Guaranteed and robust L^2 -norm a posteriori error estimates for 1D linear advection(-reaction) problems

Alexandre Ern, Martin Vohralík, and Mohammad Zakerzadeh

Inria Paris & Ecole des Ponts

ALGORITMY, Podbanske, March 19, 2024

Outline

- Introduction
- The advection problem and its numerical approximation
- 3 A posteriori error estimates
 - Weak solution and error-residual equivalence
 - Hat functions orthogonality of the residual
 - Patchwise potential reconstruction
- 4 Numerical experiments
- 5 Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- 6 Extension to advection–reaction problems
 - Conclusions, current work, papers

Outline

Introduction

- The advection problem and its numerical approximation
- A posteriori error estimates
 - Weak solution and error-residual equivalence
 - Hat functions orthogonality of the residual
 - Patchwise potential reconstruction
- 4 Numerical experiments
- Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- Extension to advection–reaction problems
 - Conclusions, current work, papers

A posteriori error estimate

 $\|u-u_h\|_{2} \leq |u-u_h|_{2}$ η unknown error estimator computable from u_h

Innia

A posteriori error estimate

• guaranteed upper bound (reliability with constant one)

A posteriori error estimate

$$\underbrace{\|u - u_h\|}_{\text{unknown error}} \leq \underbrace{\eta}_{\text{estimator computable from } u_h} \leq C \|u - u_h\|$$

- guaranteed upper bound (reliability with constant one)
- efficiency

Innie

A posteriori error estimate

$$\underbrace{\|u - u_h\|}_{\text{unknown error}} \leq \underbrace{\eta}_{\text{estimator computable from } u_h} \leq C \|u - u_h\| + \text{data oscillation}$$

- guaranteed upper bound (reliability with constant one)
- efficiency

A posteriori error estimate

 $\underbrace{\|u - u_h\|}_{\text{unknown error}} \leq \underbrace{\eta}_{\text{estimator computable from } u_h} \leq C \|u - u_h\| + \text{data oscillation}$

- guaranteed upper bound (reliability with constant one)
- efficiency
- C independent of parameters: robustness

Some previous contributions

A posteriori error estimates

Süli (1999); Houston, Mackenzie, Süli, Warnecke (1999); Hauke, Fuster, Doweidar (2008); Burman (2009); John, Novo (2013); Zhang, Zhang (2015)

Adaptivity Dahmen, Huang, Schwab, Welper (2012), Dahmen, Stevenson (2019)

Reconstructions Becker, Capatina, Luce (2013); Georgoulis, Hall, Makridakis (2019)

Some previous contributions

A posteriori error estimates

Süli (1999); Houston, Mackenzie, Süli, Warnecke (1999); Hauke, Fuster, Doweidar (2008); Burman (2009); John, Novo (2013); Zhang, Zhang (2015)

Adaptivity

Dahmen, Huang, Schwab, Welper (2012), Dahmen, Stevenson (2019)

Reconstructions Becker, Capatina, Luce (2013); Georgoulis, Hall, Makridakis (2019)

Some previous contributions

A posteriori error estimates

Süli (1999); Houston, Mackenzie, Süli, Warnecke (1999); Hauke, Fuster, Doweidar (2008); Burman (2009); John, Novo (2013); Zhang, Zhang (2015)

Adaptivity

Dahmen, Huang, Schwab, Welper (2012), Dahmen, Stevenson (2019)

Reconstructions

Becker, Capatina, Luce (2013); Georgoulis, Hall, Makridakis (2019)

Outline

The advection problem and its numerical approximation

3 A posteriori error estimates

- Weak solution and error-residual equivalence
- Hat functions orthogonality of the residual
- Patchwise potential reconstruction
- 4 Numerical experiments
- Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- Extension to advection–reaction problems
 - Conclusions, current work, papers

The advection problem

The advection problem Find $u : \Omega \subset \mathbb{R} \to \mathbb{R}$ such that

 $\boldsymbol{b} \cdot \nabla \boldsymbol{u} = \boldsymbol{f} \qquad \text{in } \Omega, \\ \boldsymbol{u} = \boldsymbol{0} \qquad \text{on } \partial_{-} \Omega.$

- *b* ∈ C¹(Ω; ℝ): divergence-free (constant since *d* = 1 for now) velocity field
 f ∈ L²(Ω): source term
- $\partial_{\pm}\Omega := \{x \in \partial\Omega : \pm \mathbf{b}(x) \cdot \mathbf{n}(x) > 0\}$: inflow and outflow parts of the boundary
- $\partial_0 \Omega := \{x \in \partial \Omega : \boldsymbol{b}(x) \cdot \boldsymbol{n}(x) = 0\}$: characteristic part of the boundary

The advection problem

The advection problem Find $u : \Omega \subset \mathbb{R} \to \mathbb{R}$ such that

 $\boldsymbol{b} \cdot \nabla \boldsymbol{u} = \boldsymbol{f} \qquad \text{in } \Omega, \\ \boldsymbol{u} = \boldsymbol{0} \qquad \text{on } \partial_{-} \Omega.$

- *b* ∈ C¹(Ω; ℝ): divergence-free (constant since *d* = 1 for now) velocity field *f* ∈ L²(Ω): source term
- $\partial_{\pm}\Omega := \{x \in \partial\Omega : \pm \boldsymbol{b}(x) \cdot \boldsymbol{n}(x) > 0\}$: inflow and outflow parts of the boundary
- $\partial_0 \Omega := \{x \in \partial \Omega : \boldsymbol{b}(x) \cdot \boldsymbol{n}(x) = 0\}$: characteristic part of the boundary

The advection problem

The advection problem Find $u : \Omega \subset \mathbb{R} \to \mathbb{R}$ such that

 $\boldsymbol{b} \cdot \nabla \boldsymbol{u} = \boldsymbol{f} \qquad \text{in } \Omega, \\ \boldsymbol{u} = \boldsymbol{0} \qquad \text{on } \partial_{-} \Omega.$

- $b \in C^1(\overline{\Omega}; \mathbb{R})$: divergence-free (constant since d = 1 for now) velocity field
- $f \in L^2(\Omega)$: source term
- $\partial_{\pm}\Omega := \{x \in \partial\Omega : \pm \boldsymbol{b}(x) \cdot \boldsymbol{n}(x) > 0\}$: inflow and outflow parts of the boundary
- $\partial_0 \Omega := \{ x \in \partial \Omega : \boldsymbol{b}(x) \cdot \boldsymbol{n}(x) = 0 \}$: characteristic part of the boundary

Functional setting

Sobolev spaces

$$\begin{aligned} & H^1_{-}(\Omega) = \left\{ w \in H^1(\Omega), w = 0, \text{ on } \partial_{-}\Omega \right\}, \\ & H^1_{+}(\Omega) = \left\{ w \in H^1(\Omega), w = 0, \text{ on } \partial_{+}\Omega \right\}. \end{aligned}$$

Integration by parts

$$(v, \boldsymbol{b} \cdot
abla w)_{\Omega} + (\boldsymbol{b} \cdot
abla v, w)_{\Omega} = (\boldsymbol{b} \cdot \boldsymbol{n} v, w)_{\partial \Omega} \qquad \forall v, w \in H^1(\Omega)$$

Poincaré–Friedrichs inequalities

 $egin{aligned} \|v-ar{v}\|_D &\leq h_D C_{ ext{P},D} \|
abla v\|_D & orall v \in H^1(D), \quad C_{ ext{P},D} &\leq 1/\pi, \ \|v\|_D &\leq h_D C_{ ext{F},D,\Gamma_D} \|
abla v\|_D, & orall v \in \left\{H^1(D), v|_{\Gamma_D} = 0, |\Gamma_D|
eq 0
ight\}, \quad C_{ ext{F},L} \end{aligned}$

Functional setting

Sobolev spaces

$$\begin{split} &H^1_{-}(\Omega) = \left\{ w \in H^1(\Omega), w = 0, \text{ on } \partial_{-}\Omega \right\}, \\ &H^1_{+}(\Omega) = \left\{ w \in H^1(\Omega), w = 0, \text{ on } \partial_{+}\Omega \right\}. \end{split}$$

Integration by parts

$$(\mathbf{v}, \mathbf{b} \cdot
abla \mathbf{w})_{\Omega} + (\mathbf{b} \cdot
abla \mathbf{v}, \mathbf{w})_{\Omega} = (\mathbf{b} \cdot \mathbf{n} \mathbf{v}, \mathbf{w})_{\partial \Omega} \qquad \forall \mathbf{v}, \mathbf{w} \in H^1(\Omega)$$

Poincaré–Friedrichs inequalities

 $\|v-ar{v}\|_D \leq h_D C_{\mathrm{P},D} \|
abla v\|_D \qquad orall v \in H^1(D), \quad C_{\mathrm{P},D} \leq 1/\pi,$

 $\|v\|_D \leq h_D C_{\mathrm{F},D,\Gamma_D} \|
abla v\|_D, \qquad orall v \in \left\{H^1(D), v|_{\Gamma_D} = 0, |\Gamma_D| \neq 0
ight\}, \quad C$

Functional setting

Sobolev spaces

$$\begin{split} &H^1_{-}(\Omega) = \left\{ w \in H^1(\Omega), w = 0, \text{ on } \partial_{-}\Omega \right\}, \\ &H^1_{+}(\Omega) = \left\{ w \in H^1(\Omega), w = 0, \text{ on } \partial_{+}\Omega \right\}. \end{split}$$

Integration by parts

$$(v, \boldsymbol{b} \cdot
abla w)_\Omega + (\boldsymbol{b} \cdot
abla v, w)_\Omega = (\boldsymbol{b} \cdot \boldsymbol{n} v, w)_{\partial\Omega} \qquad orall v, w \in H^1(\Omega)$$

