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Model problem

Given f : Ω → C, find u : Ω → C such that
−ω2µu −∇ · (AAA∇u) = µf in Ω,

u = 0 on ΓD,
AAA∇u · n − iωγu = 0 on ΓA,

where µ, AAA, and γ are given strictly positive (definite) coefficients.

ΓA

Ω

ΓD ΓA

Ω

AAA

AAA = III

Théophile Chaumont-Frelet, Alexandre Ern, and Martin Vohraĺık On the derivation of guaranteed and p-robust a posteriori Helmholtz estimates 2 / 57



I Low frequencies High frequencies Pre-factors Numerics C

What do we mean by high frequency?

The physical meaning of µ and AAA depends on the application,
but the wavespeed is always given by:

cmin :=

√
σmin(AAA)

µ

The (minimal) wavelength is then given by:

λ :=
2π

ω
cmin.

ΓA

Ω

AAA

AAA = III

ℓΩ

λThe “important” quantity is Nλ := ℓΩ/λ. High-frequency means that

ωℓΩ
cmin

≃ Nλ

is “large” (a few tens or hundreds).
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Helmholtz problem and its weak formulation

Recall the Helmholtz problem:
−ω2µu −∇ · (AAA∇u) = µf in Ω,

u = 0 on ΓD,
AAA∇u · n − iωγu = 0 on ΓA.

Weak formulation: assuming f ∈ L2(Ω), we seek u ∈ H1
D(Ω) such that

b(u, v) = (µf , v) ∀v ∈ H1
D(Ω),

where
b(u, v) := −ω2(µu, v)Ω − iω(γu, v)ΓA + (AAA∇u,∇v)Ω.
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Finite element approximation

We consider a mesh Th of Ω formed by tetrahedral elements K .
Mesh parameter: hK := diamK ≤ h.
The coefficients µ, γ,AAA are constant inside each element/face.

We introduce the finite element discretization space

Vh :=
{
vh ∈ H1

D(Ω) | vh|K ∈ Pp(K ) ∀K ∈ Th
}

with p ≥ 1.

P.G. Ciarlet, 1978.
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What do we mean by a fine mesh?

“The mesh is fine” means that

Ndofs/λ = λ

/
h

p
≃

(
ωh

cminp

)−1

is large.

λ

h h
p
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Finite element approximation

Recall that u is the only element of H1
D(Ω) such that

b(u, v) = (µf , v) ∀v ∈ H1
D(Ω).

Analogously, the finite element solution uh ∈ Vh is such that

b(uh, vh) = (µf , vh) ∀vh ∈ Vh. (1)

In this talk, we are interested in estimating the error

eh := u − uh
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A priori error estimates

A priori estimate

Assume that ωh/cminp ≤ C1. Then

∥∇eh∥AAA,Ω ≤ C2

(
ωh

cminp

)p

.

F. Ihlenburg and I. Babuška, SIAM J. Numer. Anal., 1997.

J.M. Melenk and S.A. Sauter, Math. Comp., 2010.

T. Chaumont-Frelet and S. Nicaise, IMA J. Numer. Anal., 2019.

Some limitations:

The above result requires important regularity assumptions.

The error estimate is not always applicable.

The constant C2 is not computable in general.
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A priori error estimates

A priori estimates provide qualitative upper bounds.

They are important as they show that the method converges.
They also indicate how fast the convergence happens.

They are not suited to quantitatively estimate the error in practice.
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A posteriori estimates

(Ideal) a posteriori estimate

∥∇eh∥AAA,Ω ≤ η.

Here η is a fully-computable real number called an “error estimator”.
This quantity is computed as a local post-processing of uh, i.e. η = η(uh).
There are no generic constants. We have a guaranteed error estimate.
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The low-frequency case

We first consider the low frequency limit where ω = 0.

