambda_h(u_h, v_h) \qquad \forall v_h \in V_h.$$

Assumptions verification

•
$$V_h \subset V$$

•
$$||u_h|| = 1$$
 and $(u_h, 1) > 0$ by definition

• $\|\nabla u_h\|^2 = \lambda_h$ follows upon taking $v_h = u_h$ (\Rightarrow Assumption A)

- Assumption B follows upon taking $v_h = \psi_a \in V_h$
- Assumption C is technical

Application to conforming finite elements

Finite element method

Find $(u_h, \lambda_h) \in V_h \times \mathbb{R}^+$ with $||u_h|| = 1$ and $(u_h, 1) > 0$, where $V_h := \mathbb{P}_p(\mathcal{T}_h) \cap V$, $p \ge 1$, such that,

$$(\nabla u_h, \nabla v_h) = \lambda_h(u_h, v_h) \quad \forall v_h \in V_h.$$

Assumptions verification

•
$$V_h \subset V$$

- $||u_h|| = 1$ and $(u_h, 1) > 0$ by definition
- $\|\nabla u_h\|^2 = \lambda_h$ follows upon taking $v_h = u_h$ (\Rightarrow Assumption A)
- Assumption B follows upon taking $v_h = \psi_a \in V_h$
- Assumption C is technical

Outline

Introduction

- 2) Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- Application to conforming finite elements
- 5 Numerical experiments
- 6 Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 28 / 37

Unit square

Setting

Parameters

• convex domain: $C_{\rm S}=$ 1, $\delta=$ 1, $C_{\rm I}\approx 1/\sqrt{8}$

•
$$\underline{\lambda_1} = 1.5\pi^2$$
, $\underline{\lambda_2} = 4.5\pi^2$

Effectivity indices

• recall
$$\tilde{\eta}^2 \leq \lambda_h - \lambda_1 \leq \eta^2$$

 $I_{\lambda,\text{eff}}^{\text{lb}} := \frac{\lambda_h - \lambda_1}{\tilde{\eta}^2}, \qquad I_{\lambda,\text{eff}}^{\text{ub}} := \frac{\eta^2}{\lambda_h - \lambda_1}$
• recall $\|\nabla(u_1 - u_h)\| \leq \eta$

