Unified primal formulation-based
a priori and a posteriori error analysis
of mixed finite element methods

Martin Vohralík

Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie (Paris 6)

Austin, April 30, 2008
Introduction

Model problem \((S\text{ inhomogeneous and anisotropic})\)

\[
\begin{align*}
\mathbf{u} &= -S \nabla p, \nabla \cdot \mathbf{u} = f \text{ in } \Omega \\
-\nabla \cdot (S \nabla p) &= f \text{ in } \Omega \\
p &= 0 \text{ on } \partial \Omega \\
p &= 0 \text{ on } \partial \Omega
\end{align*}
\]

Mixed finite elements

\[
\begin{align*}
(S^{-1} \mathbf{u}_h, \mathbf{v}_h) - (p_h, \nabla \cdot \mathbf{v}_h) &= 0 \quad \forall \mathbf{v}_h \in \mathbf{V}_h, \\
(\nabla \cdot \mathbf{u}_h, \phi_h) &= (f, \phi_h) \quad \forall \phi_h \in \Phi_h
\end{align*}
\]

Traditional analysis

- weak mixed formulation
 \[
 (S^{-1} \mathbf{u}, \mathbf{v}) - (p, \nabla \cdot \mathbf{v}) = 0 \\
 \forall \mathbf{v} \in H(\text{div}, \Omega),
 \]

- inf–sup condition
 \[
 (\nabla \cdot \mathbf{u}, \phi) = (f, \phi) \quad \forall \phi \in L^2(\Omega)
 \]

Presented analysis

- classical weak formulation
 \[
 (S \nabla p, \nabla \phi) = (f, \phi) \\
 \forall \phi \in H^1_0(\Omega)
 \]

- postprocessing and discrete Friedrichs inequality

- \(\nabla \cdot \mathbf{V}_h = \Phi_h\)

unified and optimal a priori and a posteriori error analysis

M. Vohralík

Unified a priori and a posteriori analysis of MFEs
Introduction

Model problem (S inhomogeneous and anisotropic)

\[u = -S \nabla p, \nabla \cdot u = f \text{ in } \Omega \]
\[-\nabla \cdot (S \nabla p) = f \text{ in } \Omega \]
\[p = 0 \text{ on } \partial \Omega \]

Mixed finite elements

\[(S^{-1}u_h, v_h) - (p_h, \nabla \cdot v_h) = 0 \quad \forall v_h \in V_h, \]
\[(\nabla \cdot u_h, \phi_h) = (f, \phi_h) \quad \forall \phi_h \in \Phi_h \]

Traditional analysis

- weak mixed formulation
 \[(S^{-1}u, v) - (p, \nabla \cdot v) = 0 \quad \forall v \in H(\text{div}, \Omega), \]
 \[(\nabla \cdot u, \phi) = (f, \phi) \quad \forall \phi \in L^2(\Omega) \]
- inf–sup condition
- \(\nabla \cdot V_h = \Phi_h \)

Presented analysis

- classical weak formulation
 \[(S \nabla p, \nabla \varphi) = (f, \varphi) \quad \forall \varphi \in H^1_0(\Omega) \]
- postprocessing and discrete Friedrichs inequality
- \(\nabla \cdot V_h = \Phi_h \)

unified and optimal a priori and a posteriori error analysis
Introduction

Model problem \((S\text{ inhomogeneous and anisotropic})\)

\[u = -S \nabla p, \nabla \cdot u = f \text{ in } \Omega \]

\[-\nabla \cdot (S \nabla p) = f \text{ in } \Omega \]

\[p = 0 \text{ on } \partial \Omega \]

Mixed finite elements

\[(S^{-1}u_h, v_h) - (p_h, \nabla \cdot v_h) = 0 \quad \forall v_h \in V_h, \]

\[(\nabla \cdot u_h, \phi_h) = (f, \phi_h) \quad \forall \phi_h \in \Phi_h \]

Traditional analysis

- weak mixed formulation
 \[(S^{-1}u, v) - (p, \nabla \cdot v) = 0 \]
 \[\forall v \in H(\text{div}, \Omega), \]
 \[(\nabla \cdot u, \phi) = (f, \phi) \quad \forall \phi \in L^2(\Omega) \]
- inf–sup condition
- \[\nabla \cdot \nabla_h = \Phi_h \]

Presented analysis

- classical weak formulation
 \[(S \nabla p, \nabla \varphi) = (f, \varphi) \]
 \[\forall \varphi \in H^1_0(\Omega) \]
- postprocessing and discrete Friedrichs inequality
- \[\nabla \cdot \nabla_h = \Phi_h \]

unified and optimal a priori and a posteriori error analysis

M. Vohralík
Unified a priori and a posteriori analysis of MFEs
Introduction

Model problem (\(S\) inhomogeneous and anisotropic)

\[
\begin{align*}
\mathbf{u} &= -S \nabla p, \nabla \cdot \mathbf{u} = f \text{ in } \Omega \\
p &= 0 \text{ on } \partial \Omega
\end{align*}
\]

\[
\begin{align*}
\nabla \cdot (S \nabla p) &= f \text{ in } \Omega \\
p &= 0 \text{ on } \partial \Omega
\end{align*}
\]

Mixed finite elements

\[
\begin{align*}
(S^{-1} \mathbf{u}_h, \mathbf{v}_h) - (p_h, \nabla \cdot \mathbf{v}_h) &= 0 \quad \forall \mathbf{v}_h \in V_h, \\
(\nabla \cdot \mathbf{u}_h, \phi_h) &= (f, \phi_h) \quad \forall \phi_h \in \Phi_h
\end{align*}
\]

Traditional analysis
- weak mixed formulation
 \[
 (S^{-1} \mathbf{u}, \mathbf{v}) - (p, \nabla \cdot \mathbf{v}) = 0 \\
 \forall \mathbf{v} \in H(\text{div}, \Omega),
 \]
- \(\nabla \cdot \mathbf{u}, \phi = (f, \phi) \quad \forall \phi \in L^2(\Omega)
 \]
- inf–sup condition
- \(\nabla \cdot V_h = \Phi_h\)

Presented analysis
- classical weak formulation
 \[
 (S \nabla p, \nabla \varphi) = (f, \varphi) \\
 \forall \varphi \in H^1_0(\Omega)
 \]
- postprocessing and discrete Friedrichs inequality
- \(\nabla \cdot V_h = \Phi_h\)

unified and optimal a priori and a posteriori error analysis

M. Vohralík

Unified a priori and a posteriori analysis of MFEs
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - \(L^2(\Omega) \) estimates
 - \(RT_0 \) and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT$_0$ and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work
Bilinear forms and weak solution

Definition (Bilinear form B)

$$B(p, \varphi) := \sum_{K \in \mathcal{T}_h} (\mathbf{S} \nabla p, \nabla \varphi)_K, \quad p, \varphi \in H^1(\mathcal{T}_h).$$

Definition (Bilinear form A)

$$A(u, v) := \sum_{K \in \mathcal{T}_h} (u, \mathbf{S}^{-1} v)_K, \quad u, v \in L^2(\Omega).$$

Definition (Weak solution)

$p \in H^1_0(\Omega)$ such that $B(p, \varphi) = (f, \varphi)$ \quad $\forall \varphi \in H^1_0(\Omega)$; or

$p \in H^1_0(\Omega)$ such that $A(\mathbf{S} \nabla p, \mathbf{S} \nabla \varphi) = (f, \varphi)$ \quad $\forall \varphi \in H^1_0(\Omega)$.

M. Vohralík Unified a priori and a posteriori analysis of MFEs
Bilinear forms and weak solution

Definition (Bilinear form \mathcal{B})

$$\mathcal{B}(\rho, \varphi) := \sum_{K \in \mathcal{T}_h} (\mathbf{S} \nabla \rho, \nabla \varphi)_K, \quad \rho, \varphi \in H^1(\mathcal{T}_h).$$

Definition (Bilinear form \mathcal{A})

$$\mathcal{A}(\mathbf{u}, \mathbf{v}) := \sum_{K \in \mathcal{T}_h} (\mathbf{u}, \mathbf{S}^{-1} \mathbf{v})_K, \quad \mathbf{u}, \mathbf{v} \in L^2(\Omega).$$

Definition (Weak solution)

$$\rho \in H^1_0(\Omega) \text{ such that } \mathcal{B}(\rho, \varphi) = (f, \varphi), \quad \forall \varphi \in H^1_0(\Omega);$$

or

$$\rho \in H^1_0(\Omega) \text{ such that } \mathcal{A}(\mathbf{S} \nabla \rho, \mathbf{S} \nabla \varphi) = (f, \varphi), \quad \forall \varphi \in H^1_0(\Omega).$$
Bilinear forms and weak solution

Definition (Bilinear form B)

\[B(p, \varphi) := \sum_{K \in \mathcal{T}_h} (S \nabla p, \nabla \varphi)_K, \quad p, \varphi \in H^1(\mathcal{T}_h). \]

Definition (Bilinear form A)

\[A(u, v) := \sum_{K \in \mathcal{T}_h} (u, S^{-1}v)_K, \quad u, v \in L^2(\Omega). \]

Definition (Weak solution)

\[p \in H^1_0(\Omega) \text{ such that } B(p, \varphi) = (f, \varphi) \quad \forall \varphi \in H^1_0(\Omega); \]

or

\[p \in H^1_0(\Omega) \text{ such that } A(S \nabla p, S \nabla \varphi) = (f, \varphi) \quad \forall \varphi \in H^1_0(\Omega). \]
Energy norms

Definition (Energy semi-norm)
\[\|\varphi\|^2 := \mathcal{B}(\varphi, \varphi), \quad \varphi \in H^1(T_h). \]

Definition (Energy norm)
\[\|\varphi\|^2 := \mathcal{B}(\varphi, \varphi), \quad \varphi \in W^k_0(T_h). \]

Definition (Energy norm)
\[\|v\|^*_2 := \mathcal{A}(v, v), \quad v \in L^2(\Omega). \]

Definition (Energy–div norm)
\[\|v\|^2_{\ast, \text{div}} := \|v\|^*_2 + \|\nabla \cdot v\|^2, \quad v \in H(\text{div}, \Omega). \]
Energy norms

Definition (Energy semi-norm)

\[||| \varphi \|||^2 := B(\varphi, \varphi), \quad \varphi \in H^1(\mathcal{T}_h). \]

Definition (Energy norm)

\[||| \varphi \|||^2 := B(\varphi, \varphi), \quad \varphi \in W_0^k(\mathcal{T}_h). \]

Definition (Energy norm)

\[||| v \|||_*^2 := A(v, v), \quad v \in L^2(\Omega). \]