The problem then reads: find u : Ω → C such that
−∇ · (AAA∇u) = µf in Ω,

u = 0 on ΓD,
AAA∇u · n = 0 on ΓA.

For the sake of simplicity, let f = fh ∈ Pp(Th).
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Flux

At the continuous level, the ideal flux σ := −AAA∇u satisfies

σ = arg min
τ∈HΓA

(div,Ω)
∇·τ=µfh in Ω

∥AAA−1τ +∇u∥AAA,Ω.

The best-possible computable flux directly mimics this definition at the discrete level

σh := arg min
τ h∈W h

∇·τ h=µfh in Ω

∥AAA−1τ h +∇uh∥AAA,Ω.
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Localization

Consider the set of “hat functions”
{ψa}a∈Vh

of the mesh. We then have∑
a∈Vh

ψa = 1.

The ideal flux σ := −AAA∇u can be decomposed as

σ =
∑
a∈Vh

σa, σa = −ψaAAA∇u.

Easy computations show that

σa · n = 0 on ∂ωa, ∇ · σa = ψaµfh −AAA∇u ·∇ψa in ωa.
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Localization

We have shown that
σ =

∑
a∈Vh

σa

and
σa = arg min

τ∈H0(div,ωa)
∇·τ=ψaµfh−AAA∇u·∇ψa in ωa

∥AAA−1τ + ψa∇u∥AAA,ωa .

Implicit characterization that we can mimic at the discrete level!
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Localization

We thus set
σh :=

∑
a∈Vh

σah

with
σah := arg min

τ h∈H0(div,ωa)∩W h
∇·τ h=ψ

aµfh−AAA∇uh·∇ψa in ωa

∥AAA−1τ h + ψa∇uh∥AAA,ωa .

The compatibility condition

(ψaµfh −AAA∇uh ·∇ψa, 1)ωa = (µfh, ψ
a)Ω − (AAA∇uh,∇ψa)Ω = 0

holds true since uh is the discrete solution and ψa ∈ Vh.
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Summary of the localization process

Step 1: solve a set of small, uncoupled linear systems

σah := arg min
τ h∈H0(div,ωa)∩W h

∇·τ h=ψ
aµfh−AAA∇uh·∇ψa in ωa

∥AAA−1τ h + ψa∇uh∥AAA,ωa .

Step 2: assemble these local contributions

σh :=
∑
a∈Vh

σah.

Step 3: compute the estimator

η := ∥AAA−1σh +∇uh∥AAA,Ω.

Step 4: enjoy the guaranteed estimate by the Prager–Synge (in)equality

∥∇eh∥AAA,Ω ≤ η.
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Efficiency

We can show that
η ≤ Ceff∥∇eh∥AAA,Ω,

where Ceff only depends on:

the “flatness” of the tetrahedra in the mesh,

the “contrasts” in the coefficients.

An important aspect is that Ceff does not depend on the polynomial degree p.
Local efficiency can be shown as well.

P. Braess, V. Pillwein, and J. Schöberl, CMAME, 2009.

A. Ern and M. Vohraĺık, SINUM, 2015 & Math. Comp., 2020.

Théophile Chaumont-Frelet, Alexandre Ern, and Martin Vohraĺık On the derivation of guaranteed and p-robust a posteriori Helmholtz estimates 17 / 57



I Low frequencies High frequencies Pre-factors Numerics C Flux equilibration A coarse error estimate Efficiency Sharp error estimate

Outline

1 Introduction

2 Low frequencies
Guaranteed upper bound by local flux equilibration and the Prager–Synge equality
Efficiency

3 High frequencies
Flux equilibration
A coarse error estimate
Efficiency
Sharp error estimate

4 Controlling the pre-factors
The stability constant Cst

The approximation factor Cap

5 Numerical illustrations

6 Conclusions and outlook
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The high-frequency case

Back to our original problem
−ω2µu −∇ · (AAA∇u) = µf in Ω,

u = 0 on ΓD,
AAA∇u · n − iωγu = 0 on ΓA.