Poincaré–Friedrichs inequalities

$$\begin{split} \|\boldsymbol{v} - \bar{\boldsymbol{v}}\|_{D} &\leq h_{D} \boldsymbol{C}_{\mathrm{P},D} \|\nabla \boldsymbol{v}\|_{D} \qquad \forall \boldsymbol{v} \in \boldsymbol{H}^{1}(D), \quad \boldsymbol{C}_{\mathrm{P},D} \leq 1/\pi, \\ \|\boldsymbol{v}\|_{D} &\leq h_{D} \boldsymbol{C}_{\mathrm{F},D,\Gamma_{D}} \|\nabla \boldsymbol{v}\|_{D}, \qquad \forall \boldsymbol{v} \in \left\{\boldsymbol{H}^{1}(D), \, \boldsymbol{v}|_{\Gamma_{D}} = \boldsymbol{0}, |\Gamma_{D}| \neq \boldsymbol{0}\right\}, \quad \boldsymbol{C}_{\mathrm{F},D,\Gamma_{D}} \leq \boldsymbol{1} \end{split}$$

Ínnin

Numerical approximation

Example (Continuous trial Petrov–Galerkin (PG1) finite element)

Find $u_h \in X_h := H^1_{-}(\Omega) \cap \mathcal{P}^k(\mathcal{T}_h)$, $k \geq 2$, such that

$$(\boldsymbol{b}\cdot \nabla u_h, \boldsymbol{v}_h) = (f, \boldsymbol{v}_h) \qquad \forall \boldsymbol{v}_h \in \boldsymbol{Y}_h := \mathcal{P}^{k-1}(\mathcal{T}_h).$$

Example (Discontinuous trial Petrov–Galerkin (PG2) finite element)

Find $u_h \in X_h := \mathcal{P}^k(\mathcal{T}_h)$, $k \ge 0$, such that

 $-(u_h, \mathbf{b} \cdot \nabla v_h) = (f, v_h) \qquad \forall v_h \in Y_h := H^1_+(\Omega) \cap \mathcal{P}^{k+1}(\mathcal{T}_h).$

Numerical approximation

Example (Continuous trial Petrov–Galerkin (PG1) finite element)

Find $u_h \in X_h := H^1_{-}(\Omega) \cap \mathcal{P}^k(\mathcal{T}_h)$, $k \geq 2$, such that

$$(\boldsymbol{b}\cdot \nabla u_h, \boldsymbol{v}_h) = (f, \boldsymbol{v}_h) \qquad \forall \boldsymbol{v}_h \in \boldsymbol{Y}_h := \mathcal{P}^{k-1}(\mathcal{T}_h).$$

Example (Discontinuous trial Petrov–Galerkin (PG2) finite element)

Find $u_h \in X_h := \mathcal{P}^k(\mathcal{T}_h)$, $k \ge 0$, such that

$$-(u_h, \boldsymbol{b} \cdot \nabla v_h) = (f, v_h) \qquad \forall v_h \in Y_h := H^1_+(\Omega) \cap \mathcal{P}^{k+1}(\mathcal{T}_h).$$

Numerical approximation

Example (dG finite element)

Find $u_h \in X_h := \mathcal{P}^k(\mathcal{T}_h)$, $k \ge 1$, such that

$$\mathcal{B}_h(u_h, v_h) = (f, v_h) \qquad \forall v_h \in Y_h := \mathcal{P}^k(\mathcal{T}_h),$$

where

$$\mathcal{B}_{h}(u_{h}, v_{h}) := -\sum_{K \in \mathcal{T}_{h}} (u_{h}, \boldsymbol{b} \cdot \nabla v_{h})_{K}$$
$$- \sum_{\boldsymbol{e} \in \mathcal{E}_{h}^{\text{int}}} \boldsymbol{b} \cdot \boldsymbol{n} \{\!\!\{u_{h}\}\!\} [\![v_{h}]\!] + \sum_{\boldsymbol{e} \in \mathcal{E}_{h}^{\text{int}}} \frac{1}{2} |\boldsymbol{b} \cdot \boldsymbol{n}| [\![u_{h}]\!] [\![v_{h}]\!] + \sum_{\boldsymbol{e} \in \mathcal{E}_{h}^{\text{bod}}} (\boldsymbol{b} \cdot \boldsymbol{n})^{+} u_{h} v_{h}.$$

- u_h^- , u_h^+ : trace value from left and from right
- $\{\!\!\{u_h\}\!\!\} := (u_h^- + u_h^+)/2$: average
- $[\![u_h]\!] := u_h^+ u_h^-$: jump
- upwind dG (Lax-Friedrichs) flux applied on the cell interfaces

Outline

- Introduction
 - The advection problem and its numerical approximation
- 3 A posteriori error estimates
 - Weak solution and error-residual equivalence
 - Hat functions orthogonality of the residual
 - Patchwise potential reconstruction
- 4 Numerical experiments
- 5 Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- Extension to advection–reaction problems
 - Conclusions, current work, papers

Outline

- Introductio
 - The advection problem and its numerical approximation
- 3 A posteriori error estimates
 - Weak solution and error-residual equivalence
 - Hat functions orthogonality of the residual
 - Patchwise potential reconstruction
- 4 Numerical experiments
- 5 Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- Extension to advection–reaction problems
 - Conclusions, current work, papers

Advection Estimates Numerics Multi-D Advection-reaction C

Weak solution and residual

Ultra-weak solution Find $u \in L^2(\Omega)$ such that

$$-(u, \mathbf{b} \cdot \nabla v) = (f, v) \qquad \forall v \in H^1_+(\Omega).$$

Residual

- $u_h \in L^2(\Omega)$ arbitrary
- $\mathcal{R}(u_h) \in H^1_+(\Omega)'$,

$$\langle \mathcal{R}(u_h), v \rangle := (f, v) + (u_h, \boldsymbol{b} \cdot \nabla v), \qquad v \in H^1_+(\Omega)$$

• dual norm (velocity-scaled)

$$\|\mathcal{R}(u_h)\|_{\boldsymbol{b};\,H^1_+(\Omega)'} := \sup_{\boldsymbol{v}\in H^1_+(\Omega)\setminus\{0\}} \frac{\langle \mathcal{R}(u_h),\boldsymbol{v}\rangle}{\|\boldsymbol{b}\cdot\nabla\boldsymbol{v}\|}$$

Advection Estimates Numerics Multi-D Advection-reaction C

Weak solution and residual

Ultra-weak solution Find $u \in L^2(\Omega)$ such that

$$-(u, \mathbf{b} \cdot \nabla \mathbf{v}) = (f, \mathbf{v}) \qquad \forall \mathbf{v} \in H^1_+(\Omega).$$

Residual

- $u_h \in L^2(\Omega)$ arbitrary
- $\mathcal{R}(u_h) \in H^1_+(\Omega)'$,

$$\langle \mathcal{R}(u_h), \boldsymbol{v}
angle \coloneqq (f, \boldsymbol{v}) + (u_h, \boldsymbol{b} \cdot \nabla \boldsymbol{v}), \qquad \boldsymbol{v} \in H^1_+(\Omega)$$

• dual norm (velocity-scaled)

$$\|\mathcal{R}(u_h)\|_{\boldsymbol{b};\,H^1_+(\Omega)'} := \sup_{\boldsymbol{v}\in H^1_+(\Omega)\setminus\{0\}} \frac{\langle \mathcal{R}(u_h),\boldsymbol{v}\rangle}{\|\boldsymbol{b}\cdot\nabla\boldsymbol{v}\|}$$

Error-residual equivalence

Theorem (Error–residual equivalence)

Let u be the ultra-weak solution. Then

$$\|u-u_h\| = \|\mathcal{R}(u_h)\|_{\boldsymbol{b}; H^1_{+}(\Omega)'} \qquad \forall u_h \in L^2(\Omega)$$

Outline

- Introductio
 - The advection problem and its numerical approximation
- 3 A posteriori error estimates
 - Weak solution and error-residual equivalence
 - Hat functions orthogonality of the residual
 - Patchwise potential reconstruction
- 4 Numerical experiments
- 5 Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- Extension to advection–reaction problems
 - Conclusions, current work, papers

Hat functions orthogonality of the residual

Assumption (ψ_a -orthogonality of the residual)

The residual $\mathcal{R}(u_h) \in H^1_+(\Omega)'$ satisfies

$$\langle \mathcal{R}(u_h), \psi_a \rangle = (f, \psi_a)_{\omega_a} + (u_h, \mathbf{b} \cdot \nabla \psi_a)_{\omega_a} = \mathbf{0} \qquad \forall \mathbf{a} \in \mathcal{V}_h^{\text{int}} \cup \mathcal{V}_h^{\partial - \Omega}$$

• holds for the PG1, PG2, and dG schemes

Weak solution and residual Hat functions orthogonality Potential reconstruction

Hat functions orthogonality of the residual

Assumption (ψ_a -orthogonality of the residual)

The residual $\mathcal{R}(u_h) \in H^1_+(\Omega)'$ satisfies

$$\langle \mathcal{R}(\boldsymbol{u}_h), \boldsymbol{\psi}_{\boldsymbol{a}} \rangle = (f, \boldsymbol{\psi}_{\boldsymbol{a}})_{\omega_{\boldsymbol{a}}} + (\boldsymbol{u}_h, \boldsymbol{b} \cdot \nabla \boldsymbol{\psi}_{\boldsymbol{a}})_{\omega_{\boldsymbol{a}}} = \boldsymbol{0} \qquad \forall \boldsymbol{a} \in \mathcal{V}_h^{\text{int}} \cup \mathcal{V}_h^{\partial - \Omega}$$

• holds for the PG1, PG2, and dG schemes

Outline

- Introductio
 - The advection problem and its numerical approximation

3 A posteriori error estimates

- Weak solution and error-residual equivalence
- Hat functions orthogonality of the residual
- Patchwise potential reconstruction
- 4 Numerical experiments
- 5 Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- Extension to advection–reaction problems
 - Conclusions, current work, papers

Definition (Patchwise potential reconstruction)