Definition (Energy–div norm)

\[||| v \|||_*^{2,\text{div}} := ||| v \|||_*^2 + \| \nabla \cdot v \|^2, \quad v \in H(\text{div}, \Omega). \]
Energy norms

Definition (Energy semi-norm)

\[
\|\|\varphi\||^2 := \mathcal{B}(\varphi, \varphi), \quad \varphi \in H^1(\mathcal{T}_h).
\]

Definition (Energy norm)

\[
\|\|\varphi\||^2 := \mathcal{B}(\varphi, \varphi), \quad \varphi \in W^k_0(\mathcal{T}_h).
\]

Definition (Energy norm)

\[
\|\|v\||^2_* := \mathcal{A}(v, v), \quad v \in L^2(\Omega).
\]

Definition (Energy–div norm)

\[
\|\|v\||^2_{*,\text{div}} := \|v\|^2_* + \|\nabla \cdot v\|^2, \quad v \in H(\text{div}, \Omega).
\]
Energy norms

Definition (Energy semi-norm)

\[\|\| \varphi \|\|_2^2 := B(\varphi, \varphi), \quad \varphi \in H^1(\mathcal{T}_h). \]

Definition (Energy norm)

\[\|\| \varphi \|\|_2^2 := B(\varphi, \varphi), \quad \varphi \in W^k_0(\mathcal{T}_h). \]

Definition (Energy norm)

\[\|\| \mathbf{v} \|\|_2^* := A(\mathbf{v}, \mathbf{v}), \quad \mathbf{v} \in L^2(\Omega). \]

Definition (Energy–div norm)

\[\|\| \mathbf{v} \|\|_{*, \text{div}}^2 := \|\| \mathbf{v} \|\|_2^* + \|\nabla \cdot \mathbf{v} \|_2^2, \quad \mathbf{v} \in H(\text{div}, \Omega). \]
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT_0 and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work
An abstract result for the flux variable

Theorem (Abstract framework \textit{(scheme-independent)})

Let \(\mathbf{v}, \mathbf{w}, \mathbf{t} \in L^2(\Omega) \) be arbitrary. Then

\[
|||\mathbf{v} - \mathbf{w}|||^* \leq |||\mathbf{w} - \mathbf{t}|||^* + \left| \mathcal{A}\left(\mathbf{v} - \mathbf{w}, \frac{\mathbf{v} - \mathbf{t}}{|||\mathbf{v} - \mathbf{t}|||^*}\right) \right|
\]

A priori error estimate

\[
|||\mathbf{u} - \mathbf{u}_h|||^* \leq |||\mathbf{u} - \Pi_h \mathbf{u}|||^*
\]

A posteriori error estimate

- put \(\mathbf{v} = \mathbf{u}, \mathbf{w} = \mathbf{u}_h, \mathbf{t} = -S\nabla s \) with \(s \in H^1_0(\Omega) \) arbitrary:

\[
|||\mathbf{u} - \mathbf{u}_h|||^* \leq |||\mathbf{u}_h + S\nabla s|||^* + \left| \mathcal{A}\left(\mathbf{u} - \mathbf{u}_h, \frac{\mathbf{u} + S\nabla s}{|||\mathbf{u} + S\nabla s|||^*}\right) \right|
\]

- notice that \(\mathcal{A}(\mathbf{u}, -S\nabla \varphi) = (f, \varphi) \) (here \(\varphi = p - s/|||p - s|||)\)

- notice that \(\mathcal{A}(\mathbf{u}_h, -S\nabla \varphi) = (\pi_I(f), \varphi) \)

- get

\[
|||\mathbf{u} - \mathbf{u}_h|||^* \leq \inf_{s \in H^1_0(\Omega)} |||\mathbf{u}_h + S\nabla s|||^* + \left\{ \sum_{K \in T_h} \frac{C_P h^2_K}{C_{S,K}} ||f - \pi_I(f)||^2_K \right\}^{1/2}
\]
An abstract result for the flux variable

Theorem (Abstract framework (scheme-independent))

Let $v, w, t \in L^2(\Omega)$ be arbitrary. Then

$$
|||v - w|||_* \leq |||w - t|||_* + \left| A \left(v - w, \frac{v - t}{||v - t||_*} \right) \right|.
$$

A priori error estimate

- put $v = u_h, w = u, t = \Pi_h u$:
 $$
 |||u_h - u|||_* \leq |||u - \Pi_h u|||_* + \left| A \left(u_h - u, \frac{u_h - \Pi_h u}{||u_h - \Pi_h u||_*} \right) \right|
 $$
- notice that $A(u_h - u, u_h - \Pi_h u) = 0$ in MFEs
- get $|||u - u_h|||_* \leq |||u - \Pi_h u|||_*$

A posteriori error estimate

- put $v = u, w = u_h, t = -S \nabla s$ with $s \in H^1_0(\Omega)$ arbitrary:
 $$
 |||u - u_h|||_* \leq |||u_h + S \nabla s|||_* + \left| A \left(u - u_h, \frac{u + S \nabla s}{||u + S \nabla s||_*} \right) \right|
 $$
- notice that $A(u - \nabla s, (f, p))$ (here $p = e(\|a\|)$).
An abstract result for the flux variable

Theorem (Abstract framework (scheme-independent))

Let $v, w, t \in L^2(\Omega)$ be arbitrary. Then

$$\|\|v - w\|\|_* \leq \|\|w - t\|\|_* + \left|\mathcal{A} \left(v - w, \frac{v - t}{\|v - t\|_*} \right) \right|. $$

A priori error estimate

$$\|\|u - u_h\|\|_* \leq \|\|u - \Pi_h u\|\|_*$$

A posteriori error estimate

- put $v = u, w = u_h, t = -S \nabla s$ with $s \in H^1_0(\Omega)$ arbitrary:

$$\|\|u - u_h\|\|_* \leq \|\|u_h + S \nabla s\|\|_* + \left|\mathcal{A} \left(u - u_h, \frac{u + S \nabla s}{\|u + S \nabla s\|_*} \right) \right|$$

- notice that $\mathcal{A}(u, -S \nabla \varphi) = (f, \varphi)$ (here $\varphi = p - s/\|p - s\|)$

- notice that $\mathcal{A}(u_h, -S \nabla \varphi) = (\pi_I(f), \varphi)$

- get $\|\|u - u_h\|\|_* \leq \inf_{s \in H^1_0(\Omega)} \|\|u_h + S \nabla s\|\|_* + \left\{ \sum_{K \in \mathcal{T}_h} \frac{C_p h_K^2}{c_{s,K}} \|f - \pi_I(f)\|_K^2 \right\}^{1/2}$

M. Vohralík

Unified a priori and a posteriori analysis of MFEs
An abstract result for the flux variable

Theorem (Abstract framework (scheme-independent))

Let $v, w, t \in L^2(\Omega)$ be arbitrary. Then

$$
|||v - w|||_* \leq |||w - t|||_* + \left| A \left(v - w, \frac{v - t}{||v - t||_*} \right) \right|.
$$

A priori error estimate

$$
|||u - u_h|||_* \leq |||u - \Pi_h u|||_*
$$

A posteriori error estimate

- put $v = u$, $w = u_h$, $t = -S\nabla s$ with $s \in H^1_0(\Omega)$ arbitrary:

$$
|||u - u_h|||_* \leq |||u_h + S\nabla s|||_* + \left| A \left(u - u_h, \frac{u + S\nabla s}{||u + S\nabla s||_*} \right) \right|
$$

- notice that $A(u, -S\nabla \varphi) = (f, \varphi)$ (here $\varphi = p - s/||p - s||$)
- notice that $A(u_h, -S\nabla \varphi) = (\pi_I(f), \varphi)$
- get $|||u - u_h|||_* \leq \inf_{s \in H^1_0(\Omega)} |||u_h + S\nabla s|||_* + \left\{ \sum_{K \in T_h} \frac{c_P h_K^2}{c_{S,K}} ||f - \pi_I(f)||_K^2 \right\}^{1/2}$

M. Vohralík
Unified a priori and a posteriori analysis of MFEs
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT_0 and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work
Postprocessing for the scalar variable

Postprocessing in mixed finite elements

- Arnold and Brezzi ’85: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates
- Bramble and Xu ’89: A local post-processing technique for improving the accuracy in mixed finite-element approximations
- Stenberg ’91: Postprocessing schemes for some mixed finite elements
- Arbogast and Chen ’95: On the implementation of mixed methods as nonconforming methods for second-order elliptic problems
- Chen ’96: Equivalence between and multigrid algorithms for nonconforming and mixed methods for second-order elliptic problems
Postprocessing in mixed finite elements

- Usually used in order to implement MFEMs and get superconvergence for the postprocessed variable.
- Usually not used in order to get a priori or a posteriori error estimates.
Postprocessing in mixed finite elements

- Usually used in order to implement MFEMs and get superconvergence for the postprocessed variable.
- Usually not used in order to get a priori or a posteriori error estimates.
Definition (Postprocessed scalar variable \tilde{p}_h)

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

- $-\mathbf{S}_K \nabla \tilde{p}_h|_K = \mathbf{u}_h|_K$ (flux of \tilde{p}_h is \mathbf{u}_h),
- $(\tilde{p}_h, 1)_K/|K| = p_K$ (mean of \tilde{p}_h on K is p_K).

Properties of \tilde{p}_h

- \tilde{p}_h exists and is unique (it is a pw second-order polynomial)
- \tilde{p}_h is nonconforming, $\notin H^1_0(\Omega)$, only $\in H^1(\mathcal{T}_h)$ in general
- means of traces of \tilde{p}_h on the sides continuous, $\tilde{p}_h \in W^0_0(\mathcal{T}_h)$
- the means are equal to the Lagrange multipliers from the hybridization

Remarks

- exact (not weak) connection of \tilde{p}_h and \mathbf{u}_h
- only valid in the lowest-order case on simplices or, when \mathbf{S} is diagonal, on rectangular parallelepipeds
Definition (Postprocessed scalar variable \tilde{p}_h)

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

- $-S_K \nabla \tilde{p}_h|_K = u_h|_K$ (flux of \tilde{p}_h is u_h),
- $(\tilde{p}_h, 1)_K/|K| = p_K$ (mean of \tilde{p}_h on K is p_K).

