Adaptive regularization, linearization, and numerical solution of unsteady nonlinear problems

Martin Vohralík

INRIA Paris-Rocquencourt

joint work with C. Cancès, D. A. Di Pietro, A. Ern, I. S. Pop, M. F. Wheeler, and S. Yousef

Banff, September 18, 2012

Outline

Introduction

- Nonlinear diffusion
 - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Applications
 - Numerical results
- 3 The Stefan problem
 - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- Two-phase immiscible incompressible flow
 - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results
 - Conclusions and future directions

Outline

Introduction

- Nonlinear diffusion
 - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Applications
 - Numerical results
- 3 The Stefan problem
 - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- 4 Two-phase immiscible incompressible flow
 - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results
- Conclusions and future directions

Numerical approximation of a nonlinear, unsteady PDE

Exact and approximate solution

- let *u* be the weak solution of A(u) = f, A nonlinear, unsteady, posed on Ω × (0, T)
- let $u_{h\tau}$ be its approximate numerical solution, $A_{h\tau}(u_{h\tau}) = f_{h\tau}$

Solution algorithm

- introduce a temporal mesh of (0, *T*) given by the time steps *tⁿ*, 0 ≤ *n* ≤ *N*
- introduce a spatial mesh \mathcal{T}_h^n of Ω on each t^n
- on each t^n , solve a nonlinear algebraic problem $A_h^n(u_h^n) = f_h^n$

Numerical approximation of a nonlinear, unsteady PDE

Exact and approximate solution

- let *u* be the weak solution of A(u) = f, A nonlinear, unsteady, posed on Ω × (0, T)
- let $u_{h\tau}$ be its approximate numerical solution, $A_{h\tau}(u_{h\tau}) = f_{h\tau}$

Solution algorithm

- introduce a temporal mesh of (0, *T*) given by the time steps *tⁿ*, 0 ≤ *n* ≤ *N*
- introduce a spatial mesh \mathcal{T}_h^n of Ω on each t^n
- on each t^n , solve a nonlinear algebraic problem $A_h^n(u_h^n) = f_h^n$

Regularization, linearization, and algebraic solution

Regularization

- regularize the nonlinear operator A_h^n by $A_h^{n,\epsilon}$
- choice of ϵ ?

Iterative linearization

A_h^{n,e,k-1}u_h^{n,e,k} = f_h^{n,k-1}: A_h^{n,e,k-1} linear, linearization step k
 when do we stop?

Iterative algebraic solution

- iterative algebraic solver employed: step *i* approximation $u_h^{n,\epsilon,k,i}$
- when do we stop?

- the approximate solution u_h^{n,e,k,i} that we have as an outcome does not solve A_hⁿ(u_hⁿ) = f_hⁿ
- how big is the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$?

Regularization

- regularize the nonlinear operator A_h^n by $A_h^{n,\epsilon}$
- choice of ϵ ?

Iterative linearization

A_h^{n,c,k-1}u_h^{n,c,k} = f_h^{n,k-1}: A_h^{n,c,k-1} linear, linearization step k
 when do we stop?

Iterative algebraic solution

- iterative algebraic solver employed: step *i* approximation $u_h^{n,\epsilon,k,i}$
- when do we stop?

- the approximate solution u_h^{n,e,k,i} that we have as an outcome does not solve A_hⁿ(u_hⁿ) = f_hⁿ
- how big is the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$?

Regularization

- regularize the nonlinear operator A_h^n by $A_h^{n,\epsilon}$
- choice of ϵ ?

Iterative linearization

•
$$A_h^{n,\epsilon,k-1}u_h^{n,\epsilon,k} = f_h^{n,k-1}$$
: $A_h^{n,\epsilon,k-1}$ linear, linearization step k
• when do we stop?

Iterative algebraic solution

- iterative algebraic solver employed: step *i* approximation $u_h^{n,\epsilon,k,i}$
- when do we stop?

- the approximate solution u_h^{n,e,k,i} that we have as an outcome does not solve A_hⁿ(u_hⁿ) = f_hⁿ
- how big is the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$?

Regularization

- regularize the nonlinear operator A_h^n by $A_h^{n,\epsilon}$
- choice of ϵ ?

Iterative linearization

•
$$A_h^{n,\epsilon,k-1}u_h^{n,\epsilon,k} = f_h^{n,k-1}$$
: $A_h^{n,\epsilon,k-1}$ linear, linearization step k
• when do we stop?

Iterative algebraic solution

- iterative algebraic solver employed: step *i* approximation $u_h^{n,\epsilon,k,i}$
- when do we stop?

- the approximate solution u_h^{n,e,k,i} that we have as an outcome does not solve A_hⁿ(u_hⁿ) = f_hⁿ
- how big is the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$?

Regularization

- regularize the nonlinear operator A_h^n by $A_h^{n,\epsilon}$
- choice of ϵ ?

Iterative linearization

•
$$A_h^{n,\epsilon,k-1}u_h^{n,\epsilon,k} = f_h^{n,k-1}$$
: $A_h^{n,\epsilon,k-1}$ linear, linearization step *k*
• when do we stop?

Iterative algebraic solution

- iterative algebraic solver employed: step *i* approximation $u_h^{n,\epsilon,k,i}$
- when do we stop?

- the approximate solution u_h^{n, e, k, i} that we have as an outcome does not solve A_hⁿ(u_hⁿ) = f_hⁿ
- how big is the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$?

Regularization

- regularize the nonlinear operator A_h^n by $A_h^{n,\epsilon}$
- choice of ϵ ?

Iterative linearization

•
$$A_h^{n,\epsilon,k-1}u_h^{n,\epsilon,k} = f_h^{n,k-1}$$
: $A_h^{n,\epsilon,k-1}$ linear, linearization step *k*
• when do we stop?

Iterative algebraic solution

- iterative algebraic solver employed: step *i* approximation $u_h^{n,\epsilon,k,i}$
- when do we stop?

- the approximate solution u_h^{n, e, k, i} that we have as an outcome does not solve A_hⁿ(u_hⁿ) = f_hⁿ
- how big is the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$?

Regularization

- regularize the nonlinear operator A_h^n by $A_h^{n,\epsilon}$
- choice of ϵ ?

Iterative linearization

•
$$A_h^{n,\epsilon,k-1}u_h^{n,\epsilon,k} = f_h^{n,k-1}$$
: $A_h^{n,\epsilon,k-1}$ linear, linearization step *k*
• when do we stop?

Iterative algebraic solution

- iterative algebraic solver employed: step *i* approximation $u_h^{n,\epsilon,k,i}$
- when do we stop?

- the approximate solution u^{n,ε,k,i}_h that we have as an outcome does not solve Aⁿ_h(uⁿ_h) = fⁿ_h
- how big is the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$?

Regularization

- regularize the nonlinear operator A_h^n by $A_h^{n,\epsilon}$
- choice of ϵ ?

Iterative linearization

•
$$A_h^{n,\epsilon,k-1}u_h^{n,\epsilon,k} = f_h^{n,k-1}$$
: $A_h^{n,\epsilon,k-1}$ linear, linearization step *k*
• when do we stop?

Iterative algebraic solution

- iterative algebraic solver employed: step *i* approximation $u_h^{n,\epsilon,k,i}$
- when do we stop?

- the approximate solution u^{n,ε,k,i}_h that we have as an outcome does not solve Aⁿ_h(uⁿ_h) = fⁿ_h
- how big is the overall error $\|u u_{h\tau}^{\epsilon,k,i}\|_{\Omega \times (0,T)}$?

Aims and benefits of this work

Aims of this work

- give a guaranteed, robust, and tight upper bound on the overall error $\|u u_{h\tau}^{\epsilon,k,i}\|_{\Omega \times (0,T)}$
- distinguish the different error components (algebraic, linearization, regularization, spatial, temporal)
- **stop** the **iterative solvers** whenever algebraic/linearization errors do not affect the overall error significantly
- adjust the regularization parameter so that it does not to affect the overall error significantly
- equilibrate the space and time error components

- optimal computable overall error bound
- improvement of approximation precision
- important computational savings

Aims and benefits of this work

Aims of this work

- give a guaranteed, robust, and tight upper bound on the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$
- distinguish the different error components (algebraic, linearization, regularization, spatial, temporal)
- **stop** the **iterative solvers** whenever algebraic/linearization errors do not affect the overall error significantly
- adjust the regularization parameter so that it does not to affect the overall error significantly
- equilibrate the space and time error components

- optimal computable overall error bound
- improvement of approximation precision
- important computational savings

Aims and benefits of this work

Aims of this work

- give a guaranteed, robust, and tight upper bound on the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$
- distinguish the different error components (algebraic, linearization, regularization, spatial, temporal)
- **stop** the **iterative solvers** whenever algebraic/linearization errors do not affect the overall error significantly
- adjust the regularization parameter so that it does not to affect the overall error significantly
- equilibrate the space and time error components

- optimal computable overall error bound
- improvement of approximation precision
- important computational savings

Aims and benefits of this work

Aims of this work

- give a guaranteed, robust, and tight upper bound on the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$
- distinguish the different error components (algebraic, linearization, regularization, spatial, temporal)
- **stop** the **iterative solvers** whenever algebraic/linearization errors do not affect the overall error significantly
- adjust the regularization parameter so that it does not to affect the overall error significantly
- equilibrate the space and time error components

- optimal computable overall error bound
- improvement of approximation precision
- important computational savings

Aims and benefits of this work

Aims of this work

- give a guaranteed, robust, and tight upper bound on the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$
- distinguish the different error components (algebraic, linearization, regularization, spatial, temporal)
- **stop** the **iterative solvers** whenever algebraic/linearization errors do not affect the overall error significantly
- adjust the regularization parameter so that it does not to affect the overall error significantly
- equilibrate the space and time error components

- optimal computable overall error bound
- improvement of approximation precision
- important computational savings

Aims and benefits of this work

Aims of this work

- give a guaranteed, robust, and tight upper bound on the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$
- distinguish the different error components (algebraic, linearization, regularization, spatial, temporal)
- **stop** the **iterative solvers** whenever algebraic/linearization errors do not affect the overall error significantly
- adjust the regularization parameter so that it does not to affect the overall error significantly
- equilibrate the space and time error components

Benefits

- optimal computable overall error bound
- improvement of approximation precision
- important computational savings

Aims and benefits of this work

Aims of this work

- give a guaranteed, robust, and tight upper bound on the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$
- distinguish the different error components (algebraic, linearization, regularization, spatial, temporal)
- **stop** the **iterative solvers** whenever algebraic/linearization errors do not affect the overall error significantly
- adjust the regularization parameter so that it does not to affect the overall error significantly
- equilibrate the space and time error components

Benefits

- optimal computable overall error bound
- improvement of approximation precision
- important computational savings

Aims and benefits of this work

Aims of this work

- give a guaranteed, robust, and tight upper bound on the overall error $||u u_{h\tau}^{\epsilon,k,i}||_{\Omega \times (0,T)}$
- distinguish the different error components (algebraic, linearization, regularization, spatial, temporal)
- **stop** the **iterative solvers** whenever algebraic/linearization errors do not affect the overall error significantly
- adjust the regularization parameter so that it does not to affect the overall error significantly
- equilibrate the space and time error components

- optimal computable overall error bound
- improvement of approximation precision
- important computational savings

Previous results

Stopping criteria

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid solver
- Maday and Patera (2000), linear functional errors
- Arioli (2000's), general algebraic solvers

Inexact Newton method

- Eisenstat and Walker (1990's)
- Moret (1989)

Modeling error

- Ladevèze (since 1980's)
- Braack and Ern (2000's)
- Babuška and Oden (2000's)

Previous results

Stopping criteria

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid solver
- Maday and Patera (2000), linear functional errors
- Arioli (2000's), general algebraic solvers

Inexact Newton method

- Eisenstat and Walker (1990's)
- Moret (1989)

Modeling error

- Ladevèze (since 1980's)
- Braack and Ern (2000's)
- Babuška and Oden (2000's)

Previous results

Stopping criteria

- engineering literature, since 1950's
- Becker, Johnson, and Rannacher (1995), multigrid solver
- Maday and Patera (2000), linear functional errors
- Arioli (2000's), general algebraic solvers

Inexact Newton method

- Eisenstat and Walker (1990's)
- Moret (1989)

Modeling error

- Ladevèze (since 1980's)
- Braack and Ern (2000's)
- Babuška and Oden (2000's)

Previous results – a posteriori error estimates

Nonlinear steady problems

- Ladevèze (since 1990's), guaranteed upper bound
- Han (1994), general framework
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), guaranteed estimates
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems

- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems

- Verfürth (1998), framework for energy norm control
- Nochetto, Schmidt, Verdi (2000), degenerate problems
- Ohlberger (2001), non energy-norm estimates

Previous results – a posteriori error estimates

Nonlinear steady problems

- Ladevèze (since 1990's), guaranteed upper bound
- Han (1994), general framework
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), guaranteed estimates
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems

- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems

- Verfürth (1998), framework for energy norm control
- Nochetto, Schmidt, Verdi (2000), degenerate problems
- Ohlberger (2001), non energy-norm estimates

Previous results – a posteriori error estimates

Nonlinear steady problems

- Ladevèze (since 1990's), guaranteed upper bound
- Han (1994), general framework
- Verfürth (1994), residual estimates
- Carstensen and Klose (2003), guaranteed estimates
- Chaillou and Suri (2006, 2007), linearization errors
- Kim (2007), guaranteed estimates, loc. cons. methods

Linear unsteady problems

- Bieterman and Babuška (1982), introduction
- Verfürth (2003), efficiency, robustness wrt the final time

Nonlinear unsteady problems

- Verfürth (1998), framework for energy norm control
- Nochetto, Schmidt, Verdi (2000), degenerate problems
- Ohlberger (2001), non energy-norm estimates

Outline

- Nonlinear diffusion
 - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Applications
 - Numerical results
- - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results

Outline

- Nonlinear diffusion
 - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate
 - ۲
 - Applications
 - Numerical results
- - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results

Problem Estimate Stop. crit. & eff. Applications Num. res.

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = f \qquad \text{in } \Omega, \\ \boldsymbol{u} = \mathbf{0} \qquad \text{on } \partial \Omega$$

quasi-linear diffusion problem

$$\sigma(v,\xi) = \underline{\mathbf{A}}(v)\xi \qquad orall (v,\xi) \in \mathbb{R} imes \mathbb{R}^d$$

• Leray–Lions problem

$$oldsymbol{\sigma}(oldsymbol{v},oldsymbol{\xi}) = oldsymbol{\underline{A}}(oldsymbol{\xi})oldsymbol{\xi} \in \mathbb{R}^d$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^q(\Omega)$$

Example

p-Laplacian: Leray–Lions setting with $\underline{A}(\xi) = |\xi|^{p-2}\underline{I}$ Nonlinear operator $A : V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Problem Estimate Stop. crit. & eff. Applications Num. res.

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = \boldsymbol{f} \qquad \text{in } \Omega, \\ \boldsymbol{u} = \boldsymbol{0} \qquad \text{on } \partial \Omega$$

quasi-linear diffusion problem

$$\sigma(\mathbf{v}, oldsymbol{\xi}) = \mathbf{\underline{A}}(\mathbf{v}) oldsymbol{\xi} \qquad orall (\mathbf{v}, oldsymbol{\xi}) \in \mathbb{R} imes \mathbb{R}^d$$

Leray–Lions problem

$$\sigma(v,\xi) = \underline{A}(\xi) \xi \qquad orall \xi \in \mathbb{R}^d$$

•
$$p > 1$$
, $q := \frac{p}{p-1}$, $f \in L^q(\Omega)$

Example

p-Laplacian: Leray–Lions setting with $\underline{A}(\xi) = |\xi|^{p-2}\underline{I}$ Nonlinear operator $A : V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Problem Estimate Stop. crit. & eff. Applications Num. res.

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = f \qquad \text{in } \Omega, \\ \boldsymbol{u} = \mathbf{0} \qquad \text{on } \partial \Omega$$

quasi-linear diffusion problem

$$\sigma(\mathbf{v}, \mathbf{\xi}) = \mathbf{\underline{A}}(\mathbf{v})\mathbf{\xi} \qquad orall (\mathbf{v}, \mathbf{\xi}) \in \mathbb{R} imes \mathbb{R}^d$$

Leray–Lions problem

$$\sigma(\mathbf{v}, oldsymbol{\xi}) = \mathbf{\underline{A}}(oldsymbol{\xi}) oldsymbol{\xi} \in \mathbb{R}^d$$

• $p > 1, q := \frac{p}{p-1}, f \in L^q(\Omega)$

Example

p-Laplacian: Leray–Lions setting with $\underline{A}(\xi) = |\xi|^{p-2}\underline{I}$ Nonlinear operator $A : V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Problem Estimate Stop. crit. & eff. Applications Num. res.

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = f \qquad \text{in } \Omega, \\ \boldsymbol{u} = \mathbf{0} \qquad \text{on } \partial \Omega$$

quasi-linear diffusion problem

$$\sigma(\mathbf{v}, oldsymbol{\xi}) = \mathbf{\underline{A}}(\mathbf{v}) oldsymbol{\xi} \qquad orall (\mathbf{v}, oldsymbol{\xi}) \in \mathbb{R} imes \mathbb{R}^d$$

Leray–Lions problem

$$\sigma(\mathbf{v}, oldsymbol{\xi}) = \mathbf{\underline{A}}(oldsymbol{\xi}) oldsymbol{\xi} \in \mathbb{R}^d$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^{q}(\Omega)$$

Example

p-Laplacian: Leray–Lions setting with $\underline{A}(\xi) = |\xi|^{p-2}\underline{I}$ Nonlinear operator $A : V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Problem Estimate Stop. crit. & eff. Applications Num. res.

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = \boldsymbol{f} \qquad \text{in } \Omega, \\ \boldsymbol{u} = \boldsymbol{0} \qquad \text{on } \partial \Omega$$

quasi-linear diffusion problem

$$\sigma(\mathbf{v}, \mathbf{\xi}) = \mathbf{\underline{A}}(\mathbf{v})\mathbf{\xi} \qquad orall (\mathbf{v}, \mathbf{\xi}) \in \mathbb{R} imes \mathbb{R}^d$$

Leray–Lions problem

$$\sigma(\mathbf{v}, oldsymbol{\xi}) = \mathbf{\underline{A}}(oldsymbol{\xi}) oldsymbol{\xi} \in \mathbb{R}^d$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^q(\Omega)$$

Example

p-Laplacian: Leray–Lions setting with $\underline{\mathbf{A}}(\boldsymbol{\xi}) = |\boldsymbol{\xi}|^{p-2}\underline{\mathbf{I}}$ Nonlinear operator $A : V := W_0^{1,p}(\Omega) \to V'$ $\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Problem Estimate Stop. crit. & eff. Applications Num. res.