Eigenvalue and eigenvector errors and estimators

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 30 / 37

N	h	ndof	λ_1	λ_h	$\lambda_h - \eta^2$	$\lambda_h - \tilde{\eta}^2$	$I^{ m lb}_{\lambda, m eff}$	$I^{\mathrm{ub}}_{\lambda,\mathrm{eff}}$	$E_{\lambda,\mathrm{rel}}$	$I_{u, \rm eff}^{\rm ub}$		
10	0.1414	121	19.7392	20.2284	19.5054	19.8667	1.35	1.48	1.84E-02	1.21		
20	0.0707	441	19.7392	19.8611	19.7164	19.7486	1.08	1.19	1.63E-03	1.09		
40	0.0354	1,681	19.7392	19.7696	19.7356	19.7401	1.03	1.12	2.28E-04	1.06		
80	0.0177	6,561	19.7392	19.7468	19.7384	19.7393	1.02	1.10	4.56E-05	1.05		
160	0.0088	25,921	19.7392	19.7411	19.7390	19.7392	1.02	1.10	1.01E-05	1.05		
	Structured meshes											
N												
/ •	h	ndof	λ_1	λ_h	$\lambda_h - \eta^2$	$\lambda_h - \tilde{\eta}^2$	$I^{ m lb}_{\lambda, m eff}$	$I^{\mathrm{ub}}_{\lambda,\mathrm{eff}}$	$E_{\lambda,\mathrm{rel}}$	$I_{u,\mathrm{eff}}^{\mathrm{ub}}$		
10	h 0.1698	ndof 143	λ ₁ 19.7392	λ _h 20.0336	$\frac{\lambda_h - \eta^2}{18.8265}$	$\lambda_h - \tilde{\eta}^2$ –	$I_{\lambda, eff}^{lb}$	$I_{\lambda, eff}^{ub}$ 4.10	$E_{\lambda,\mathrm{rel}}$ –	<i>I</i> ^{ub} _{<i>u</i>,eff} 2.02		
10 20	h 0.1698 0.0776	ndof 143 523	λ ₁ 19.7392 19.7392	λ _h 20.0336 19.8139	$\lambda_h - \eta^2$ 18.8265 19.6820	$\frac{\lambda_h - \tilde{\eta}^2}{-19.7682}$	<i>I</i> ^{lb} _{λ,eff} – 1.63	$I_{\lambda, eff}^{ub}$ 4.10 1.77	<i>E</i> _{λ,rel} - 4.37E-03	<i>I</i> ^{ub} _{<i>u</i>,eff} 2.02 1.33		
10 20 40	h 0.1698 0.0776 0.0413	ndof 143 523 1,975	λ ₁ 19.7392 19.7392 19.7392	λ _h 20.0336 19.8139 19.7573	$\lambda_h - \eta^2$ 18.8265 19.6820 19.7342	$\lambda_h - \tilde{\eta}^2$ - 19.7682 19.7416	<i>I</i> ^{lb} _{λ,eff} - 1.63 1.15	$I_{\lambda, eff}^{ub}$ 4.10 1.77 1.28	<i>E</i> _{λ,rel} - 4.37E-03 3.75E-04	<i>I</i> ^{ub} _{<i>u</i>,eff} 2.02 1.33 1.13		
10 20 40 80	h 0.1698 0.0776 0.0413 0.0230	ndof 143 523 1,975 7,704	λ_1 19.7392 19.7392 19.7392 19.7392	λ _h 20.0336 19.8139 19.7573 19.7436	$\frac{\lambda_h - \eta^2}{18.8265}$ 19.6820 19.7342 19.7386	$\lambda_h - \tilde{\eta}^2$ 	<i>I</i> ^{lb} _{λ,eff} - 1.63 1.15 1.07	$I_{\lambda, eff}^{ub}$ 4.10 1.77 1.28 1.14	<i>E</i> _{λ,rel} - 4.37E-03 3.75E-04 4.56E-05	<i>I</i> ^{ub} _{<i>u</i>,eff} 2.02 1.33 1.13 1.07		

Unstructured meshes

L-shaped domain

Setting

- $\Omega := (-1, 1)^2 \setminus [0, 1] \times [-1, 0]$
- $\lambda_1 \approx 9.6397238440$

Parameters

•
$$\frac{\lambda_1}{(-1,1)^2} = \frac{\pi^2}{2}$$
 and $\frac{\lambda_2}{2} = \frac{5\pi^2}{4}$ by inclusion into the square

Unstructured meshes

Adaptively refined meshes

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 33 / 37

Ν	h	ndof	λ_1	λ_h	$\lambda_h - \eta^2$	$\lambda_h - \tilde{\eta}^2$	$I^{ m lb}_{\lambda, m eff}$	$I^{ m ub}_{\lambda, m eff}$	$E_{\lambda,\mathrm{rel}}$	$I_{u,\mathrm{eff}}^{\mathrm{ub}}$
30	0.1038	826	9.63972	9.72744	6.88126	9.72064	12.90	32.45	3.42E-01	5.72
60	0.0608	3,154	9.63972	9.66968	8.81618	9.66705	11.39	28.49	9.21E-02	5.38
120	0.0299	12,747	9.63972	9.65032	9.35716	9.64937	11.08	27.65	3.07E-02	5.32
240	0.0164	49,119	9.63972	9.64367	9.53508	9.64331	11.03	27.51	1.13E-02	5.49
360	0.0104	114,806	9.63972	9.64192	9.58128	9.64173	11.08	27.55	6.29E-03	5.40