Properties of \tilde{p}_h

- \tilde{p}_h exists and is unique (it is a pw second-order polynomial)
- \tilde{p}_h is nonconforming, $\not\in H^1_0(\Omega)$, only $\in H^1(\mathcal{T}_h)$ in general
- means of traces of \tilde{p}_h on the sides continuous, $\tilde{p}_h \in W^0_0(\mathcal{T}_h)$
- the means are equal to the Lagrange multipliers from the hybridization

Remarks

- exact (not weak) connection of \tilde{p}_h and u_h
- only valid in the lowest-order case on simplices or, when S is diagonal, on rectangular parallelepipeds
Lowest-order Raviart–Thomas case

Definition (Postprocessed scalar variable \tilde{p}_h)

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

- $-\mathbf{S}_K \nabla \tilde{p}_h|_K = \mathbf{u}_h|_K$ (flux of \tilde{p}_h is \mathbf{u}_h),
- $(\tilde{p}_h, 1)_K/|K| = p_K$ (mean of \tilde{p}_h on K is p_K).

Properties of \tilde{p}_h

- \tilde{p}_h exists and is unique (it is a pw second-order polynomial)
- \tilde{p}_h is nonconforming, $\not\in H^1_0(\Omega)$, only $\in H^1(\mathcal{T}_h)$ in general
- means of traces of \tilde{p}_h on the sides continuous, $\tilde{p}_h \in W^0_0(\mathcal{T}_h)$
- the means are equal to the Lagrange multipliers from the hybridization

Remarks

- exact (not weak) connection of \tilde{p}_h and \mathbf{u}_h
- only valid in the lowest-order case on simplices or, when \mathbf{S} is diagonal, on rectangular parallelepipeds
Lowest-order Raviart–Thomas case

Definition (Postprocessed scalar variable \tilde{p}_h)

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

- $-S_K \nabla \tilde{p}_h|_K = u_h|_K$ (flux of \tilde{p}_h is u_h),
- $(\tilde{p}_h, 1)_K/|K| = p_K$ (mean of \tilde{p}_h on K is p_K).

Properties of \tilde{p}_h

- \tilde{p}_h exists and is unique (it is a pw second-order polynomial)
- \tilde{p}_h is nonconforming, $\not\in H^1_0(\Omega)$, only $\in H^1(\mathcal{T}_h)$ in general
- means of traces of \tilde{p}_h on the sides continuous, $\tilde{p}_h \in W^0_0(\mathcal{T}_h)$

Proof:

\begin{align*}
0 &= - (\nabla \tilde{p}_h, v_{\sigma_{K,L}})_{K \cup L} - (\tilde{p}_h, \nabla \cdot v_{\sigma_{K,L}})_{K \cup L} \\
&= - \langle v_{\sigma_{K,L}} \cdot n, \tilde{p}_h \rangle_{\partial K} - \langle v_{\sigma_{K,L}} \cdot n, \tilde{p}_h \rangle_{\partial L} \\
&= \langle v_{\sigma_{K,L}} \cdot n_K, \tilde{p}_h |_L - \tilde{p}_h |_K \rangle_{\sigma_{K,L}}
\end{align*}
Lowest-order Raviart–Thomas case

Definition (Postprocessed scalar variable \tilde{p}_h)

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

- $-\mathbf{S}_K \nabla \tilde{p}_h|_K = \mathbf{u}_h|_K$ (flux of \tilde{p}_h is \mathbf{u}_h),
- $(\tilde{p}_h, 1)_K/|K| = p_K$ (mean of \tilde{p}_h on K is p_K).

Properties of \tilde{p}_h

- \tilde{p}_h exists and is unique (it is a pw second-order polynomial)
- \tilde{p}_h is nonconforming, $\not\in H^1_0(\Omega)$, only $\in H^1(\mathcal{T}_h)$ in general
- means of traces of \tilde{p}_h on the sides continuous, $\tilde{p}_h \in W^0_0(\mathcal{T}_h)$
- the means are equal to the Lagrange multipliers from the hybridization

Remarks

- exact (not weak) connection of \tilde{p}_h and \mathbf{u}_h
- only valid in the lowest-order case on simplices or, when \mathbf{S} is diagonal, on rectangular parallelepipeds
Lowest-order Raviart–Thomas case

Definition (Postprocessed scalar variable \tilde{p}_h)

We define \tilde{p}_h such that, separately on each $K \in T_h$,

- $-S_K \nabla \tilde{p}_h|_K = u_h|_K$ (flux of \tilde{p}_h is u_h),
- $(\tilde{p}_h, 1)_K/|K| = p_K$ (mean of \tilde{p}_h on K is p_K).

Properties of \tilde{p}_h

- \tilde{p}_h exists and is unique (it is a pw second-order polynomial)
- \tilde{p}_h is nonconforming, $\not\in H^1_0(\Omega)$, only $\in H^1(T_h)$ in general
- means of traces of \tilde{p}_h on the sides continuous, $\tilde{p}_h \in W^0_0(T_h)$
- the means are equal to the Lagrange multipliers from the hybridization

Remarks

- exact (not weak) connection of \tilde{p}_h and u_h
- only valid in the lowest-order case on simplices or, when S is diagonal, on rectangular parallelepipeds
General postprocessing

Definition (Postprocessed scalar variable \tilde{p}_h (Arbogast & Chen))

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

- $(\tilde{p}_h, \phi_h)_K = (p_h, \phi_h)_K \quad \forall \phi_h \in \Phi_h(K)$.
- $(\tilde{p}_h, \mu_h)_\sigma = (\lambda_h, \mu_h)_\sigma \quad \forall \mu_h \in \Lambda_h(\sigma) \quad \forall \sigma \in \mathcal{E}_h^{\text{int}}$.

Properties of \tilde{p}_h

- \tilde{p}_h exists and is unique
- \tilde{p}_h is nonconforming, $\notin H_0^1(\Omega)$, but $\tilde{p}_h \in W^k_0(\mathcal{T}_h)$
- \tilde{p}_h is in general a nonconforming polynomial plus a bubble
- \tilde{p}_h satisfies $-(S^{-1}u_h, v_h)_K = (\nabla \tilde{p}_h, v_h)_K \quad \forall v_h \in V_h(K)$

Remarks

- u_h is a $P_{v_h,S^{-1}}$ projection of $-S\nabla \tilde{p}_h$ onto V_h, weak connection of \tilde{p}_h and u_h
- basis of our a priori and a posteriori error estimates
General postprocessing

Definition (Postprocessed scalar variable \tilde{p}_h (Arbogast & Chen))

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

- $(\tilde{p}_h, \phi_h)_K = (p_h, \phi_h)_K \quad \forall \phi_h \in \Phi_h(K)$.
- $(\tilde{p}_h, \mu_h)_{\sigma} = (\lambda_h, \mu_h)_{\sigma} \quad \forall \mu_h \in \Lambda_h(\sigma) \quad \forall \sigma \in \mathcal{E}^{\text{int}}_h$.

Properties of \tilde{p}_h

- \tilde{p}_h exists and is unique
- \tilde{p}_h is nonconforming, $\not\in H^1_0(\Omega)$, but $\tilde{p}_h \in W^k_0(\mathcal{T}_h)$
- \tilde{p}_h is in general a nonconforming polynomial plus a bubble
- \tilde{p}_h satisfies $- (S^{-1}u_h, v_h)_K = (\nabla \tilde{p}_h, v_h)_K \quad \forall v_h \in V_h(K)$

Remarks

- u_h is a $P_{v_h, S^{-1}}$ projection of $-S \nabla \tilde{p}_h$ onto V_h, weak connection of \tilde{p}_h and u_h
- basis of our a priori and a posteriori error estimates
General postprocessing

Definition (Postprocessed scalar variable \tilde{p}_h (Arbogast & Chen))

We define \tilde{p}_h such that, separately on each $K \in T_h$,

- $(\tilde{p}_h, \phi_h)_K = (p_h, \phi_h)_K \quad \forall \phi_h \in \Phi_h(K)$.
- $(\tilde{p}_h, \mu_h)_\sigma = (\lambda_h, \mu_h)_\sigma \quad \forall \mu_h \in \Lambda_h(\sigma) \quad \forall \sigma \in \mathcal{E}^{\text{int}}_h$.

Properties of \tilde{p}_h

- \tilde{p}_h exists and is unique
- \tilde{p}_h is nonconforming, $\not\in H^1_0(\Omega)$, but $\tilde{p}_h \in W^k_0(T_h)$
- \tilde{p}_h is in general a nonconforming polynomial plus a bubble
- \tilde{p}_h satisfies $-(S^{-1}u_h, v_h)_K = (\nabla \tilde{p}_h, v_h)_K \quad \forall v_h \in V_h(K)$

Remarks

- u_h is a $P_{V_h,S^{-1}}$ projection of $-S\nabla \tilde{p}_h$ onto V_h, weak connection of \tilde{p}_h and u_h
- basis of our a priori and a posteriori error estimates
General postprocessing

Definition (Postprocessed scalar variable \tilde{p}_h (Arbogast & Chen))

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

- $(\tilde{p}_h, \phi_h)_K = (p_h, \phi_h)_K \quad \forall \phi_h \in \Phi_h(K)$.
- $(\tilde{p}_h, \mu_h)_\sigma = (\lambda_h, \mu_h)_\sigma \quad \forall \mu_h \in \Lambda_h(\sigma) \quad \forall \sigma \in \mathcal{E}_h^{\text{int}}$.

Properties of \tilde{p}_h

- \tilde{p}_h exists and is unique
- \tilde{p}_h is nonconforming, $\not \in H^1_0(\Omega)$, but $\tilde{p}_h \in W^k_0(\mathcal{T}_h)$
- \tilde{p}_h is in general a nonconforming polynomial plus a bubble
- \tilde{p}_h satisfies $-(S^{-1}u_h, v_h)_K = (\nabla \tilde{p}_h, v_h)_K \quad \forall v_h \in V_h(K)$

Remarks

- u_h is a $P_{v_h,S^{-1}}$ projection of $-S\nabla \tilde{p}_h$ onto V_h, weak connection of \tilde{p}_h and u_h
- basis of our a priori and a posteriori error estimates
Definition (Postprocessed scalar variable \tilde{p}_h (Arbogast & Chen))

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

- $(\tilde{p}_h, \phi_h)_K = (p_h, \phi_h)_K \quad \forall \phi_h \in \Phi_h(K)$.
- $(\tilde{p}_h, \mu_h)_\sigma = (\lambda_h, \mu_h)_\sigma \quad \forall \mu_h \in \Lambda_h(\sigma) \quad \forall \sigma \in \mathcal{E}_h^{\text{int}}$.