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) = \boldsymbol{f} \qquad \text{in } \Omega, \\ \boldsymbol{u} = \boldsymbol{0} \qquad \text{on } \partial \Omega$$

quasi-linear diffusion problem

$$\sigma(\mathbf{v}, \mathbf{\xi}) = \mathbf{\underline{A}}(\mathbf{v})\mathbf{\xi} \qquad orall (\mathbf{v}, \mathbf{\xi}) \in \mathbb{R} imes \mathbb{R}^d$$

Leray–Lions problem

$$\sigma(oldsymbol{v},oldsymbol{\xi}) = oldsymbol{\underline{A}}(oldsymbol{\xi})oldsymbol{\xi} \, igsires \, \, orall oldsymbol{\xi} \in \mathbb{R}^d$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^q(\Omega)$$

Example

p-Laplacian: Leray–Lions setting with $\underline{A}(\xi) = |\xi|^{p-2}\underline{I}$ Nonlinear operator $A : V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation Find $u \in V$ such that

$$A(u) = f$$
 in V'

Problem Estimate Stop. crit. & eff. Applications Num. res.

Quasi-linear elliptic problem

Quasi-linear elliptic problem

$$\begin{aligned}
-\nabla \cdot \boldsymbol{\sigma}(\boldsymbol{u}, \nabla \boldsymbol{u}) &= f & \text{in } \Omega, \\
\boldsymbol{u} &= \mathbf{0} & \text{on } \partial \Omega
\end{aligned}$$

quasi-linear diffusion problem

$$\sigma(\mathbf{v}, oldsymbol{\xi}) = \mathbf{\underline{A}}(\mathbf{v}) oldsymbol{\xi} \qquad orall (\mathbf{v}, oldsymbol{\xi}) \in \mathbb{R} imes \mathbb{R}^d$$

Leray–Lions problem

$$\sigma(oldsymbol{v},oldsymbol{\xi}) = oldsymbol{\underline{A}}(oldsymbol{\xi})oldsymbol{\xi} \, igsires \, \, orall oldsymbol{\xi} \in \mathbb{R}^d$$

•
$$p > 1, q := \frac{p}{p-1}, f \in L^{q}(\Omega)$$

Example

p-Laplacian: Leray–Lions setting with $\underline{\mathbf{A}}(\boldsymbol{\xi}) = |\boldsymbol{\xi}|^{p-2}\underline{\mathbf{I}}$ Nonlinear operator $A: V := W_0^{1,p}(\Omega) \to V'$

$$\langle A(u), v \rangle_{V',V} := (\sigma(u, \nabla u), \nabla v)$$

Weak formulation

Find $u \in V$ such that

$$A(u) = f$$
 in V'

Approximate solution

• $u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$ not necessarily in V• $V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \}$

Error measure

$$\mathcal{J}_{u}(u_{h}^{k,i}) := \sup_{\varphi \in V; \, \|\nabla\varphi\|_{\rho} = 1} (\sigma(u, \nabla u) - \sigma(u_{h}^{k,i}, \nabla u_{h}^{k,i}), \nabla\varphi) + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$$
$$\mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i}) := \left\{ \sum_{K \in \mathcal{T}_{h}} \sum_{e \in \mathcal{E}_{K}} h_{e}^{1-q} \| \llbracket u - u_{h}^{k,i} \rrbracket \|_{q,e}^{q} \right\}^{1/q}$$

- weak difference of the fluxes (dual norm of the residual) + nonconformity (computable jump term)
- there holds $\mathcal{J}_u(u_h^{k,i}) = 0$ if and only if $u = u_h^{k,i}$
- physical relevance: strong difference of the fluxes + nonconformity

Approximate solution

- $u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$ not necessarily in V
- $V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_{\mathcal{K}} \in W^{1,p}(\mathcal{K}) \quad \forall \mathcal{K} \in \mathcal{T}_h \}$

Error measure

$$\mathcal{J}_{u}(u_{h}^{k,i}) := \sup_{\varphi \in V; \, \|\nabla\varphi\|_{\rho} = 1} (\sigma(u, \nabla u) - \sigma(u_{h}^{k,i}, \nabla u_{h}^{k,i}), \nabla\varphi) + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$$
$$\mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i}) := \left\{ \sum_{K \in \mathcal{T}_{h}} \sum_{e \in \mathcal{E}_{K}} h_{e}^{1-q} \| \llbracket u - u_{h}^{k,i} \rrbracket \|_{q,e}^{q} \right\}^{1/q}$$

- weak difference of the fluxes (dual norm of the residual) + nonconformity (computable jump term)
- there holds $\mathcal{J}_u(u_h^{k,i}) = 0$ if and only if $u = u_h^{k,i}$
- physical relevance: strong difference of the fluxes + nonconformity

Approximate solution

• $u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$ not necessarily in V• $V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \}$

Error measure

$$\mathcal{J}_{u}(u_{h}^{k,i}) := \sup_{\varphi \in V; \, \|\nabla\varphi\|_{p}=1} (\sigma(u,\nabla u) - \sigma(u_{h}^{k,i},\nabla u_{h}^{k,i}), \nabla\varphi) + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$$
$$\mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i}) := \left\{ \sum_{K \in \mathcal{T}_{h}} \sum_{e \in \mathcal{E}_{K}} h_{e}^{1-q} \| [\![u - u_{h}^{k,i}]\!] \|_{q,e}^{q} \right\}^{1/q}$$

- weak difference of the fluxes (dual norm of the residual) + nonconformity (computable jump term)
- there holds $\mathcal{J}_u(u_h^{k,i}) = 0$ if and only if $u = u_h^{k,i}$
- physical relevance: strong difference of the fluxes + nonconformity

Approximate solution

• $u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$ not necessarily in V• $V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \}$

Error measure

$$\mathcal{J}_{u}(u_{h}^{k,i}) := \sup_{\varphi \in V; \, \|\nabla\varphi\|_{p}=1} (\sigma(u,\nabla u) - \sigma(u_{h}^{k,i},\nabla u_{h}^{k,i}), \nabla\varphi) + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$$
$$\mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i}) := \left\{ \sum_{K \in \mathcal{T}_{h}} \sum_{e \in \mathcal{E}_{K}} h_{e}^{1-q} \| \llbracket u - u_{h}^{k,i} \rrbracket \|_{q,e}^{q} \right\}^{1/q}$$

- weak difference of the fluxes (dual norm of the residual) + nonconformity (computable jump term)
- there holds $\mathcal{J}_u(u_h^{k,i}) = 0$ if and only if $u = u_h^{k,i}$
- physical relevance: strong difference of the fluxes + nonconformity

Approximate solution

• $u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$ not necessarily in V• $V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \}$

Error measure

$$\mathcal{J}_{u}(u_{h}^{k,i}) := \sup_{\varphi \in V; \, \|\nabla\varphi\|_{p}=1} (\sigma(u,\nabla u) - \sigma(u_{h}^{k,i},\nabla u_{h}^{k,i}), \nabla\varphi) + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$$
$$\mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i}) := \left\{ \sum_{K \in \mathcal{T}_{h}} \sum_{e \in \mathcal{E}_{K}} h_{e}^{1-q} \| \llbracket u - u_{h}^{k,i} \rrbracket \|_{q,e}^{q} \right\}^{1/q}$$

- weak difference of the fluxes (dual norm of the residual) + nonconformity (computable jump term)
- there holds $\mathcal{J}_u(u_h^{k,i}) = 0$ if and only if $u = u_h^{k,i}$
- physical relevance: strong difference of the fluxes + nonconformity

Approximate solution

• $u_h^{k,i} \in V(\mathcal{T}_h) \not\subset V, u_h^{k,i}$ not necessarily in V• $V(\mathcal{T}_h) := \{ v \in L^p(\Omega), v |_K \in W^{1,p}(K) \quad \forall K \in \mathcal{T}_h \}$

Error measure

$$\mathcal{J}_{u}(u_{h}^{k,i}) := \sup_{\varphi \in V; \, \|\nabla\varphi\|_{p}=1} (\sigma(u,\nabla u) - \sigma(u_{h}^{k,i},\nabla u_{h}^{k,i}), \nabla\varphi) + \mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i})$$
$$\mathcal{J}_{u,\mathrm{NC}}(u_{h}^{k,i}) := \left\{ \sum_{K \in \mathcal{T}_{h}} \sum_{e \in \mathcal{E}_{K}} h_{e}^{1-q} \| \llbracket u - u_{h}^{k,i} \rrbracket \|_{q,e}^{q} \right\}^{1/q}$$

- weak difference of the fluxes (dual norm of the residual) + nonconformity (computable jump term)
- there holds $\mathcal{J}_u(u_h^{k,i}) = 0$ if and only if $u = u_h^{k,i}$
- physical relevance: strong difference of the fluxes + nonconformity

Outline

- Nonlinear diffusion
 - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate

 - Applications
 - Numerical results
- - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results

A posteriori error estimate

Assumption A (Total flux reconstruction)

There exists a flux reconstruction $\mathbf{t}_{h}^{k,i} \in \mathbf{H}^{q}(\operatorname{div}, \Omega)$ and an algebraic remainder $\rho_{h}^{k,i} \in L^{q}(\Omega)$ such that

$$\nabla \cdot \mathbf{t}_{h}^{k,i} = f_{h} - \rho_{h}^{k,i},$$

with the data approximation f_{h} s.t. $(f_{h}, 1)_{K} = (f, 1)_{K} \quad \forall K \in \mathcal{T}_{h}.$

Theorem (A posteriori error estimate)

Let

- $u \in V$ be the weak solution,
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumption A hold.

Then there holds

$\mathcal{J}_{u}(u_{h}^{k,i}) \leq \overline{\eta}^{k,i},$ where $\overline{\eta}^{k,i}$ is fully computable from $u_{h}^{k,i}$, $\mathbf{t}_{h}^{k,i}$, and $\rho_{h}^{k,i}$.

A posteriori error estimate

Assumption A (Total flux reconstruction)

There exists a flux reconstruction $\mathbf{t}_{h}^{k,i} \in \mathbf{H}^{q}(\operatorname{div}, \Omega)$ and an algebraic remainder $\rho_{h}^{k,i} \in L^{q}(\Omega)$ such that

$$\nabla \cdot \mathbf{t}_h^{k,i} = f_h - \rho_h^{k,i}$$

with the data approximation f_h s.t. $(f_h, 1)_K = (f, 1)_K \ \forall K \in \mathcal{T}_h$.

Theorem (A posteriori error estimate)

Let

- $u \in V$ be the weak solution,
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumption A hold.

Then there holds

where $\overline{\eta}^{k,i}$ is fully computable from $u_h^{k,i}$, $\mathbf{t}_h^{k,i}$, and $\rho_h^{k,i}$.

M. Vohralík

Adaptive regularization, linearization, and numerical solution

A posteriori error estimate

Assumption A (Total flux reconstruction)

There exists a flux reconstruction $\mathbf{t}_{h}^{k,i} \in \mathbf{H}^{q}(\operatorname{div}, \Omega)$ and an algebraic remainder $\rho_{h}^{k,i} \in L^{q}(\Omega)$ such that

$$\nabla \cdot \mathbf{t}_h^{k,i} = f_h - \rho_h^{k,i},$$

with the data approximation f_h s.t. $(f_h, 1)_K = (f, 1)_K \ \forall K \in \mathcal{T}_h$.

Theorem (A posteriori error estimate)

Let

- $u \in V$ be the weak solution,
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumption A hold.

Then there holds

$\mathcal{J}_{u}(u_{h}^{k,i}) \leq \overline{\eta}^{k,i},$ where $\overline{\eta}^{k,i}$ is fully computable from $u_{h}^{k,i}$, $\mathbf{t}_{h}^{k,i}$, and $\rho_{h}^{k,i}$.

Distinguishing error components

Assumption B (Discretization, linearization, and algebraic errors)

- There exist fluxes $\mathbf{d}_{h}^{k,i}, \mathbf{l}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$ such that (i) $\mathbf{d}_{h}^{k,i} + \mathbf{l}_{h}^{k,i} + \mathbf{a}_{h}^{k,i} = \mathbf{t}_{h}^{k,i};$
- (ii) as the linear solver converges, $\|\mathbf{a}_{h}^{k,i}\|_{q} \rightarrow 0$;

(iii) as the nonlinear solver converges, $\|\mathbf{I}_{h}^{k,i}\|_{q} \to 0$.

Comments

- **d**^{*k*,*i*}: *discretization* flux reconstruction
- I_h^{k,i}: linearization error flux reconstruction
- **a**^{*k*,*i*}: algebraic error flux reconstruction

Distinguishing error components

Assumption B (Discretization, linearization, and algebraic errors)

There exist fluxes
$$\mathbf{d}_{h}^{k,i}, \mathbf{l}_{h}^{k,i}, \mathbf{a}_{h}^{k,i} \in [L^{q}(\Omega)]^{d}$$
 such that
(i) $\mathbf{d}_{h}^{k,i} + \mathbf{l}_{h}^{k,i} + \mathbf{a}_{h}^{k,i} = \mathbf{t}_{h}^{k,i};$

(ii) as the linear solver converges, $\|\mathbf{a}_{h}^{k,i}\|_{q} \rightarrow 0$;

(iii) as the nonlinear solver converges, $\|\mathbf{I}_{h}^{k,i}\|_{q} \to 0$.

Comments

- **d**^{*k*,*i*}: *discretization* flux reconstruction
- I_h^{k,i}: linearization error flux reconstruction
- **a**_h^{k,i}: algebraic error flux reconstruction

Estimate distinguishing different error components

Theorem (Estimate distinguishing different error components)

Let

- $u \in V$ be the weak solution.
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumptions A and B hold.

Estimate distinguishing different error components

Theorem (Estimate distinguishing different error components)

Let

- $u \in V$ be the weak solution.
- $u_h^{k,i} \in V(\mathcal{T}_h)$ be arbitrary,
- Assumptions A and B hold.

Then there holds

 $\mathcal{J}_{\mu}(\boldsymbol{u}_{h}^{k,i}) \leq \eta^{k,i} := \eta^{k,i}_{\text{disc}} + \eta^{k,i}_{\text{lin}} + \eta^{k,i}_{\text{alg}} + \eta^{k,i}_{\text{term}} + \eta^{k,i}_{\text{ousd}} + \eta^{k,i}_{\text{ossc}}.$

1

Estimators

discretization estimator

$$\eta_{\mathrm{disc},K}^{k,i} := 2^{1/p} \left(\|\overline{\sigma}_h^{k,i} + \mathbf{d}_h^{k,i}\|_{q,K} + \left\{ \sum_{e \in \mathcal{E}_K} h_e^{1-q} \| \llbracket u_h^{k,i} \rrbracket \|_{q,e}^q \right\}^{\frac{1}{q}} \right)$$

Inearization estimator

$$\eta_{\mathrm{lin},K}^{k,i} := \|\mathbf{I}_h^{k,i}\|_{q,K}$$

algebraic estimator

$$\eta_{\mathrm{alg},\mathcal{K}}^{k,i} := \|\mathbf{a}_{h}^{k,i}\|_{q,\mathcal{K}}$$

- algebraic remainder estimator $\eta_{\text{rem}.K}^{k,i} := h_{\Omega} \|\rho_{h}^{k,i}\|_{q,K}$
- quadrature estimator $\eta_{\text{auad},K}^{k,i} := \|\sigma(u_h^{k,i}, \nabla u_h^{k,i}) \overline{\sigma}_h^{k,i}\|_{q,K}$
- data oscillation estimator

$$\eta_{\text{osc},K}^{k,i} := C_{\text{P},p} h_K \| f - f_h \|_{q,K}$$

• $\eta_{\cdot}^{k,i} := \left\{ \sum_{K \in \mathcal{T}_h} (\eta_{\cdot,K}^{k,i})^q \right\}^{1/q}$

Outline

Nonlinear diffusion

- Quasi-linear elliptic problems
- A guaranteed a posteriori error estimate ۲

Stopping criteria and efficiency

- Applications
- Numerical results
- - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results

Stopping criteria

Global stopping criteria

• stop whenever:

$$\begin{split} \eta_{\text{rem}}^{k,i} &\leq \gamma_{\text{rem}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}, \eta_{\text{alg}}^{k,i}\},\\ \eta_{\text{alg}}^{k,i} &\leq \gamma_{\text{alg}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}\},\\ \eta_{\text{lin}}^{k,i} &\leq \gamma_{\text{lin}} \eta_{\text{disc}}^{k,i} \end{split}$$

• $\gamma_{\rm rem}, \gamma_{\rm alg}, \gamma_{\rm lin} \approx 0.1$

- Local stopping criteria
 - stop whenever:

$$\eta_{\text{rem},K}^{k,i} \leq \gamma_{\text{rem},K} \max\{\eta_{\text{disc},K}^{k,i}, \eta_{\text{lin},K}^{k,i}, \eta_{\text{alg},K}^{k,i}\} \quad \forall K \in \mathcal{T}_h, \\ \eta_{\text{alg},K}^{k,i} \leq \gamma_{\text{alg},K} \max\{\eta_{\text{disc},K}^{k,i}, \eta_{\text{lin},K}^{k,i}\} \quad \forall K \in \mathcal{T}_h, \\ \eta_{\text{lin},K}^{k,i} \leq \gamma_{\text{lin},K} \eta_{\text{disc},K}^{k,i} \quad \forall K \in \mathcal{T}_h$$

• $\gamma_{\text{rem},K}, \gamma_{\text{alg},K}, \gamma_{\text{lin},K} \approx 0.1$

Stopping criteria

Global stopping criteria

stop whenever:

$$\begin{split} \eta_{\text{rem}}^{k,i} &\leq \gamma_{\text{rem}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}, \eta_{\text{alg}}^{k,i}\},\\ \eta_{\text{alg}}^{k,i} &\leq \gamma_{\text{alg}} \max\{\eta_{\text{disc}}^{k,i}, \eta_{\text{lin}}^{k,i}\},\\ \eta_{\text{lin}}^{k,i} &\leq \gamma_{\text{lin}} \eta_{\text{disc}}^{k,i} \end{split}$$

• $\gamma_{\rm rem}, \gamma_{\rm alg}, \gamma_{\rm lin} \approx 0.1$

Local stopping criteria

stop whenever:

$$\begin{split} \eta_{\text{rem},K}^{k,i} &\leq \gamma_{\text{rem},K} \max\{\eta_{\text{disc},K}^{k,i}, \eta_{\text{lin},K}^{k,i}, \eta_{\text{alg},K}^{k,i}\} \quad \forall K \in \mathcal{T}_h, \\ \eta_{\text{alg},K}^{k,i} &\leq \gamma_{\text{alg},K} \max\{\eta_{\text{disc},K}^{k,i}, \eta_{\text{lin},K}^{k,i}\} \quad \forall K \in \mathcal{T}_h, \\ \eta_{\text{lin},K}^{k,i} &\leq \gamma_{\text{lin},K} \eta_{\text{disc},K}^{k,i} \quad \forall K \in \mathcal{T}_h \\ \gamma_{\text{rem},K}, \gamma_{\text{alg},K}, \gamma_{\text{lin},K} \approx 0.1 \end{split}$$

Problem Estimate Stop. crit. & eff. Applications Num. res.