Recall
b(u, v) = −ω2(µu, v)Ω − iω(γu, v)ΓA + (AAA∇u,∇v)Ω.
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Energy norm and lack of coercivity

We will consider the “balanced” norm

|||v |||2ω,Ω := ω2∥v∥2µ,Ω + ∥∇v∥2AAA,Ω.

The sesquilinear form b is not coercive.

Instead we have the “Gårding” inequality

Re b(v , v) = ∥∇v∥2AAA,Ω − ω2∥v∥2µ,Ω = |||v |||2ω,Ω − 2ω2∥v∥2µ,Ω.
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Definition of an equilibrated flux

Letting σ := −AAA∇u, we have

σ · n = −iωγu on ΓA ∇ · σ = µfh + ω2µu in Ω.

Hence, natural requirements for σh are

σh · n = −iωγuh on ΓA ∇ · σh = µfh + ω2µuh in Ω.

The “low frequency” reconstruction algorithm directly extends.
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Prager–Synge inequality

Let v ∈ H1
ΓD

(Ω). We have

b(eh, v) = (µfh, v)Ω − b(uh, v)

= (µfh + ω2µuh, v)Ω + iω(γuh, v)ΓA − (AAA∇uh,∇v)Ω

= (∇ · σh, v)Ω − (σh · n, v)ΓA − (AAA∇uh,∇v)Ω

= −(σh +AAA∇uh,∇v)Ω.

Prager–Synge inequality

|b(eh, v)| ≤ η∥∇v∥AAA,Ω ∀v ∈ H1
ΓD

(Ω)

So far, so good!
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What’s the matter?

Here, we do not have
∥∇eh∥2AAA,Ω ≤ |b(eh, eh)|,

which is a major issue!

Instead, we only have the “Gårding” inequality

Re b(eh, eh) ≥ |||eh|||2ω,Ω − 2ω2∥eh∥2µ,Ω.
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Théophile Chaumont-Frelet, Alexandre Ern, and Martin Vohraĺık On the derivation of guaranteed and p-robust a posteriori Helmholtz estimates 22 / 57



I Low frequencies High frequencies Pre-factors Numerics C Flux equilibration A coarse error estimate Efficiency Sharp error estimate

Stability constant

For g ∈ L2(Ω), let S ⋆g denote the unique element of H1
ΓD

(Ω) such that

b(w ,S ⋆g) = 2ω2(µw , g)Ω ∀w ∈ H1
ΓD

(Ω)

and let

Cst :=
1

ω
max

g∈L2(Ω)
∥g∥µ,Ω=1

∥∇(S ⋆g)∥AAA,Ω.

Cst is the best constant such that

∥∇(S ⋆g)∥AAA,Ω ≤ Cstω∥g∥µ,Ω ∀g ∈ L2(Ω).

It is closely related to resolvant estimates.
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Making up for the lack of coercivity

By definition, we have

b(w ,S ⋆eh) = 2ω2(µw , eh) ∀w ∈ H1
ΓD

(Ω).

Hence, in particular,
b(eh,S

⋆eh) = 2ω2∥eh∥2µ,Ω,

which is exactly the “bad” term the Gårding inequality:

Re b(eh, eh) = |||eh|||2ω,Ω − 2ω2∥eh∥2µ,Ω.
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Making up for the lack of coercivity

Using Prager–Synge inequality, we have

|||eh|||2ω,Ω = Re b(eh, eh + S ⋆eh) ≤ η∥∇(eh + S ⋆eh)∥AAA,Ω.

It follows that

|||eh|||2ω,Ω ≤ η
(
∥∇eh∥AAA,Ω + ∥∇(S ⋆eh)∥AAA,Ω

)
≤ η

(
∥∇eh∥AAA,Ω + Cstω∥eh∥µ,Ω

)
≤ ηmax(1,Cst) |||eh|||ω,Ω ,

and
|||eh|||ω,Ω ≤ max(1,Cst)η.