Let $u_h \in L^2(\Omega)$ satisfy the ψ_a -orthogonality assumption. For all vertices $\mathbf{a} \in \mathcal{V}_h$, let $s_h^{\mathbf{a}} \in X_h^{\mathbf{a}}$ be the solution of the advection–reaction problem on the patch ω_a

$$(\mathbf{b}\cdot
abla (\psi_{\mathbf{a}} s_{h}^{\mathbf{a}}), \mathbf{v}_{h})_{\omega_{\mathbf{a}}} = (f\psi_{\mathbf{a}} + (\mathbf{b}\cdot
abla \psi_{\mathbf{a}}) u_{h}, \mathbf{v}_{h})_{\omega_{\mathbf{a}}} \qquad orall \mathbf{v}_{h} \in Y_{h}^{\mathbf{a}}$$

with $X_h^a := \mathcal{P}^{k'}(\mathcal{T}_a) \cap H^1(\omega_a)$, $Y_h^a := \mathcal{P}^{k'}(\mathcal{T}_a)$, and $k' \ge 0$. Then define

$$m{s}_h \coloneqq \sum_{m{a} \in \mathcal{V}_h} \psi_{m{a}} m{s}_h^{m{a}} \in \mathcal{P}^{k'+1}(\mathcal{T}_h) \cap H^1_-(\Omega).$$

s_h matches with the usual weak formulation:

$$(f - \boldsymbol{b} \cdot \nabla \boldsymbol{s}_h, \boldsymbol{v}_h)_K = \mathbf{0} \qquad \forall \boldsymbol{v}_h \in \mathcal{P}^{k'}(K), \quad \forall K \in \mathcal{T}_h$$

 the hat-function-weighted difference \u03c6_h = u_h) is a lifting of the local hat-function-weighted residual by a local advection problem:

 $(\psi_{a}(u_{h} - s_{h}^{a}), \boldsymbol{b} \cdot \nabla v_{h})_{\omega_{a}} = \langle \mathcal{R}(u_{h}), \psi_{a} v_{h} \rangle = (f, \psi_{a} v_{h})_{\omega_{a}} + (u_{h}, \boldsymbol{b} \cdot \nabla (\psi_{a} v_{h}))_{\omega_{h}}$ $\forall v_{h} \in \boldsymbol{Y}^{a} \cap \boldsymbol{H}^{1}(\omega_{a}), v_{h}(\boldsymbol{a}) = 0 \text{ when } \boldsymbol{a} \in \mathcal{Y}^{\partial + \Omega}$

Definition (Patchwise potential reconstruction)

Let $u_h \in L^2(\Omega)$ satisfy the ψ_a -orthogonality assumption. For all vertices $\mathbf{a} \in \mathcal{V}_h$, let $s_h^{\mathbf{a}} \in X_h^{\mathbf{a}}$ be the solution of the advection–reaction problem on the patch ω_a

$$(m{b}\cdot
abla(\psi_{m{a}}m{s}^{m{a}}_h),m{v}_h)_{\omega_{m{a}}} = (f\psi_{m{a}} + (m{b}\cdot
abla\psi_{m{a}})\,m{u}_h,m{v}_h)_{\omega_{m{a}}} \qquad orall m{v}_h \in Y^{m{a}}_h,$$

with
$$X_h^{\boldsymbol{a}} := \mathcal{P}^{k'}(\mathcal{T}_{\boldsymbol{a}}) \cap H^1(\omega_{\boldsymbol{a}}), Y_h^{\boldsymbol{a}} := \mathcal{P}^{k'}(\mathcal{T}_{\boldsymbol{a}}), \text{ and } k' \ge 0.$$
 Then define
 $\boldsymbol{s_h} := \sum_{\boldsymbol{a} \in \mathcal{V}_h} \psi_{\boldsymbol{a}} \boldsymbol{s_h^{\boldsymbol{a}}} \in \mathcal{P}^{k'+1}(\mathcal{T}_h) \cap H^1_{-}(\Omega).$

• *s_h* matches with the usual weak formulation:

$$(f - \boldsymbol{b} \cdot \nabla \boldsymbol{s}_h, \boldsymbol{v}_h)_K = 0 \qquad \forall \boldsymbol{v}_h \in \mathcal{P}^{k'}(K), \quad \forall K \in \mathcal{T}_h$$

 the hat-function-weighted difference ψ_a(s^a_h - u_h) is a lifting of the local hat-function-weighted residual by a local advection problem:

$$\begin{aligned} (\psi_{\boldsymbol{a}}(\boldsymbol{u}_{h} - \boldsymbol{s}_{h}^{\boldsymbol{a}}), \boldsymbol{b} \cdot \nabla \boldsymbol{v}_{h})_{\omega_{\boldsymbol{a}}} &= \langle \mathcal{R}(\boldsymbol{u}_{h}), \psi_{\boldsymbol{a}} \boldsymbol{v}_{h} \rangle = (f, \psi_{\boldsymbol{a}} \boldsymbol{v}_{h})_{\omega_{\boldsymbol{a}}} + (u_{h}, \boldsymbol{b} \cdot \nabla(\psi_{\boldsymbol{a}} \boldsymbol{v}_{h}))_{\omega_{\boldsymbol{a}}} \\ &\forall \boldsymbol{v}_{h} \in Y_{h}^{\boldsymbol{a}} \cap H^{1}(\omega_{\boldsymbol{a}}), \boldsymbol{v}_{h}(\boldsymbol{a}) = 0 \text{ when } \boldsymbol{a} \in \mathcal{V}_{h}^{\partial_{+}\Omega} \end{aligned}$$

• s_h matches with the usual weak formulation:

$$(f - \boldsymbol{b} \cdot \nabla \boldsymbol{s}_h, \boldsymbol{v}_h)_K = 0 \qquad \forall \boldsymbol{v}_h \in \mathcal{P}^{k'}(K), \quad \forall K \in \mathcal{T}_h$$

• the hat-function-weighted difference $\psi_a(s_b^a - u_b)$ is a lifting of the local

$$\begin{aligned} (\psi_{\boldsymbol{a}}(\boldsymbol{u}_{h}-\boldsymbol{s}_{h}^{\boldsymbol{a}}),\boldsymbol{b}\cdot\nabla\boldsymbol{v}_{h})_{\omega_{\boldsymbol{a}}} &= \langle \mathcal{R}(\boldsymbol{u}_{h}),\psi_{\boldsymbol{a}}\boldsymbol{v}_{h}\rangle = (f,\psi_{\boldsymbol{a}}\boldsymbol{v}_{h})_{\omega_{\boldsymbol{a}}} + (u_{h},\boldsymbol{b}\cdot\nabla(\psi_{\boldsymbol{a}}\boldsymbol{v}_{h}))_{\omega_{\boldsymbol{a}}} \\ \forall \boldsymbol{v}_{h}\in Y_{h}^{\boldsymbol{a}}\cap H^{1}(\omega_{\boldsymbol{a}}),\boldsymbol{v}_{h}(\boldsymbol{a}) = 0 \text{ when } \boldsymbol{a}\in\mathcal{V}_{h}^{\partial_{+}\Omega} \end{aligned}$$

• *s_h* matches with the usual weak formulation:

$$(f - \boldsymbol{b} \cdot \nabla \boldsymbol{s}_h, \boldsymbol{v}_h)_{\mathcal{K}} = 0 \qquad \forall \boldsymbol{v}_h \in \mathcal{P}^{k'}(\mathcal{K}), \quad \forall \mathcal{K} \in \mathcal{T}_h$$

 the hat-function-weighted difference ψ_a(s^a_h - u_h) is a lifting of the local hat-function-weighted residual by a local advection problem:

$$egin{aligned} & (\psi_{\pmb{a}}(\pmb{u}_h - \pmb{s}_h^{\pmb{a}}), \pmb{b} \cdot
abla \pmb{v}_h)_{\omega_{\pmb{a}}} = \langle \mathcal{R}(\pmb{u}_h), \psi_{\pmb{a}} \pmb{v}_h
angle = (f, \psi_{\pmb{a}} \pmb{v}_h)_{\omega_{\pmb{a}}} + (u_h, \pmb{b} \cdot
abla (\psi_{\pmb{a}} \pmb{v}_h))_{\omega_{\pmb{a}}} \ & \forall \pmb{v}_h \in Y_h^{\pmb{a}} \cap H^1(\omega_{\pmb{a}}), \pmb{v}_h(\pmb{a}) = 0 \ \text{when} \ \pmb{a} \in \mathcal{V}_h^{\partial_+\Omega} \end{aligned}$$

A posteriori error estimate: reliability

Theorem (Guaranteed a posteriori error estimate)

Let $u \in L^2(\Omega)$ be the ultra-weak solution and let $u_h \in L^2(\Omega)$ be arbitrary subject to the ψ_a -orthogonality assumption. Furthermore, let s_h be the patchwise potential reconstruction with $k' \ge 0$. Then

$$\|\boldsymbol{u}-\boldsymbol{u}_h\| \leq \eta := \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h} \left(\eta_{\mathrm{NC},\boldsymbol{K}}+\eta_{\mathrm{osc},\boldsymbol{K}}\right)^2\right\}^{1/2}$$

η_{NC,K} := ||u_h - s_h||_K: comparison of approximation u_h and reconstruction s_h
 η_{osc,K} := h_K/π|b| ||(I - Π_{P^{k'}(T_h)})f||_K: data oscillation; Π_{P^{k'}(T_h)} is the L²(Ω)-orthogonal projection onto P^{k'}(T_h)

A posteriori error estimate: reliability

Theorem (Guaranteed a posteriori error estimate)

Let $u \in L^2(\Omega)$ be the ultra-weak solution and let $u_h \in L^2(\Omega)$ be arbitrary subject to the ψ_a -orthogonality assumption. Furthermore, let s_h be the patchwise potential reconstruction with $k' \ge 0$. Then

$$\|\boldsymbol{u}-\boldsymbol{u}_{h}\| \leq \eta := \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_{h}} \left(\eta_{\mathrm{NC},\boldsymbol{K}}+\eta_{\mathrm{osc},\boldsymbol{K}}\right)^{2}\right\}^{1/2}.$$

η_{NC,K} := ||u_h - s_h||_K: comparison of approximation u_h and reconstruction s_h
 η_{osc,K} := h_K/π|b| ||(I - Π_{P^{k'}(T_h)})f||_K: data oscillation; Π_{P^{k'}(T_h)} is the L²(Ω)-orthogonal projection onto P^{k'}(T_h)
Theorem (Guaranteed a posteriori error estimate)

Let $u \in L^2(\Omega)$ be the ultra-weak solution and let $u_h \in L^2(\Omega)$ be arbitrary subject to the ψ_a -orthogonality assumption. Furthermore, let s_h be the patchwise potential reconstruction with $k' \ge 0$. Then

$$\|\boldsymbol{u}-\boldsymbol{u}_{h}\| \leq \eta := \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_{h}}\left(\eta_{\mathrm{NC},\boldsymbol{K}}+\eta_{\mathrm{osc},\boldsymbol{K}}\right)^{2}\right\}^{1/2}.$$