Assumption for efficiency

Assumption C (Approximation property)

For all $K \in T_h$, there holds

$$\|\overline{\sigma}_{h}^{k,i} + \mathbf{d}_{h}^{k,i}\|_{q,K} \lesssim \eta_{\sharp,\mathfrak{T}_{K}}^{k,i} + \eta_{\mathrm{osc},\mathfrak{T}_{K}}^{k,i},$$

where

$$\eta_{\sharp,\mathfrak{T}_{K}}^{k,i} := \left\{ \sum_{K' \in \mathfrak{T}_{K}} h_{K'}^{q} \| f_{h} + \nabla \cdot \overline{\sigma}_{h}^{k,i} \|_{q,K'}^{q} + \sum_{e \in \mathfrak{E}_{K}^{int}} h_{e} \| \llbracket \overline{\sigma}_{h}^{k,i} \cdot \mathbf{n}_{e} \rrbracket \|_{q,e}^{q} \right. \\ \left. + \sum_{e \in \mathcal{E}_{K}} h_{e}^{1-q} \| \llbracket u_{h}^{k,i} \rrbracket \|_{q,e}^{q} \right\}^{\frac{1}{q}}.$$

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criteria hold. Recall that $\mathcal{J}_{u}(u_{h}^{k,i}) \leq \eta^{k,i}$. Then, under

$$\eta^{k,i} \lesssim \mathcal{J}_{u}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}^{k,i},$$

robustness with respect to the nonlinearity thanks to the

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criteria hold. Recall that $\mathcal{J}_{u}(u_{h}^{k,i}) \leq \eta^{k,i}$. Then, under

$$\eta^{k,i} \lesssim \mathcal{J}_{u}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}^{k,i},$$

robustness with respect to the nonlinearity thanks to the

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criteria hold. Recall that $\mathcal{J}_{u}(u_{h}^{k,i}) \leq \eta^{k,i}$. Then, under Assumption C,

$$\eta^{k,i} \lesssim \mathcal{J}_{u}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}^{k,i},$$

where \leq means up to a constant independent of σ and q.

robustness with respect to the nonlinearity thanks to the

Theorem (Global efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the global stopping criteria hold. Recall that $\mathcal{J}_{u}(u_{h}^{k,i}) \leq \eta^{k,i}$. Then, under Assumption C,

$$\eta^{k,i} \lesssim \mathcal{J}_{u}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\text{quad}}^{k,i} + \eta_{\text{osc}}^{k,i},$$

where \leq means up to a constant independent of σ and q.

or production of the second choice of the dual norm as error measure

Local efficiency

Theorem (Local efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the local stopping criteria hold. Then, under Assumption C.

$$\eta_{\mathrm{disc},K}^{k,i} + \eta_{\mathrm{lin},K}^{k,i} + \eta_{\mathrm{alg},K}^{k,i} + \eta_{\mathrm{rem},K}^{k,i}$$
$$\lesssim \mathcal{J}_{u,\mathfrak{T}_{K}}^{\mathrm{up}}(u_{h}^{k,i}) + \eta_{\mathrm{quad},\mathfrak{T}_{K}}^{k,i} + \eta_{\mathrm{osc},\mathfrak{T}_{K}}^{k,i}$$

Local efficiency

Theorem (Local efficiency)

Let the mesh \mathcal{T}_h be shape-regular and let the local stopping criteria hold. Then, under Assumption C,

$$\eta_{\mathrm{disc},K}^{k,i} + \eta_{\mathrm{lin},K}^{k,i} + \eta_{\mathrm{alg},K}^{k,i} + \eta_{\mathrm{rem},K}^{k,i}$$
$$\lesssim \mathcal{J}_{u,\mathfrak{T}_{K}}^{\mathrm{up}}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\mathrm{quad},\mathfrak{T}_{K}}^{k,i} + \eta_{\mathrm{osc},\mathfrak{T}_{K}}^{k,i}$$

for all $K \in \mathcal{T}_h$.

Local efficiency

Theorem (Local efficiency)

Let the mesh T_h be shape-regular and let the local stopping criteria hold. Then, under Assumption C,

$$\eta_{\mathrm{disc},K}^{k,i} + \eta_{\mathrm{lin},K}^{k,i} + \eta_{\mathrm{alg},K}^{k,i} + \eta_{\mathrm{rem},K}^{k,i}$$
$$\lesssim \mathcal{J}_{u,\mathfrak{T}_{K}}^{\mathrm{up}}(\boldsymbol{u}_{h}^{k,i}) + \eta_{\mathrm{quad},\mathfrak{T}_{K}}^{k,i} + \eta_{\mathrm{osc},\mathfrak{T}_{K}}^{k,i}$$

for all $K \in \mathcal{T}_h$.

 robustness and local efficiency for an upper bound on the dual norm

Outline

Nonlinear diffusion

- Quasi-linear elliptic problems
- A guaranteed a posteriori error estimate ۲

Applications

- Numerical results
- - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results

Construction of $\mathbf{a}_{h}^{k,i}$ and $\rho_{h}^{k,i}$

• On linearization step k and algebraic step i, we have

 $\mathbb{A}^k U^{k,i} = F^k - R^{k,i}.$

• Do ν additional steps of the algebraic solver, yielding

 $\mathbb{A}^k U^{k,i+\nu} = F^k - R^{k,i+\nu}.$

- Construct the function $\rho_h^{k,i}$ from the algebraic residual vector $\mathbf{R}^{k,i+\nu}$ (lifting into appropriate discrete space).
- Suppose we can obtain discretization and linearization flux reconstructions d^{k,i}_h, l^{k,i}_h on each algebraic step. Then set

$$\mathbf{a}_h^{k,i} := (\mathbf{d}_h^{k,i+\nu} + \mathbf{I}_h^{k,i+\nu}) - (\mathbf{d}_h^{k,i} + \mathbf{I}_h^{k,i}).$$

Construction of $\mathbf{a}_{h}^{k,i}$ and $\rho_{h}^{k,i}$

• On linearization step k and algebraic step i, we have

$$\mathbb{A}^k U^{k,i} = F^k - R^{k,i}.$$

• Do ν additional steps of the algebraic solver, yielding

$$\mathbb{A}^k U^{k,i+\nu} = F^k - R^{k,i+\nu}.$$

- Construct the function $\rho_h^{k,i}$ from the algebraic residual vector $R^{k,i+\nu}$ (lifting into appropriate discrete space).
- Suppose we can obtain discretization and linearization flux reconstructions d^{k,i}_h, l^{k,i}_h on each algebraic step. Then set

$$\mathbf{a}_h^{k,i} := (\mathbf{d}_h^{k,i+\nu} + \mathbf{I}_h^{k,i+\nu}) - (\mathbf{d}_h^{k,i} + \mathbf{I}_h^{k,i}).$$

Construction of $\mathbf{a}_{h}^{k,i}$ and $\rho_{h}^{k,i}$

• On linearization step k and algebraic step i, we have

$$\mathbb{A}^k U^{k,i} = F^k - R^{k,i}.$$

• Do ν additional steps of the algebraic solver, yielding

$$\mathbb{A}^{k}U^{k,i+\nu}=F^{k}-R^{k,i+\nu}.$$

- Construct the function $\rho_h^{k,i}$ from the algebraic residual vector $\mathbf{R}^{k,i+\nu}$ (lifting into appropriate discrete space).
- Suppose we can obtain discretization and linearization flux reconstructions d^{k,i}_h, l^{k,i}_h on each algebraic step. Then set

$$\mathbf{a}_h^{k,i} := (\mathbf{d}_h^{k,i+\nu} + \mathbf{I}_h^{k,i+\nu}) - (\mathbf{d}_h^{k,i} + \mathbf{I}_h^{k,i}).$$

I Nonlinear diffusion Stefan problem Two-phase flow C Problem Estimate Stop. crit. & eff. Applications Num. res.

Algebraic error flux reconstruction and algebraic remainder

Construction of $\mathbf{a}_{h}^{k,i}$ and $\rho_{h}^{k,i}$

• On linearization step k and algebraic step i, we have

$$\mathbb{A}^k U^{k,i} = F^k - R^{k,i}.$$

• Do ν additional steps of the algebraic solver, yielding

$$\mathbb{A}^{k}U^{k,i+\nu}=F^{k}-R^{k,i+\nu}.$$

- Construct the function $\rho_h^{k,i}$ from the algebraic residual vector $\mathbf{R}^{k,i+\nu}$ (lifting into appropriate discrete space).
- Suppose we can obtain discretization and linearization flux reconstructions d^{k,i}_h, l^{k,i}_h on each algebraic step. Then set

$$\mathbf{a}_h^{k,i} := (\mathbf{d}_h^{k,i+\nu} + \mathbf{I}_h^{k,i+\nu}) - (\mathbf{d}_h^{k,i} + \mathbf{I}_h^{k,i}).$$

Construction of $\mathbf{a}_{h}^{k,i}$ and $\rho_{h}^{k,i}$

• On linearization step k and algebraic step i, we have

$$\mathbb{A}^k U^{k,i} = F^k - R^{k,i}.$$

• Do ν additional steps of the algebraic solver, yielding

$$\mathbb{A}^{k}U^{k,i+\nu}=F^{k}-R^{k,i+\nu}.$$

- Construct the function $\rho_h^{k,i}$ from the algebraic residual vector $R^{k,i+\nu}$ (lifting into appropriate discrete space).
- Suppose we can obtain discretization and linearization flux reconstructions d^{k,i}_h, l^{k,i}_h on each algebraic step. Then set

$$\mathbf{a}_h^{k,i} := (\mathbf{d}_h^{k,i+\nu} + \mathbf{I}_h^{k,i+\nu}) - (\mathbf{d}_h^{k,i} + \mathbf{I}_h^{k,i}).$$

Construction of $\mathbf{a}_{h}^{k,i}$ and $\rho_{h}^{k,i}$

• On linearization step k and algebraic step i, we have

$$\mathbb{A}^k U^{k,i} = F^k - R^{k,i}.$$

• Do ν additional steps of the algebraic solver, yielding

$$\mathbb{A}^{k}U^{k,i+\nu}=F^{k}-R^{k,i+\nu}.$$

- Construct the function $\rho_h^{k,i}$ from the algebraic residual vector $\mathbf{R}^{k,i+\nu}$ (lifting into appropriate discrete space).
- Suppose we can obtain discretization and linearization flux reconstructions d^{k,i}_h, l^{k,i}_h on each algebraic step. Then set

$$\mathbf{a}_{h}^{k,i} := (\mathbf{d}_{h}^{k,i+\nu} + \mathbf{I}_{h}^{k,i+\nu}) - (\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i}).$$

Nonlinear diffusion Stefan problem Two-phase flow C Problem Estimate Stop. crit. & eff. Applications Num. res.

Example: nonconforming finite elements for the *p*-Laplacian

Discretization Find $u_h \in V_h$ such that

$$(\sigma(\nabla u_h), \nabla v_h) = (f_h, v_h) \quad \forall v_h \in V_h.$$

•
$$\sigma(\nabla u_h) = |\nabla u_h|^{p-2} \nabla u_h$$

- V_h the Crouzeix–Raviart space
- $f_h := \Pi_0 f$
- leads to the system of nonlinear algebraic equations

$$\mathcal{A}(U) = F$$

Nonlinear diffusion Stefan problem Two-phase flow C Problem Estimate Stop. crit. & eff. Applications Num. res.

Example: nonconforming finite elements for the *p*-Laplacian

Discretization

Find $u_h \in V_h$ such that

$$(\sigma(\nabla u_h), \nabla v_h) = (f_h, v_h) \quad \forall v_h \in V_h.$$

•
$$\sigma(\nabla u_h) = |\nabla u_h|^{p-2} \nabla u_h$$

- V_h the Crouzeix–Raviart space
- $f_h := \Pi_0 f$
- leads to the system of nonlinear algebraic equations

$$\mathcal{A}(U) = F$$

Linearization

Linearization

Find $u_h^k \in V_h$ such that

$$(\boldsymbol{\sigma}^{k-1}(\nabla \boldsymbol{u}_h^k), \nabla \psi_{\boldsymbol{e}}) = (f_h, \psi_{\boldsymbol{e}}) \qquad \forall \boldsymbol{e} \in \mathcal{E}_h^{\mathrm{int}}.$$

- $u_h^0 \in V_h$ yields the initial vector U^0
- fixed-point linearization

$$\boldsymbol{\sigma}^{k-1}(\boldsymbol{\xi}) := |\nabla \boldsymbol{u}_h^{k-1}|^{p-2}\boldsymbol{\xi}$$

Newton linearization

$$\sigma^{k-1}(\xi) := |\nabla u_h^{k-1}|^{p-2} \xi + (p-2) |\nabla u_h^{k-1}|^{p-4} (\nabla u_h^{k-1} \otimes \nabla u_h^{k-1}) (\xi - \nabla u_h^{k-1})$$

leads to the system of linear algebraic equations

$$\mathbb{A}^k U^k = F^k$$

Linearization

Linearization

Find $u_h^k \in V_h$ such that

$$(\sigma^{k-1}(\nabla u_h^k), \nabla \psi_e) = (f_h, \psi_e) \qquad \forall e \in \mathcal{E}_h^{\mathrm{int}}.$$

- $u_h^0 \in V_h$ yields the initial vector U^0
- fixed-point linearization

$$\sigma^{k-1}(\boldsymbol{\xi}) := |\nabla u_h^{k-1}|^{p-2}\boldsymbol{\xi}$$

Newton linearization

$$\sigma^{k-1}(\boldsymbol{\xi}) := |\nabla u_h^{k-1}|^{p-2} \boldsymbol{\xi} + (p-2) |\nabla u_h^{k-1}|^{p-4}$$
$$(\nabla u_h^{k-1} \otimes \nabla u_h^{k-1}) (\boldsymbol{\xi} - \nabla u_h^{k-1})$$

leads to the system of linear algebraic equations

$$\mathbb{A}^k U^k = F^k$$

Algebraic solution

Algebraic solution Find $u_h^{k,i} \in V_h$ such that

$$(\sigma^{k-1}(\nabla u_h^{k,i}), \nabla \psi_e) = (f_h, \psi_e) - R_e^{k,i} \quad \forall e \in \mathcal{E}_h^{\text{int}}.$$

- algebraic residual vector $R^{k,i} = \{R_e^{k,i}\}_{e \in \mathcal{E}_h^{\text{int}}}$
- discrete system

$$\mathbb{A}^k U^k = F^k - R^{k,i}$$

Algebraic solution

Algebraic solution Find $u_h^{k,i} \in V_h$ such that

$$(\boldsymbol{\sigma}^{k-1}(\nabla \boldsymbol{u}_h^{k,i}), \nabla \psi_{\boldsymbol{e}}) = (f_h, \psi_{\boldsymbol{e}}) - \boldsymbol{R}_{\boldsymbol{e}}^{k,i} \qquad \forall \boldsymbol{e} \in \mathcal{E}_h^{\text{int}}.$$

- algebraic residual vector $R^{k,i} = \{R_e^{k,i}\}_{e \in \mathcal{E}_b^{\text{int}}}$
- discrete system

$$\mathbb{A}^k U^k = F^k - R^{k,i}$$

Flux reconstructions

Definition (Construction of $\mathbf{d}_{h}^{k,i}$)

For all
$$K \in \mathcal{T}_h$$
,

$$\mathbf{d}_h^{k,i}|_K := -\boldsymbol{\sigma}(\nabla u_h^{k,i})|_K + \frac{f_h|_K}{d}(\mathbf{x} - \mathbf{x}_K) - \sum_{e \in \mathcal{E}_K} \frac{\bar{R}_e^{k,i}}{d|D_e|}(\mathbf{x} - \mathbf{x}_K)|_{K_e},$$
where $\bar{R}_e^{k,i} := (f_h, \psi_e) - (\boldsymbol{\sigma}(\nabla u_h^{k,i}), \nabla \psi_e) \quad \forall e \in \mathcal{E}_h^{\text{int}}.$

Definition (Construction of $(\mathbf{d}_{h}^{K,t} + \mathbf{I}_{h}^{K,t})$)

For all $K \in \mathcal{T}_h$, $(\mathbf{d}_h^{k,i} + \mathbf{I}_h^{k,i})|_K := -\boldsymbol{\sigma}^{k-1}(\nabla u_h^{k,i})|_K + \frac{f_h|_K}{d}(\mathbf{x} - \mathbf{x}_K) - \sum_{e \in \mathcal{E}_i} \frac{\boldsymbol{R}_e^{k,i}}{d|D_e|}(\mathbf{x} - \mathbf{x}_K)|_{K_e}.$

Definition (Construction of $\overline{\sigma}_{h}^{K,l}$

Set $\overline{\sigma}_h^{k,i} := \sigma(\nabla u_h^{k,i})$. Consequently, $\eta_{\text{quad},K}^{k,i} = 0$ for all $K \in \mathcal{T}_h$.

M. Vohralík Adaptive regularization, linearization, and numerical solution

Flux reconstructions

Definition (Construction of $\mathbf{d}_{h}^{K,l}$)

Definition (Construction of $(\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i})$)

For all $K \in \mathcal{T}_h$, $(\mathbf{d}_{h}^{k,i}+\mathbf{l}_{h}^{k,i})|_{K}:=-\boldsymbol{\sigma}^{k-1}(\nabla u_{h}^{k,i})|_{K}+\frac{f_{h}|_{K}}{d}(\mathbf{x}-\mathbf{x}_{K})-\sum_{e\in\mathcal{E}_{\nu}}\frac{R_{e}^{k,i}}{d|D_{e}|}(\mathbf{x}-\mathbf{x}_{K})|_{K_{e}}.$

Flux reconstructions

Definition (Construction of $\mathbf{d}_{h}^{k,i}$)

For all
$$K \in \mathcal{T}_h$$
,

$$\mathbf{d}_h^{k,i}|_K := -\boldsymbol{\sigma}(\nabla u_h^{k,i})|_K + \frac{f_h|_K}{d}(\mathbf{x} - \mathbf{x}_K) - \sum_{e \in \mathcal{E}_K} \frac{\bar{R}_e^{k,i}}{d|D_e|}(\mathbf{x} - \mathbf{x}_K)|_{K_e},$$
where $\bar{R}_e^{k,i} := (f_h, \psi_e) - (\boldsymbol{\sigma}(\nabla u_h^{k,i}), \nabla \psi_e) \quad \forall e \in \mathcal{E}_h^{\text{int}}.$

Definition (Construction of $(\mathbf{d}_{h}^{k,i} + \mathbf{l}_{h}^{k,i})$)

For all
$$K \in \mathcal{T}_h$$
,
 $(\mathbf{d}_h^{k,i} + \mathbf{l}_h^{k,i})|_K := -\boldsymbol{\sigma}^{k-1} (\nabla u_h^{k,i})|_K + \frac{f_h|_K}{d} (\mathbf{x} - \mathbf{x}_K) - \sum_{e \in \mathcal{E}_K} \frac{\boldsymbol{R}_e^{k,i}}{d|\boldsymbol{D}_e|} (\mathbf{x} - \mathbf{x}_K)|_{K_e}.$

Definition (Construction of $\overline{\sigma}_{h}^{k,i}$)

Set
$$\overline{\sigma}_h^{k,i} := \sigma(\nabla u_h^{k,i})$$
. Consequently, $\eta_{\text{quad},K}^{k,i} = 0$ for all $K \in \mathcal{T}_h$.

