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1 Purpose and scope

FTRANS is a program for numerical simulation of contaminant transport in the specific medium
of rock massifs disrupted by a network of fractures, represented by a system of two-dimensional
polygons placed in a three-dimensional space. It is designed for the specific geometry of frac-
ture networks discretized to triangular three-dimensional meshes, which may include nonmatching
interfaces between the different fractures. It models the evolution of a concentration of a sin-
gle species taking into account the effects of convection, molecular diffusion and hydrodynamic
dispersion, equilibrium adsorption, first-order irreversible reactions such as radioactive decay, hy-
drolysis, and some forms of biodegradation and this with various boundary conditions and sources
or sinks in a variably-saturated fracture network. This problem mathematically amounts to a
parabolic convection–diffusion–reaction equation which may be strongly nonlinear (of the degener-
ate parabolic type with a moving free boundary), where the diffusion–dispersion tensor is inhomo-
geneous and anisotropic (under the form of a nonconstant full matrix), and which is dominated by
the convection. A dual porosity module is now being added by Milan Hokr from the Department of
Process Modeling in TU Liberec, in order to include the influence of the surrounding rock matrix
as well. FTRANS is a console MS DOS/WINDOWS application written in the C language under
the C++ Builder 5 and based on FFLOW, a model for single-phase saturated flow in fracture
networks by Otto Severýn from the Department of Process Modeling in TU Liberec.

2 Domain and equations

We describe here in more details the domain given by a fracture network and the contaminant
transport equation.

2.1 The fracture network

The fracture network is given by a system S,

S :=
{

⋃

ℓ∈L

αℓ \ ∂S
}

, (2.1)

where αℓ is an open two-dimensional polygon placed in three-dimensional space and L is the index
set of polygons. We call αℓ, the closure of αℓ, a fracture. We suppose that each fracture is
connected to the system by at least one edge in the sense that it has an intersection with at least
one another fracture and that this intersection is a line segment. The boundary of S, ∂S, is the set
of such edges of the fractures that do not create an intersection with another fracture. We refer
to [21] for the definition of functions spaces on fracture networks.

2.2 The contaminant transport equation

The reactive miscible displacement with equilibrium adsorption of one contaminant in one fracture
αℓ is given by the parabolic convection–diffusion–reaction equation in the form

∂β(c)

∂t
−∇ · (S∇c) +∇ · (cw) + F (c) = q in αℓ × (0, T ) , (2.2a)

c(·, 0) = c0 in αℓ , (2.2b)

c = uD on ΓD × (0, T ) , (2.2c)

−S∇c · n = uN on ΓN × (0, T ) , (2.2d)

(−S∇c+ cw) · n = uR on ΓR × (0, T ) . (2.2e)
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Figure 1: Example of a simple fracture network made of 3 polygons and discretized into a matching
triangular mesh

Here c is the unknown concentration of the contaminant, the function β(·) represents time evolution
and equilibrium adsorption reaction and is supposed to be continuous and increasing with the
growth bounded from below by a positive constant, S is the diffusion–dispersion tensor, w is the
Darcy velocity field defining the convection term, which is supposed to have a continuous normal
trace over the interpolygon boundaries in the below-defined sense, the function F (·) represents the
changes due to chemical reactions, and finally, q stands for the sources. Note that this equation is
written in two-dimensional coordinates of the given fracture. In order to completely conform with
contaminant transport models (cf. [1, 2, 12, 23]), the sources q can be divided to injections with
prescribed concentration and pumping without prescribed concentration, i.e. q = max{q, 0}cs +
min{q, 0}c, so that the right-hand side of (2.2a) changes to max{q, 0}cs, whereas there is an
additional reaction term −min{q, 0}c on the left-hand side of (2.2a). We refer to Section 4.5 for
the possible choices of the functions β and F and for the definition of the parameters S, w, and
q. Finally, ΓD, ΓN, and ΓR represent respectively the Dirichlet, Neumann, and Robin boundaries,
distinct sets covering the fracture system boundary ∂S. We suppose that the measure of the set
ΓD is positive and that Γin := {x ∈ ∂Ω;w · n < 0} ⊂ ΓD.