η_{NC,K} := ||u_h - s_h||_K: comparison of approximation u_h and reconstruction s_h
 η_{osc,K} := h_K/π|b| ||(I - Π_{P^{k'}(T_h)})f||_K: data oscillation; Π_{P^{k'}(T_h)} is the L²(Ω)-orthogonal projection onto P^{k'}(T_h)

Theorem (Global

A posteriori error estimate: efficiency and robustness

efficiency and robustness)

Let the reliability assumptions hold. Let, additionally, $u_h \in \mathcal{P}^k(\mathcal{T}_h)$, $k \ge 0$, and $k' \ge k$. Then

$$\|u_h - s_h\| \leq 2C_{\text{cont,PF}} \|u - u_h\| + data \text{ oscillation},$$

where C_{cont,PF} only depends on mesh shape-regularity,

 $C_{\text{cont,PF}} := \max_{\boldsymbol{a} \in \mathcal{V}_h} (1 + C_{\text{PF},\omega_{\boldsymbol{a}}} h_{\omega_{\boldsymbol{a}}} \| \nabla \psi_{\boldsymbol{a}} \|_{\infty}) \leq 3 \text{ for uniform meshes.}$

More precisely, for all mesh elements $K \in \mathcal{T}_h$,

$$\eta_{\text{NC},K} \leq C_{\text{cont},\text{PF}} \sum_{\boldsymbol{a} \in \mathcal{V}_{K}} \|\boldsymbol{u} - \boldsymbol{u}_{h}\|_{\omega_{\boldsymbol{a}}} + \sum_{\boldsymbol{a} \in \mathcal{V}_{K}} \frac{h_{\omega_{\boldsymbol{a}}}}{\pi |\boldsymbol{b}|} \|(\boldsymbol{I} - \Pi_{\mathcal{P}^{k'}(\mathcal{T}_{\boldsymbol{a}})})(f\psi_{\boldsymbol{a}})\|_{\omega_{\boldsymbol{a}}}$$

M. Vohralík

Guaranteed and robust L²-norm a posteriori estimates for 1D advection problems 13 / 36

A posteriori error estimate: efficiency and robustness

Theorem (Global and local efficiency and robustness)

Let the reliability assumptions hold. Let, additionally, $u_h \in \mathcal{P}^k(\mathcal{T}_h)$, $k \ge 0$, and $k' \ge k$. Then

$$\|u_h - s_h\| \leq 2C_{\text{cont,PF}} \|u - u_h\| + data \text{ oscillation},$$

where C_{cont,PF} only depends on mesh shape-regularity,

 $C_{\text{cont,PF}} := \max_{\boldsymbol{a} \in \mathcal{V}_h} (1 + C_{\text{PF},\omega_{\boldsymbol{a}}} h_{\omega_{\boldsymbol{a}}} \| \nabla \psi_{\boldsymbol{a}} \|_{\infty}) \leq 3 \text{ for uniform meshes}.$

More precisely, for all mesh elements $K \in T_h$,

$$\eta_{\mathrm{NC},\boldsymbol{\mathsf{K}}} \leq C_{\mathrm{cont},\mathrm{PF}} \sum_{\boldsymbol{a} \in \mathcal{V}_{\boldsymbol{\mathsf{K}}}} \|\boldsymbol{u} - \boldsymbol{u}_{\boldsymbol{h}}\|_{\omega_{\boldsymbol{a}}} + \sum_{\boldsymbol{a} \in \mathcal{V}_{\boldsymbol{\mathsf{K}}}} \frac{h_{\omega_{\boldsymbol{a}}}}{\pi |\boldsymbol{b}|} \|(\boldsymbol{I} - \boldsymbol{\Pi}_{\mathcal{P}^{\boldsymbol{k}'}(\mathcal{T}_{\boldsymbol{a}})})(\boldsymbol{f}\psi_{\boldsymbol{a}})\|_{\omega_{\boldsymbol{a}}}$$

M. Vohralík

Guaranteed and robust L²-norm a posteriori estimates for 1D advection problems 13 / 36

A posteriori error estimate: efficiency and robustness

Theorem (Global and local efficiency and robustness)

Let the reliability assumptions hold. Let, additionally, $u_h \in \mathcal{P}^k(\mathcal{T}_h)$, $k \ge 0$, and $k' \ge k$. Then

$$\|u_h - s_h\| \leq 2C_{\text{cont,PF}} \|u - u_h\| + data \text{ oscillation},$$

where C_{cont,PF} only depends on mesh shape-regularity,

 $C_{\text{cont,PF}} := \max_{\boldsymbol{a} \in \mathcal{V}_h} (1 + C_{\text{PF},\omega_{\boldsymbol{a}}} h_{\omega_{\boldsymbol{a}}} \| \nabla \psi_{\boldsymbol{a}} \|_{\infty}) \leq 3 \text{ for uniform meshes}.$

More precisely, for all mesh elements $K \in T_h$,

$$\eta_{\mathrm{NC},\boldsymbol{\mathsf{K}}} \leq \boldsymbol{C}_{\mathrm{cont},\mathrm{PF}} \sum_{\boldsymbol{a} \in \mathcal{V}_{\boldsymbol{\mathsf{K}}}} \|\boldsymbol{u} - \boldsymbol{u}_{\boldsymbol{\mathsf{h}}}\|_{\boldsymbol{\omega}_{\boldsymbol{a}}} + \sum_{\boldsymbol{a} \in \mathcal{V}_{\boldsymbol{\mathsf{K}}}} \frac{h_{\boldsymbol{\omega}_{\boldsymbol{a}}}}{\pi |\boldsymbol{b}|} \|(\boldsymbol{I} - \boldsymbol{\Pi}_{\mathcal{P}^{\boldsymbol{\mathsf{K}}'}(\mathcal{T}_{\boldsymbol{a}})})(f\psi_{\boldsymbol{a}})\|_{\boldsymbol{\omega}_{\boldsymbol{a}}}.$$

Outline

- Introduction
- 2 The advection problem and its numerical approximation
- 3 A posteriori error estimates
 - Weak solution and error-residual equivalence
 - Hat functions orthogonality of the residual
 - Patchwise potential reconstruction

4 Numerical experiments

- 5 Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- Extension to advection–reaction problems
 - Conclusions, current work, papers

Effectivity index

$$I_{\mathrm{eff}} := rac{\eta}{\|u - u_h\|}$$

M. Vohralík

Guaranteed and robust L^2 -norm a posteriori estimates for 1D advection problems 14 / 36

$f(x) = x^2 + x + \sin(2\pi x_{i-1})$ on K_i , $1 \le i \le n$: robustness wrt **b**

k = k' =			$b \mid I_{eff}$			
# Elements	$DOF(u_h)$	10 ⁻⁴	10 ⁻²	10 ⁰	10 ²	10 ⁴
4	8	1.234	1.234	1.234	1.234	1.234
16	32	1.058	1.058	1.058	1.058	1.058
64	128	1.014	1.014	1.014	1.014	1.014
256	512	1.004	1.004	1.004	1.004	1.004

k = k' =	1, dG			$b \mid I_{eff}$		
# Elements	$DOF(u_h)$	10^{-4}	10^{-2}	10 ⁰	10 ²	10 ⁴
4	8	1.126	1.126	1.126	1.126	1.126
16	32	1.032	1.032	1.032	1.032	1.032
64	128	1.008	1.008	1.008	1.008	1.008
256	512	1.002	1.002	1.002	1.002	1.002

Ínría Estato

M. Vohralík

$f(x) = x^2 + x + \sin(2\pi x_{i-1})$ on K_i , $1 \le i \le n$: robustness wrt **b**

k = k' =			$b \mid I_{\rm eff}$			
# Elements	$DOF(u_h)$	10 ⁻⁴	10 ⁻²	10 ⁰	10 ²	10 ⁴
4	8	1.234	1.234	1.234	1.234	1.234
16	32	1.058	1.058	1.058	1.058	1.058
64	128	1.014	1.014	1.014	1.014	1.014
256	512	1.004	1.004	1.004	1.004	1.004

k = k' =			$b \mid I_{eff}$			
# Elements	$DOF(u_h)$	10^{-4}	10 ⁻²	10 ⁰	10 ²	10 ⁴
4	8	1.126	1.126	1.126	1.126	1.126
16	32	1.032	1.032	1.032	1.032	1.032
64	128	1.008	1.008	1.008	1.008	1.008
256	512	1.002	1.002	1.002	1.002	1.002

Íngia

$f(x) = \tan^{-1}(x)$, **b** = 1, PG2: robustness wrt k

k = k' = 0									
# Elements	$\# DOF(u_h)$	$\ u-u_h\ $	η	$\eta_{\rm NC}$	$\eta_{ m osc}$	<i>l</i> _{eff}			
4	4	3.562e-02	3.951e-02	3.574e-02	4.601e-03	1.11			
16	16	8.934e-03	9.161e-03	8.936e-03	2.877e-04	1.03			
64	64	2.234e-03	2.248e-03	2.234e-03	1.798e-05	1.01			
256	256	5.585e-04	5.593e-05	5.585e-04	1.124e-06	1.00			
1024	1024	1.396e-04	1.397e-05	1.396e-04	7.025e-08	1.00			
		<i>k</i> =	= <i>k′</i> = 1						
4	8	1.868e-03	1.955e-03	1.867e-03	9.783e-05	1.05			
16	32	1.167e-04	1.181e-04	1.167e-04	1.531e-06	1.02			
64	128	7.294e-06	7.315e-06	7.294e-06	2.393e-08	1.00			
256	512	4.559e-07	4.562e-07	4.559e-07	3.739e-10	1.00			
1024	2048	2.849e-08	2.849e-08	2.849e-08	5.843e-12	1.00			