Théophile Chaumont-Frelet, Alexandre Ern, and Martin Vohraĺık On the derivation of guaranteed and p-robust a posteriori Helmholtz estimates 25 / 57



I Low frequencies High frequencies Pre-factors Numerics C Flux equilibration A coarse error estimate Efficiency Sharp error estimate

Coarse error estimate

We obtained the following error estimate:

Coarse error estimate

|||eh||| ≤ max(1,Cst)η

Cst is the best constant such that:

Stability constant

∥∇(S ⋆g)∥AAA,Ω ≤ Cstω∥g∥µ,Ω ∀g ∈ L2(Ω).
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Efficiency

We can show that

η ≤ Ceff

(
1 + max

K∈Th

ωhK
cminKp

)
|||eh|||ω,Ω ,

where cminK is the wavespeed in the element K .

For any reasonable discretization, we have

ωhK
cminKp

≤ 1,

so that in practice
η ≤ Ceff |||eh|||ω,Ω ,

where Ceff only depends on the elements “flatness” and the contrasts.

W. Dörfler, S. Sauter, Comput. Meth. Appl. Math., 2013.

T. Chaumont-Frelet, A. Ern, and M. Vohraĺık, Numer. Math., 2021.
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The problem with the coarse error estimate

Recall that
η ≤ Ceff |||eh|||ω,Ω |||eh|||ω,Ω ≤ max(1,Cst)η.

We have Ceff ≃ 1 and Cst ≳ ωℓΩ/cmin, so that

η ≲ |||eh|||ω,Ω ≲
ωℓΩ
cmin

η.

In practice, the coarse error estimate will largely overestimate the error in the
high-frequency regime.
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The approximation factor

We introduce

Cap :=
1

ω
max

g∈L2(Ω)
∥g∥µ,Ω=1

min
vh∈Vh

∥∇(S ⋆g − vh)∥AAA,Ω.

Approximability

For all g ∈ L2(Ω), there exists v⋆h ∈ Vh such that

∥∇(S ⋆g − v⋆h )∥AAA,Ω ≤ Capω∥g∥µ,Ω.
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Using Galerkin orthogonality

Recall that
|||eh|||2ω,Ω = Re b(eh, eh + S ⋆eh).

By Galerkin orthogonality, we have

|||eh|||2ω,Ω = Re b(eh, eh) + Re b(eh,S
⋆eh)

= Re b(eh, eh) + Re b(eh,S
⋆eh − v⋆h )

≤ η
(
∥∇eh∥AAA,Ω + ∥∇(S ⋆eh − v⋆h )∥AAA,Ω

)
≤ ηmax(1,Cap) |||eh|||ω,Ω .
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Sharp error estimate

Sharp error estimate

|||eh|||ω,Ω ≤ max(1,Cap)η.

Approximation factor

Cap :=
1

ω
max

g∈L2(Ω)
∥g∥µ,Ω=1

min
vh∈Vh

∥∇(S ⋆g − vh)∥AAA,Ω → 0.

W. Dörfler, S. Sauter, Comput. Meth. Appl. Math., 2013.

T. Chaumont-Frelet, A. Ern, and M. Vohraĺık, Numer. Math., 2021.
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Takeaways

The “equilibration” technology is the same as for low frequencies.

Coarse error estimate

|||eh|||ω,Ω ≤ max(1,Cst)η Cst ≳ ωℓΩ/cmin

Sharp error estimate

|||eh|||ω,Ω ≤ max(1,Cap)η Cap → 0

Efficiency

η ≤ Ceff

(
1 +

ωh

cminp

)
|||eh|||ω,Ω
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The stability constant

The stability constant is defined by

Cst :=
1

ω
max

g∈L2(Ω)
∥g∥µ,Ω=1

∥∇(S ⋆g)∥AAA,Ω.