Verification of the assumptions – upper bound

Lemma (Assumptions A and B)

Assumptions A and B hold.

- $\|\mathbf{a}_{k}^{K,i}\|_{a,K} \rightarrow 0$ as the linear solver converges by definition.
- $\|\mathbf{I}_{h}^{K,i}\|_{a,K} \rightarrow 0$ as the nonlinear solver converges by the
- Both $(\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i})$ and $\mathbf{d}_{h}^{k,i}$ belong to $\mathbf{RTN}_{0}(\mathcal{S}_{h}) \Rightarrow$ $\mathbf{a}_{b}^{k,i} \in \mathbf{RTN}_{0}(\mathcal{S}_{b})$ and $\mathbf{t}_{b}^{k,i} \in \mathbf{RTN}_{0}(\mathcal{S}_{b})$.

Verification of the assumptions – upper bound

Lemma (Assumptions A and B)

Assumptions A and B hold.

Comments

- $\|\mathbf{a}_{h}^{k,i}\|_{a,K} \rightarrow 0$ as the linear solver converges by definition.
- $\|\mathbf{I}_{h}^{k,i}\|_{a,K} \rightarrow 0$ as the nonlinear solver converges by the construction of $\mathbf{I}_{h}^{k,i}$.
- Both $(\mathbf{d}_{h}^{k,i} + \mathbf{I}_{h}^{k,i})$ and $\mathbf{d}_{h}^{k,i}$ belong to $\mathbf{RTN}_{0}(\mathcal{S}_{h}) \Rightarrow$ $\mathbf{a}_{b}^{k,i} \in \mathbf{RTN}_{0}(\mathcal{S}_{b})$ and $\mathbf{t}_{b}^{k,i} \in \mathbf{RTN}_{0}(\mathcal{S}_{b})$.

Verification of the assumptions – efficiency

Lemma (Assumption C)

Assumption C holds.

•
$$\mathbf{d}_h^{k,i}$$
 close to $\boldsymbol{\sigma}(
abla u_h^{k,i})$

Verification of the assumptions – efficiency

Lemma (Assumption C)

Assumption C holds.

Comments

- $\mathbf{d}_{h}^{k,i}$ close to $\sigma(\nabla u_{h}^{k,i})$
- approximation properties of Raviart–Thomas–Nédélec spaces

Discretization methods

- nonconforming finite elements
- discontinuous Galerkin
- finite elements
- various finite volumes
- mixed finite elements

- fixed point
- Newton
- - independent of the linear solver

Discretization methods

- nonconforming finite elements
- discontinuous Galerkin
- finite elements
- various finite volumes
- mixed finite elements

Linearizations

- fixed point
- Newton

- independent of the linear solver

Discretization methods

- nonconforming finite elements
- discontinuous Galerkin
- finite elements
- various finite volumes
- mixed finite elements

Linearizations

- fixed point
- Newton

Linear solvers

- independent of the linear solver

Discretization methods

- nonconforming finite elements
- discontinuous Galerkin
- finite elements
- various finite volumes
- mixed finite elements

Linearizations

- fixed point
- Newton

Linear solvers

- independent of the linear solver
- ... all Assumptions A to C verified

Outline

Nonlinear diffusion

- Quasi-linear elliptic problems
- A guaranteed a posteriori error estimate ۲
- ۲
- Applications

Numerical results

- Dual residual and energy norms
- A posteriori error estimate and its efficiency
- Numerical results
- - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results

Numerical experiment I

Model problem

• p-Laplacian

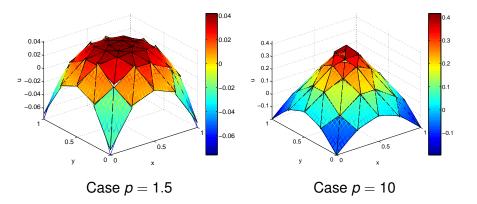
$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega,$$
$$u = u_0 \quad \text{on } \partial \Omega$$

• weak solution (used to impose the Dirichlet BC)

$$u(x,y) = -\frac{p-1}{p} \left((x - \frac{1}{2})^2 + (y - \frac{1}{2})^2 \right)^{\frac{p}{2(p-1)}} + \frac{p-1}{p} \left(\frac{1}{2} \right)^{\frac{p}{p-1}}$$

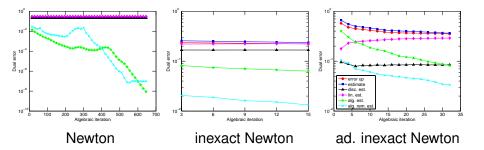
- tested values p = 1.5 and 10
- nonconforming finite elements

Analytical and approximate solutions

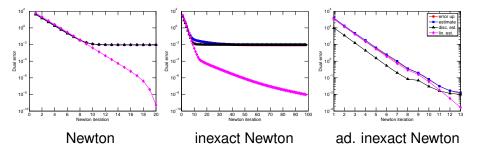


M. Vohralík Adaptive regularization, linearization, and numerical solution

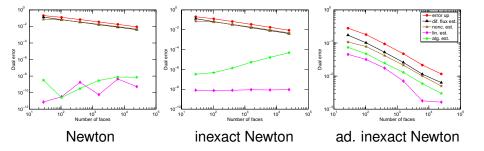
Error and estimators as a function of CG iterations, p = 10, 6th level mesh, 6th Newton step.



Error and estimators as a function of Newton iterations, p = 10, 6th level mesh

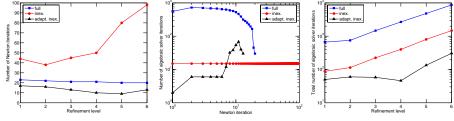


Error and estimators, p = 10



M. Vohralík Adaptive regularization, linearization, and numerical solution

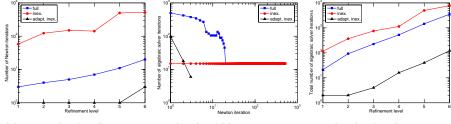
Newton and algebraic iterations, p = 10



Newton it. / refinement alg. it. / Newton step

alg. it. / refinement

Newton and algebraic iterations, p = 1.5



Newton it. / refinement alg. it. / Newton step

alg. it. / refinement

Numerical experiment II

Model problem

p-Laplacian

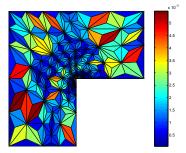
$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = f \quad \text{in } \Omega,$$
$$u = u_0 \quad \text{on } \partial \Omega$$

• weak solution (used to impose the Dirichlet BC)

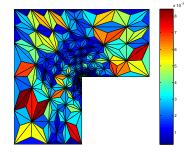
$$u(r,\theta)=r^{\frac{7}{8}}\sin(\theta^{\frac{7}{8}})$$

- p = 4, L-shape domain, singularity in the origin (Carstensen and Klose (2003))
- nonconforming finite elements

Error distribution on an adaptively refined mesh

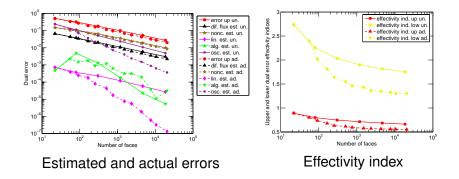


Estimated error distribution



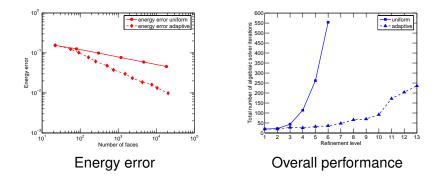
Exact error distribution

Estimated and actual errors and the effectivity index



M. Vohralík Adaptive regularization, linearization, and numerical solution

Energy error and overall performance



Outline

- Introductio
- 2 Nonlinear diffusion
 - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Applications
 - Numerical results
- 3 The Stefan problem
 - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- 4 Two-phase immiscible incompressible flow
 - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results
- 5 Conclusions and future directions

The Stefan problem

The Stefan problem

$$\partial_t u - \Delta eta(u) = f$$
 in $\Omega \times (0, T)$,
 $u(\cdot, 0) = u_0$ in Ω ,
 $\beta(u) = 0$ on $\partial \Omega \times (0, T)$

Nomenclature

- *u* enthalpy, $\beta(u)$ temperature
- β: L_β-Lipschitz continuous, β(s) = 0 in (0, 1), strictly increasing otherwise
- phase change, degenerate parabolic problem

•
$$u_0 \in L^2(\Omega), f \in L^2(0, T; L^2(\Omega))$$

The Stefan problem

The Stefan problem

$$\begin{array}{ll} \partial_t u - \Delta \beta(u) = f & \quad \text{in } \Omega \times (0, T), \\ u(\cdot, 0) = u_0 & \quad \text{in } \Omega, \\ \beta(u) = 0 & \quad \text{on } \partial \Omega \times (0, T) \end{array}$$

Nomenclature

- *u* enthalpy, $\beta(u)$ temperature
- β: L_β-Lipschitz continuous, β(s) = 0 in (0, 1), strictly increasing otherwise
- phase change, degenerate parabolic problem

•
$$u_0 \in L^2(\Omega), f \in L^2(0, T; L^2(\Omega))$$

Outline

- - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate
 - ۲
 - Applications
 - Numerical results
- The Stefan problem 3
 - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results

Residual and its dual norm

Functional spaces $X := L^2(0, T; H^1_0(\Omega)),$

$$Z:=H^1(0,T;H^{-1}(\Omega))$$

Weak formulation

$$u \in Z$$
 with $\beta(u) \in X$

 $u(\cdot,0)=u_0$ in Ω

 $\langle \partial_t u, \varphi \rangle(t) + (\nabla \beta(u), \nabla \varphi)(t) = (f, \varphi)(t) \quad \forall \varphi \in H^1_0(\Omega) \quad \text{a.e. } t \in (0, T)$

Residual for $u_{h\tau} \in Z$ such that $\beta(u_{h\tau}) \in X$

$$\langle \mathcal{R}(\boldsymbol{u}_{\boldsymbol{h}\tau}), \varphi \rangle_{X',X} = \int_0^T \{ \langle \partial_t(\boldsymbol{u} - \boldsymbol{u}_{\boldsymbol{h}\tau}), \varphi \rangle + (\nabla \beta(\boldsymbol{u}) - \nabla \beta(\boldsymbol{u}_{\boldsymbol{h}\tau}), \nabla \varphi) \} (t) \, \mathrm{d}t, \\ \varphi \in X$$

$$\|\mathcal{R}(u_{h\tau})\|_{X'} := \sup_{\varphi \in X, \, \|\varphi\|_X = 1} \langle \mathcal{R}(u_{h\tau}), \varphi \rangle_{X', X}$$

I Nonlinear diffusion Stefan problem Two-phase flow C

Residual and its dual norm

Functional spaces $X := L^{2}(0, T; H_{0}^{1}(\Omega)), \qquad Z := H^{1}(0, T; H^{-1}(\Omega))$ Weak formulation $u \in Z$ with $\beta(u) \in X$ $u(\cdot, 0) = u_0$ in Ω $\langle \partial_t u, \varphi \rangle(t) + (\nabla \beta(u), \nabla \varphi)(t) = (f, \varphi)(t) \quad \forall \varphi \in H^1_0(\Omega) \quad \text{a.e. } t \in (0, T)$

$$\|\mathcal{R}(u_{h\tau})\|_{X'} := \sup_{\varphi \in X, \, \|\varphi\|_X = 1} \langle \mathcal{R}(u_{h\tau}), \varphi \rangle_{X', X}$$

I Nonlinear diffusion Stefan problem Two-phase flow C

Residual and its dual norm

Functional spaces $X := \dot{L}^2(0, T; H_0^1(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$ Weak formulation $u \in Z$ with $\beta(u) \in X$ $u(\cdot,0) = u_0$ in Ω $\langle \partial_t u, \varphi \rangle(t) + (\nabla \beta(u), \nabla \varphi)(t) = (f, \varphi)(t) \quad \forall \varphi \in H^1_0(\Omega) \quad \text{a.e. } t \in (0, T)$ Residual for $u_{h\tau} \in Z$ such that $\beta(u_{h\tau}) \in X$ $\langle \mathcal{R}(\boldsymbol{u}_{h\tau}), \varphi \rangle_{\boldsymbol{X}', \boldsymbol{X}} = \int_{0}^{T} \{ \langle \partial_{t}(\boldsymbol{u} - \boldsymbol{u}_{h\tau}), \varphi \rangle + (\nabla \beta(\boldsymbol{u}) - \nabla \beta(\boldsymbol{u}_{h\tau}), \nabla \varphi) \} (t) \, \mathrm{d}t,$ *ω ∈ X*

$$\|\mathcal{R}(u_{h\tau})\|_{X'} := \sup_{\varphi \in X, \, \|\varphi\|_X = 1} \langle \mathcal{R}(u_{h\tau}), \varphi \rangle_{X', X}$$

I Nonlinear diffusion Stefan problem Two-phase flow C

Residual and its dual norm

Functional spaces $X := \dot{L}^2(0, T; H_0^1(\Omega)), \qquad Z := H^1(0, T; H^{-1}(\Omega))$ Weak formulation $u \in Z$ with $\beta(u) \in X$ $u(\cdot,0) = u_0$ in Ω $\langle \partial_t u, \varphi \rangle(t) + (\nabla \beta(u), \nabla \varphi)(t) = (f, \varphi)(t) \quad \forall \varphi \in H^1_0(\Omega) \quad \text{a.e. } t \in (0, T)$ Residual for $u_{h\tau} \in Z$ such that $\beta(u_{h\tau}) \in X$ $\langle \mathcal{R}(\boldsymbol{u}_{h\tau}), \varphi \rangle_{\boldsymbol{X}', \boldsymbol{X}} = \int_{0}^{T} \{\langle \partial_{t}(\boldsymbol{u} - \boldsymbol{u}_{h\tau}), \varphi \rangle + (\nabla \beta(\boldsymbol{u}) - \nabla \beta(\boldsymbol{u}_{h\tau}), \nabla \varphi) \} (t) \, \mathrm{d}t,$ $\omega \in X$

$$\|\mathcal{R}(u_{h\tau})\|_{X'} := \sup_{\varphi \in X, \, \|\varphi\|_X = 1} \langle \mathcal{R}(u_{h\tau}), \varphi \rangle_{X', X}$$

Time-localization of the dual norm of the residual

Time interval I_n

$$X_{n} := L^{2}(I_{n}; H_{0}^{1}(\Omega))$$
$$\|\mathcal{R}(u_{h\tau})\|_{X_{n}'} := \sup_{\varphi \in X_{n}, \|\varphi\|_{X_{n}}=1} \int_{I_{n}} \{ \langle \partial_{t}(u - u_{h\tau}), \varphi \rangle$$
$$+ (\nabla \beta(u) - \nabla \beta(u_{h\tau}), \nabla \varphi) \}(t) dt$$

$$\|\mathcal{R}(u_{h\tau})\|_{X'}^2 = \sum_{1 \le n \le N} \|\mathcal{R}(u_{h\tau})\|_{X'_n}^2$$

Time-localization of the dual norm of the residual

Time interval I_n

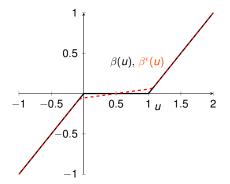
$$X_{n} := L^{2}(I_{n}; H_{0}^{1}(\Omega))$$
$$\|\mathcal{R}(u_{h\tau})\|_{X_{n}'} := \sup_{\varphi \in X_{n}, \|\varphi\|_{X_{n}}=1} \int_{I_{n}} \{ \langle \partial_{t}(u - u_{h\tau}), \varphi \rangle$$
$$+ (\nabla \beta(u) - \nabla \beta(u_{h\tau}), \nabla \varphi) \}(t) dt$$

 L^2 in time ...

$$\|\mathcal{R}(u_{h\tau})\|_{X'}^2 = \sum_{1 \le n \le N} \|\mathcal{R}(u_{h\tau})\|_{X'_n}^2$$

Practice: regularization

Regularization with a parameter ϵ



Practice: questions

Discretization

- What is a good choice of the
 - regularization parameter ϵ ?
 - time step?
 - space mesh?
- What is a good stopping criterion for the
 - onlinear solver?
 - Inear solver?

Question (Error)

 How big is the error ||u|_h - u^{n,ε,k,i}_h| on time step n, space mesh Tⁿ_h, for the regularization parameter ε, Newton step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?

Practice: questions

Discretization

Question (Stopping and balancing criteria)

- What is a good choice of the
 - regularization parameter ϵ ?
 - time step?
 - space mesh?
- What is a good stopping criterion for the
 - on nonlinear solver?
 - linear solver?

Question (Error)

 How big is the error ||u|_h - u^{n,ε,k,i}_h|| on time step n, space mesh Tⁿ_h, for the regularization parameter ε, Newton step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?

Practice: questions

Discretization

Question (Stopping and balancing criteria)

- What is a good choice of the
 - regularization parameter ϵ ?
 - time step?
 - space mesh?
- What is a good stopping criterion for the
 - on nonlinear solver?
 - linear solver?

Question (Error)

How big is the error ||u|_{In} - u^{n,ε,k,i}_{hτ} on time step n, space mesh Tⁿ_h, for the regularization parameter ε, Newton step k, and algebraic solver step i? How big are the individual components? How is error distributed in time and space?