Properties of \tilde{p}_h

- \tilde{p}_h exists and is unique
- \tilde{p}_h is nonconforming, $\not\in H^1_0(\Omega)$, but $\tilde{p}_h \in W^k_0(\mathcal{T}_h)$
- \tilde{p}_h is in general a nonconforming polynomial plus a bubble
- \tilde{p}_h satisfies $-(S^{-1}u_h, v_h)_K = (\nabla \tilde{p}_h, v_h)_K \quad \forall v_h \in V_h(K)$

Remarks

- u_h is a $P_{v_h, S^{-1}}$ projection of $-S\nabla \tilde{p}_h$ onto V_h, weak connection of \tilde{p}_h and u_h
- basis of our a priori and a posteriori error estimates
Framework | A priori est. | A posteriori est. | Remarks | Exp. C. | Flux variable | Scalar variable
---|---|---|---|---|---|---

General postprocessing

Definition (Postprocessed scalar variable \tilde{p}_h (Arbogast & Chen))

We define \tilde{p}_h such that, separately on each $K \in \mathcal{T}_h$,

- $(\tilde{p}_h, \phi_h)_K = (p_h, \phi_h)_K \quad \forall \phi_h \in \Phi_h(K)$.
- $(\tilde{p}_h, \mu_h)_\sigma = (\lambda_h, \mu_h)_\sigma \quad \forall \mu_h \in \Lambda_h(\sigma) \quad \forall \sigma \in \mathcal{E}_h^{\text{int}}$.

Properties of \tilde{p}_h

- \tilde{p}_h exists and is unique
- \tilde{p}_h is nonconforming, $\not\in H^1_0(\Omega)$, but $\tilde{p}_h \in W^k_0(\mathcal{T}_h)$
- \tilde{p}_h is in general a nonconforming polynomial plus a bubble
- \tilde{p}_h satisfies $-(S^{-1}u_h, v_h)_K = (\nabla \tilde{p}_h, v_h)_K \quad \forall v_h \in V_h(K)$

Remarks

- u_h is a $P_{v_h,S^{-1}}$ projection of $-S\nabla \tilde{p}_h$ onto V_h, weak connection of \tilde{p}_h and u_h
- basis of our a priori and a posteriori error estimates
Outline

1 General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2 A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3 A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4 Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT_0 and pure diffusion problems

5 Numerical experiments

6 Conclusions and future work

M. Vohralík
Unified a priori and a posteriori analysis of MFEs
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT_0 and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work
Lowest-order Raviart–Thomas case

- \(\|p - \tilde{p}_h\| = \|u - u_h\| \leq \|u - \Pi_h u\| \leq Ch \)
- \(\tilde{p}_h \in W_0^0(\mathcal{T}_h) \): discrete Friedrichs inequality

\[
\|p - \tilde{p}_h\| \leq C_{DF}^{1/2} \left\{ \sum_{K \in \mathcal{T}_h} \| \nabla (p - \tilde{p}_h) \|^2_K \right\}^{1/2}
\]

- optimal value of \(C_{DF} \) (only depends on the shape regularity parameter and \(\inf_{b \in \mathbb{R}^d} \{ \text{thick}_b(\Omega) \} \)): Vohralík, NFAO 2005
- consequently: \(\left\{ \sum_{K \in \mathcal{T}_h} \|p - \tilde{p}_h\|^2_{1,K} \right\}^{1/2} \leq Ch \)
- superconvergence: \(\|p - \tilde{p}_h\| \leq Ch^2 \)
Lowest-order Raviart–Thomas case

- $|||p - \tilde{p}_h||| = |||u - u_h||| * \leq |||u - \Pi_h u||| * \leq Ch$
- $\tilde{p}_h \in W_0^0(I_h)$: discrete Friedrichs inequality

$$||p - \tilde{p}_h|| \leq C_{DF}^{1/2} \left\{ \sum_{K \in I_h} \|\nabla (p - \tilde{p}_h)\|_K^2 \right\}^{1/2}$$

- Optimal value of C_{DF} (only depends on the shape regularity parameter and $\inf_{b \in \mathbb{R}^d} \{\text{thick}_b(\Omega)\}$): Vohralík, NFAO 2005

- Consequently: $\{ \sum_{K \in I_h} ||p - \tilde{p}_h||_{1,K}^2 \}^{1/2} \leq Ch$
- Superconvergence: $||p - \tilde{p}_h|| \leq Ch^2$
Lowest-order Raviart–Thomas case

\[\| p - \tilde{p}_h \| = \| u - u_h \|_* \leq \| u - \Pi_h u \|_* \leq Ch \]

\[\tilde{p}_h \in W^0_0(I_h): \text{discrete Friedrichs inequality} \]

\[\| p - \tilde{p}_h \| \leq C_{DF}^{\frac{1}{2}} \left\{ \sum_{K \in I_h} \| \nabla (p - \tilde{p}_h) \|_K^2 \right\}^{\frac{1}{2}} \]

optimal value of \(C_{DF} \) (only depends on the shape regularity parameter and \(\inf_{b \in \mathbb{R}^d} \{ \text{thick}_b(\Omega) \} \)): Vohralík, NFAO 2005

consequently: \[\left\{ \sum_{K \in I_h} \| p - \tilde{p}_h \|_{1,K}^2 \right\}^{\frac{1}{2}} \leq Ch \]

superconvergence: \[\| p - \tilde{p}_h \| \leq Ch^2 \]
Lowest-order Raviart–Thomas case

\[\| p - \tilde{p}_h \| = \| u - u_h \|_* \leq \| u - \Pi_h u \|_* \leq Ch \]

\(\tilde{p}_h \in W_0^0(\mathcal{T}_h) \): discrete Friedrichs inequality

\[\| p - \tilde{p}_h \| \leq C_{DF}^{\frac{1}{2}} \left\{ \sum_{K \in \mathcal{T}_h} \| \nabla (p - \tilde{p}_h) \|_K^2 \right\}^{\frac{1}{2}} \]

optimal value of \(C_{DF} \) (only depends on the shape regularity parameter and \(\inf_{b \in \mathbb{R}^d} \{ \text{thick}_b(\Omega) \} \)): Vohralík, NFAO 2005

consequently: \(\left\{ \sum_{K \in \mathcal{T}_h} \| p - \tilde{p}_h \|_{1,K}^2 \right\}^{\frac{1}{2}} \leq Ch \)

superconvergence: \(\| p - \tilde{p}_h \| \leq Ch^2 \)
Lowest-order Raviart–Thomas case

\[\|\rho - \tilde{\rho}_h\| = \|u - u_h\|_* \leq \|u - \Pi_h u\|_* \leq Ch \]

\[\tilde{\rho}_h \in W^0_0(T_h): \text{discrete Friedrichs inequality} \]

\[\|\rho - \tilde{\rho}_h\| \leq C_{DF}^{1/2} \left\{ \sum_{K \in T_h} \|\nabla (\rho - \tilde{\rho}_h)\|_K^2 \right\}^{1/2} \]

- optimal value of \(C_{DF} \) (only depends on the shape regularity parameter and \(\inf_{b \in \mathbb{R}^d} \{ \text{thick}_b(\Omega) \} \)): Vohralík, NFAO 2005

- consequently: \(\left\{ \sum_{K \in T_h} \|\rho - \tilde{\rho}_h\|_{1,K}^2 \right\}^{1/2} \leq Ch \)

- superconvergence: \(\|\rho - \tilde{\rho}_h\| \leq Ch^2 \)
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT$_0$ and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work
General case

- a little bit more complicated since we only have
 \(u_h = -P_{V_h, S^{-1}}(S \nabla \tilde{p}_h) \) instead of \(u_h = -S \nabla \tilde{p}_h \)

- one still easily recovers all the known a priori error estimates for mixed finite elements
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT_0 and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work

M. Vohralík
Unified a priori and a posteriori analysis of MFEs
What is/should be an a posteriori error estimate

Usual form
- \[\| p - p_h \|^2 \lesssim \sum_{K \in T_h} \eta_K(p_h)^2. \]
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

Reliability
- \[\| p - p_h \|^2 \leq C \sum_{K \in T_h} \eta_K(p_h)^2 \]

Guaranteed upper bound
- \[\| p - p_h \|^2 \leq \sum_{K \in T_h} \eta_K(p_h)^2 \]

Local efficiency
- \[\eta_K(p_h)^2 \leq C_{\text{eff},K} \sum_{L \text{ close to } K} \| p - p_h \|_L^2 \]

Asymptotic exactness
- \[\frac{\sum_{K \in T_h} \eta_K(p_h)^2}{\| p - p_h \|^2} \to 1 \]

Robustness
- independence of the data variation or mesh properties

Negligible evaluation cost
- estimators which can be evaluated locally
What is/should be an a posteriori error estimate

Usual form
- $\|p - p_h\|^2 \lesssim \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2$.
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

Reliability
- $\|p - p_h\|^2 \leq C \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2$

Guaranteed upper bound
- $\|p - p_h\|^2 \leq \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2$

Local efficiency
- $\eta_K(p_h)^2 \leq C_{\text{eff},K} \sum_{L \text{ close to } K} \|p - p_h\|^2_L$

Asymptotic exactness
- $\sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2 / \|p - p_h\|^2 \to 1$

Robustness
- independence of the data variation or mesh properties

Negligible evaluation cost
- estimators which can be evaluated locally
What is/should be an a posteriori error estimate

Usual form
- $\|p - p_h\|^2 \lesssim \sum_{K \in T_h} \eta_K(p_h)^2$.
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

Reliability
- $\|p - p_h\|^2 \leq C \sum_{K \in T_h} \eta_K(p_h)^2$
- Problems:
 - What is C?
 - What does it depend on?
 - How does it depend on data?