It is only related to the PDE and independent of the numerical scheme.
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Qualitative behaviour

It is known that we have “at least”:

Cst ≳
ωℓΩ
cmin

.

For non-trapping settings (the “easier” scenario), we have

Cst ≲
ωℓΩ
cmin

.

If strong traping happens, “extreme” behaviors can occur

Cst ≳ exp

(
α
ωℓΩ
cmin

)
for “some” frequencies. For “most frequencies”

Cst ≳

(
ωℓΩ
cmin

)β
.

D. Lafontaine, E.A. Spence, and J. Wunsch, Comm. Pure Appl. Math. 2021
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Quantitative estimate for star-shaped non-trapping obstacles

Ω := (−ℓ/2, ℓ/2)3 is a cube centered at the origin.
D ⊂ Ω is star shaped with respect to the origin.

Assume that γ = 1 and that
µ = 1 and AAA = I in Ω \ D.

Assume that µ = µD ≥ 1 and AAA = AAAD ⪯ I in D.

ΓA

Ω

AAA

AAA = III

This describes an obstacle made of a material with a “slow” wavespeed.

Théophile Chaumont-Frelet, Alexandre Ern, and Martin Vohraĺık On the derivation of guaranteed and p-robust a posteriori Helmholtz estimates 35 / 57



I Low frequencies High frequencies Pre-factors Numerics C The stability constant Cst The approximation factor Cap

Quantitative estimate for star-shaped non-trapping obstacles

Guaranteed upper bound

Cst ≤ 6 +
3 +

√
3√

3

ωℓΩ
cmin

The proof relies on a “Morawetz multiplier”:
multiply the PDE by x ·∇u and integrate by parts until it works!

C.S. Morawetz, Comm. Pure Appl. Math., 1962.

J.M. Melenk, PhD thesis, 1995.

H. Barucq, T. Chaumont-Frelet, and C. Gout, Math. Comp., 2016.

T. Chaumont-Frelet, A. Ern, and M. Vohraĺık, Numer. Math. 2021.
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The approximation factor

The approximation factor is defined by

Cap :=
1

ω
max

g∈L2(Ω)
∥g∥µ,Ω=1

min
vh∈Vh

∥∇(S ⋆g − vh)∥AAA,Ω.

It depends on both the PDE and the approximation space Vh.

Assuming that AAA = I , Ω is convex, and Cst is known, we can control it.
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Idea one: explicit interpolation error

R. Arcangeli and J.L. Gout, RAIRO Numer. Anal., 1976.

If v ∈ H2(Ω), let I 1h v ∈ Vh denotes its first-order Lagrange interpolant:

∥∇(v − I 1h v)∥AAA,Ω ≤ CT ,ih∥∇2v∥Ω,

with a constant CT ,i that is easily computable.
We then have

Cap :=
1

ω
max

g∈L2(Ω)
∥g∥µ,Ω=1

min
v⋆
h ∈Vh

∥∇(S ⋆g − v⋆h )∥AAA,Ω

≤ 1

ω
max

g∈L2(Ω)
∥g∥µ,Ω=1

∥∇(S ⋆g − I 1h (S
⋆g)∥AAA,Ω

≤ 1

ω
CT ,ih max

g∈L2(Ω)
∥g∥µ,Ω=1

∥∇2(S ⋆g)∥Ω.

Théophile Chaumont-Frelet, Alexandre Ern, and Martin Vohraĺık On the derivation of guaranteed and p-robust a posteriori Helmholtz estimates 38 / 57



I Low frequencies High frequencies Pre-factors Numerics C The stability constant Cst The approximation factor Cap

Idea two: estimation of the Hessian norm

P. Grisvard, 1985.

T. Chaumont-Frelet, S. Nicaise, and J. Tomezyk, Comm. Pure Appl. Anal., 2020.

Because Ω is convex and γ = 1, we have

∥∇2(S ⋆g)∥Ω ≤ ∥∆(S ⋆g)∥Ω.