$f(x) = \tan^{-1}(x)$, **b** = 1, PG2: robustness wrt k

	k = k' = 2								
# Elements	# DOF(<i>u_h</i>)	$\ u-u_h\ $	η	$\eta_{ m NC}$	$\eta_{ m osc}$	$I_{\rm eff}$			
4	12	2.600e-05	2.844e-05	2.598e-05	3.967e-06	1.09			
16	48	4.066e-07	4.154e-07	4.066e-07	1.558e-08	1.02			
64	192	6.354e-09	6.387e-09	6.354e-09	6.091e-11	1.01			
256	768	9.928e-11	9.941e-11	9.928e-11	2.379e-13	1.00			
1024	3072	1.552e-12	1.551e-12	1.551e-12	9.294e-16	1.00			
		k =	<i>k'</i> = 3						
4	16	7.859e-07	9.299e-07	7.852e-07	1.803e-07	1.18			
16	64	3.085e-09	3.213e-09	3.085e-09	1.775e-10	1.04			
64	256	1.205e-11	1.217e-11	1.205e-11	1.735e-13	1.01			
256	1024	4.730e-14	4.730e-14	4.718e-14	1.694e-16	1.00			
	k = k' = 4								
4	20	2.851e-08	3.517e-08	2.847e-08	8.486e-09	1.23			
16	80	2.804e-11	2.948e-11	2.804e-11	2.095e-12	1.05			
64	320	2.753e-14	2.776e-14	2.742e-14	5.118e-16	1.01			

M. Vohralík

Guaranteed and robust L²-norm a posteriori estimates for 1D advection problems 17 / 36

$f(x) = \tan^{-1}(x)$, **b** = 1, dG: robustness wrt k

k = k' = 1									
# Elements	$\# DOF(u_h)$	$\ u-u_h\ $	η	$\eta_{ m NC}$	$\eta_{ m osc}$	<i>l</i> _{eff}			
4	8	3.021e-03	3.136e-03	3.048e-03	9.783e-05	1.04			
16	32	1.901e-04	1.919e-03	1.906e-04	1.531e-06	1.01			
64	128	1.190e-05	1.193e-05	1.191e-05	2.393e-08	1.00			
256	512	7.444e-07	7.447e-07	7.445e-07	3.739e-10	1.00			
1024	2048	4.653e-08	4.653e-08	4.653e-08	5.843e-12	1.00			
		<i>k</i> =	= <i>k</i> ′ = 2						
4	12	4.045e-05	4.260e-05	4.210e-05	3.967e-06	1.05			
16	48	6.307e-07	6.386e-07	6.299e-07	1.558e-08	1.01			
64	192	9.847e-09	9.877e-09	9.844e-09	6.091e-11	1.00			
256	768	1.538e-10	1.539e-10	1.538e-10	2.379e-13	1.00			
1024	3072	2.403e-12	2.403e-12	2.403e-12	9.294e-16	1.00			

$f(x) = \tan^{-1}(x)$, **b** = 1, dG: robustness wrt k

k = k' = 3										
# Elements	# DOF(<i>u_h</i>)	$\ u-u_h\ $	η	$\eta_{ m NC}$	$\eta_{ m osc}$	$I_{\rm eff}$				
4	16	1.169e-06	1.328e-06	1.186e-06	1.803e-07	1.14				
16	64	4.647e-09	4.791e-09	4.664e-09	1.775e-10	1.03				
64	256	1.821e-11	1.834e-11	1.822e-11	1.735e-13	1.01				
256	1024	7.181e-14	7.184e-14	7.172e-14	1.694e-16	1.00				
	k = k' = 4									
4	20	4.252e-08	4.895e-08	4.240e-08	8.486e-09	1.15				
16	80	4.180e-11	4.323e-11	4.179e-11	2.095e-12	1.03				
64	320	4.094e-14	4.117e-14	4.083e-14	5.118e-16	1.01				

Íngia -

Outline

- Introduction
- 2 The advection problem and its numerical approximation
- 3 A posteriori error estimates
 - Weak solution and error-residual equivalence
 - Hat functions orthogonality of the residual
 - Patchwise potential reconstruction
 - Numerical experiments
- 5 Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- Extension to advection–reaction problems
 - Conclusions, current work, papers

Outline

- Introduction
- 2 The advection problem and its numerical approximation
- 3 A posteriori error estimates
 - Weak solution and error-residual equivalence
 - Hat functions orthogonality of the residual
 - Patchwise potential reconstruction

Numerical experiments

- 5 Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- 6 Extension to advection–reaction problems
 - Conclusions, current work, papers

Advection operator and its formal adjoint

$$\mathcal{L} : \mathbf{v} \mapsto \mathbf{b} \cdot \nabla \mathbf{v},$$

 $\mathcal{L}^* : \mathbf{v} \mapsto -\nabla \cdot (\mathbf{b} \mathbf{v}) = -\mathbf{b} \cdot \nabla \mathbf{v}$

$$egin{aligned} & \mathcal{H}(\mathcal{L},\Omega) := \left\{ v \in L^2(\Omega), \ \mathcal{L} v \in L^2(\Omega)
ight\}, \ & \mathcal{H}(\mathcal{L}^*,\Omega) := \left\{ v \in L^2(\Omega), \ \mathcal{L}^* v \in L^2(\Omega)
ight\}. \end{aligned}$$

$$H_0(\mathcal{L}, \Omega) := \{ v \in H(\mathcal{L}, \Omega), v = 0 \text{ on } \partial_{-}\Omega \}, H_0(\mathcal{L}^*, \Omega) := \{ v \in H(\mathcal{L}^*, \Omega), v = 0 \text{ on } \partial_{+}\Omega \}$$

Advection operator and its formal adjoint

$$\mathcal{L}: \mathbf{v} \mapsto \mathbf{b} \cdot \nabla \mathbf{v},$$

 $\mathcal{L}^*: \mathbf{v} \mapsto -\nabla \cdot (\mathbf{b} \mathbf{v}) = -\mathbf{b} \cdot \nabla \mathbf{v}$

Graph spaces

$$egin{aligned} \mathcal{H}(\mathcal{L},\Omega) &:= \left\{ oldsymbol{v} \in L^2(\Omega), \ \mathcal{L}oldsymbol{v} \in L^2(\Omega)
ight\}, \ \mathcal{H}(\mathcal{L}^*,\Omega) &:= \left\{ oldsymbol{v} \in L^2(\Omega), \ \mathcal{L}^*oldsymbol{v} \in L^2(\Omega)
ight\} \end{aligned}$$

Graph spaces with boundary conditions

$$H_0(\mathcal{L}, \Omega) := \{ v \in H(\mathcal{L}, \Omega), v = 0 \text{ on } \partial_{-}\Omega \}, H_0(\mathcal{L}^*, \Omega) := \{ v \in H(\mathcal{L}^*, \Omega), v = 0 \text{ on } \partial_{+}\Omega \}$$

 $(v, \mathbf{b} \cdot \nabla w) + (\mathbf{b} \cdot \nabla v, w) = (\mathbf{b} \cdot \mathbf{n} v, w) \quad \forall v \in H(\mathcal{L}, \Omega), w \in H(\mathcal{L}^*, \Omega)$

Weak solution and residual Potential reconstruction Numerics

Functional setting

Advection operator and its formal adjoint

$$\mathcal{L}: \boldsymbol{v} \mapsto \boldsymbol{b} \cdot \nabla \boldsymbol{v}, \\ \mathcal{L}^*: \boldsymbol{v} \mapsto -\nabla \cdot (\boldsymbol{b} \boldsymbol{v}) = -\boldsymbol{b} \cdot \nabla \boldsymbol{v}$$

Graph spaces

$$egin{aligned} \mathcal{H}(\mathcal{L},\Omega) &:= \left\{ oldsymbol{v} \in L^2(\Omega), \ \mathcal{L}oldsymbol{v} \in L^2(\Omega)
ight\}, \ \mathcal{H}(\mathcal{L}^*,\Omega) &:= \left\{ oldsymbol{v} \in L^2(\Omega), \ \mathcal{L}^*oldsymbol{v} \in L^2(\Omega)
ight\} \end{aligned}$$

Graph spaces with boundary conditions

$$\begin{split} H_0(\mathcal{L},\Omega) &:= \left\{ v \in H(\mathcal{L},\Omega), v = 0 \text{ on } \partial_-\Omega \right\}, \\ H_0(\mathcal{L}^*,\Omega) &:= \left\{ v \in H(\mathcal{L}^*,\Omega), v = 0 \text{ on } \partial_+\Omega \right\} \end{split}$$

 $(v, \mathbf{b} \cdot \nabla w) + (\mathbf{b} \cdot \nabla v, w) = (\mathbf{b} \cdot \mathbf{n} v, w) \quad \forall v \in H(\mathcal{L}, \Omega), w \in H(\mathcal{L}^*, \Omega)$

Advection operator and its formal adjoint

$$\mathcal{L}: \boldsymbol{v} \mapsto \boldsymbol{b} \cdot \nabla \boldsymbol{v}, \\ \mathcal{L}^*: \boldsymbol{v} \mapsto -\nabla \cdot (\boldsymbol{b} \boldsymbol{v}) = -\boldsymbol{b} \cdot \nabla \boldsymbol{v}$$

Graph spaces

$$egin{aligned} \mathcal{H}(\mathcal{L},\Omega) &:= \left\{ oldsymbol{v} \in L^2(\Omega), \ \mathcal{L}oldsymbol{v} \in L^2(\Omega)
ight\}, \ \mathcal{H}(\mathcal{L}^*,\Omega) &:= \left\{ oldsymbol{v} \in L^2(\Omega), \ \mathcal{L}^*oldsymbol{v} \in L^2(\Omega)
ight\} \end{aligned}$$

Graph spaces with boundary conditions

$$\begin{split} H_0(\mathcal{L},\Omega) &:= \{ v \in H(\mathcal{L},\Omega), v = 0 \text{ on } \partial_-\Omega \} \,, \\ H_0(\mathcal{L}^*,\Omega) &:= \{ v \in H(\mathcal{L}^*,\Omega), v = 0 \text{ on } \partial_+\Omega \} \end{split}$$

Integration by parts

$$(v, \mathbf{b} \cdot \nabla w) + (\mathbf{b} \cdot \nabla v, w) = (\mathbf{b} \cdot \mathbf{n} v, w) \quad \forall v \in H(\mathcal{L}, \Omega), w \in H(\mathcal{L}^*, \Omega)$$

Advective field *b*

- $\boldsymbol{b} \in \mathcal{C}^1(\overline{\Omega}; \mathbb{R})$ is divergence-free
- **b** is Ω -filling and there exists a unit vector $\mathbf{k} \in \mathbb{R}^d$ such that, for $\alpha > 0$,