Outline

- Introductio
- 2 Nonlinear diffusion
 - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Applications
 - Numerical results
- 3 The Stefan problem
 - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- 4 Two-phase immiscible incompressible flow
 - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results
- Conclusions and future directions

Theorem (Estimate and its efficiency)

There holds

$$\begin{aligned} \|\mathcal{R}(u_{h\tau})\|_{X'} + \|u_0 - u_{h\tau}(0)\|_{H^{-1}(\Omega)} \\ &\leq \left\{ \sum_{n=1}^N \int_{I_n} \sum_{K \in \mathcal{T}_h^n} \left(\eta_{R,K}^n + \eta_{F,K}^n\right)^2 \right\}^{\frac{1}{2}} + \eta_{IG} \\ &\lesssim \|\mathcal{R}(u_{h\tau})\|_{X'} + \|u_0 - u_{h\tau}(0)\|_{H^{-1}(\Omega)}, \end{aligned}$$

$$\begin{split} \eta_{\mathrm{R},K}^{n} &:= C_{\mathrm{P},K} h_{K} \| f^{n} - \partial_{t} u_{h\tau} - \nabla \cdot \mathbf{t}_{h}^{n} \|_{K}, \\ \eta_{\mathrm{F},K}^{n}(t) &:= \| \nabla \beta(u_{h\tau}(t)) + \mathbf{t}_{h}^{n} \|_{K}, \\ \eta_{\mathrm{IC}} &:= \| u_{0} - u_{h\tau}(0) \|_{H^{-1}(\Omega)}. \end{split}$$

Theorem (Estimate and its efficiency)

There holds

$$\begin{split} \|\mathcal{R}(u_{h\tau})\|_{X'} + \|u_0 - u_{h\tau}(0)\|_{H^{-1}(\Omega)} \\ &\leq \left\{ \sum_{n=1}^N \int_{I_n} \sum_{K \in \mathcal{T}_h^n} \left(\eta_{R,K}^n + \eta_{F,K}^n\right)^2 \right\}^{\frac{1}{2}} + \eta_{IC} \\ &\lesssim \|\mathcal{R}(u_{h\tau})\|_{X'} + \|u_0 - u_{h\tau}(0)\|_{H^{-1}(\Omega)}, \end{split}$$

$$\begin{split} \eta_{\mathrm{R},K}^{n} &:= C_{\mathrm{P},K} h_{K} \| f^{n} - \partial_{t} u_{h\tau} - \nabla \cdot \mathbf{t}_{h}^{n} \|_{K}, \\ \eta_{\mathrm{F},K}^{n}(t) &:= \| \nabla \beta(u_{h\tau}(t)) + \mathbf{t}_{h}^{n} \|_{K}, \\ \eta_{\mathrm{IC}} &:= \| u_{0} - u_{h\tau}(0) \|_{H^{-1}(\Omega)}. \end{split}$$

Theorem (Estimate and its efficiency)

There holds

$$\begin{split} \|\mathcal{R}(u_{h\tau})\|_{X'} + \|u_0 - u_{h\tau}(0)\|_{H^{-1}(\Omega)} \\ \leq \left\{ \sum_{n=1}^N \int_{I_n} \sum_{K \in \mathcal{T}_h^n} \left(\eta_{\mathrm{R},K}^n + \eta_{\mathrm{F},K}^n\right)^2 \right\}^{\frac{1}{2}} + \eta_{\mathrm{IC}} \\ \lesssim \|\mathcal{R}(u_{h\tau})\|_{X'} + \|u_0 - u_{h\tau}(0)\|_{H^{-1}(\Omega)}, \end{split}$$

$$\begin{split} \eta_{\mathrm{R},K}^{n} &:= C_{\mathrm{P},K} h_{K} \| f^{n} - \partial_{t} u_{h\tau} - \nabla \cdot \mathbf{t}_{h}^{n} \|_{K}, \\ \eta_{\mathrm{F},K}^{n}(t) &:= \| \nabla \beta(u_{h\tau}(t)) + \mathbf{t}_{h}^{n} \|_{K}, \\ \eta_{\mathrm{IC}} &:= \| u_{0} - u_{h\tau}(0) \|_{H^{-1}(\Omega)}. \end{split}$$

Theorem (Estimate and its efficiency)

There holds

$$\begin{aligned} &\|\mathcal{R}(u_{h\tau})\|_{X'} + \|u_0 - u_{h\tau}(0)\|_{H^{-1}(\Omega)} \\ &\leq \left\{ \sum_{n=1}^N \int_{I_n} \sum_{K \in \mathcal{T}_h^n} \left(\eta_{\mathrm{R},K}^n + \eta_{\mathrm{F},K}^n\right)^2 \right\}^{\frac{1}{2}} + \eta_{\mathrm{IC}} \\ &\lesssim \|\mathcal{R}(u_{h\tau})\|_{X'} + \|u_0 - u_{h\tau}(0)\|_{H^{-1}(\Omega)}, \end{aligned}$$

with

$$\begin{split} \eta_{\mathrm{R},K}^{n} &:= C_{\mathrm{P},K} h_{K} \| f^{n} - \partial_{t} u_{h\tau} - \nabla \cdot \mathbf{t}_{h}^{n} \|_{K}, \\ \eta_{\mathrm{F},K}^{n}(t) &:= \| \nabla \beta(u_{h\tau}(t)) + \mathbf{t}_{h}^{n} \|_{K}, \\ \eta_{\mathrm{IC}} &:= \| u_{0} - u_{h\tau}(0) \|_{H^{-1}(\Omega)}. \end{split}$$

Distinguishing the different error components

Theorem (An estimate distinguishing the error components)

For time n, linearization k, and regularization ϵ , there holds

$$\|\mathcal{R}(\boldsymbol{u}_{h\tau}^{\boldsymbol{n},\epsilon,\boldsymbol{k}})\|_{X',l_{\boldsymbol{n}}} \leq \eta_{\mathrm{sp}}^{\boldsymbol{n},\epsilon,\boldsymbol{k}} + \eta_{\mathrm{tm}}^{\boldsymbol{n},\epsilon,\boldsymbol{k}} + \eta_{\mathrm{lin}}^{\boldsymbol{n},\epsilon,\boldsymbol{k}} + \eta_{\mathrm{reg}}^{\boldsymbol{n},\epsilon,\boldsymbol{k}}.$$

• $\sigma^{n,\epsilon,k}$ a scheme linearized flux (not **H**(div, Ω)), **t**^{*n*,*\epsilon,k*}

$$\begin{aligned} (\eta_{\mathrm{sp}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{T}_{h}^{n}} \left(\eta_{\mathrm{R},K}^{n,\epsilon,k} + \|\boldsymbol{\sigma}^{n,\epsilon,k} + \mathbf{t}^{n,\epsilon,k}\|_{K} \right)^{2}, \\ (\eta_{\mathrm{tm}}^{n,\epsilon,k})^{2} &:= \int_{I_{n}} \sum_{K \in \mathcal{T}_{h}^{n}} \|\nabla \Pi^{n} \beta(\boldsymbol{u}_{h\tau}^{\epsilon,k})(\boldsymbol{t}) - \nabla \Pi^{n} \beta(\boldsymbol{u}_{h\tau}^{\epsilon,k})(\boldsymbol{t}^{n})\|_{K}^{2} \,\mathrm{d}\boldsymbol{t}, \\ (\eta_{\mathrm{lin}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{T}_{h}^{n}} \|\nabla \Pi^{n} \beta_{\epsilon}(\boldsymbol{u}_{h\tau}^{\epsilon,k})(\boldsymbol{t}^{n}) - \boldsymbol{\sigma}^{n,\epsilon,k}\|_{K}^{2}, \\ (\eta_{\mathrm{reg}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{T}_{h}^{n}} \|\nabla \Pi^{n} \beta(\boldsymbol{u}_{h\tau}^{\epsilon,k})(\boldsymbol{t}^{n}) - \nabla \Pi^{n} \beta_{\epsilon}(\boldsymbol{u}_{h\tau}^{\epsilon,k})(\boldsymbol{t}^{n}))\|_{K}^{2} \end{aligned}$$

Distinguishing the different error components

Theorem (An estimate distinguishing the error components)

For time n, linearization k, and regularization ϵ , there holds

$$\|\mathcal{R}(\boldsymbol{u}_{h\tau}^{\boldsymbol{n},\epsilon,k})\|_{X',I_{\boldsymbol{n}}} \leq \eta_{\mathrm{sp}}^{\boldsymbol{n},\epsilon,k} + \eta_{\mathrm{tm}}^{\boldsymbol{n},\epsilon,k} + \eta_{\mathrm{lin}}^{\boldsymbol{n},\epsilon,k} + \eta_{\mathrm{reg}}^{\boldsymbol{n},\epsilon,k}.$$

• $\sigma^{n,\epsilon,k}$ a scheme linearized flux (not $H(\operatorname{div},\Omega)$), $\mathbf{t}^{n,\epsilon,k}$ reconstructed $\mathbf{H}(\operatorname{div}, \Omega)$ flux, Π^n interpolation

$$\begin{aligned} (\eta_{\mathrm{sp}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{T}_{h}^{n}} \left(\eta_{\mathrm{R},K}^{n,\epsilon,k} + \| \boldsymbol{\sigma}^{n,\epsilon,k} + \mathbf{t}^{n,\epsilon,k} \|_{\mathcal{K}} \right)^{2}, \\ (\eta_{\mathrm{tm}}^{n,\epsilon,k})^{2} &:= \int_{I_{n}} \sum_{K \in \mathcal{T}_{h}^{n}} \| \nabla \Pi^{n} \beta(\boldsymbol{u}_{h\tau}^{\epsilon,k})(t) - \nabla \Pi^{n} \beta(\boldsymbol{u}_{h\tau}^{\epsilon,k})(t^{n}) \|_{K}^{2} \, \mathrm{d}t, \\ (\eta_{\mathrm{lin}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{T}_{h}^{n}} \| \nabla \Pi^{n} \beta_{\epsilon}(\boldsymbol{u}_{h\tau}^{\epsilon,k})(t^{n}) - \boldsymbol{\sigma}^{n,\epsilon,k} \|_{K}^{2}, \\ (\eta_{\mathrm{reg}}^{n,\epsilon,k})^{2} &:= \tau^{n} \sum_{K \in \mathcal{T}_{h}^{n}} \| \nabla \Pi^{n} \beta(\boldsymbol{u}_{h\tau}^{\epsilon,k})(t^{n}) - \nabla \Pi^{n} \beta_{\epsilon}(\boldsymbol{u}_{h\tau}^{\epsilon,k})(t^{n})) \|_{K}^{2} \end{aligned}$$

Relation residual-energy norm

Energy estimate (by the Gronwall lemma) $\frac{L_{\beta}}{2} \|u - u_{h\tau}\|_{\boldsymbol{X}'}^2 + \|\beta(u) - \beta(u_{h\tau})\|_{\boldsymbol{Q}_{\tau}}^2$ $\leq \frac{L_{\beta}}{2} (2e^{T} - 1) \left(\|\mathcal{R}(u_{h\tau})\|_{X'}^{2} + \|(u - u_{h\tau})(0)\|_{H^{-1}(\Omega)}^{2} \right)$

Relation residual-energy norm

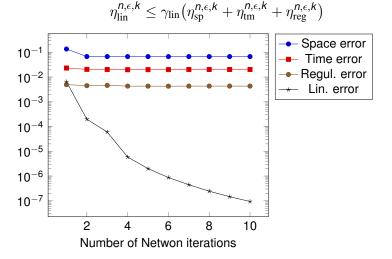
Energy estimate (by the Gronwall lemma) $\frac{L_{\beta}}{2} \|u - u_{h\tau}\|_{\boldsymbol{X}'}^2 + \|\beta(u) - \beta(u_{h\tau})\|_{\boldsymbol{Q}_{\tau}}^2$ $\leq \frac{L_{\beta}}{2} (2e^{T} - 1) \left(\|\mathcal{R}(u_{h\tau})\|_{X'}^{2} + \|(u - u_{h\tau})(0)\|_{H^{-1}(\Omega)}^{2} \right)$ Theorem (Temperature and enthalpy errors, tight Gronwall) Let $u_{h\tau} \in Z$ be such that $\beta(u_{h\tau}) \in X$ be arbitrary. There holds $\frac{L_{\beta}}{2} \|u - u_{h\tau}\|_{X'}^{2} + \frac{L_{\beta}}{2} \|(u - u_{h\tau})(T)\|_{H^{-1}(\Omega)}^{2} + \|\beta(u) - \beta(u_{h\tau})\|_{Q_{T}}^{2}$ $+2\int_0^t \left(\|\beta(u)-\beta(u_{h\tau})\|_{Q_t}^2+\int_0^t \|\beta(u)-\beta(u_{h\tau})\|_{Q_s}^2 e^{t-s} \mathrm{d}s\right) \mathrm{d}t$ $\leq \frac{L_{\beta}}{2} \bigg\{ (2e^{T}-1) \| (u-u_{h\tau})(0) \|_{H^{-1}(\Omega)}^{2} + \| \mathcal{R}(u_{h\tau}) \|_{X'}^{2}$ $+2\int_0^T\left(\|\mathcal{R}(\boldsymbol{u}_{h\tau})\|_{\boldsymbol{X}_t'}^2+\int_0^t\|\mathcal{R}(\boldsymbol{u}_{h\tau})\|_{\boldsymbol{X}_s'}^2\boldsymbol{e}^{t-s}\,\mathrm{d}s\right)\,\mathrm{d}t\bigg\}.$

Outline

- Introductio
- 2 Nonlinear diffusion
 - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Applications
 - Numerical results
 - The Stefan problem
 - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- 4 Two-phase immiscible incompressible flow
 - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results
- Conclusions and future directions

Linearization stopping criterion

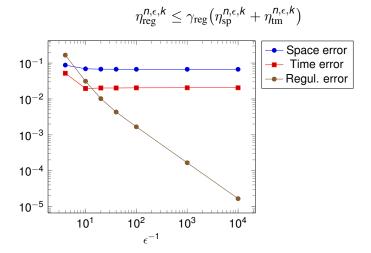
Linearization stopping criterion



M. Vohralík

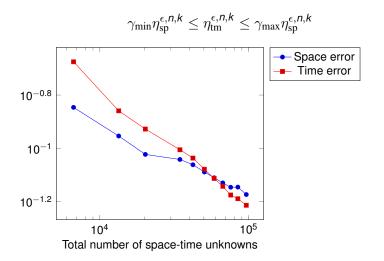
Regularization stopping criterion

Regularization stopping criterion

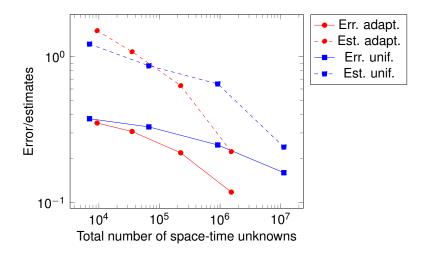


Equilibrating time and space errors

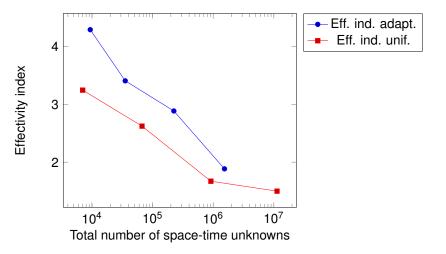
Equilibrating time and space errors



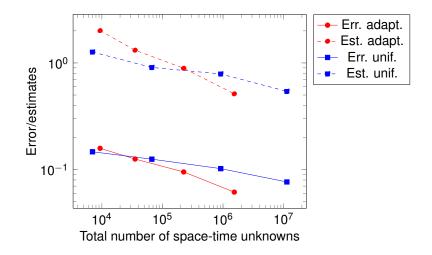
Error and estimate (dual norm)



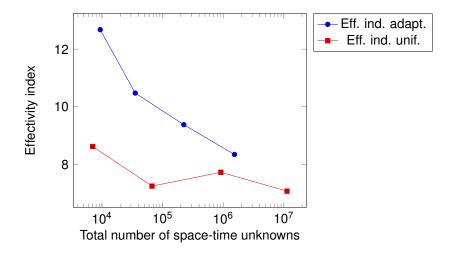
Effectivity indices (dual norm)



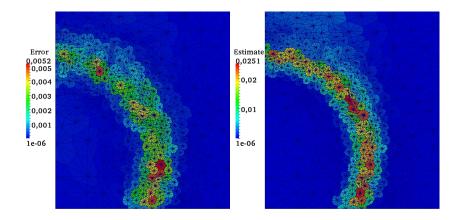
Error and estimate (energy norm)



Effectivity indices (energy norm)



Actual and estimated error distribution



Computational efficiency

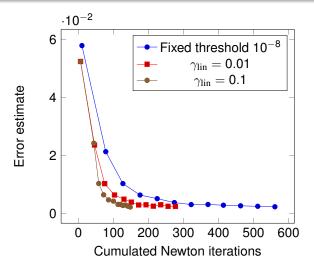


Figure: Number of cumulated Newton iterations vs. error estimate

Outline

- Introductio
- 2 Nonlinear diffusion
 - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Applications
 - Numerical results
- 3 The Stefan problem
 - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- Two-phase immiscible incompressible flow
 - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results
 - Conclusions and future directions

Two-phase flow

The model

$$egin{aligned} &\partial_t m{s}_lpha +
abla \cdot m{u}_lpha &= m{q}_lpha(m{s}_lpha), & lpha \in \{\mathrm{n},\mathrm{w}\}, \ & m{u}_lpha &= -m{\underline{K}}\eta_lpha(m{s}_lpha)
abla m{
ho}_lpha, & lpha \in \{\mathrm{n},\mathrm{w}\}, \ & m{s}_\mathrm{n} + m{s}_\mathrm{w} &= m{1}, \ & m{
ho}_\mathrm{n} - m{
ho}_\mathrm{w} &= \pi(m{s}_\mathrm{n}) \end{aligned}$$

- two immiscible, incompressible fluids
- p_n , p_w : unknown nonwetting and wetting phase pressures
- s_n , s_w : unknown nonwetting and wetting phase saturations
- $\pi(\cdot)$: the nonlinear capillary pressure function
- $\eta_n(\cdot), \eta_w(\cdot)$: the nonlinear phase mobilities functions
- **K** permeability tensor, $q_n(\cdot)$, $q_w(\cdot)$ sources

Two-phase flow

The model

$$egin{aligned} &\partial_t oldsymbol{s}_lpha +
abla \cdot oldsymbol{u}_lpha &= oldsymbol{q}_lpha(oldsymbol{s}_lpha), & lpha \in \{\mathrm{n},\mathrm{w}\}, \ & oldsymbol{u}_lpha &= -oldsymbol{\underline{K}}\eta_lpha(oldsymbol{s}_lpha)
abla oldsymbol{
ho}_lpha, & lpha \in \{\mathrm{n},\mathrm{w}\}, \ & oldsymbol{s}_\mathrm{n} + oldsymbol{s}_\mathrm{w} &= \mathsf{1}, \ & oldsymbol{
ho}_\mathrm{n} - oldsymbol{
ho}_\mathrm{w} &= \pi(oldsymbol{s}_\mathrm{n}) \end{aligned}$$

- two immiscible, incompressible fluids
- p_n , p_w : unknown nonwetting and wetting phase pressures
- s_n , s_w : unknown nonwetting and wetting phase saturations
- $\pi(\cdot)$: the nonlinear capillary pressure function
- $\eta_n(\cdot), \eta_w(\cdot)$: the nonlinear phase mobilities functions
- **K** permeability tensor, $q_n(\cdot)$, $q_w(\cdot)$ sources