Local efficiency
- $\eta_K(p_h)^2 \leq C_{\text{eff},K}^2 \sum_{L \text{close to } K} \|p - p_h\|_L^2$

Asymptotic exactness
- $\sum_{K \in T_h} \eta_K(p_h)^2 / \|p - p_h\|^2 \rightarrow 1$

Robustness
- independence of the data variation or mesh properties

Negligible evaluation cost
What is/should be an a posteriori error estimate

Usual form
- \(\| p - p_h \|^2 \lesssim \sum_{K \in \mathcal{T}_h} \eta_K (p_h)^2 \).
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

Reliability
- \(\| p - p_h \|^2 \leq C \sum_{K \in \mathcal{T}_h} \eta_K (p_h)^2 \)

Guaranteed upper bound
- \(\| p - p_h \|^2 \leq \sum_{K \in \mathcal{T}_h} \eta_K (p_h)^2 \)

Local efficiency
- \(\eta_K (p_h)^2 \leq C_{\text{eff},K} \sum_{L \text{close to } K} \| p - p_h \|_L^2 \)

Asymptotic exactness
- \(\sum_{K \in \mathcal{T}_h} \eta_K (p_h)^2 / \| p - p_h \|^2 \rightarrow 1 \)

Robustness
- independence of the data variation or mesh properties

Negligible evaluation cost
- estimators which can be evaluated locally
What is/should be an a posteriori error estimate

Usual form
- \[\| \rho - \rho_h \|^2 \lesssim \sum_{K \in \mathcal{T}_h} \eta_K(\rho_h)^2. \]
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

Reliability
- \[\| \rho - \rho_h \|^2 \leq C \sum_{K \in \mathcal{T}_h} \eta_K(\rho_h)^2 \]

Guaranteed upper bound
- \[\| \rho - \rho_h \|^2 \leq \sum_{K \in \mathcal{T}_h} \eta_K(\rho_h)^2 \]

Local efficiency
- \[\eta_K(\rho_h)^2 \leq C_{\text{eff}, K} \sum_{L \text{ close to } K} \| \rho - \rho_h \|_L^2 \]

Asymptotic exactness
- \[\sum_{K \in \mathcal{T}_h} \eta_K(\rho_h)^2 / \| \rho - \rho_h \|^2 \to 1 \]

Robustness
- independence of the data variation or mesh properties

Negligible evaluation cost
- estimators which can be evaluated locally
What is/should be an a posteriori error estimate

Usual form
- \(\| p - p_h \|^2 \lesssim \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2 \).
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

Reliability
- \(\| p - p_h \|^2 \leq C \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2 \)

Guaranteed upper bound
- \(\| p - p_h \|^2 \leq \sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2 \)

Local efficiency
- \(\eta_K(p_h)^2 \leq C_{\text{eff}, K} \sum_{L \text{ close to } K} \| p - p_h \|_L^2 \)

Asymptotic exactness
- \(\sum_{K \in \mathcal{T}_h} \eta_K(p_h)^2 / \| p - p_h \|^2 \rightarrow 1 \)

Robustness
- Independence of the data variation or mesh properties

Negligible evaluation cost
- Estimators which can be evaluated locally
What is/should be an a posteriori error estimate

Usual form
- \[\| p - p_h \|^2 \lesssim \sum_{K \in \mathcal{T}_h} \eta_K (p_h)^2. \]
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

Reliability
- \[\| p - p_h \|^2 \leq C \sum_{K \in \mathcal{T}_h} \eta_K (p_h)^2 \]

Guaranteed upper bound
- \[\| p - p_h \|^2 \leq \sum_{K \in \mathcal{T}_h} \eta_K (p_h)^2 \]

Local efficiency
- \[\eta_K (p_h)^2 \leq C^2_{\text{eff}, K} \sum_{L \text{ close to } K} \| p - p_h \|^2_L \]

Asymptotic exactness
- \[\sum_{K \in \mathcal{T}_h} \eta_K (p_h)^2 / \| p - p_h \|^2 \to 1 \]

Robustness
- independence of the data variation or mesh properties

Negligible evaluation cost
- estimators which can be evaluated locally
What is/should be an a posteriori error estimate

Usual form

- $\|p - p_h\|^2 \lesssim \sum_{K \in T_h} \eta_K(p_h)^2$.
- Can be used to determine mesh elements with large error.
- We can then refine these elements: mesh adaptivity.

Reliability

- $\|p - p_h\|^2 \leq C \sum_{K \in T_h} \eta_K(p_h)^2$

Guaranteed upper bound

- $\|p - p_h\|^2 \leq \sum_{K \in T_h} \eta_K(p_h)^2$

Local efficiency

- $\eta_K(p_h)^2 \leq C_{\text{eff},K} \sum_{L \text{ close to } K} \|p - p_h\|^2_L$

Asymptotic exactness

- $\sum_{K \in T_h} \eta_K(p_h)^2 / \|p - p_h\|^2 \to 1$

Robustness

- independence of the data variation or mesh properties

Negligible evaluation cost

- estimators which can be evaluated locally
Previous works on a posteriori analysis for MFEMs

Previous works . . .
- Alonso ’96
- Braess and Verfürth ’96
- Carstensen ’97
- Hoppe and Wohlmuth ’97, ’99
- Kirby ’03
- El Alaoui and Ern ’04
- Wheeler and Yotov ’05
- Lovadina and Stenberg ’06

. . . do not cover
- evaluation of the constants (guaranteed upper bound)
- robustness
- asymptotic exactness
- an analysis of the convection–diffusion case
Previous works on a posteriori analysis for MFEMs

Previous works . . .

- Alonso '96
- Braess and Verfürth '96
- Carstensen '97
- Hoppe and Wohlmuth '97, '99
- Kirby '03
- El Alaoui and Ern '04
- Wheeler and Yotov '05
- Lovadina and Stenberg '06

. . . do not cover

- evaluation of the constants (guaranteed upper bound)
- robustness
- asymptotic exactness
- an analysis of the convection–diffusion case
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT_0 and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work

M. Vohralík
Unified a priori and a posteriori analysis of MFEs
Theorem (A first abstract estimate for the flux and its efficiency)

Let u be the weak flux and let $u_h \in H(\text{div}, \Omega)$ be arbitrary. Then

\[
\|\|u - u_h\|\|_*^2 \leq \inf_{s \in H^1_0(\Omega)} \|\|u_h + S\nabla s\|\|_*^2 + \frac{C_{F,\Omega} h^2}{c_{S,\Omega}} \|f - \nabla \cdot u_h\|_2
\]

\[
\leq \|\|u - u_h\|\|_*^2 + \frac{C_{F,\Omega} h^2}{c_{S,\Omega}} \|f - \nabla \cdot u_h\|_2.
\]

Properties

- Guaranteed upper bound (no undetermined constant).
- $\|\|u_h + S\nabla s\|\|_*$ penalizes $u_h \neq -S\nabla s$ for some $s \in H^1_0(\Omega)$.
- Advantage: scheme-independent (promoted by Repin).
- Disadvantage: scheme-independent (no information from the computation used).
- Disadvantage: $C_{F,\Omega}^{1/2} h^2/c_{S,\Omega}^{1/2} \|f - \nabla \cdot u_h\|$ too big.
A first abstract estimate for the flux

Theorem (A first abstract estimate for the flux and its efficiency)

Let \mathbf{u} be the weak flux and let $\mathbf{u}_h \in H(\text{div}, \Omega)$ be arbitrary. Then

$$\|\|\mathbf{u} - \mathbf{u}_h\|\|_*^2 \leq \inf_{s \in H^1_0(\Omega)} \|\|\mathbf{u}_h + S\nabla s\|\|_*^2 + \frac{C_{F,\Omega}h^2}{c_{S,\Omega}} \|f - \nabla \cdot \mathbf{u}_h\|^2$$

$$\leq \|\|\mathbf{u} - \mathbf{u}_h\|\|_*^2 + \frac{C_{F,\Omega}h^2}{c_{S,\Omega}} \|f - \nabla \cdot \mathbf{u}_h\|^2.$$

Properties

- Guaranteed upper bound (no undetermined constant).
- $\|\|\mathbf{u}_h + S\nabla s\|\|_*$ penalizes $\mathbf{u}_h \neq -S\nabla s$ for some $s \in H^1_0(\Omega)$.
- Advantage: scheme-independent (promoted by Repin).
- Disadvantage: scheme-independent (no information from the computation used).
- Disadvantage: $C^{1/2}_{F,\Omega}h/\sqrt{c_{S,\Omega}} \|f - \nabla \cdot \mathbf{u}_h\|$ too big.
An improved abstract estimate for the flux

Theorem (An improved abstract estimate for the flux and its efficiency)

Let \(\mathbf{u} \) be the weak flux and let \(\mathbf{u}_h \in H(\text{div}, \Omega) \) such that \(\nabla \cdot \mathbf{u}_h = \pi_l(f) \) be arbitrary. Then

\[
\|\| \mathbf{u} - \mathbf{u}_h \|\|_*^2 \leq \inf_{s \in H^1_0(\Omega)} \|\| \mathbf{u}_h + S\nabla s \|\|_*^2 + \eta_R^2 \leq \|\| \mathbf{u} - \mathbf{u}_h \|\|_*^2 + \eta_R^2,
\]

where

\[
\eta_R := \left\{ \sum_{K \in T_h} \frac{C_P h_K^2}{C_s, K} \| f - \pi_l(f) \|_K^2 \right\}^{\frac{1}{2}}.
\]

Properties

- No global Galerkin orthogonality needed, just local conservativity.
- \(\eta_R \) is in general a higher-order term for RT methods.
- \(\eta_R \) is not in general a higher-order term for BDM methods.
An improved abstract estimate for the flux

Theorem (An improved abstract estimate for the flux and its efficiency)

Let \(u \) be the weak flux and let \(u_h \in H(\text{div}, \Omega) \) such that \(\nabla \cdot u_h = \pi_l(f) \) be arbitrary. Then

\[
\| |u - u_h| |^2 \leq \inf_{s \in H_0^1(\Omega)} \| |u_h + S\nabla s| |^2 + \eta_R^2 \leq \| |u - u_h| |^2 + \eta_R^2,
\]

where

\[
\eta_R := \left\{ \sum_{K \in \mathcal{T}_h} \frac{C_P h_K^2}{c_{S,K}} \| f - \pi_l(f) \|_K^2 \right\}^{\frac{1}{2}}.
\]

Properties

- No global Galerkin orthogonality needed, just local conservativity.
- \(\eta_R \) is in general a higher-order term for RT methods.
- \(\eta_R \) is not in general a higher-order term for BDM methods.
An energy–div norm abstract estimate for the flux

Theorem (An energy–div norm abstract estimate for the flux and its efficiency)

Let \(\mathbf{u} \) be the weak flux and let \(\mathbf{u}_h \in H(\text{div}, \Omega) \) such that \(\nabla \cdot \mathbf{u}_h = \pi_I(f) \) be arbitrary. Then

\[
\left\| \mathbf{u} - \mathbf{u}_h \right\|_{*, \text{div}}^2 \leq \inf_{s \in H_0^1(\Omega)} \left\| \mathbf{u}_h + \mathbf{S} \nabla s \right\|_{*}^2 + \| f - \pi_I(f) \|_2^2 + \eta_R^2 \\
\leq \left\| \mathbf{u} - \mathbf{u}_h \right\|_{*, \text{div}}^2 + \eta_R^2.
\]

Properties

- \(\eta_R \) gets always a higher-order term.