Unstructured meshes

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 34 / 37

Ν	ŀ	ו	nd	lof)	\ 1)	\ _h	λ_h -	$-\eta^2$	λ_h	$-\tilde{\eta}^2$	$I^{ m lb}_{\lambda, m eff}$	ľ	ıb V,eff	E_{λ}	,rel	$I_{u, \rm eff}^{\rm ub}$
3	0.10	038		826	9.63	3972	9.72	2744	6.88	3126	9.72	2064	12.90) 32	2.45	3.42	E-01	5.72
6	0.0	806	3	,154	9.63	3972	9.66	5968	8.81	618	9.6	6705	11.39	9 28	3.49	9.21	E-02	5.38
12	0.02	299	12	,747	9.63	3972	9.65	5032	9.35	5716	9.64	4937	11.08	3 27	7.65	3.07	E-02	5.32
24	0.0	164	49	,119	9.63	3972	9.64	1367	9.53	3508	9.64	4331	11.03	3 27	7.51	1.13	E-02	5.49
36	0.0	104	114	,806	9.63	3972	9.64	1192	9.58	3128	9.64	4173	11.08	3 <mark>2</mark> 7	7.55	6.29	E-03	5.40
							Uns	struc	ture	ed m	lesł	nes						
-																		-
	Level	nc	lof	λ	1	λ	h	λ_h -	$-\eta^2$	λ_h -	$- \tilde{\eta}^2$	$I^{ m lb}_{\lambda, m ef}$	$I_{\lambda,}^{\rm ub}$	eff	E	,rel	$I_{u,\mathrm{eff}}^{\mathrm{ub}}$	
	2	1,	282	9.63	972	9.70	858	7.56	6083	9.70	303	12.3	9 31.	19	2.48	E-01	5.62	
	6	1,	294	9.63	972	9.68	971	8.35	342	9.68	509	10.8	3 26.	73	1.48	E-01	5.19	
	10	1,	396	9.63	972	9.67	581	8.77	643	9.67	225	10.1	2 24.	92	9.71	E-02	4.98	
	14	2,	792	9.63	972	9.65	137	9.37	756	9.65	016	9.6	3 23.	51	2.87	E-02	4.80	
	18	7,	538	9.63	972	9.64	438	9.53	634	9.64	389	9.4	4 23.	19	1.12	E-02	4.60	
	22	20,	071	9.63	972	9.64	137	9.60	336	9.64	122	10.3	0 <mark>23</mark> .	01 3	3.93	E-03	4.16	
-						Ad	apti	ively	ref	ined	me	eshe	s					_
							•							_				1000

Ν	h	ndof	λ_1	λ_h	$\lambda_h - \eta^2$	$\lambda_h - \tilde{\eta}^2$	$I^{ m lb}_{\lambda, m eff}$	$I^{ m ub}_{\lambda, m eff}$	$E_{\lambda,\mathrm{rel}}$	$I_{u,\mathrm{eff}}^{\mathrm{ub}}$
30	0.1038	826	9.63972	9.72744	6.88126	9.72064	12.90	32.45	3.42E-01	5.72
60	0.0608	3,154	9.63972	9.66968	8.81618	9.66705	11.39	28.49	9.21E-02	5.38
120	0.0299	12,747	9.63972	9.65032	9.35716	9.64937	11.08	27.65	3.07E-02	5.32
240	0.0164	49,119	9.63972	9.64367	9.53508	9.64331	11.03	27.51	1.13E-02	5.49
360	0.0104	114,806	9.63972	9.64192	9.58128	9.64173	11.08	27.55	6.29E-03	5.40

Unstructured meshes

Level	ndof	λ_1	λ_h	$\lambda_h - \eta^2$	$\lambda_h - \tilde{\eta}^2$	$I^{ m lb}_{\lambda, m eff}$	$I^{ m ub}_{\lambda, m eff}$	$E_{\lambda,\mathrm{rel}}$	$I_{u, \rm eff}^{\rm ub}$
1	176	9.63972	10.0518	5.43638	9.99630	7.43	11.20	5.91E-01	3.33
6	190	9.63972	9.94166	7.12891	9.89532	6.52	9.32	3.25E-01	3.04
11	426	9.63972	9.72012	9.04493	9.70628	5.81	8.40	7.05E-02	2.90
16	1,533	9.63972	9.66102	9.48546	9.65725	5.65	8.24	1.79E-02	2.87
21	5,671	9.63972	9.64535	9.59920	9.64435	5.61	8.20	4.69E-03	2.75
26	20,587	9.63972	9.64125	9.62872	9.64101	6.14	8.19	1.28E-03	2.45

Adaptively refined meshes, λ_h in place of λ_1 , λ_h in place of λ_2 erc

Outline

Introduction

- 2) Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

Nonconforming discretizations

Nonconforming setting

• $u_h \notin V$, $||u_h|| \neq 1$ • $||\nabla u_h||^2 \neq \lambda_h$

Main tools

• conforming projection, scaling

$$(\nabla s, \nabla v) = (\nabla u_h, \nabla v) \qquad \forall v \in V; \quad \tilde{s} := \frac{s}{||s|}$$