 $\forall x \in \overline{\Omega}, \qquad \boldsymbol{b}(x) \cdot \boldsymbol{k} \geq \alpha$

Streamline Poincaré inequality

 $\|v\| \leq C_{\mathrm{P},\boldsymbol{b},\Omega} \|\boldsymbol{b} \cdot
abla v\| \qquad \forall v \in H_0(\mathcal{L},\Omega), \qquad C_{\mathrm{P},\boldsymbol{b},\Omega} \leq 2h_\Omega/lpha$

Advective field *b*

- $\boldsymbol{b} \in \mathcal{C}^1(\overline{\Omega}; \mathbb{R})$ is divergence-free
- **b** is Ω -filling and there exists a unit vector $\mathbf{k} \in \mathbb{R}^d$ such that, for $\alpha > 0$,

$$\forall x \in \overline{\Omega}, \qquad \mathbf{b}(x) \cdot \mathbf{k} \ge lpha$$

Streamline Poincaré inequality

 $\|v\| \leq C_{\mathrm{P},\boldsymbol{b},\Omega} \|\boldsymbol{b} \cdot
abla v\| \qquad \forall v \in H_0(\mathcal{L},\Omega), \qquad C_{\mathrm{P},\boldsymbol{b},\Omega} \leq 2h_\Omega/lpha$

Advective field *b*

- $\boldsymbol{b} \in \mathcal{C}^1(\overline{\Omega}; \mathbb{R})$ is divergence-free
- **b** is Ω -filling and there exists a unit vector $\mathbf{k} \in \mathbb{R}^d$ such that, for $\alpha > 0$,

$$orall oldsymbol{x} \in \overline{\Omega}, \qquad oldsymbol{b}(oldsymbol{x}) {\cdot} oldsymbol{k} \geq lpha$$

Streamline Poincaré inequality

 $\|v\| \leq C_{\mathrm{P},\boldsymbol{b},\Omega} \|\boldsymbol{b}\cdot
abla v\| \qquad orall v \in H_0(\mathcal{L},\Omega), \qquad C_{\mathrm{P},\boldsymbol{b},\Omega} \leq 2h_\Omega/lpha$

Weak solution and residual

Ultra-weak solution Find $u \in L^2(\Omega)$ such that

$$-(u, \mathbf{b} \cdot \nabla \mathbf{v}) = (f, \mathbf{v}) \qquad \forall \mathbf{v} \in H_0(\mathcal{L}^*, \Omega).$$

Residual

- $u_h \in L^2(\Omega)$ arbitrary
- $\mathcal{R}(u_h) \in H_0(\mathcal{L}^*, \Omega)'$,

 $\langle \mathcal{R}(u_h), v \rangle := (f, v) + (u_h, \boldsymbol{b} \cdot \nabla v), \qquad v \in H_0(\mathcal{L}^*, \Omega)$

• dual norm (velocity-scaled)

$$\|\mathcal{R}(u_h)\|_{\boldsymbol{b}; H_0(\mathcal{L}^*, \Omega)'} := \sup_{v \in H_0(\mathcal{L}^*, \Omega) \setminus \{0\}} \frac{\langle \mathcal{R}(u_h), v \rangle}{\|\boldsymbol{b} \cdot \nabla v\|}$$

Guaranteed and robust L²-norm a posteriori estimates for 1D advection problems 22 / 36

Weak solution and residual

Ultra-weak solution Find $u \in L^2(\Omega)$ such that

$$-(u, \mathbf{b} \cdot \nabla \mathbf{v}) = (f, \mathbf{v}) \qquad \forall \mathbf{v} \in H_0(\mathcal{L}^*, \Omega).$$

Residual

- $u_h \in L^2(\Omega)$ arbitrary
- $\mathcal{R}(u_h) \in H_0(\mathcal{L}^*, \Omega)'$,

$$\langle \mathcal{R}(u_h), v \rangle := (f, v) + (u_h, \boldsymbol{b} \cdot \nabla v), \qquad v \in H_0(\mathcal{L}^*, \Omega)$$

• dual norm (velocity-scaled)

$$\|\mathcal{R}(u_h)\|_{\boldsymbol{b};\,H_0(\mathcal{L}^*,\Omega)'}:=\sup_{\boldsymbol{v}\in H_0(\mathcal{L}^*,\Omega)\setminus\{0\}}\frac{\langle\mathcal{R}(u_h),\boldsymbol{v}\rangle}{\|\boldsymbol{b}\cdot\nabla\boldsymbol{v}\|}$$

Error-residual equivalence

Theorem (Error–residual equivalence)

Let u be the ultra-weak solution. Then

$$\|\boldsymbol{u}-\boldsymbol{u}_h\| = \|\mathcal{R}(\boldsymbol{u}_h)\|_{\boldsymbol{b}; \ \mathcal{H}_0(\mathcal{L}^*,\Omega)'} \qquad \forall \boldsymbol{u}_h \in L^2(\Omega)$$

Outline

- Introduction
- 2 The advection problem and its numerical approximation
- 3 A posteriori error estimates
 - Weak solution and error-residual equivalence
 - Hat functions orthogonality of the residual
 - Patchwise potential reconstruction
 - 4 Numerical experiments
- 5 Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- 6 Extension to advection–reaction problems
 - Conclusions, current work, papers

Patchwise potential reconstruction

Definition (Patchwise potential reconstruction)

Let $u_h \in L^2(\Omega)$. For all vertices $\mathbf{a} \in \mathcal{V}_h$, let $s_h^{\mathbf{a}} \in X_h^{\mathbf{a}}$ be the solution of the following least-squares problem on the patch subdomain $\omega_{\mathbf{a}}$:

$$\boldsymbol{s_h^a} := \arg\min_{\boldsymbol{v_h} \in X_h^a} \left\{ \|\psi_{\boldsymbol{a}}(\boldsymbol{u_h} - \boldsymbol{v_h})\|_{\omega_{\boldsymbol{a}}}^2 + \boldsymbol{C}_{\mathrm{opt}}^2 \|f\psi_{\boldsymbol{a}} + (\boldsymbol{b} \cdot \nabla \psi_{\boldsymbol{a}}) \, \boldsymbol{u_h} - \boldsymbol{b} \cdot \nabla (\psi_{\boldsymbol{a}} \boldsymbol{v_h}) \|_{\omega_{\boldsymbol{a}}}^2 \right\}$$

with $X_h^{\boldsymbol{a}} := \mathcal{P}^{k'}(\mathcal{T}_{\boldsymbol{a}}) \cap H_0(\mathcal{L}, \omega_{\boldsymbol{a}})$ when \boldsymbol{a} lies in the inflow boundary $\partial_-\Omega$ and $X_h^{\boldsymbol{a}} := \mathcal{P}^{k'}(\mathcal{T}_{\boldsymbol{a}}) \cap H(\mathcal{L}, \omega_{\boldsymbol{a}})$ otherwise, $k' \ge 0$. Then define

$$\boldsymbol{s}_h := \sum_{\boldsymbol{a} \in \mathcal{V}_h} \psi_{\boldsymbol{a}} \boldsymbol{s}_h^{\boldsymbol{a}} \in \mathcal{P}^{k'+1}(\mathcal{T}_h) \cap \boldsymbol{H}_0(\mathcal{L}, \Omega).$$

• we choose $C_{
m opt} = 2h_{\Omega}/lpha$

Patchwise potential reconstruction

Definition (Patchwise potential reconstruction)

Let $u_h \in L^2(\Omega)$. For all vertices $\mathbf{a} \in \mathcal{V}_h$, let $s_h^{\mathbf{a}} \in X_h^{\mathbf{a}}$ be the solution of the following least-squares problem on the patch subdomain $\omega_{\mathbf{a}}$:

$$\boldsymbol{s_h^a} \coloneqq \arg\min_{\boldsymbol{v}_h \in X_h^a} \left\{ \|\psi_{\boldsymbol{a}}(\boldsymbol{u}_h - \boldsymbol{v}_h)\|_{\omega_{\boldsymbol{a}}}^2 + C_{\mathrm{opt}}^2 \|f\psi_{\boldsymbol{a}} + (\boldsymbol{b} \cdot \nabla \psi_{\boldsymbol{a}}) \, \boldsymbol{u}_h - \boldsymbol{b} \cdot \nabla (\psi_{\boldsymbol{a}} \boldsymbol{v}_h)\|_{\omega_{\boldsymbol{a}}}^2 \right\}$$

with $X_h^{\boldsymbol{a}} := \mathcal{P}^{k'}(\mathcal{T}_{\boldsymbol{a}}) \cap H_0(\mathcal{L}, \omega_{\boldsymbol{a}})$ when \boldsymbol{a} lies in the inflow boundary $\partial_-\Omega$ and $X_h^{\boldsymbol{a}} := \mathcal{P}^{k'}(\mathcal{T}_{\boldsymbol{a}}) \cap H(\mathcal{L}, \omega_{\boldsymbol{a}})$ otherwise, $k' \ge 0$. Then define

$$\boldsymbol{s}_h := \sum_{\boldsymbol{a} \in \mathcal{V}_h} \psi_{\boldsymbol{a}} \boldsymbol{s}_h^{\boldsymbol{a}} \in \mathcal{P}^{k'+1}(\mathcal{T}_h) \cap \boldsymbol{H}_0(\mathcal{L}, \Omega).$$

• we choose $C_{
m opt} = 2h_\Omega/lpha$

Theorem (Guaranteed a posteriori error estimate)

$$\|\boldsymbol{u}-\boldsymbol{u}_h\| \leq \eta := \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h}\eta_{\mathrm{NC},\boldsymbol{K}}^2\right\}^{1/2} + \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h}\eta_{\mathrm{R},\boldsymbol{K}}^2\right\}^{1/2}.$$

- $\eta_{\text{NC},K} := ||u_h s_h||_{K}$: comparison of approximation u_h and reconstruction s_h
- $\eta_{\mathbf{R},\mathbf{K}} := C_{\mathbf{P},\boldsymbol{b},\Omega} \| \boldsymbol{f} \boldsymbol{b} \cdot \nabla \boldsymbol{s}_{\boldsymbol{h}} \|_{\boldsymbol{K}}$: not data oscillation, may be large; recall $C_{\mathbf{P},\boldsymbol{b},\Omega} \leq 2h_{\Omega}/\alpha$
- heuristic modification: $\eta_{R,K}^{mod} := (C'h_K/\alpha) \|f \boldsymbol{b} \cdot \nabla s_h\|_K$ with C' = 2.