M. Vohralík
Unified a priori and a posteriori analysis of MFEs
An energy–div norm abstract estimate for the flux

Theorem (An energy–div norm abstract estimate for the flux and its efficiency)

Let \(u \) be the weak flux and let \(u_h \in H(\text{div}, \Omega) \) such that
\[
\nabla \cdot u_h = \pi_I(f)
\]
be arbitrary. Then
\[
\|\| u - u_h \|\|_{*, \text{div}}^2 \leq \inf_{s \in H^1_0(\Omega)} \|\| u_h + S \nabla s \|\|_{*}^2 + \| f - \pi_I(f) \|_2^2 + \eta_R^2
\]
\[
\leq \|\| u - u_h \|\|_{*, \text{div}}^2 + \eta_R^2.
\]

Properties

- \(\eta_R \) gets always a higher-order term.
A fully computable estimate for the flux

Theorem (A fully computable estimate for the flux)

Let u be the weak flux and let $u_h \in H(\text{div}, \Omega)$ such that $\nabla \cdot u_h = \pi_I(f)$ be arbitrary. Then

$$
\ |||u - u_h|||^2 \leq \sum_{K \in \mathcal{T}_h} \left(\eta_{P,K}^2 + \eta_{R,K}^2 \right),
$$

$$
\ |||u - u_h|||^2_{*, \text{div}} \leq \sum_{K \in \mathcal{T}_h} \left(\eta_{P,K}^2 + \eta_{R,K}^2 + \eta_{D,K}^2 \right).
$$

- potential estimator
 $$
 \eta_{P,K} := |||u_h + S \nabla (I_{O}(\tilde{\phi}_h))|||_{*, K}.
 $$
 $I_{O}(\tilde{\phi}_h)$: Oswald interpolate $P_n(I_h) \rightarrow P_n(I_h) \cap H^1_0(\Omega)$

- residual estimator
 $$
 \eta_{R,K} := \frac{C_{p,K}^{1/2}}{C_{S,K}^{1/2}} \|f - \pi_I(f)\|_K.
 $$

- divergence estimator
 $$
 \eta_{D,K} := \|f - \pi_I(f)\|_K.
 $$
A fully computable estimate for the flux

Theorem (A fully computable estimate for the flux)

Let \mathbf{u} be the weak flux and let $\mathbf{u}_h \in \mathbf{H}(\text{div}, \Omega)$ such that $\nabla \cdot \mathbf{u}_h = \pi_l(f)$ be arbitrary. Then

\[||| \mathbf{u} - \mathbf{u}_h |||_2^2 \leq \sum_{K \in \mathcal{T}_h} \left(\eta_{P,K}^2 + \eta_{R,K}^2 \right), \]

\[||| \mathbf{u} - \mathbf{u}_h |||_{*,\text{div}}^2 \leq \sum_{K \in \mathcal{T}_h} \left(\eta_{P,K}^2 + \eta_{R,K}^2 + \eta_{D,K}^2 \right). \]

- **potential estimator**
 \[\eta_{P,K} := ||| \mathbf{u}_h + S \nabla (\mathcal{I}_{Os}(\tilde{p}_h)) |||_{*,K} \]
 \(\mathcal{I}_{Os}(\tilde{p}_h) \): Oswald interpolate \(\mathbb{P}_n(\mathcal{T}_h) \rightarrow \mathbb{P}_n(\mathcal{T}_h) \cap H^1_0(\Omega) \)

- **residual estimator**
 \[\eta_{R,K} := \frac{C_P^{1/2} h_K}{C_S^{1/2}} || f - \pi_l(f) ||_K \]

- **divergence estimator**
 \[\eta_{D,K} := || f - \pi_l(f) ||_K \]
A fully computable estimate for the flux

Theorem (A fully computable estimate for the flux)

Let \(u \) be the weak flux and let \(u_h \in H(\text{div}, \Omega) \) such that \(\nabla \cdot u_h = \pi_I(f) \) be arbitrary. Then

\[
\|\| u - u_h \|\|^2 \leq \sum_{K \in T_h} \left(\eta_{P,K}^2 + \eta_{R,K}^2 \right),
\]

\[
\|\| u - u_h \|\|^2_{\text{div}} \leq \sum_{K \in T_h} \left(\eta_{P,K}^2 + \eta_{R,K}^2 + \eta_{D,K}^2 \right).
\]

- potential estimator
 \[
 \eta_{P,K} := \| u_h + S \nabla (I_{Os}(\tilde{p}_h)) \|_{\ast,K},
 \]
 \(I_{Os}(\tilde{p}_h) \): Oswald interpolate \(\mathbb{P}_n(T_h) \rightarrow \mathbb{P}_n(T_h) \cap H^1_0(\Omega) \)

- residual estimator
 \[
 \eta_{R,K} := \frac{C_p^{1/2} h_K}{C_s^{1/2}} \| f - \pi_I(f) \|_K,
 \]

- divergence estimator
 \[
 \eta_{D,K} := \| f - \pi_I(f) \|_K.
 \]
A fully computable estimate for the flux

Theorem (A fully computable estimate for the flux)

Let u be the weak flux and let $u_h \in H(\text{div}, \Omega)$ such that $\nabla \cdot u_h = \pi_I(f)$ be arbitrary. Then

$$\|u - u_h\|^2 \leq \sum_{K \in \mathcal{T}_h} \left(\eta_{P,K}^2 + \eta_{R,K}^2 \right),$$

$$\|u - u_h\|^2_{\text{div}} \leq \sum_{K \in \mathcal{T}_h} \left(\eta_{P,K}^2 + \eta_{R,K}^2 + \eta_{D,K}^2 \right).$$

- **potential estimator**

 $\eta_{P,K} := \|u_h + S \nabla (I_{Os} (\tilde{\phi}_h))\|_{*,K}$

 $I_{Os}(\tilde{\phi}_h)$: Oswald interpolate $P_n(T_h) \rightarrow P_n(T_h) \cap H^1_0(\Omega)$

- **residual estimator**

 $\eta_{R,K} := C_{p}^{1/2} h_K^{1/2} \|f - \pi_I(f)\|_K$

- **divergence estimator**

 $\eta_{D,K} := \|f - \pi_I(f)\|_K$
Outline

1. General framework
 • An abstract result for the flux variable
 • Postprocessing for the scalar variable

2. A priori error estimates
 • Lowest-order Raviart–Thomas case
 • General case

3. A posteriori error estimates
 • Estimates for the flux
 • Estimates for the potential
 • Local efficiency

4. Remarks
 • Comments on the estimates
 • $L^2(\Omega)$ estimates
 • RT_0 and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work
Theorem (Abstract a posteriori estimate for the potential and its efficiency)

Let p be the weak potential and let $\tilde{p}_h \in H^1(\mathcal{T}_h)$ be arbitrary. Then

$$
\|\| p - \tilde{p}_h \|\|^2 \leq \inf_{s \in H^1_0(\Omega)} \|\| \tilde{p}_h - s \|\|^2
$$

$$
+ \inf_{t \in H(\text{div}, \Omega)} \sup_{\varphi \in H^1_0(\Omega), \|\| \varphi \|\|=1} \left((f - \nabla \cdot t, \varphi) - (S \nabla \tilde{p}_h + t, \nabla \varphi) \right)^2
$$

$$
\leq 2\|\| p - \tilde{p}_h \|\|^2.
$$

Properties

- Guaranteed upper bound, quasi-exact, and robust.
- Holds uniformly for any mesh (anisotropic) and polynomial degree of p_h.
An abstract estimate for the potential

Theorem (Abstract a posteriori estimate for the potential and its efficiency)

Let p be the weak potential and let $\tilde{p}_h \in H^1(\mathcal{T}_h)$ be arbitrary. Then

$$
|||p - \tilde{p}_h|||^2 \leq \inf_{s \in H^1_0(\Omega)} |||\tilde{p}_h - s|||^2 \\
+ \inf_{t \in H^{(\text{div},\Omega)}} \sup_{\varphi \in H^1(\Omega), ||\varphi||=1} ((f - \nabla \cdot t, \varphi) - (S \nabla \tilde{p}_h + t, \nabla \varphi))^2 \\
\leq 2|||p - \tilde{p}_h|||^2.
$$

Properties

- Guaranteed upper bound, quasi-exact, and robust.
- Holds uniformly for any mesh (anisotropic) and polynomial degree of p_h.

M. Vohralík
Unified a priori and a posteriori analysis of MFEs
Theorem (A first computable estimate for the potential)

Let \(p \) be the weak potential and let \(\tilde{p}_h \in H^1(\mathcal{T}_h) \) be arbitrary. Take any \(t_h \in H(\text{div}, \Omega) \) and any \(s_h \in H^1_0(\Omega) \). Then

\[
|||p - \tilde{p}_h|||^2 \leq |||\tilde{p}_h - s_h|||^2 + \left(\frac{C_{F,\Omega}^{1/2} h_{\Omega}}{C_{S,\Omega}^{1/2}} |||f - \nabla \cdot t_h||| + |||S \nabla \tilde{p}_h + t_h|||* \right)^2.
\]

Properties

- \(|||S \nabla \tilde{p}_h + t_h|||* \) penalizes \(-S \nabla \tilde{p}_h \not\in H(\text{div}, \Omega)\).
- \(|||\tilde{p}_h - s_h||| \) penalizes \(\tilde{p}_h \not\in H^1_0(\Omega) \).
- Advantage: scheme-independent.
- Disadvantage: \(C_{F,\Omega}^{1/2} h_{\Omega}/C_{S,\Omega}^{1/2} |||f - \nabla \cdot t_h||| \) too big.
A first computable estimate for the potential

Theorem (A first computable estimate for the potential)

Let \(p \) be the weak potential and let \(\tilde{p}_h \in H^1(\mathcal{T}_h) \) be arbitrary. Take any \(t_h \in H(\text{div}, \Omega) \) and any \(s_h \in H^1_0(\Omega) \). Then

\[
|||p - \tilde{p}_h|||^2 \leq |||\tilde{p}_h - s_h|||^2 + \left(\frac{C_{1/2}^{1/2} h_\Omega}{c_{s, \Omega}^{1/2}} \| f - \nabla \cdot t_h \| + |||S \nabla \tilde{p}_h + t_h|||_* \right)^2.
\]

Properties

- \(|||S \nabla \tilde{p}_h + t_h|||_* \) penalizes \(-S \nabla \tilde{p}_h \not\in H(\text{div}, \Omega) \).
- \(|||\tilde{p}_h - s_h||| \) penalizes \(\tilde{p}_h \not\in H^1_0(\Omega) \).
- Advantage: scheme-independent.
- Disadvantage: \(C_{F, \Omega}^{1/2} h_\Omega / c_{s, \Omega}^{1/2} \| f - \nabla \cdot t_h \| \) too big.
A fully computable estimate for the potential

Theorem (A fully computable estimate for the potential)

Let p be the weak potential and let $\tilde{p}_h \in H^1(T_h)$ and $u_h \in H(\text{div}, \Omega)$ such that $\nabla \cdot u_h = \pi_1(f)$ be arbitrary. Then

$$\|\|p - \tilde{p}_h\|\|^2 \leq \sum_{K \in T_h} \left\{ \eta_{NC,K}^2 + (\eta_{R,K} + \eta_{DF,K})^2 \right\}.$$