• conforming eigenvector reconstruction

$$\mathbf{s}_h^{\mathbf{a}} := \arg\min_{\mathbf{v}_h \in W_h^{\mathbf{a}} \subset H_0^{\mathbf{1}}(\boldsymbol{\omega}_{\mathbf{a}})} \|\nabla(\psi_{\mathbf{a}} u_h - v_h)\|_{\boldsymbol{\omega}_{\mathbf{a}}},$$

$$h := \sum_{\mathbf{a} \in \mathcal{V}_h} s_h^{\mathbf{a}}$$

Unified framework

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin elements
- mixed finite elements

Nonconforming discretizations

Nonconforming setting

u_h ∉ *V*, ||*u_h*|| ≠ 1
 ||∇*u_h*||² ≠ λ_h

Main tools

conforming projection, scaling

$$(\nabla s, \nabla v) = (\nabla u_h, \nabla v) \qquad \forall v \in V; \quad \tilde{s} := \frac{s}{\|s\|}$$

• conforming eigenvector reconstruction

$$s_h^{\mathbf{a}} := \arg\min_{\mathbf{v}_h \in W_h^{\mathbf{a}} \subset \mathcal{H}_0^{\mathbf{1}}(\omega_{\mathbf{a}})} \| \nabla (\psi_{\mathbf{a}} u_h - v_h) \|_{\omega_{\mathbf{a}}}, \qquad s_h := \sum_{\mathbf{a} \in \mathcal{V}_h} s_h^{\mathbf{a}}$$

Unified framework

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin elements
- mixed finite elements

Nonconforming discretizations

Nonconforming setting

u_h ∉ *V*, ||*u_h*|| ≠ 1
 ||∇*u_h*||² ≠ λ_h

Main tools

conforming projection, scaling

$$(\nabla s, \nabla v) = (\nabla u_h, \nabla v) \qquad \forall v \in V; \quad \tilde{s} := \frac{s}{\|s\|}$$

• conforming eigenvector reconstruction

$$m{s}^{\mathbf{a}}_h := rg \min_{m{v}_h \in W^{\mathbf{a}}_h \subset H^1_0(\omega_{\mathbf{a}})} \|
abla(\psi_{\mathbf{a}} u_h - m{v}_h) \|_{\omega_{\mathbf{a}}}, \qquad m{s}_h := \sum_{\mathbf{a} \in \mathcal{V}_h} m{s}^{\mathbf{a}}_h$$

Unified framework

- conforming finite elements
- nonconforming finite elements
- discontinuous Galerkin elements
- mixed finite elements

Outline

Introduction

- Laplace eigenvalue problem equivalences
 - Generic equivalences
 - Dual norm of the residual equivalences
 - Representation of the residual and eigenvalue bounds
- 3 A posteriori estimates
 - Eigenvalues
 - Eigenvectors
 - Improvements under elliptic regularity
- Application to conforming finite elements
- 5 Numerical experiments
- Extension to nonconforming discretizations
 - Conclusions and future directions

E. Cancès, G. Dusson, Y. Maday, B. Stamm, M. Vohralík

Guaranteed bounds for eigenvalues & eigenvectors 35 / 37

Conclusions and future directions

Conclusions

- guaranteed upper and lower bounds for the first eigenvalue
- guaranteed and polynomial-degree robust bounds for the associated eigenvector
- general framework

Ongoing work

• extension to nonlinear eigenvalue problems

Conclusions and future directions

Conclusions

- guaranteed upper and lower bounds for the first eigenvalue
- guaranteed and polynomial-degree robust bounds for the associated eigenvector
- general framework

Ongoing work

extension to nonlinear eigenvalue problems

Bibliography

- ERN A., VOHRALÍK M., Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, *SIAM J. Numer. Anal.*, **53** (2015), 1058–1081.
- CANCÈS E., DUSSON G., MADAY Y., STAMM B., VOHRALÍK M., Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations, HAL Preprint 01194364.
- CANCÈS E., DUSSON G., MADAY Y., STAMM B., VOHRALÍK M., Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework, in preparation.

Thank you for your attention!