Then, we use the facts that

−∆(S ⋆g) = 2µω2g + µω2S ⋆g

and
ω∥S ⋆g∥µ,Ω ≤ 2Cst∥g∥µ,Ω

to show that
∥∇2(S ⋆g)∥Ω ≤ 2

ω

cmin
(1 + Cst) ∥g∥µ,Ω.
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Explicit control of the approximation factor

Recall that

Cap ≤ 1

ω
CT ,ih max

g∈L2(Ω)
∥g∥µ,Ω=1

∥∇2(S ⋆g)∥Ω

and
∥∇2(S ⋆g)∥Ω ≤ 2

ω

cmin
(1 + Cst) ∥g∥µ,Ω ∀g ∈ L2(Ω).

Guaranteed bound

Cap ≤ 2 (1 + CT ,i)
ωh

cmin
Cst
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Takeaways

The estimator η needs to be “pre-factored” by Cst or Cap.
The “qualitative” behaviors of both quantities are relatively well known.

The behaviour of Cst is only dictated by the PDE.
Explicit bounds are available for non-trapping star-shaped obstables.

The approximation factor Cap depends on the PDE and Vh.
When AAA = I , Ω is convex and Cst is known, we can bound it nicely.
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Propagation of a plane wave

We consider the propagation of a plane wave in Ω = (−1, 1)2{
−ω2u −∆u = 0 in Ω,

∇u · n − iωu = g on ΓA,

where
g := ∇ξθ · n − iωξθ, ξθ := e iωd ·x ,

with d := (cos θ, sin θ) and θ = π/12. The solution is u = ξθ.

h =
√
2× 2/3 h =

√
2× 1/2 h =

√
2× 2/5
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Plane wave experiment p = 1 and ω = π
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R
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)

Efem := |||eh|||ω,Ω
Eest := η

Ẽest := (1 + Cap)η
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Plane wave experiment p = 1 and ω = 4π
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Plane wave experiment p = 1 and ω = 10π
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Plane wave experiment p = 1 and ω = 20π
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Plane wave experiment p = 4 and ω = 10π
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Plane wave experiment p = 4 and ω = 20π
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Plane wave experiment p = 4 and ω = 40π
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Plane wave experiment p = 4 and ω = 60π
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Scattering by an non-trapping obstacle

We now consider a scattering problem
−ω2u −∆u = 0 in Ω,

u = 0 on ΓD,
∇u · n − iωu = g on ΓA,

where again g = ∇ξθ · n − iωξθ.

ΓA

D
ΓD

Ω

We fix the wavenumber ω = 10π and employ P3 elements.

We consider a sequence of meshes that are adaptively refined using ηK .
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Solution of the scattering problem

-2.15

0.0

2.15

Real (left) and imaginary (right) parts of the solution
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Estimated error in mesh #1

Estimator ηK (left) and elementwise error |||eh|||ω,K (right)
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Estimated error in mesh #2

Estimator ηK (left) and elementwise error |||eh|||ω,K (right)
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Estimated error in mesh #3

Estimator ηK (left) and elementwise error |||eh|||ω,K (right)
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Behavior of the estimator through the adaptive procedure
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Behaviors of the estimated and analytical errors in the adaptive procedure
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Conclusions and outlook

We construct an a posteriori error estimator η via flux equilibration.
It directly provides guaranteed error estimates at low frequencies.

For high frequencies, η has to be pre-factored, either by Cst or by Cap.
The estimates are asymptotically constant-free.
In specific situations, we can provide guaranteed bounds on Cst and Cap.

There is still a long way toward fully reliable error estimation for high-frequency
problems!

T. Chaumont-Frelet, A. Ern, and M. Vohraĺık, Numer. Math., 2021.

Thank you for your attention!
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