- nonconformity estimator
 $$\eta_{NC,K} := \|\|\tilde{p}_h - I_{Os}(\tilde{p}_h)\|\|_K$$
- diffusive flux estimator
 $$\eta_{DF,K} := \|\|u_h + S\nabla \tilde{p}_h\|\|_{*,K}$$
- residual estimator
 $$\eta_{R,K} := \frac{C_p^{1/2} h_K^{1/2}}{C_s^{1/2}} \|f - \pi_1(f)\|_K$$
A fully computable estimate for the potential

Theorem (A fully computable estimate for the potential)

Let \(p \) be the weak potential and let \(\tilde{p}_h \in H^1(T_h) \) and \(u_h \in H(\text{div}, \Omega) \) such that \(\nabla \cdot u_h = \pi_1(f) \) be arbitrary. Then

\[
|||p - \tilde{p}_h|||^2 \leq \sum_{K \in T_h} \left\{ \eta_{NC,K}^2 + (\eta_{R,K} + \eta_{DF,K})^2 \right\}.
\]

- **nonconformity estimator**
 \[\eta_{NC,K} := |||\tilde{p}_h - I_{Os}(\tilde{p}_h)|||_K \]

- **diffusive flux estimator**
 \[\eta_{DF,K} := |||u_h + S\nabla \tilde{p}_h|||_{*,K} \]

- **residual estimator**
 \[\eta_{R,K} := \frac{C_p^{1/2} h_K}{C_s^{1/2} S_{K}} \|f - \pi_1(f)\|_K \]
A fully computable estimate for the potential

Theorem (A fully computable estimate for the potential)

Let p be the weak potential and let $\tilde{p}_h \in H^1(\mathcal{T}_h)$ and $u_h \in H(\text{div}, \Omega)$ such that $\nabla \cdot u_h = \pi_l(f)$ be arbitrary. Then

$$|||p - \tilde{p}_h|||^2 \leq \sum_{K \in \mathcal{T}_h} \left\{ \eta_{NC,K}^2 + (\eta_{R,K} + \eta_{DF,K})^2 \right\}.$$

- nonconformity estimator
 - $\eta_{NC,K} := |||\tilde{p}_h - I_{Os}(\tilde{p}_h)|||_K$

- diffusive flux estimator
 - $\eta_{DF,K} := |||u_h + S\nabla \tilde{p}_h|||_{*,K}$

- residual estimator
 - $\eta_{R,K} := \frac{C^1_{p} \|h_K\|}{C_{s,K}^{1/2}} ||f - \pi_l(f)||_K$
A fully computable estimate for the potential

Theorem (A fully computable estimate for the potential)

Let \(p \) be the weak potential and let \(\tilde{p}_h \in H^1(I_h) \) and \(u_h \in H(\text{div}, \Omega) \) such that \(\nabla \cdot u_h = \pi_I(f) \) be arbitrary. Then

\[
|||p - \tilde{p}_h|||^2 \leq \sum_{K \in I_h} \left\{ \eta_{NC,K}^2 + (\eta_{R,K} + \eta_{DF,K})^2 \right\}.
\]

- **nonconformity estimator**
 \[
 \eta_{NC,K} := |||\tilde{p}_h - I_{Os}(\tilde{p}_h)|||_K
 \]

- **diffusive flux estimator**
 \[
 \eta_{DF,K} := |||u_h + S\nabla \tilde{p}_h|||_{*,K}
 \]

- **residual estimator**
 \[
 \eta_{R,K} := \frac{C_p^{1/2} h_K}{C_s^{1/2}} ||f - \pi_I(f)||_K
 \]
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT_0 and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work

M. Vohralík
Unified a priori and a posteriori analysis of MFEs
Theorem (Local efficiency of the estimates)

Let p, u be the weak potential and flux, respectively, and let u_h be the MFE flux and \tilde{p}_h the postprocessed potential. Then

$$
\eta_{DF,K} \leq \|u - u_h\|_{*,K} + \|p - \tilde{p}_h\|_{K},
$$

$$
\eta_{P,K} \leq \eta_{DF,K} + \eta_{NC,K},
$$

$$
\eta_{NC,K} \leq C\sqrt{\frac{C_{S,K}}{C_{S,K,T_k}}} \|p - \tilde{p}_h\|_{T_k},
$$

$$
\eta_{R,K} \leq C\sqrt{\frac{C_{S,K}}{C_{S,K}}} \|u - u_h\|_{*,K},
$$

where C depends only on the space dimension d, the maximal polynomial degree n of \tilde{p}_h, the shape regularity parameter κ_T, and the polynomial degree m of f.

M. Vohralík
Unified a priori and a posteriori analysis of MFEs
Local efficiency of the estimates

Proof for $\eta_{NC,K}$.

Oswald interpolate (Karakashian and Pascal ’03, Burman and Ern ’07):

$$
\| \nabla (\phi_h - I_{Os}(\phi_h)) \|_K^2 \leq C \sum_{\sigma \in \tilde{E}_K} h_\sigma^{-1} \| \phi_h \|_{\sigma}^2
$$

Achdou, Bernardi, Coquel ’03:

$$
h_\sigma^{-\frac{1}{2}} \| [\tilde{p}_h] \|_{\sigma} \leq C \sum_{L; \sigma \in E_L} \| \nabla (\tilde{p}_h - \phi) \|_L
$$

$$
\eta_{NC,K}^2 = \| \tilde{p}_h - I_{Os}(\tilde{p}_h) \|_K^2 \leq C C_{S,K} \sum_{\sigma \in \tilde{E}_K} h_\sigma^{-1} \| [\tilde{p}_h] \|_{\sigma}^2
$$

$$
\leq C C_{S,K} \sum_{L \in T_K} \| \nabla (p - \tilde{p}_h) \|_L^2 \leq C \frac{C_{S,K}}{c_{S,T_K}} \sum_{L \in T_K} \| p - \tilde{p}_h \|_L^2
$$
Local efficiency of the estimates

Proof for $\eta_{R,K}$.

- $\| f - \pi_I(f) \|_K = \| f - \nabla \cdot u_h \|_K \leq C C_{s,K}^{1/2} h_K^{-1} \| |u - u_h| |^*,K$
- element bubble functions
- equivalence of norms on finite-dimensional spaces
- weak solution definition
- Green theorem
- Cauchy–Schwarz inequality
- energy norm definition
- inverse inequality

- residual estimator is always efficient (also for BDM)
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable
2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case
3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency
4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT_0 and pure diffusion problems
5. Numerical experiments
6. Conclusions and future work
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT_0 and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work

M. Vohralík
Unified a priori and a posteriori analysis of MFEs
Comments on the estimates

General comments

- \(p \in H^1(\Omega) \), no additional regularity
- no convexity of \(\Omega \) needed
- no saturation assumption
- no Helmholtz decomposition
- no shape-regularity needed for the upper bounds (only for the efficiency proofs)
- polynomial degree-independent upper bound
- no “monotonicity” hypothesis on inhomogeneities distribution
- the only important tool: optimal Poincaré–Friedrichs and trace inequalities
- holds from diffusion to convection–diffusion–reaction cases
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT_0 and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work
Theorem (Estimate for \tilde{p}_h in the $L^2(\Omega)$-norm)

Let p be the weak potential and let $\tilde{p}_h \in W^0_0(\mathcal{T}_h)$ and $u_h \in H(\text{div}, \Omega)$ such that $\nabla \cdot u_h = \pi_l(f)$ be arbitrary. Then

$$\|p - \tilde{p}_h\|^2 \leq \frac{C_{DF}}{c_{S,\Omega}} \sum_{K \in \mathcal{T}_h} \left\{ \eta_{NC,K}^2 + (\eta_{R,K} + \eta_{DF,K})^2 \right\}.$$

Theorem (Estimate for p_h in the $L^2(\Omega)$-norm)

Let p be the weak potential and let $p_h \in \Phi_h$, $\tilde{p}_h \in W^0_0(\mathcal{T}_h)$, and $u_h \in H(\text{div}, \Omega)$ such that $\nabla \cdot u_h = \pi_l(f)$ be arbitrary. Then

$$\|p - p_h\| \leq \left\{ \frac{C_{DF}}{c_{S,\Omega}} \sum_{K \in \mathcal{T}_h} \left\{ \eta_{NC,K}^2 + (\eta_{R,K} + \eta_{DF,K})^2 \right\} \right\}^{\frac{1}{2}} + \|\tilde{p}_h - p_h\|.$$
Theorem (Estimate for \tilde{p}_h in the $L^2(\Omega)$-norm)

Let p be the weak potential and let $\tilde{p}_h \in W^0_0(I_h)$ and $u_h \in H(\text{div}, \Omega)$ such that $\nabla \cdot u_h = \pi_1(f)$ be arbitrary. Then

$$
\|p - \tilde{p}_h\|^2 \leq \frac{C_{\text{DF}}}{c_{S,\Omega}} \sum_{K \in T_h} \left\{ \eta_{NC,K}^2 + (\eta_{R,K} + \eta_{DF,K})^2 \right\}.
$$

Theorem (Estimate for p_h in the $L^2(\Omega)$-norm)

Let p be the weak potential and let $p_h \in \Phi_h$, $\tilde{p}_h \in W^0_0(I_h)$, and $u_h \in H(\text{div}, \Omega)$ such that $\nabla \cdot u_h = \pi_1(f)$ be arbitrary. Then

$$
\|p - p_h\| \leq \left\{ \frac{C_{\text{DF}}}{c_{S,\Omega}} \sum_{K \in T_h} \left\{ \eta_{NC,K}^2 + (\eta_{R,K} + \eta_{DF,K})^2 \right\} \right\}^{\frac{1}{2}} + \|\tilde{p}_h - p_h\|.
$$
Some additional comments

- We believe that $L^2(\Omega)$ norm is not optimal for a posteriori error estimates in mixed finite elements.
- We believe that trying to directly and only derive estimates for ρ_h in the $L^2(\Omega)$-norm was the bottleneck of a lot of previous works.
- $\|\| u_h + S \nabla \tilde{\rho}_h \|_{*,K}$ or $\|\| u_h + S \nabla (I_{Os}(\tilde{\rho}_h)) \|_{*,K}$ (our estimates): clear physical meaning
- $h_K \|\| u_h + S \nabla \rho_h \|_{*,K} = h_K \|\| u_h \|_{*,K}$ in RT_0 (some previous works): no good sense
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT_0 and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work

M. Vohralík
Unified a priori and a posteriori analysis of MFEs
Pure diffusion problem: \(-\nabla \cdot (S \nabla p) = f, \quad p = 0 \text{ on } \partial \Omega\)