Two-phase flow

The model

$$egin{aligned} &\partial_t oldsymbol{s}_lpha +
abla \cdot oldsymbol{u}_lpha &= oldsymbol{q}_lpha(oldsymbol{s}_lpha), & lpha \in \{\mathrm{n},\mathrm{w}\}, \ & oldsymbol{u}_lpha &= -oldsymbol{\underline{K}}\eta_lpha(oldsymbol{s}_lpha)
abla oldsymbol{
ho}_lpha, & lpha \in \{\mathrm{n},\mathrm{w}\}, \ & oldsymbol{s}_\mathrm{n} + oldsymbol{s}_\mathrm{w} &= \mathsf{1}, \ & oldsymbol{
ho}_\mathrm{n} - oldsymbol{
ho}_\mathrm{w} &= \pi(oldsymbol{s}_\mathrm{n}) \end{aligned}$$

- two immiscible, incompressible fluids
- p_n , p_w : unknown nonwetting and wetting phase pressures
- s_n , s_w : unknown nonwetting and wetting phase saturations
- $\pi(\cdot)$: the nonlinear capillary pressure function
- $\eta_n(\cdot), \eta_w(\cdot)$: the nonlinear phase mobilities functions
- **K** permeability tensor, $q_n(\cdot)$, $q_w(\cdot)$ sources

Outline

- Introductio
- 2 Nonlinear diffusion
 - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Applications
 - Numerical results
- 3 The Stefan problem
 - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- Two-phase immiscible incompressible flow
 - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results
- 5 Conclusions and future directions

I Nonlinear diffusion Stefan problem Two-phase flow C

Notation and transformations

Notation and transformations

$f(\boldsymbol{s}) := rac{\eta_{\mathrm{n}}(\boldsymbol{s})}{\eta_{\mathrm{n}}(\boldsymbol{s}) + \eta_{\mathrm{w}}(\boldsymbol{1}-\boldsymbol{s})}, \quad \lambda(\boldsymbol{s}) := \eta_{\mathrm{w}}(\boldsymbol{1}-\boldsymbol{s})f(\boldsymbol{s})$

Kirchhoff transform

• $S := S_n$

$$arphi(oldsymbol{s}) := \int_0^{oldsymbol{s}} \lambda(oldsymbol{a}) \pi'(oldsymbol{a}) \, \mathrm{d}oldsymbol{a}$$

• global pressure $P := P(s, p_n) := p_n - \int_0^{\pi(s)} \frac{\eta_w(1 - \pi^{-1}(a))}{\eta_n(\pi^{-1}(a)) + \eta_w(1 - \pi^{-1}(a))} \, \mathrm{d}a$

•
$$M(s) := \eta_w(1-s) + \eta_n(s)$$

• $q_t(s) := q_n(s) + q_w(1-s)$

- *f*, λ, φ, *P*, *M*, *q*_t only needed for the theoretical analysis, not in the scheme
- *s*⁰: initial condition
- $\overline{s}, \overline{P}$: Dirichlet boundary conditions

I Nonlinear diffusion Stefan problem Two-phase flow C

Notation and transformations

Notation and transformations

$f(\boldsymbol{s}) := rac{\eta_{\mathrm{n}}(\boldsymbol{s})}{\eta_{\mathrm{n}}(\boldsymbol{s}) + \eta_{\mathrm{w}}(\boldsymbol{1}-\boldsymbol{s})}, \quad \lambda(\boldsymbol{s}) := \eta_{\mathrm{w}}(\boldsymbol{1}-\boldsymbol{s})f(\boldsymbol{s})$

Kirchhoff transform

• $S := S_n$

$$\varphi(\boldsymbol{s}) := \int_0^{\boldsymbol{s}} \lambda(\boldsymbol{a}) \pi'(\boldsymbol{a}) \, \mathrm{d}\boldsymbol{a}$$

• global pressure $P := P(s, p_n) := p_n - \int_0^{\pi(s)} \frac{\eta_w(1 - \pi^{-1}(a))}{\eta_w(1 - \pi^{-1}(a)) + \eta_w(1 - \pi^{-1}(a))} \, \mathrm{d}a$

•
$$M(s) := \eta_{w}(1-s) + \eta_{n}(s)$$

- $q_{t}(s) := q_{n}(s) + q_{w}(1-s)$
- *f*, λ, φ, *P*, *M*, *q*_t only needed for the theoretical analysis, not in the scheme
- *s*⁰: initial condition
- $\overline{s}, \overline{P}$: Dirichlet boundary conditions

Notation and transformations

Notation and transformations • $s := s_n$

$f(\boldsymbol{s}) := rac{\eta_{\mathrm{n}}(\boldsymbol{s})}{\eta_{\mathrm{n}}(\boldsymbol{s}) + \eta_{\mathrm{w}}(\boldsymbol{1}-\boldsymbol{s})}, \quad \lambda(\boldsymbol{s}) := \eta_{\mathrm{w}}(\boldsymbol{1}-\boldsymbol{s})f(\boldsymbol{s})$

Kirchhoff transform

$$\varphi(\boldsymbol{s}) := \int_0^{\boldsymbol{s}} \lambda(\boldsymbol{a}) \pi'(\boldsymbol{a}) \, \mathrm{d}\boldsymbol{a}$$

global pressure

$${\sf P}:={\sf P}(s,{\sf p}_{\rm n}):={\sf p}_{\rm n}-\int_0^{\pi(s)}rac{\eta_{
m w}(1-\pi^{-1}(a))}{\eta_{
m n}(\pi^{-1}(a))+\eta_{
m w}(1-\pi^{-1}(a))}\,{
m d}a$$

•
$$M(s) := \eta_w(1-s) + \eta_n(s)$$

•
$$q_{\rm t}(s) := q_{\rm n}(s) + q_{\rm w}(1-s)$$

- f, λ, φ, P, M, q_t only needed for the theoretical analysis, not in the scheme
- s⁰: initial condition
- $\overline{s}, \overline{P}$: Dirichlet boundary conditions

Weak formulation

Functional space for the weak solution

$$\begin{split} \mathcal{E} := & \{ (\boldsymbol{s}, \boldsymbol{P}) \mid \boldsymbol{s} \in \mathcal{C}([0, T]; L^2(\Omega)), \ \partial_t \boldsymbol{s} \in L^2((0, T); H^{-1}(\Omega)), \\ \varphi(\boldsymbol{s}) - \varphi(\overline{\boldsymbol{s}}) \in L^2((0, T); H^1_0(\Omega)), \ \boldsymbol{P} - \overline{\boldsymbol{P}} \in L^2((0, T); H^1_0(\Omega)) \} \end{split}$$

Definition (Weak solution)

A weak solution is a pair $(s, P) \in \mathcal{E}$ such that $s(\cdot, 0) = s^0$ and for all $\psi \in L^2((0, T); H_0^1(\Omega))$,

M. Vohralík

Weak formulation

Functional space for the weak solution

$$\begin{split} \mathcal{E} := & \{ (\boldsymbol{s}, \boldsymbol{P}) \mid \boldsymbol{s} \in \mathcal{C}([0, T]; L^2(\Omega)), \ \partial_t \boldsymbol{s} \in L^2((0, T); H^{-1}(\Omega)), \\ \varphi(\boldsymbol{s}) - \varphi(\overline{\boldsymbol{s}}) \in L^2((0, T); H^1_0(\Omega)), \ \boldsymbol{P} - \overline{\boldsymbol{P}} \in L^2((0, T); H^1_0(\Omega)) \} \end{split}$$

Definition (Weak solution)

A weak solution is a pair $(s, P) \in \mathcal{E}$ such that $s(\cdot, 0) = s^0$ and for all $\psi \in L^2((0, T); H_0^1(\Omega))$,

$$\begin{split} \int_{0}^{T} &\langle \partial_{t} \boldsymbol{s}(\cdot,\theta); \psi(\cdot,\theta) \rangle_{H^{-1},H_{0}^{1}} \, \mathrm{d}\theta + \iint_{Q_{T}} \underline{\boldsymbol{\mathsf{K}}}(\eta_{n}(\boldsymbol{s})\nabla \boldsymbol{P} + \nabla\varphi(\boldsymbol{s})) \cdot \nabla\psi \, \mathrm{d}\boldsymbol{\mathbf{x}} \mathrm{d}\theta \\ &= \iint_{Q_{T}} q_{n}(\boldsymbol{s})\psi \, \mathrm{d}\boldsymbol{\mathbf{x}} \mathrm{d}\theta, \\ &\iint_{Q_{T}} \underline{\boldsymbol{\mathsf{K}}} \boldsymbol{M}(\boldsymbol{s}) \nabla \boldsymbol{P} \cdot \nabla\psi \, \mathrm{d}\boldsymbol{\mathbf{x}} \mathrm{d}\theta = \iint_{Q_{T}} q_{t}(\boldsymbol{s})\psi \, \mathrm{d}\boldsymbol{\mathbf{x}} \mathrm{d}\theta. \end{split}$$

M. Vohralík

Outline

- Introductio
- 2 Nonlinear diffusion
 - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Applications
 - Numerical results
- 3 The Stefan problem
 - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- Two-phase immiscible incompressible flow
 - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results
 - Conclusions and future directions

A posteriori error estimate

Functional space for the approximate solution

$$\begin{split} \mathcal{E}_{\tau} := & \left\{ (\boldsymbol{s}, \boldsymbol{P}) \mid \boldsymbol{s} \in V_{\tau}, \text{ pw affine-in-time subspace of } \mathcal{C}([0, T]; L^2(\Omega)), \right. \\ & \varphi(\boldsymbol{s}) - \varphi(\overline{\boldsymbol{s}}) \in L^2((0, T); H^1_0(\Omega)), \ \boldsymbol{P} - \overline{\boldsymbol{P}} \in L^2((0, T); H^1_0(\Omega)) \right\} \end{split}$$

Theorem (A posteriori error estimate)

Let (s, P) be the weak solution. Let $(s_{h\tau}, P_{h\tau}) \in \mathcal{E}_{\tau}$ be arbitrary. Then there exists C > 0 such that

$$\begin{split} \|s_{h\tau} - s\|_{L^{2}(0,T;H^{-1}(\Omega))}^{2} + \|P_{h\tau} - P\|_{L^{2}(0,T;H_{0}^{1}(\Omega))}^{2} + \|\varphi(s_{h\tau}) - \varphi(s)\|_{L^{2}(Q_{T})}^{2} \\ \leq C\|s_{h\tau}(\cdot,0) - s^{0}\|_{H^{-1}(\Omega)}^{2} \\ + C(\||\mathcal{R}_{n}^{n}(s_{h\tau},P_{h\tau})\||^{2} + \||\mathcal{R}_{t}^{n}(s_{h\tau},P_{h\tau})\||^{2}). \end{split}$$

A posteriori error estimate

Functional space for the approximate solution

$$\begin{split} \mathcal{E}_{\tau} := & \left\{ (\boldsymbol{s}, \boldsymbol{P}) \mid \boldsymbol{s} \in V_{\tau}, \text{ pw affine-in-time subspace of } \mathcal{C}([0, T]; L^2(\Omega)), \right. \\ & \varphi(\boldsymbol{s}) - \varphi(\overline{\boldsymbol{s}}) \in L^2((0, T); H^1_0(\Omega)), \ \boldsymbol{P} - \overline{\boldsymbol{P}} \in L^2((0, T); H^1_0(\Omega)) \right\} \end{split}$$

Theorem (A posteriori error estimate)

Let (s, P) be the weak solution. Let $(s_{h\tau}, P_{h\tau}) \in \mathcal{E}_{\tau}$ be arbitrary. Then there exists C > 0 such that

$$\begin{split} \|s_{h\tau} - s\|_{L^{2}(0,T;H^{-1}(\Omega))}^{2} + \|P_{h\tau} - P\|_{L^{2}(0,T;H_{0}^{1}(\Omega))}^{2} + \|\varphi(s_{h\tau}) - \varphi(s)\|_{L^{2}(Q_{T})}^{2} \\ \leq C\|s_{h\tau}(\cdot,0) - s^{0}\|_{H^{-1}(\Omega)}^{2} \\ + C(\||\mathcal{R}_{n}^{n}(s_{h\tau},P_{h\tau})\||^{2} + \||\mathcal{R}_{t}^{n}(s_{h\tau},P_{h\tau})\||^{2}). \end{split}$$

A posteriori error estimate

Functional space for the approximate solution

$$\begin{split} \mathcal{E}_{\tau} := & \left\{ (\boldsymbol{s}, \boldsymbol{P}) \mid \boldsymbol{s} \in V_{\tau}, \text{ pw affine-in-time subspace of } \mathcal{C}([0, T]; L^2(\Omega)), \right. \\ & \varphi(\boldsymbol{s}) - \varphi(\overline{\boldsymbol{s}}) \in L^2((0, T); H^1_0(\Omega)), \ \boldsymbol{P} - \overline{\boldsymbol{P}} \in L^2((0, T); H^1_0(\Omega)) \right\} \end{split}$$

Theorem (A posteriori error estimate)

Let (s, P) be the weak solution. Let $(s_{h\tau}, P_{h\tau}) \in \mathcal{E}_{\tau}$ be arbitrary. Then there exists C > 0 such that

$$\begin{split} \|s_{h\tau} - s\|_{L^{2}(0,T;H^{-1}(\Omega))}^{2} + \|P_{h\tau} - P\|_{L^{2}(0,T;H_{0}^{1}(\Omega))}^{2} + \|\varphi(s_{h\tau}) - \varphi(s)\|_{L^{2}(Q_{T})}^{2} \\ \leq C\|s_{h\tau}(\cdot,0) - s^{0}\|_{H^{-1}(\Omega)}^{2} \\ + C(\||\mathcal{R}_{n}^{n}(s_{h\tau},P_{h\tau})\||^{2} + \||\mathcal{R}_{t}^{n}(s_{h\tau},P_{h\tau})\||^{2}). \end{split}$$

A posteriori error estimate

Functional space for the approximate solution

$$\begin{split} \mathcal{E}_{\tau} := & \{ (\boldsymbol{s}, \boldsymbol{P}) \mid \boldsymbol{s} \in V_{\tau}, \text{ pw affine-in-time subspace of } \mathcal{C}([0, T]; L^2(\Omega)), \\ & \varphi(\boldsymbol{s}) - \varphi(\overline{\boldsymbol{s}}) \in L^2((0, T); H^1_0(\Omega)), \ \boldsymbol{P} - \overline{\boldsymbol{P}} \in L^2((0, T); H^1_0(\Omega)) \} \end{split}$$

Theorem (A posteriori error estimate)

Let (s, P) be the weak solution. Let $(s_{h\tau}, P_{h\tau}) \in \mathcal{E}_{\tau}$ be arbitrary. Then there exists C > 0 such that

$$\begin{split} \|s_{h\tau} - s\|_{L^{2}(0,T;H^{-1}(\Omega))}^{2} + \|P_{h\tau} - P\|_{L^{2}(0,T;H_{0}^{1}(\Omega))}^{2} + \|\varphi(s_{h\tau}) - \varphi(s)\|_{L^{2}(Q_{T})}^{2} \\ \leq C\|s_{h\tau}(\cdot,0) - s^{0}\|_{H^{-1}(\Omega)}^{2} \\ + C(\||\mathcal{R}_{n}^{n}(s_{h\tau},P_{h\tau})\||^{2} + \||\mathcal{R}_{t}^{n}(s_{h\tau},P_{h\tau})\||^{2}). \end{split}$$

Theorem (Distinguishing different error components)

Consider

- time step n
- Inearization step k
- iterative algebraic solver step i
- & approximations $(\mathbf{s}_{h\tau}^{k,i}, \mathbf{P}_{h\tau}^{k,i})$. Let there exist equilibrated fluxes reconstructions $\mathbf{u}_{\alpha,h}^{n,k,i}$ for each phase $\alpha \in \mathbf{n}, \mathbf{w}$. Split them as $\mathbf{u}_{\alpha,h}^{n,k,i} := \mathbf{d}_{\alpha,h}^{n,k,i} + \mathbf{I}_{\alpha,h}^{n,k,i} + \mathbf{a}_{\alpha,h}^{n,k,i}, \alpha \in \{\mathbf{n}, \mathbf{w}\}.$

Then

$$(|||\mathcal{R}_{n}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, \boldsymbol{P}_{h\tau}^{n,k,i})|||^{2} + |||\mathcal{R}_{t}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, \boldsymbol{P}_{h\tau}^{n,k,i})|||^{2})^{\frac{1}{2}} \leq \eta_{\text{sp}}^{n,k,i} + \eta_{\text{tm}}^{n,k,i} + \eta_{\text{lin}}^{n,k,i} + \eta_{\text{alg}}^{n,k,i}.$$

Moreover, if $\eta_{tm}^{n,k,i}$, $\eta_{lin}^{n,k,i}$, and $\eta_{alg}^{n,k,i}$ do not dominate, then $\eta_{sp}^{n,k,i} + \eta_{tm}^{n,k,i} + \eta_{lin}^{n,k,i} + \eta_{alg}^{n,k,i}$ $\leq C(|||\mathcal{R}_{n}^{n}(s_{h\tau}^{n,k,i}, P_{h\tau}^{n,k,i})|||^{2} + |||\mathcal{R}_{t}^{n}(s_{h\tau}^{n,k,i}, P_{h\tau}^{n,k,i})|||^{2})^{\frac{1}{2}}$

Theorem (Distinguishing different error components)

Consider

- time step n
- Inearization step k
- iterative algebraic solver step i

& approximations $(s_{h_{\tau}}^{k,i}, P_{h_{\tau}}^{k,i})$. Let there exist equilibrated fluxes reconstructions $\mathbf{u}_{\alpha,h}^{n,k,i}$ for each phase $\alpha \in n, w$. Split them as

 $\mathbf{u}_{\alpha,h}^{n,k,i} := \mathbf{d}_{\alpha,h}^{n,k,i} + \mathbf{I}_{\alpha,h}^{n,k,i} + \mathbf{a}_{\alpha,h}^{n,k,i}, \alpha \in \{\mathrm{n},\mathrm{w}\}.$

Then

 $(|||\mathcal{R}_{n}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, \boldsymbol{P}_{h\tau}^{n,k,i})|||^{2} + |||\mathcal{R}_{t}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, \boldsymbol{P}_{h\tau}^{n,k,i})|||^{2})^{\frac{1}{2}} \leq \eta_{sp}^{n,k,i} + \eta_{tm}^{n,k,i} + \eta_{lin}^{n,k,i} + \eta_{alg}^{n,k,i}.$