The contaminant transport on the whole system S (2.1) is given by (2.2a)–(2.2e) for each
ℓ ∈ L and is closed by the requirement of the continuity of the concentration and of the normal
component its flux over the interpolygon edges in the following sense: let σ be an edge such that
there exist polygons αi and αj , i 6= j, such that σ = αi ∩ αj . We require

c|αi
= c|αj

on σ ∀i, j ∈ Iσ , (2.3a)
∑

i∈Iσ

−S∇c|αi
· nσ,αi

= 0 on σ , (2.3b)

where nσ,αi
is the unit outward normal vector of the edge σ with respect to the polygon αi and

Iσ is the set of all i ∈ L such that σ ⊂ αi. Note that by the required continuity of the normal
component of w, this equals to imposing the continuity of c and an equilibrated mass balance over
the fracture intersections. We refer to [21] for more details.

Finally, we remark that all special cases of (2.2a)–(2.2e) are admissible as well, so that in
particular elliptic or parabolic diffusion, convection–diffusion, reaction–diffusion, and convection–
diffusion–reaction problems, as well as the respective hyperbolic limits for all the schemes except of
the mixed ones, are comprised in FTRANS. One specifies the problem at hand by the parameters
in the control and coefficients files, see respectively Sections 4.2 and 4.5 below.
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Figure 2: Example of a nonmatching interface between two fractures

3 Numerical schemes

Four different numerical schemes which we shall resume now are implemented in FTRANS; we
refer to [17] for a comprehensive survey. For the sake of clarity, all the schemes are written in
the fully implicit form. FTRANS however enables a weighted time discretization ranging from the
fully implicit to the fully explicit for all the schemes except of the mixed ones, see Section 4.2.6
below. The Newton or inexact Newton method is used for the solution of the associated systems
of nonlinear algebraic equations, see Section 4.9.3 below for more details.

3.1 Space and time discretizations

We suppose that the system S is discretized to a triangular mesh in the following sense: let Th,ℓ
denote a matching triangulation of αℓ ∈ S, consisting of closed triangles such that αℓ =

⋃

K∈Th,ℓ
K

and such that if K,L ∈ Th,ℓ, K 6= L, then K ∩L is either an empty set or a common face, edge, or
vertex of K and L. Th is then a union of triangulations of all αℓ, see Figure 1 for an example. We
however allow as well for triangulations leading to nonmatching interfaces between the fractures.
This means that the neighboring edges of two triangles in two different fractures do not have to
coincide in the three-dimensional geometrical sense; an element edges correspondence is sufficient,
see Figure 2 for an example of a nonmatching interface. More details on this subject are given
in Section 4.3 below and in [13]. Finally, for the finite volume scheme, all the triangular elements
of the mesh have to have all angles smaller than 90 degrees. We suppose the partition of the time
interval (0, T ) such that 0 = t0 < . . . < tn < . . . < tN = T and define △tn := tn − tn−1.

3.2 The finite volume scheme

The fully implicit finite volume scheme for the problem (2.2a)–(2.3b) reads (cf. [8] for the standard
two- or three-dimensional case): find the values cnK , K ∈ Th, n ∈ {0, 1, . . . , N}, such that

c0K =
1

|K|

∫

K

c0(x) dx K ∈ Th , (3.1a)

β(cnK)− β(cn−1
K )

△tn
|K| −

∑

L∈N (K)

S
n
K,L (cnL − cnK) +

∑

L∈N (K)

wn
K,L cnK,L + F (cnK)|K|

+
∑

σ⊂∂K∩ΓD

{

− S
n
K,σ ((uD)

n
σ − cnK) + wn

K,σ cnK,σ

}

+
∑

σ⊂∂K∩ΓN

{

(uN)
n
σ |σ|+ wn

K,σc
n
K

}

(3.1b)

+
∑

σ⊂∂K∩ΓR

(uR)
n
σ|σ| = qnK |K| K ∈ Th , n ∈ {1, . . . , N} ,
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where N (K) is the set of all the neighboring triangles of the triangle K (they may be two and
more through the same edge, cf. Figure 1),