Theorem (Mixed FEM for the diffusion problem)

There holds
\[
|||p - \tilde{p}_h||| \leq \inf_{s \in H^1_0(\Omega)} |||\tilde{p}_h - s||| + \left\{ \sum_{K \in \mathcal{T}_h} C_P \frac{h^2_K}{c_{\text{S},K}} |||f - f_K|||_K^2 \right\}^{1/2}.
\]

Theorem (Galerkin FEM for the diffusion problem)

There holds
\[
|||p - p_h||| \leq \inf_{s_h \in V_h} |||p - s_h|||.
\]

Mixed FEM 1D:
- no nonconformity, \(\tilde{p}_h \in H^1_0(\Omega)\)
- \(|||p - \tilde{p}_h||| \leq C h^2\) when \(f \in H^1(\mathcal{T}_h)\)
- \(\tilde{p}_h = p\), the exact solution, for pw constant \(S\) (arbitrary inhomogeneities) and pw constant \(f\)

Galerkin FEM 1D:
- \(|||p - \tilde{p}_h||| \leq C h\)
Pure diffusion problem $-\nabla \cdot (S \nabla p) = f$, $p = 0$ on $\partial \Omega$

Theorem (Mixed FEM for the diffusion problem)

There holds
\[
\|p - \tilde{p}_h\| \leq \inf_{s \in H^1_0(\Omega)} \|\tilde{p}_h - s\| + \left\{ \sum_{K \in T_h} \frac{h_K^2}{C_{s,K}} \|f - f_K\|_K^2 \right\}^{1/2}.
\]

Theorem (Galerkin FEM for the diffusion problem)

There holds
\[
\|p - p_h\| \leq \inf_{s_h \in V_h} \|p - s_h\|.
\]

Mixed FEM 1D:
- no nonconformity, $\tilde{p}_h \in H^1_0(\Omega)$
- $\|p - \tilde{p}_h\| \leq Ch^2$ when $f \in H^1(\mathcal{T}_h)$
- $\tilde{p}_h = p$, the exact solution, for pw constant S (arbitrary inhomogeneities) and pw constant f

Galerkin FEM 1D:
- $\|p - \tilde{p}_h\| \leq Ch$
Pure diffusion problem: \(-\nabla \cdot (S \nabla p) = f, \quad p = 0 \text{ on } \partial \Omega\)

Theorem (Mixed FEM for the diffusion problem):

There holds
\[
\|\|p - \tilde{p}_h\|\| \leq \inf_{s \in H^1_0(\Omega)} \|\|\tilde{p}_h - s\|\| + \left\{ \sum_{K \in \mathcal{T}_h} C_P \frac{h_K^2}{c_{S,K}} \|f - f_K\|^2_K \right\}^{1/2}.
\]

Theorem (Galerkin FEM for the diffusion problem):

There holds
\[
\|\|p - p_h\|\| \leq \inf_{s_h \in V_h} \|\|p - s_h\|\|.
\]

Mixed FEM 1D:
- no nonconformity, \(\tilde{p}_h \in H^1_0(\Omega)\)
- \(\|\|p - \tilde{p}_h\|\| \leq Ch^2\) when \(f \in H^1(\mathcal{T}_h)\)
- \(\tilde{p}_h = p\), the exact solution, for \(pw\) constant \(S\) (arbitrary inhomogeneities) and \(pw\) constant \(f\)

Galerkin FEM 1D:
- \(\|\|p - \tilde{p}_h\|\| \leq Ch\)
Pure diffusion problem \(-\nabla \cdot (S \nabla p) = f, \ p = 0 \text{ on } \partial \Omega\)

Theorem (Mixed FEM for the diffusion problem)

There holds
\[
\|\|p - \tilde{p}_h\|\| \leq \inf_{s \in H^1_0(\Omega)} \|\tilde{p}_h - s\| + \left\{ \sum_{K \in \mathcal{T}_h} C_P \frac{h^2_K}{c_{S,K}} \|f - f_K\|_K^2 \right\}^{\frac{1}{2}}.
\]

Theorem (Galerkin FEM for the diffusion problem)

There holds
\[
\|\|p - p_h\|\| \leq \inf_{s_h \in V_h} \|\|p - s_h\|\|.
\]

Mixed FEM 1D:

- no nonconformity, \(\tilde{p}_h \in H^1_0(\Omega)\)
- \(\|\|p - \tilde{p}_h\|\| \leq Ch^2\) when \(f \in H^1(\mathcal{T}_h)\)
- \(\tilde{p}_h = p\), the exact solution, for \(pw\) constant \(S\) (arbitrary inhomogeneities) and \(pw\) constant \(f\)

Galerkin FEM 1D:

- \(\|\|p - \tilde{p}_h\|\| \leq Ch\)
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT_0 and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work
Problem with discontinuous and inhomogeneous diffusion tensor

- consider the pure diffusion equation
 \[-\nabla \cdot (S \nabla \rho) = 0 \quad \text{in} \quad \Omega = (-1, 1) \times (-1, 1)\]
- discontinuous and inhomogeneous S, two cases:

 \[
 \begin{bmatrix}
 s_1 = 5 & s_2 = 1 \\
 s_3 = 5 & s_4 = 1
 \end{bmatrix}
 \quad \begin{bmatrix}
 s_1 = 100 & s_2 = 1 \\
 s_3 = 100 & s_4 = 1
 \end{bmatrix}
 \]

- analytical solution: singularity at the origin
 \[\rho(r, \theta) |_{\Omega_i} = r^\alpha (a_i \sin(\alpha \theta) + b_i \cos(\alpha \theta))\]

 - (r, θ) polar coordinates in Ω
 - a_i, b_i constants depending on Ω_i
 - α regularity of the solution
Analytical solutions

M. Vohralík
Unified a priori and a posteriori analysis of MFEs
Estimated and actual error distribution on an adaptively refined mesh, case 1
Approximate solution and the corresponding adaptively refined mesh, case 2
Estimated and actual error against the number of elements in uniformly/adaptively refined meshes

- **Inhomogeneous diffusion**
- **Dominating convection**

Energy error
- **error uniform**
- **estimate uniform**
- **error adapt.**
- **estimate adapt.**

Number of triangles

<table>
<thead>
<tr>
<th>Number of triangles</th>
<th>Energy error</th>
<th>error uniform</th>
<th>estimate uniform</th>
<th>error adapt.</th>
<th>estimate adapt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^2</td>
<td>10^0</td>
<td>10^1</td>
<td>10^0</td>
<td>10^0</td>
<td>10^1</td>
</tr>
<tr>
<td>10^3</td>
<td>10^{-1}</td>
<td>10^0</td>
<td>10^{-1}</td>
<td>10^{-1}</td>
<td>10^0</td>
</tr>
<tr>
<td>10^4</td>
<td>10^{-2}</td>
<td>10^{-1}</td>
<td>10^{-2}</td>
<td>10^{-2}</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>10^5</td>
<td>10^{-3}</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
<td>10^{-2}</td>
</tr>
</tbody>
</table>
Global efficiency of the estimates

Inhomogeneous diffusion
Dominating convection

Global efficiency of the estimates

Number of triangles
Efficiency

- efficiency uniform
- efficiency adapt.

M. Vohralík
Unified a priori and a posteriori analysis of MFEs
Convection-dominated problem

- consider the convection–diffusion–reaction equation
 \[-\varepsilon \Delta p + \nabla \cdot (p(0, 1)) + p = f \quad \text{in} \quad \Omega = (0, 1) \times (0, 1)\]

- analytical solution: layer of width a
 \[p(x, y) = 0.5 \left(1 - \tanh\left(\frac{0.5 - x}{a}\right)\right)\]

- consider
 - $\varepsilon = 1, \ a = 0.5$
 - $\varepsilon = 10^{-2}, \ a = 0.05$
 - $\varepsilon = 10^{-4}, \ a = 0.02$

- unstructured grid of 46 elements given, uniformly/adaptively refined
Analytical solutions, $\varepsilon = 1$, $a = 0.5$ and $\varepsilon = 10^{-4}$, $a = 0.02$
Estimated and actual error distribution, $\varepsilon = 1$, $a = 0.5$
Modified Oswald interpolate: estimated and actual error against the number of elements and global efficiency of the estimates, $\varepsilon = 1$, $a = 0.5$
Oswald interpolate: estimated and actual error against the number of elements and global efficiency of the estimates, $\varepsilon = 1, a = 0.5$
Estimated and actual error distribution, $\varepsilon = 10^{-2}$, $a = 0.05$
Approximate solution and the corresponding adaptively refined mesh, $\varepsilon = 10^{-4}$, $a = 0.02$
Estimated and actual error against the number of elements in uniformly/adaptively refined meshes, $\varepsilon = 10^{-2}$, $a = 0.05$ and $\varepsilon = 10^{-4}$, $a = 0.02$
Global efficiency of the estimates, $\varepsilon = 10^{-2}, a = 0.05$ and $\varepsilon = 10^{-4}, a = 0.02$
Outline

1. General framework
 - An abstract result for the flux variable
 - Postprocessing for the scalar variable

2. A priori error estimates
 - Lowest-order Raviart–Thomas case
 - General case

3. A posteriori error estimates
 - Estimates for the flux
 - Estimates for the potential
 - Local efficiency

4. Remarks
 - Comments on the estimates
 - $L^2(\Omega)$ estimates
 - RT_0 and pure diffusion problems

5. Numerical experiments

6. Conclusions and future work
Conclusions and future work

Conclusions

- unified framework for a priori and a posteriori error control in mixed finite elements
- optimality of the framework for a posteriori error estimation: guaranteed upper bound, local efficiency, asymptotic exactness, robustness, negligible evaluation cost
- directly implementable—all constants evaluated
- parallel work for finite volumes, discontinuous Galerkin finite elements, and continuous finite elements

Future work

- full asymptotic exactness and robustness
- nonlinear (degenerate) cases
- extensions to other types of problems (Stokes, Navier–Lamé, Maxwell)
- systems of equations
Conclusions and future work

Conclusions

- unified framework for a priori and a posteriori error control in mixed finite elements
- optimality of the framework for a posteriori error estimation: guaranteed upper bound, local efficiency, asymptotic exactness, robustness, negligible evaluation cost
- directly implementable—all constants evaluated
- parallel work for finite volumes, discontinuous Galerkin finite elements, and continuous finite elements

Future work

- full asymptotic exactness and robustness
- nonlinear (degenerate) cases
- extensions to other types of problems (Stokes, Navier–Lamé, Maxwell)
- systems of equations
Papers

- VOHRALÍK M., Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods, to be submitted.

Thank you for your attention!