Moreover, if $\eta_{tm}^{n,k,i}$, $\eta_{lin}^{n,k,i}$, and $\eta_{alg}^{n,k,i}$ do not dominate, then $\eta_{sp}^{n,k,i} + \eta_{tm}^{n,k,i} + \eta_{lin}^{n,k,i} + \eta_{alg}^{n,k,i}$ $\leq C(|||\mathcal{R}_{n}^{n}(s_{h\tau}^{n,k,i}, P_{h\tau}^{n,k,i})|||^{2} + |||\mathcal{R}_{t}^{n}(s_{h\tau}^{n,k,i}, P_{h\tau}^{n,k,i})|||^{2})^{\frac{1}{2}}$

Theorem (Distinguishing different error components)

Consider

- time step n
- Inearization step k
- iterative algebraic solver step i

& approximations $(\mathbf{s}_{h\tau}^{k,i}, \mathbf{P}_{h\tau}^{k,i})$. Let there exist equilibrated fluxes reconstructions $\mathbf{u}_{\alpha,h}^{n,k,i}$ for each phase $\alpha \in n, w$. Split them as $\mathbf{u}_{\alpha,h}^{n,k,i} := \mathbf{d}_{\alpha,h}^{n,k,i} + \mathbf{I}_{\alpha,h}^{n,k,i} + \mathbf{a}_{\alpha,h}^{n,k,i}, \alpha \in \{n, w\}.$

Then

 $(|||\mathcal{R}_{n}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i},\boldsymbol{P}_{h\tau}^{n,k,i})|||^{2} + |||\mathcal{R}_{t}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i},\boldsymbol{P}_{h\tau}^{n,k,i})|||^{2})^{\frac{1}{2}} \leq \eta_{sp}^{n,k,i} + \eta_{tm}^{n,k,i} + \eta_{lin}^{n,k,i} + \eta_{alg}^{n,k,i}.$

Moreover, if $\eta_{tm}^{n,k,i}$, $\eta_{lin}^{n,k,i}$, and $\eta_{alg}^{n,k,i}$ do not dominate, then $\eta_{sp}^{n,k,i} + \eta_{tm}^{n,k,i} + \eta_{lin}^{n,k,i} + \eta_{alg}^{n,k,i}$ $\leq C(|||\mathcal{R}_{n}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, P_{h\tau}^{n,k,i})|||^{2} + |||\mathcal{R}_{t}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, P_{h\tau}^{n,k,i})|||^{2})^{\frac{1}{2}}.$

Theorem (Distinguishing different error components)

Consider

- time step n
- Inearization step k
- iterative algebraic solver step i

& approximations $(\mathbf{s}_{h\tau}^{k,i}, \mathbf{P}_{h\tau}^{k,i})$. Let there exist equilibrated fluxes reconstructions $\mathbf{u}_{\alpha,h}^{n,k,i}$ for each phase $\alpha \in n, w$. Split them as $\mathbf{u}_{\alpha,h}^{n,k,i} := \mathbf{d}_{\alpha,h}^{n,k,i} + \mathbf{I}_{\alpha,h}^{n,k,i} + \mathbf{a}_{\alpha,h}^{n,k,i}, \alpha \in \{n, w\}.$

Then

$$(|||\mathcal{R}_{n}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, \boldsymbol{P}_{h\tau}^{n,k,i})|||^{2} + |||\mathcal{R}_{t}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, \boldsymbol{P}_{h\tau}^{n,k,i})|||^{2})^{\frac{1}{2}} \leq \eta_{\text{sp}}^{n,k,i} + \eta_{\text{tm}}^{n,k,i} + \eta_{\text{lin}}^{n,k,i} + \eta_{\text{alg}}^{n,k,i}.$$

Moreover, if $\eta_{\text{tm}}^{n,k,i}$, $\eta_{\text{lin}}^{n,k,i}$, and $\eta_{\text{alg}}^{n,k,i}$ do not dominate, then $\eta_{\text{sp}}^{n,k,i} + \eta_{\text{tm}}^{n,k,i} + \eta_{\text{lin}}^{n,k,i} + \eta_{\text{alg}}^{n,k,i}$ $\leq C(||\mathcal{R}_{n}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, \mathcal{P}_{h\tau}^{n,k,i})||^{2} + ||\mathcal{R}_{t}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, \mathcal{P}_{h\tau}^{n,k,i})||^{2})^{\frac{1}{2}}.$

Theorem (Distinguishing different error components)

Consider

- time step n
- Inearization step k
- iterative algebraic solver step i

& approximations $(\mathbf{s}_{h\tau}^{k,i}, \mathbf{P}_{h\tau}^{k,i})$. Let there exist equilibrated fluxes reconstructions $\mathbf{u}_{\alpha,h}^{n,k,i}$ for each phase $\alpha \in \mathbf{n}, \mathbf{w}$. Split them as $\mathbf{u}_{\alpha,h}^{n,k,i} := \mathbf{d}_{\alpha,h}^{n,k,i} + \mathbf{l}_{\alpha,h}^{n,k,i} + \mathbf{a}_{\alpha,h}^{n,k,i}, \alpha \in \{\mathbf{n}, \mathbf{w}\}.$

Then

$$(|||\mathcal{R}_{n}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, \boldsymbol{P}_{h\tau}^{n,k,i})|||^{2} + |||\mathcal{R}_{t}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, \boldsymbol{P}_{h\tau}^{n,k,i})|||^{2})^{\frac{1}{2}} \leq \eta_{\text{sp}}^{n,k,i} + \eta_{\text{tm}}^{n,k,i} + \eta_{\text{lin}}^{n,k,i} + \eta_{\text{alg}}^{n,k,i}.$$

Moreover, if $\eta_{\text{tm}}^{n,k,i}$, $\eta_{\text{lin}}^{n,k,i}$, and $\eta_{\text{alg}}^{n,k,i}$ do not dominate, then $\eta_{\text{sp}}^{n,k,i} + \eta_{\text{tm}}^{n,k,i} + \eta_{\text{lin}}^{n,k,i} + \eta_{\text{alg}}^{n,k,i}$ $\leq C(||\mathcal{R}_{n}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, \boldsymbol{P}_{h\tau}^{n,k,i})||^{2} + ||\mathcal{R}_{t}^{n}(\boldsymbol{s}_{h\tau}^{n,k,i}, \boldsymbol{P}_{h\tau}^{n,k,i})||^{2})^{\frac{1}{2}}.$

Estimators

• spatial estimators

$$\eta_{sp,n,D}^{n,k,i} := \|\mathbf{d}_{n,h}^{n,k,i} - \underline{\mathbf{K}}(\eta(\mathbf{s}_{h\tau}^{n,k,i})\nabla P_{h\tau}^{n,k,i} + \nabla\varphi(\mathbf{s}_{h\tau}^{n,k,i}))(t^{n})\|_{\underline{\mathbf{K}}^{-\frac{1}{2}};L^{2}(D)},$$

$$\eta_{sp,t,D}^{n,k,i} := \|\mathbf{d}_{t,h}^{n,k,i} - \underline{\mathbf{K}}M(\mathbf{s}_{h\tau}^{n,k,i})\nabla P_{h\tau}^{n,k,i}(t^{n})\|_{\underline{\mathbf{K}}^{-\frac{1}{2}};L^{2}(D)}$$
• temporal estimators

$$\eta_{tm,n,D}^{n,k,i}(t) := \|\underline{\mathbf{K}}(\eta(\mathbf{s}_{h\tau}^{n,k,i})\nabla P_{h\tau}^{n,k,i} + \nabla\varphi(\mathbf{s}_{h\tau}^{n,k,i}))(t-t^{n})\|_{\underline{\mathbf{K}}^{-\frac{1}{2}};L^{2}(D)},$$

$$\eta_{tm,t,D}^{n,k,i}(t) := \|\underline{\mathbf{K}}M(\mathbf{s}_{h\tau}^{n,k,i})\nabla P_{h\tau}^{n,k,i}(t-t^{n})\|_{\underline{\mathbf{K}}^{-\frac{1}{2}};L^{2}(D)},$$
• linearization estimators

$$\eta_{lin,n,D}^{n,k,i} := \|\mathbf{I}_{n,h}^{n,k,i}\|_{\mathbf{K}^{-\frac{1}{2}};L^{2}(D)},$$

$$\eta_{\mathrm{lin},\mathrm{t},D}^{n,k,i} := \left\| \mathbf{I}_{\mathrm{t},h}^{n,k,i} \right\|_{\underline{\mathbf{K}}^{-\frac{1}{2}};L^{2}(D)}$$

algebraic estimators

$$\eta_{\mathrm{alg},n,D}^{n,k,i} := \|\mathbf{a}_{n,h}^{n,k,i}\|_{\underline{\mathbf{K}}^{-\frac{1}{2}};L^{2}(D)},$$
$$\eta_{\mathrm{alg},t,D}^{n,k,i} := \|\mathbf{a}_{t,h}^{n,k,i}\|_{\underline{\mathbf{K}}^{-\frac{1}{2}};L^{2}(D)}$$

M. Vohralík

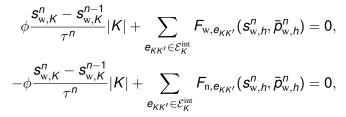
Outline

- Introductio
- 2 Nonlinear diffusion
 - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Applications
 - Numerical results
- 3 The Stefan problem
 - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- Two-phase immiscible incompressible flow
 - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results
 - Conclusions and future directions

Cell-centered finite volume scheme

Cell-centered finite volume scheme

For all $1 \le n \le N$, look for $s^n_{w,h}, \bar{p}^n_{w,h}$ such that



where the fluxes are given by

$$\begin{split} F_{\mathbf{w}, \boldsymbol{e}_{KK'}}(\boldsymbol{s}_{\mathbf{w}, h}^{n}, \bar{\boldsymbol{p}}_{\mathbf{w}, h}^{n}) &\coloneqq - \frac{\eta_{\mathbf{r}, \mathbf{w}}(\boldsymbol{s}_{\mathbf{w}, K}^{n}) + \eta_{\mathbf{r}, \mathbf{w}}(\boldsymbol{s}_{\mathbf{w}, K'}^{n})}{2} |\underline{\mathbf{K}}| \frac{\bar{\boldsymbol{p}}_{\mathbf{w}, K'}^{n} - \bar{\boldsymbol{p}}_{\mathbf{w}, K}^{n}}{|\mathbf{x}_{K} - \mathbf{x}_{K'}|} |\boldsymbol{e}_{KK'}|, \\ F_{\mathbf{n}, \boldsymbol{e}_{KK'}}(\boldsymbol{s}_{\mathbf{w}, h}^{n}, \bar{\boldsymbol{p}}_{\mathbf{w}, h}^{n}) &\coloneqq - \frac{\eta_{\mathbf{r}, \mathbf{n}}(\boldsymbol{s}_{\mathbf{w}, K}^{n}) + \eta_{\mathbf{r}, \mathbf{n}}(\boldsymbol{s}_{\mathbf{w}, K'}^{n})}{2} |\underline{\mathbf{K}}| \\ &\times \frac{\bar{\boldsymbol{p}}_{\mathbf{w}, K'}^{n} + \pi(\boldsymbol{s}_{\mathbf{w}, K'}^{n}) - (\bar{\boldsymbol{p}}_{\mathbf{n}, K}^{n} + \pi(\boldsymbol{s}_{\mathbf{n}, K}^{n}))}{|\mathbf{x}_{K} - \mathbf{x}_{K'}|} |\boldsymbol{e}_{KK'}|. \end{split}$$

M. Vohralík

Cell-centered finite volume scheme

Cell-centered finite volume scheme

For all $1 \le n \le N$, look for $s^n_{w,h}, \bar{p}^n_{w,h}$ such that

$$\begin{split} \phi \frac{\boldsymbol{s}_{\mathbf{w},K}^{n} - \boldsymbol{s}_{\mathbf{w},K}^{n-1}}{\tau^{n}} |\boldsymbol{K}| + \sum_{\boldsymbol{e}_{KK'} \in \mathcal{E}_{K}^{\text{int}}} F_{\mathbf{w},\boldsymbol{e}_{KK'}}(\boldsymbol{s}_{\mathbf{w},h}^{n}, \bar{\boldsymbol{p}}_{\mathbf{w},h}^{n}) = \boldsymbol{0}, \\ -\phi \frac{\boldsymbol{s}_{\mathbf{w},K}^{n} - \boldsymbol{s}_{\mathbf{w},K}^{n-1}}{\tau^{n}} |\boldsymbol{K}| + \sum_{\boldsymbol{e}_{KK'} \in \mathcal{E}_{K}^{\text{int}}} F_{\mathbf{n},\boldsymbol{e}_{KK'}}(\boldsymbol{s}_{\mathbf{w},h}^{n}, \bar{\boldsymbol{p}}_{\mathbf{w},h}^{n}) = \boldsymbol{0}, \end{split}$$

where the fluxes are given by

$$egin{aligned} & F_{ ext{w},m{e}_{\mathcal{K}\mathcal{K}'}}(m{s}^n_{ ext{w},h},ar{p}^n_{ ext{w},h}) &:= \ - \ rac{\eta_{ ext{r,w}}(m{s}^n_{ ext{w},\mathcal{K}}) + \eta_{ ext{r,w}}(m{s}^n_{ ext{w},\mathcal{K}'})}{2} |\mathbf{\underline{K}}| rac{ar{p}^n_{ ext{w},\mathcal{K}'} - ar{p}^n_{ ext{w},\mathcal{K}}}{|\mathbf{x}_{\mathcal{K}} - \mathbf{x}_{\mathcal{K}'}|} |m{e}_{\mathcal{K}\mathcal{K}'}|, \ & F_{ ext{n,e}_{\mathcal{K}\mathcal{K}'}}(m{s}^n_{ ext{w},h},ar{p}^n_{ ext{w},h}) &:= \ - \ rac{\eta_{ ext{r,n}}(m{s}^n_{ ext{w},\mathcal{K}}) + \eta_{ ext{r,n}}(m{s}^n_{ ext{w},\mathcal{K}'})}{2} |\mathbf{\underline{K}}| \ & imes \ & rac{ar{p}^n_{ ext{w},\mathcal{K}} + \pi(m{s}^n_{ ext{w},\mathcal{K}'}) - (ar{p}^n_{ ext{n},\mathcal{K}} + \pi(m{s}^n_{ ext{n},\mathcal{K}}))}{|\mathbf{x}_{\mathcal{K}} - \mathbf{x}_{\mathcal{K}'}|} |m{e}_{\mathcal{K}\mathcal{K}'}|. \end{aligned}$$

M. Vohralík

Linearization and algebraic solution

Linearization step k and algebraic step i Couple $s_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}$ such that $\phi \frac{s_{w,K}^{n,k,i} - s_{w,K}^{n-1}}{\tau^n} |K| + \sum_{e_{KK'} \in \mathcal{E}_K^{int}} F_{w,e_{KK'}}^{k-1}(s_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}) = -R_{w,K}^{n,k,i},$ $-\phi \frac{s_{w,K}^{n,k,i} - s_{w,K}^{n-1}}{\tau^n} |K| + \sum_{e_{KK'} \in \mathcal{E}_K^{int}} F_{n,e_{KK'}}^{k-1}(s_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}) = -R_{n,K}^{n,k,i},$

where the linearized fluxes are given by

$$\begin{split} F_{\alpha,e_{KK'}}^{k-1}(s_{\mathbf{w},h}^{n,k,i},\bar{p}_{\mathbf{w},h}^{n,k,i}) &:= F_{\alpha,e_{KK'}}(s_{\mathbf{w},h}^{n,k-1},\bar{p}_{\mathbf{w},h}^{n,k-1}) \\ &+ \sum_{M \in \{K,K'\}} \frac{\partial F_{\alpha,e_{KK'}}}{\partial s_{\mathbf{w},M}}(s_{\mathbf{w},h}^{n,k-1},\bar{p}_{\mathbf{w},h}^{n,k-1}) \cdot (s_{\mathbf{w},M}^{n,k,i} - s_{\mathbf{w},M}^{n,k-1}) \\ &+ \sum_{M \in \{K,K'\}} \frac{\partial F_{\alpha,e_{KK'}}}{\partial \bar{p}_{\mathbf{w},M}}(s_{\mathbf{w},h}^{n,k-1},\bar{p}_{\mathbf{w},h}^{n,k-1}) \cdot (\bar{p}_{\mathbf{w},M}^{n,k,i} - \bar{p}_{\mathbf{w},M}^{n,k-1}) \end{split}$$

M. Vohralík

Linearization and algebraic solution

Linearization step k and algebraic step i

Couple $s_{\mathbf{w},h}^{n,k,i}, \bar{p}_{\mathbf{w},h}^{n,k,i}$ such that $\phi \frac{s_{\mathbf{w},K}^{n,k,i} - s_{\mathbf{w},K}^{n-1}}{\tau^n} |K| + \sum_{e_{ww} \in \mathcal{E}^{int}} F_{\mathbf{w},e_{KK'}}^{k-1}(s_{\mathbf{w},h}^{n,k,i}, \bar{p}_{\mathbf{w},h}^{n,k,i}) = -R_{\mathbf{w},K}^{n,k,i},$

$$-\phi \frac{\mathbf{s}_{\mathbf{w},\mathbf{K}}^{n,k,i} - \mathbf{s}_{\mathbf{w},\mathbf{K}}^{n-1}}{\tau^{n}} |\mathbf{K}| + \sum_{\mathbf{e}_{\mathbf{K}\mathbf{K}'} \in \mathcal{E}_{\mathbf{K}}^{\text{int}}} F_{\mathbf{n},\mathbf{e}_{\mathbf{K}\mathbf{K}'}}^{k-1}(\mathbf{s}_{\mathbf{w},h}^{n,k,i}, \bar{\mathbf{p}}_{\mathbf{w},h}^{n,k,i}) = -\mathbf{R}_{\mathbf{n},\mathbf{K}}^{n,k,i},$$

where the linearized fluxes are given by

$$\begin{aligned} F_{\alpha,e_{KK'}}^{k-1}(s_{w,h}^{n,k,i},\bar{p}_{w,h}^{n,k,i}) &:= F_{\alpha,e_{KK'}}(s_{w,h}^{n,k-1},\bar{p}_{w,h}^{n,k-1}) \\ &+ \sum_{M \in \{K,K'\}} \frac{\partial F_{\alpha,e_{KK'}}}{\partial s_{w,M}}(s_{w,h}^{n,k-1},\bar{p}_{w,h}^{n,k-1}) \cdot (s_{w,M}^{n,k,i} - s_{w,M}^{n,k-1}) \\ &+ \sum_{M \in \{K,K'\}} \frac{\partial F_{\alpha,e_{KK'}}}{\partial \bar{p}_{w,M}}(s_{w,h}^{n,k-1},\bar{p}_{w,h}^{n,k-1}) \cdot (\bar{p}_{w,M}^{n,k,i} - \bar{p}_{w,M}^{n,k-1}). \end{aligned}$$

M. Vohralík

I Nonlinear diffusion Stefan problem Two-phase flow C Weak solution Estimate and efficiency Appl. & num. res.

