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Setting and goals Numerical experiments (finite volume method)

Setting and goals
Model problem
Find u : Ω→ R such that

−∇· (K∇u) = f in Ω,

−K∇u·n = σN on ΓN,

u = uD on ΓD
Numerical approximation
ui

h ∈ Pp(Th) arbitrary: nonconforming, high-order, on iteration i of an algebraic
iterative solver (corresponding dual approximation ũi

h ∈ Pp(Th) arbitrary as well)

Goals For goal functional Q(v) :=
(
f̃ , v

)
−
(
K∇v ·n, ũD

)
ΓD

, v ∈ H1(Th), design

a posteriori estimate∣∣Q(u)−Q(ui
h)
∣∣ ≤ ηi

h η̃
i
h

2

≤
(ηi

h,disc + ηi
h,alg) (η̃i

h,disc + η̃i
h,alg)

2

adaptive algorithm
inexactly solve both primal and
dual discrete problems (stop. on it. i)
estimate spatial error distribution
adaptively refine mesh
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h ∈ Pp(Th) arbitrary as well)

Goals For goal functional Q(v) :=
(
f̃ , v

)
−
(
K∇v ·n, ũD
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)
ΓD

, v ∈ H1(Th), design

a posteriori estimate∣∣Q(u)−Q(ui
h)
∣∣ ≤ ηi

h η̃
i
h

2

≤
(ηi

h,disc + ηi
h,alg) (η̃i

h,disc + η̃i
h,alg)

2

adaptive algorithm
inexactly solve both primal and
dual discrete problems (stop. on it. i)
estimate spatial error distribution
adaptively refine mesh

M. Vohralík Goal-oriented a posteriori estimation with inexact solvers 2 / 8



Setting and goals Numerical experiments (finite volume method) Case 1 Case 2 Case 3

2D regular solution and uniform mesh refinement

Exact solution

• ω

Ω

Goal functional Q(v) = 1
|ω|(1, v)ω
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Setting and goals Numerical experiments (finite volume method) Case 1 Case 2 Case 3

2D regular solution and uniform mesh refinement
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Setting and goals Numerical experiments (finite volume method) Case 1 Case 2 Case 3
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Setting and goals Numerical experiments (finite volume method) Case 1 Case 2 Case 3

3D singular solution and adaptive mesh refinement
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Setting and goals Numerical experiments (finite volume method) Case 1 Case 2 Case 3

2D heterogeneous media and uniform mesh refinement

SPE10 permeability K Pressure approx. ui
h

Outflow goal functional
Q(v) = −

(
K∇v ·n, ũD

)
ΓD

ũD|{y=0} = 0, ũD|{y=2200} = 1
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Setting and goals Numerical experiments (finite volume method) Case 1 Case 2 Case 3

2D heterogeneous media and uniform mesh refinement
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