Theorem (Guaranteed a posteriori error estimate)

$$\|\boldsymbol{u}-\boldsymbol{u}_h\| \leq \eta := \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h}\eta_{\mathrm{NC},\boldsymbol{K}}^2\right\}^{1/2} + \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h}\eta_{\mathrm{R},\boldsymbol{K}}^2\right\}^{1/2}.$$

- $\eta_{\text{NC},K} := \|u_h s_h\|_K$: comparison of approximation u_h and reconstruction s_h
- $\eta_{\mathbf{R},\mathbf{K}} := C_{\mathbf{P},\boldsymbol{b},\Omega} \| \boldsymbol{f} \boldsymbol{b} \cdot \nabla \boldsymbol{s}_{\boldsymbol{h}} \|_{\boldsymbol{K}}$: not data oscillation, may be large; recall $C_{\mathbf{P},\boldsymbol{b},\Omega} \leq 2h_{\Omega}/\alpha$
- heuristic modification: $\eta_{R,K}^{\text{mod}} := (C'h_K/\alpha) \|f \mathbf{b} \cdot \nabla s_h\|_K$ with C' = 2

Theorem (Guaranteed a posteriori error estimate)

$$\|\boldsymbol{u}-\boldsymbol{u}_h\| \leq \eta := \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h}\eta_{\mathrm{NC},\boldsymbol{K}}^2\right\}^{1/2} + \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h}\eta_{\mathrm{R},\boldsymbol{K}}^2\right\}^{1/2}.$$

- $\eta_{\text{NC},K} := \|u_h s_h\|_K$: comparison of approximation u_h and reconstruction s_h
- η_{R,K} := C_{P,b,Ω} || f − b·∇s_h ||_K: not data oscillation, may be large; recall C_{P,b,Ω} ≤ 2h_Ω/α
- heuristic modification: $\eta_{R,K}^{mod} := (C'h_K/\alpha) \|f b \cdot \nabla s_h\|_K$ with C' = 2

Theorem (Guaranteed a posteriori error estimate)

$$\|\boldsymbol{u}-\boldsymbol{u}_h\| \leq \eta := \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h}\eta_{\mathrm{NC},\boldsymbol{K}}^2\right\}^{1/2} + \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h}\eta_{\mathrm{R},\boldsymbol{K}}^2\right\}^{1/2}.$$

- $\eta_{\text{NC},K} := ||u_h s_h||_{K}$: comparison of approximation u_h and reconstruction s_h
- $\eta_{\mathbf{R},\mathbf{K}} := C_{\mathbf{P},\mathbf{b},\Omega} \| \mathbf{f} \mathbf{b} \cdot \nabla \mathbf{s}_h \|_{\mathbf{K}}$: not data oscillation, may be large; recall $C_{\mathbf{P},\mathbf{b},\Omega} \leq 2h_{\Omega}/\alpha$
- heuristic modification: $\eta_{R,K}^{mod} := (C'h_K/\alpha) \|f \mathbf{b} \cdot \nabla s_h\|_K$ with C' = 2

Theorem (Guaranteed a posteriori error estimate)

$$\|\boldsymbol{u}-\boldsymbol{u}_h\| \leq \eta := \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h}\eta_{\mathrm{NC},\boldsymbol{K}}^2\right\}^{1/2} + \left\{\sum_{\boldsymbol{K}\in\mathcal{T}_h}\eta_{\mathrm{R},\boldsymbol{K}}^2\right\}^{1/2}.$$

- $\eta_{\text{NC},K} := \|u_h s_h\|_{K}$: comparison of approximation u_h and reconstruction s_h
- $\eta_{\mathbf{R},\mathbf{K}} := C_{\mathbf{P},\mathbf{b},\Omega} \| \mathbf{f} \mathbf{b} \cdot \nabla \mathbf{s}_h \|_{\mathbf{K}}$: not data oscillation, may be large; recall $C_{\mathbf{P},\mathbf{b},\Omega} \leq 2h_{\Omega}/\alpha$
- heuristic modification: $\eta_{R,K}^{mod} := (C'h_K/\alpha) \|f b \cdot \nabla s_h\|_K$ with C' = 2

Outline

- Introduction
- 2 The advection problem and its numerical approximation
- 3 A posteriori error estimates
 - Weak solution and error-residual equivalence
 - Hat functions orthogonality of the residual
 - Patchwise potential reconstruction
 - 4 Numerical experiments
- 5 Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- Extension to advection–reaction problems
 - Conclusions, current work, papers

I Advection Estimates Numerics Multi-D Advection-reaction C Weak solution and residual Potential reconstruction Numerics

Smooth solution $u(x, y) = \sin(\pi x) \sin(\pi y)$, $\boldsymbol{b} = (1, 1)^{t}$, dG

			k = 1, k' = 2	
# Elements	# DOF	$\ u-u_h\ $	$\eta_{ m NC}$	<i>I</i> _{eff}
8	24	1.097e-01	9.365e-02	2.67
32	96	2.963e-02	2.584e-02	4.03
128	384	7.553e-03	6.786e-03	6.54
512	1536	1.897e-03	1.727e-03	11.8
2048	6144	4.749e-04	4.347e-04	22.7
8192	24576	1.187e-04	1.088e-04	44.7
			k = 2, k' = 3	
8	48	1.882e-02	2.271e-02	3.81
32	192	2.476e-03	3.106e-03	4.50
128	768	3.135e-04	3.972e-04	7.58
512	3072	3.929e-05	4.995e-05	14.4
2048	12288	4.934e-06	6.253e-06	28.5
8192	49152	6.270e-07	7.822e-07	56.6

M. Vohralík

Guaranteed and robust L^2 -norm a posteriori estimates for 1D advection problems 26 / 36

I Advection Estimates Numerics Multi-D Advection-reaction C Weak solution and residual Potential reconstruction Numerics

Smooth solution $u(x, y) = \sin(\pi x) \sin(\pi y)$, $\boldsymbol{b} = (1, 1)^{t}$, dG

$k=1, \overline{k'}=2$								
# Elements	# DOF	$\ u-u_h\ $	$\eta_{ m mod}$	$\eta_{\rm NC}$	$\eta_{ m R}^{ m mod}$	<i>I</i> ^{mod}	$I_{\rm eff}$	
8	24	1.097e-01	2.284e-01	9.365e-02	2.083e-01	2.08	2.67	
32	96	2.963e-02	4.894e-02	2.584e-02	4.156e-02	1.65	4.03	
128	384	7.553e-03	1.101e-02	6.786e-03	8.666e-03	1.45	6.54	
512	1536	1.897e-03	2.630e-03	1.727e-03	1.983e-03	1.38	11.8	
2048	6144	4.749e-04	6.456e-04	4.347e-04	4.773e-04	1.35	22.7	
8192	24576	1.187e-04	1.601e-04	1.088e-04	1.173e-04	1.34	44.7	
			<i>k</i> = 2, <i>k</i> ′ =	3				
8	48	1.882e-02	5.317e-02	2.271e-02	4.807e-02	2.82	3.81	
32	192	2.476e-03	4.896e-03	3.106e-03	3.785e-03	1.97	4.50	
128	768	3.135e-04	5.742e-04	3.972e-04	4.147e-04	1.83	7.58	
512	3072	3.929e-05	7.076e-05	4.995e-05	5.012e-05	1.80	14.4	
2048	12288	4.934e-06	8.817e-06	6.253e-06	6.216e-06	1.78	28.5	
8192	49152	6.270e-07	1.107e-06	7.822e-07	7.843e-07	1.76	56.6	

M. Vohralík

Guaranteed and robust L^2 -norm a posteriori estimates for 1D advection problems 26 / 36

Smooth sol. $u(x, y) = \sin(\pi x) \sin(\pi y)$, $b = (1, 1)^t$, dG, k = 2, k' = 3

Advection Estimates Numerics Multi-D Advection-reaction C Weak solution and residual Potential reconstruction Numerics

M. Vohralík
I Advection Estimates Numerics Multi-D Advection-reaction C

Weak solution and residual Potential reconstruction Numerics

Smooth solution $u(x, y) = \sin(\pi x) \sin(\pi y)$, dG

$k = 1, k' = 2, b = (100, 100)^{t}$									
# Elements	Elements # DOF		$\eta_{ m mod}$	$\eta_{ m NC}$	$\eta_{ m R}^{ m mod}$	<i>I</i> ^{mod} _{eff}			
8	24	1.097e-01	2.284e-01	9.365e-02	2.083e-01	2.08			
32	96	2.963e-02	4.894e-02	2.584e-02	4.156e-02	1.65			
128	384	7.553e-03	1.101e-02	6.786e-03	8.666e-03	1.45			
512	1536	1.897e-03	2.630e-03	1.727e-03	1.983e-03	1.38			
2048	6144	4.749e-04	6.456e-04	4.347e-04	4.773e-04	1.35			
8192	24576	1.187e-04	1.601e-04	1.088e-04	1.173e-04	1.34			
	<i>k</i> =	= 1, <i>k</i> ′ = 2, <i>k</i> ′	$\mathbf{b} = (\mathbf{y}, \mathbf{x} +$	1) ^t (α = 1)					
8	24	1.134e-01	2.435e-01	9.582e-02	2.239e-01	2.14			
32	96	3.152e-02	5.787e-02	2.513e-02	5.212e-02	1.83			
128	384	8.007e-03	1.393e-02	6.478e-03	1.233e-02	1.74			
512	1536	2.013e-03	3.409e-03	1.636e-03	2.991e-03	1.69			
2048	6144	5.053e-04	8.443e-04	4.103e-04	7.379e-04	1.67			
8192	24576	1.267e-04	2.101e-04	1.027e-04	1.833e-04	1.65			

M. Vohralík

Guaranteed and robust L^2 -norm a posteriori estimates for 1D advection problems 28 / 36

Discontinuous solution with aligned triangulation, $\boldsymbol{b} = (1, 1)^t$, dG