Fluxes reconstructions and pressure postprocessing

Fluxes reconstructions

$$(\mathbf{d}_{\alpha,h}^{n,k,i} \cdot \mathbf{n}_{K}, 1)_{\boldsymbol{e}_{KK'}} := F_{\alpha, \boldsymbol{e}_{KK'}}(\boldsymbol{s}_{w,h}^{n,k,i}, \bar{\boldsymbol{p}}_{w,h}^{n,k,i}),$$
$$((\mathbf{d}_{\alpha,h}^{n,k,i} + \mathbf{I}_{\alpha,h}^{n,k,i}) \cdot \mathbf{n}_{K}, 1)_{\boldsymbol{e}_{KK'}} := F_{\alpha, \boldsymbol{e}_{KK'}}^{k-1}(\boldsymbol{s}_{w,h}^{n,k,i}, \bar{\boldsymbol{p}}_{w,h}^{n,k,i}),$$
$$\mathbf{a}_{\alpha,h}^{n,k,i} := \mathbf{d}_{\alpha,h}^{n,k,i+\nu} + \mathbf{I}_{\alpha,h}^{n,k,i+\nu} - (\mathbf{d}_{\alpha,h}^{n,k,i} + \mathbf{I}_{\alpha,h}^{n,k,i})$$

• Piecewise constant $\bar{p}_{\alpha,h}^{n,k,i}$ postprocessed to piecewise

$$-\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w,K}}^{n,k,i})\underline{\mathbf{K}}\nabla(\boldsymbol{p}_{\mathrm{w,h}}^{n,k,i}|_{K}) = \mathbf{d}_{\mathrm{w,h}}^{n,k,i}|_{K},$$
$$\boldsymbol{p}_{\mathrm{w,h}}^{n,k,i}(\mathbf{x}_{K}) = \bar{\boldsymbol{p}}_{\mathrm{w,K}}^{n,k,i},$$

$$egin{aligned} &-\eta_{\mathrm{r},\mathrm{n}}(m{s}_{\mathrm{w},K}^{n,k,i}) \underline{\mathsf{K}}
abla(m{p}_{\mathrm{n},h}^{n,k,i}|_{K}) &= \mathbf{d}_{\mathrm{n},h}^{n,k,i}|_{K}, \ & m{p}_{\mathrm{n},h}^{n,k,i}(\mathbf{x}_{K}) &= \pi(m{s}_{\mathrm{w},K}^{n,k,i}) + ar{m{p}}_{\mathrm{w},K}^{n,k,i}. \end{aligned}$$

I Nonlinear diffusion Stefan problem Two-phase flow C Weak solution Estimate and efficiency Appl. & num. res.

Fluxes reconstructions and pressure postprocessing

Fluxes reconstructions

$$(\mathbf{d}_{\alpha,h}^{n,k,i} \cdot \mathbf{n}_{K}, 1)_{e_{KK'}} := F_{\alpha, e_{KK'}}(s_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}),$$

$$((\mathbf{d}_{\alpha,h}^{n,k,i} + \mathbf{I}_{\alpha,h}^{n,k,i}) \cdot \mathbf{n}_{K}, 1)_{e_{KK'}} := F_{\alpha, e_{KK'}}^{k-1}(s_{w,h}^{n,k,i}, \bar{p}_{w,h}^{n,k,i}),$$

$$\mathbf{a}_{\alpha,h}^{n,k,i} := \mathbf{d}_{\alpha,h}^{n,k,i+\nu} + \mathbf{I}_{\alpha,h}^{n,k,i+\nu} - (\mathbf{d}_{\alpha,h}^{n,k,i} + \mathbf{I}_{\alpha,h}^{n,k,i})$$

Phase pressures postprocessing

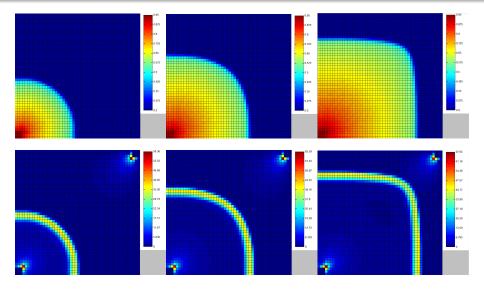
• Piecewise constant $\bar{p}_{\alpha,h}^{n,k,i}$ postprocessed to piecewise quadratic $p_{\alpha b}^{n,k,i}$:

$$-\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w,K}}^{n,k,i})\underline{\mathsf{K}}\nabla(\boldsymbol{p}_{\mathrm{w,h}}^{n,k,i}|_{\mathcal{K}}) = \mathbf{d}_{\mathrm{w,h}}^{n,k,i}|_{\mathcal{K}},$$
$$\boldsymbol{p}_{\mathrm{w,h}}^{n,k,i}(\mathbf{x}_{\mathcal{K}}) = \bar{\boldsymbol{p}}_{\mathrm{w,K}}^{n,k,i},$$

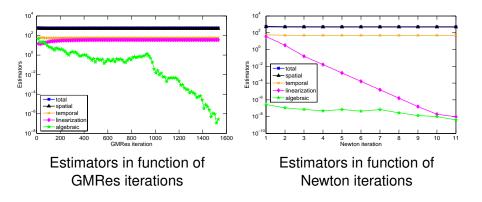
$$egin{aligned} &-\eta_{\mathrm{r},\mathrm{n}}(oldsymbol{s}_{\mathrm{w},K}^{n,k,i}) \mathbf{\underline{K}}
abla(oldsymbol{p}_{\mathrm{n},h}^{n,k,i}|_{\mathcal{K}}) &= \mathbf{d}_{\mathrm{n},h}^{n,k,i}|_{\mathcal{K}}, \ &oldsymbol{p}_{\mathrm{n},h}^{n,k,i}(\mathbf{x}_{\mathcal{K}}) &= \pi(oldsymbol{s}_{\mathrm{w},K}^{n,k,i}) + ar{oldsymbol{p}}_{\mathrm{w},\mathcal{K}}^{n,k,i}) \end{aligned}$$

I Nonlinear diffusion Stefan problem Two-phase flow C Weak solution Estimate and efficiency Appl. & num. res.

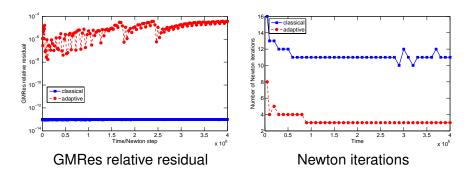
Water saturation/estimators evolution



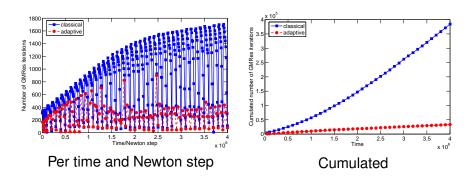
Estimators and stopping criteria



GMRes relative residual/Newton iterations



GMRes iterations



Vertex-centered finite volumes

Implicit pressure equation on step k

$$- \left(\left(\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \right) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k} \cdot \mathbf{n}_{D} \\ + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1} \right)_{\partial D \setminus \partial \Omega} = \mathbf{0} \quad \forall D \in \mathcal{D}_{h}^{\mathrm{int},n}$$

Explicit saturation equation on step *k*

$$\boldsymbol{s}_{\mathrm{w},D}^{n,k} := \frac{\tau^n}{\phi|D|} \big(\eta_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k} \cdot \mathbf{n}_D, 1 \big)_{\partial D \setminus \partial \Omega} + \boldsymbol{s}_{\mathrm{w},D}^{n-1} \quad \forall D \in \mathcal{D}_h^{\mathrm{int},n}$$

Vertex-centered finite volumes

Implicit pressure equation on step k

$$- \left(\left(\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \right) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k} \cdot \mathbf{n}_{D} \\ + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1} \right)_{\partial D \setminus \partial \Omega} = \mathbf{0} \quad \forall D \in \mathcal{D}_{h}^{\mathrm{int},n}$$

Explicit saturation equation on step k

$$\boldsymbol{s}_{\mathrm{w},D}^{n,k} := \frac{\tau^n}{\phi|\boldsymbol{D}|} \big(\eta_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{\rho}_{\mathrm{w},h}^{n,k} \cdot \mathbf{n}_D, 1 \big)_{\partial D \setminus \partial \Omega} + \boldsymbol{s}_{\mathrm{w},D}^{n-1} \quad \forall \boldsymbol{D} \in \mathcal{D}_h^{\mathrm{int},n}$$

Linearization and algebraic solution

Iterative coupling step k and algebraic step i

$$-((\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}))\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathrm{w},h}^{n,k,i}\cdot\mathbf{n}_{D} \\ + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla\overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\cdot\mathbf{n}_{D}, 1)_{\partial D\setminus\partial\Omega} = -\boldsymbol{R}_{\mathrm{t,D}}^{n,k,i} \quad \forall D \in \mathcal{D}_{h}^{\mathrm{int},n}$$

$$\boldsymbol{s}_{\mathrm{w},D}^{n,k,i} := \frac{\tau^n}{\phi|D|} \big(\eta_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_D, 1 \big)_{\partial D \setminus \partial \Omega} + \boldsymbol{s}_{\mathrm{w},D}^{n-1}$$

Linearization and algebraic solution

Iterative coupling step k and algebraic step i

$$-((\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}))\underline{\mathbf{K}}\nabla\boldsymbol{\mathcal{P}}_{\mathrm{w},h}^{n,k,i}\cdot\mathbf{n}_{D} \\ + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla\overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\cdot\mathbf{n}_{D}, 1)_{\partial D\setminus\partial\Omega} = -\boldsymbol{R}_{\mathrm{t,D}}^{n,k,i} \quad \forall D \in \mathcal{D}_{h}^{\mathrm{int},n}$$

$$\boldsymbol{s}_{\mathsf{w},D}^{n,k,i} := \frac{\tau^n}{\phi |\boldsymbol{D}|} \big(\eta_{\mathsf{r},\mathsf{w}}(\boldsymbol{s}_{\mathsf{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{\rho}_{\mathsf{w},h}^{n,k,i} \cdot \mathbf{n}_D, 1 \big)_{\partial D \setminus \partial \Omega} + \boldsymbol{s}_{\mathsf{w},D}^{n-1}$$

Fluxes reconstructions

Total fluxes

$$\begin{aligned} (\mathbf{d}_{t,h}^{n,k,i} \cdot \mathbf{n}_{D}, \mathbf{1})_{e} &:= -\left(\left(\eta_{r,w}(\boldsymbol{s}_{w,h}^{n,k,i}) + \eta_{r,n}(\boldsymbol{s}_{w,h}^{n,k,i})\right)\underline{\mathbf{K}}\nabla \boldsymbol{p}_{w,h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \eta_{r,n}(\boldsymbol{s}_{w,h}^{n,k,i})\underline{\mathbf{K}}\nabla \overline{\pi}(\boldsymbol{s}_{w,h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1}\right)_{e}, \\ ((\mathbf{d}_{t,h}^{n,k,i} + \mathbf{l}_{t,h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1})_{e} &:= -\left(\left(\eta_{r,w}(\boldsymbol{s}_{w,h}^{n,k-1}) + \eta_{r,n}(\boldsymbol{s}_{w,h}^{n,k-1})\right)\underline{\mathbf{K}}\nabla \boldsymbol{p}_{w,h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \eta_{r,n}(\boldsymbol{s}_{w,h}^{n,k-1})\underline{\mathbf{K}}\nabla \overline{\pi}(\boldsymbol{s}_{w,h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1}\right)_{e}, \\ &+ \eta_{r,n}(\boldsymbol{s}_{w,h}^{n,k-1})\underline{\mathbf{K}}\nabla \overline{\pi}(\boldsymbol{s}_{w,h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1})_{e}, \\ \mathbf{a}_{t,h}^{n,k,i} &:= \mathbf{d}_{t,h}^{n,k,i+\nu} + \mathbf{l}_{t,h}^{n,k,i+\nu} - (\mathbf{d}_{t,h}^{n,k,i} + \mathbf{l}_{t,h}^{n,k,i}) \end{aligned}$$

Wetting fluxes

$$\begin{aligned} (\mathbf{d}_{\mathbf{w},h}^{n,k,i} \cdot \mathbf{n}_{D}, 1)_{e} &:= - \left(\eta_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i}) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D}, 1 \right)_{e}, \\ ((\mathbf{d}_{\mathrm{w},h}^{n,k,i} + \mathbf{l}_{\mathrm{w},h}^{n,k,i}) \cdot \mathbf{n}_{D}, 1)_{e} &:= - \left(\eta_{\mathrm{r},\mathrm{w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D}, 1 \right)_{e}, \\ \mathbf{a}_{\mathrm{w},h}^{n,k,i} &:= 0 \end{aligned}$$

Fluxes reconstructions

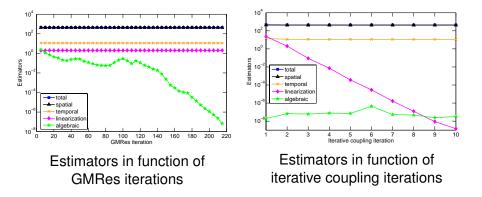
Total fluxes

$$\begin{aligned} (\mathbf{d}_{t,h}^{n,k,i} \cdot \mathbf{n}_{D}, \mathbf{1})_{\boldsymbol{e}} &:= -\left(\left(\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i})\right)\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i})\underline{\mathbf{K}}\nabla\overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1}\right)_{\boldsymbol{e}}, \\ ((\mathbf{d}_{t,h}^{n,k,i} + \mathbf{l}_{t,h}^{n,k,i}) \cdot \mathbf{n}_{D}, \mathbf{1})_{\boldsymbol{e}} &:= -\left(\left(\eta_{\mathrm{r,w}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) + \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\right)\underline{\mathbf{K}}\nabla\boldsymbol{p}_{\mathrm{w},h}^{n,k,i} \cdot \mathbf{n}_{D} \right. \\ &+ \eta_{\mathrm{r,n}}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1})\underline{\mathbf{K}}\nabla\overline{\pi}(\boldsymbol{s}_{\mathrm{w},h}^{n,k-1}) \cdot \mathbf{n}_{D}, \mathbf{1}\right)_{\boldsymbol{e}}, \\ &\left. \mathbf{a}_{t,h}^{n,k,i} := \mathbf{d}_{t,h}^{n,k,i+\nu} + \mathbf{l}_{t,h}^{n,k,i+\nu} - \left(\mathbf{d}_{t,h}^{n,k,i} + \mathbf{l}_{t,h}^{n,k,i}\right) \end{aligned}$$

Wetting fluxes

$$\begin{aligned} (\mathbf{d}_{\mathbf{w},h}^{n,k,i} \cdot \mathbf{n}_{D}, 1)_{e} &:= - \left(\eta_{\mathbf{r},\mathbf{w}}(\boldsymbol{s}_{\mathbf{w},h}^{n,k,i}) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathbf{w},h}^{n,k,i} \cdot \mathbf{n}_{D}, 1 \right)_{e}, \\ ((\mathbf{d}_{\mathbf{w},h}^{n,k,i} + \mathbf{I}_{\mathbf{w},h}^{n,k,i}) \cdot \mathbf{n}_{D}, 1)_{e} &:= - \left(\eta_{\mathbf{r},\mathbf{w}}(\boldsymbol{s}_{\mathbf{w},h}^{n,k-1}) \underline{\mathbf{K}} \nabla \boldsymbol{p}_{\mathbf{w},h}^{n,k,i} \cdot \mathbf{n}_{D}, 1 \right)_{e}, \\ \mathbf{a}_{\mathbf{w},h}^{n,k,i} &:= 0 \end{aligned}$$

Estimators and stopping criteria

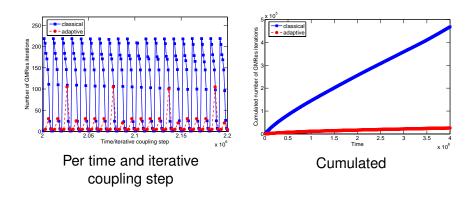


Weak solution Estimate and efficiency Appl. & num. res.

GMRes relative residual/iterative coupling iterations



GMRes iterations



Outline

- Introducti
- 2 Nonlinear diffusion
 - Quasi-linear elliptic problems
 - A guaranteed a posteriori error estimate
 - Stopping criteria and efficiency
 - Applications
 - Numerical results
- 3 The Stefan problem
 - Dual residual and energy norms
 - A posteriori error estimate and its efficiency
 - Numerical results
- 4 Two-phase immiscible incompressible flow
 - Weak solution
 - A posteriori error estimate and its efficiency
 - Applications and numerical results
 - Conclusions and future directions

Conclusions

Complete adaptivity

- only a necessary number of algebraic solver iterations on each linearization step
- only a necessary number of linearization iterations
- optimal choice of the regularization parameter
- space-time mesh adaptivity
- "smart online decisions": algebraic step / linearization step / regularization / time step refinement / space mesh refinement
- important computational savings
- guaranteed and robust upper bound via a posteriori error estimates

Future directions

- other coupled nonlinear systems
- convergence and optimality

Conclusions

Complete adaptivity

- only a necessary number of algebraic solver iterations on each linearization step
- only a necessary number of linearization iterations
- optimal choice of the regularization parameter
- space-time mesh adaptivity
- "smart online decisions": algebraic step / linearization step / regularization / time step refinement / space mesh refinement
- important computational savings
- guaranteed and robust upper bound via a posteriori error estimates

Future directions

- other coupled nonlinear systems
- convergence and optimality

Bibliography I

- ERN A., VOHRALÍK M., Adaptive inexact Newton methods for discretizations of nonlinear diffusion PDEs. I. General theory and a posteriori stopping criteria, HAL Preprint 00681422 & Adaptive inexact Newton methods for discretizations of nonlinear diffusion PDEs. II. Applications, HAL Preprint 00681426.
- DI PIETRO D. A., VOHRALÍK M., YOUSEF S., Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem, HAL Preprint 00690862.
- CANCÈS C., POP I. S., VOHRALÍK M., An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, accepted for *Math. Comp.*
- VOHRALÍK M., WHEELER M. F., A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows, HAL Preprint 00633594.

Bibliography II

- ERN A., VOHRALÍK M., A posteriori error estimation based on potential and flux reconstruction for the heat equation, *SIAM J. Numer. Anal.* 48 (2010), 198–223.
- JIRÁNEK P., STRAKOŠ Z., VOHRALÍK M., A posteriori error estimates including algebraic error and stopping criteria for iterative solvers. *SIAM J. Sci. Comput.* **32** (2010), 1567–1590.
- EL ALAOUI L., ERN A., VOHRALÍK M., Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. *Comput. Methods Appl. Mech. Engrg.* 200 (2011), 2782–2795.

Thank you for your attention!