<i>k</i> = 1, <i>k</i> ′ = 2										
# DOF	$\ u-u_h\ $	$\eta_{ m mod}$	$\eta_{ m NC}$	$\eta_{ m R}^{ m mod}$	<i>I</i> ^{mod} _{eff}	$I_{\rm eff}$				
24	7.75e-02	1.61e-01	6.62e-02	1.47e-01	1.98	2.67				
96	2.09e-02	3.46e-02	1.82e-02	2.94e-02	1.64	4.04				
384	5.34e-03	7.78e-03	4.79e-03	6.12e-03	1.45	6.55				
1536	1.34e-03	1.86e-03	1.22e-03	1.40e-03	1.38	11.8				
6144	3.35e-04	4.56e-04	3.07e-04	3.37e-04	1.36	22.7				
24576	8.39e-05	1.13e-04	7.70e-05	8.29e-05	1.35	44.7				
k = 2, k' = 3										
48	1.33e-02	3.75e-02	1.61e-02	3.39e-02	2.82	3.81				
192	1.75e-03	3.46e-03	2.19e-03	2.67e-03	1.97	4.50				
768	2.21e-04	4.06e-04	2.81e-04	2.93e-04	1.83	7.58				
3072	2.77e-05	5.00e-05	3.53e-05	3.54e-05	1.80	14.4				
12288	3.48e-06	6.23e-06	4.42e-06	4.39e-06	1.78	28.5				
49152	4.43e-07	7.83e-07	5.53e-07	5.54e-07	1.76	56.6				

M. Vohralík

Guaranteed and robust L²-norm a posteriori estimates for 1D advection problems 29 / 36

Advection Estimates Numerics Multi-D Advection-reaction C Weak solution and residual Potential reconstruction Numerics Disc. sol. with aligned triangulation, $\boldsymbol{b} = (1, 1)^t$, dG, k = 1, k' = 2

M. Vohralík

Discontinuous sol. with non-aligned triangulation, $\boldsymbol{b} = (1, 2)^t$, dG

k = 1, k' = 2									
# DOF	$\ u-u_h\ $		η		$\eta_{ m NC}$		$\eta_{\rm R}$		$I_{\rm eff}$
24	1.41e-01		5.70e-01		7.60e-02		5.65e-01		4.03
96	8.36e-02	(0.76)	4.02e-01	(0.50)	3.11e-02	(1.29)	4.01e-01	(0.50)	4.80
384	5.34e-02	(0.65)	2.89e-01	(0.48)	1.17e-02	(1.41)	2.89e-01	(0.47)	5.42
1536	4.08e-02	(0.39)	2.31e-01	(0.32)	5.51e-03	(1.09)	2.31e-01	(0.32)	5.67
6144	3.16e-02	(0.37)	1.93e-01	(0.26)	2.93e-03	(0.91)	1.94e-01	(0.26)	6.13
24576	2.45e-02	(0.37)	1.70e-01	(0.18)	1.62e-03	(0.86)	1.71e-01	(0.18)	6.97
			ŀ	$\kappa = 2, k$	t' = 3				
48	4.31e-02		4.17e-01		1.28e-01		5.65e-01		3.24
192	1.12e-02	(1.94)	2.82e-01	(0.56)	7.08e-02	(0.85)	3.76e-01	(0.59)	3.99
768	5.59e-03	(1.00)	2.29e-01	(0.30)	4.75e-02	(0.58)	2.80e-01	(0.43)	4.83
3072	2.83e-03	(0.98)	1.84e-01	(0.32)	3.50e-02	(0.44)	2.13e-01	(0.39)	5.26
12288	1.50e-03	(0.92)	1.45e-01	(0.33)	2.54e-02	(0.46)	1.61e-01	(0.40)	5.73
49152	8.41e-04	(0.83)	1.20e-01	(0.28)	1.85e-02	(0.46)	1.21e-01	(0.41)	6.47

M. Vohralík

Guaranteed and robust L^2 -norm a posteriori estimates for 1D advection problems 31 / 36

M. Vohralík

Advection Estimates Numerics Multi-D Advection-reaction C

Discontinuous sol. with non-aligned triangulation, $\boldsymbol{b} = (y, -x)^{t}$, dG

k = 1, k' = 2									
# DOF	$\ u-u_h\ $		η		$\eta_{ m NC}$		$\eta_{\rm R}$		$I_{\rm eff}$
24	1.70e-01		6.14e-01		7.30e-02		6.09e-01		3.60
96	9.31e-02	(0.87)	4.42e-01	(0.47)	2.99e-02	(1.29)	4.41e-01	(0.47)	4.75
384	6.01e-02	(0.63)	3.24e-01	(0.45)	1.16e-02	(1.37)	3.24e-01	(0.44)	5.39
1536	4.62e-02	(0.38)	2.67e-01	(0.28)	5.31e-03	(1.13)	2.68e-01	(0.27)	5.79
6144	3.57e-02	(0.37)	2.36e-01	(0.18)	2.79e-03	(0.93)	2.37e-01	(0.18)	6.61
24576	2.78e-02	(0.36)	2.29e-01	(0.04)	1.54e-03	(0.86)	2.29e-01	(0.05)	8.26
			ŀ	k = 2, k	c' = 3				
48	9.83e-02		4.31e-01		3.72e-02		4.29e-01		4.38
192	5.72e-02	(0.78)	2.85e-01	(0.59)	1.06e-02	(1.81)	2.85e-01	(0.59)	4.98
768	4.64e-02	(0.30)	2.34e-01	(0.29)	5.14e-03	(1.04)	2.34e-01	(0.28)	5.03
3072	3.31e-02	(0.48)	1.90e-01	(0.29)	2.78e-03	(0.89)	1.90e-01	(0.30)	5.75
12288	2.59e-02	(0.35)	1.72e-01	(0.14)	1.55e-03	(0.84)	1.72e-01	(0.14)	6.63
49152	1.92e-02	(0.43)	1.58e-01	(0.12)	8.44e-04	(0.88)	1.58e-01	(0.12)	8.27

M. Vohralík

Guaranteed and robust L²-norm a posteriori estimates for 1D advection problems 33 / 36

M. Vohralík

Advection Estimates Numerics Multi-D Advection-reaction C

Outline

- Introduction
- 2 The advection problem and its numerical approximation
- 3 A posteriori error estimates
 - Weak solution and error-residual equivalence
 - Hat functions orthogonality of the residual
 - Patchwise potential reconstruction
- 4 Numerical experiments
- Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- 6 Extension to advection–reaction problems
 - Conclusions, current work, papers

Advection Estimates Numerics Multi-D Advection-reaction C

Extension to advection-reaction problems in 1D

The advection problem

Find $u: \Omega \subset \mathbb{R} \to \mathbb{R}$ such that

- $\boldsymbol{b} \in \mathcal{C}^1(\overline{\Omega}; \mathbb{R})$: divergence-free (constant since d = 1) velocity field
- $f \in L^2(\Omega)$: source term
- $c \in L^{\infty}(\Omega), c \ge 0$: reaction coefficient

Results

Estimator η such that

$$\underbrace{\|u - u_h\|}_{\text{unknown error}} \leq \underbrace{\eta}_{\text{estimator computable from } u_h} \leq C \|u - u_h\| + \text{data oscillation},$$

is independent of sizes of **b** and **c**.

Advection Estimates Numerics Multi-D Advection-reaction C

Extension to advection-reaction problems in 1D

The advection problem

Find $u: \Omega \subset \mathbb{R} \to \mathbb{R}$ such that

- $\boldsymbol{b} \in \mathcal{C}^1(\overline{\Omega}; \mathbb{R})$: divergence-free (constant since d = 1) velocity field
- $f \in L^2(\Omega)$: source term
- $c \in L^{\infty}(\Omega), c \ge 0$: reaction coefficient

Results

Estimator η such that

$$\underbrace{\|u - u_h\|}_{\text{unknown error}} \leq \underbrace{\eta}_{\text{estimator computable from } u_h} \leq C \|u - u_h\| + \text{data oscillation},$$

where *C* is independent of sizes of *b* and *c*.

M. Vohralík

Guaranteed and robust L²-norm a posteriori estimates for 1D advection problems 35 / 36

Outline

- Introduction
- 2 The advection problem and its numerical approximation
- 3 A posteriori error estimates
 - Weak solution and error-residual equivalence
 - Hat functions orthogonality of the residual
 - Patchwise potential reconstruction
- 4 Numerical experiments
- Extension to multiple space dimensions
 - Weak solution and error-residual equivalence
 - Patchwise potential reconstruction
 - Numerical experiments
- Extension to advection–reaction problems
 - Conclusions, current work, papers

Conclusions

- a posteriori error estimates robust with respect to the advective filed *b* and the polynomial degree *k* in 1D
- heuristic extension to multi-D

Conclusions

- a posteriori error estimates robust with respect to the advective filed *b* and the polynomial degree *k* in 1D
- heuristic extension to multi-D

Current work

extension to the advection-reaction case

Conclusions

- a posteriori error estimates robust with respect to the advective filed *b* and the polynomial degree *k* in 1D
- heuristic extension to multi-D

Current work

extension to the advection-reaction case

Papers

- ERN, A., VOHRALÍK, M., AND ZAKERZADEH, M. Guaranteed and robust L²-norm a posteriori error estimates for 1D linear advection problems. *ESAIM Math. Model. Numer. Anal.* 55 (2021), S447–S474.
- VOHRALÍK, M. Guaranteed and robust *L*²-norm a posteriori error estimates for 1D linear advection–reaction problems. In preparation, 2024.

Conclusions

- a posteriori error estimates robust with respect to the advective filed *b* and the polynomial degree *k* in 1D
- heuristic extension to multi-D

Current work

extension to the advection-reaction case

Papers

- ERN, A., VOHRALÍK, M., AND ZAKERZADEH, M. Guaranteed and robust L²-norm a posteriori error estimates for 1D linear advection problems. *ESAIM Math. Model. Numer. Anal.* 55 (2021), S447–S474.
- VOHRALÍK, M. Guaranteed and robust *L*²-norm a posteriori error estimates for 1D linear advection–reaction problems. In preparation, 2024.

Thank you for your attention!

Guaranteed and robust L²-norm a posteriori estimates for 1D advection problems 36 / 3