S
n
K,L = Sn

K,L

|σK,L|+ |σL,K |

2(dK,σK,L
+ dL,σL,K

)
,

where only scalar diffusion–dispersion tensors, S|nK = Sn
K Id, are allowed in the finite volume

scheme and where Sn
K,L is the harmonic mean of Sn

K and Sn
L, σK,L ⊂ ∂K is the edge corresponding

to σL,K ⊂ ∂L and |σK,L|, |σL,K | are their lengths, dK,σK,L
is the distance of the circumcenter of K

to its edge σK,L, w
n
K,L is the mean of the flux of w from K to L over time interval (tn−1, tn] (recall

that by the continuity of the normal trace of w over the inter-fracture boundaries, wn
K,L = wn

L,K),

cnK,L :=

{

cnK + αn
K,L(c

n
L − cnK) if wn

K,L ≥ 0

cnL + αn
K,L(c

n
K − cnL) if wn

K,L < 0
(3.2)

with αn
K,L the coefficient of the amount of upstream weighting depending on the local ratio of

convection and diffusion (in order to only add the minimal necessary numerical diffusion necessary
to guarantee the stability of the scheme in the convection-dominated case) by

αn
K,L :=

max
{

min
{

S
n
K,L,

1
2 |w

n
K,L|

}

, 0
}

|wn
K,L|

if wn
K,L 6= 0 , αn

K,L := 0 if wn
K,L = 0 ,

S
n
K,σ = Sn

K |σ|/dK,σ , (uD)
n
σ is the mean value of the Dirichlet boundary condition uD over an edge

σ ⊂ ∂K ∩ ΓD and the time interval (tn−1, tn] and similarly for (uN)
n
σ and (uR)

n
σ, w

n
K,σ is the mean

of the flux of w through σ ⊂ ∂K over time interval (tn−1, tn], c
n
K,σ is defined similarly as cnK,L with

(uD)
n
σ instead of cnL, and finally qnK is the mean value of the sources q over K and the time interval

(tn−1, tn].

3.2.1 A posteriori error estimates

A posteriori error estimates for the linear stationary version of (2.2a)–(2.2e) on a single fracture,
discretized by the above finite volume scheme, have been derived in [19]. They are implemented
in FTRANS. As FTRANS is not an adaptive code, the a posteriori error estimates can only be
used by external applications to refine/coarsen the mesh where indicated. However, the derived
estimates do not contain any undetermined multiplicative constants, so that one can immediately
use them to reliably control the actual error in the approximate numerical solution. This option
for the moment only works when the MATLAB solver is chosen, see Section 4.2.4.

3.3 The mixed/condensed mixed finite element schemes

In mixed finite element schemes, one approximates simultaneously the unknown scalar concentra-
tion ch as well as its full flux uh ≈ −S∇ch + chw or its diffusive flux uh ≈ −S∇ch. We use here
the lowest-order Raviart–Thomas mixed finite element method, see [15, 3, 16] for elliptic diffu-
sion problems and [6, 7] for convection–diffusion–reaction problems. In this case ch is constant
on each K ∈ Th and uh belongs to the Raviart–Thomas space of elementwise linear vector func-
tions RT0(Th) with one unknown per side (the normal flux of uh through this side). The space
RT0

N,R(Th) with zero normal flux through ΓN and ΓR (with no unknowns on the sides from ΓN and
ΓR) is also used in the sequel. A proper definition of these spaces for fracture networks (ensuring
the continuity of the normal trace in the sense of (2.3b)) is given in [21]; in particular, the number
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Figure 3: One of the two velocity basis function for three elements sharing the same edge

of basis functions for one side is equal to the number of connected elements minus one for fracture
networks, see Figure 3 for an example of one of the two velocity basis function for three elements
sharing the same edge.

Three different variants of this mixed finite element method are at disposal in FTRANS,
differing in the discretization of the convection term. For each of these variants, local elimination of
the flux unknowns uh in the standard two- or three-dimensional case is possible, leading to matrix
problems with only the scalar unknowns, see [17, 18]. We call the resulting schemes condensed
mixed finite element schemes.

3.3.1 Centered scheme with vector unknowns representing full flux

This is the classical centered mixed finite element scheme for convection–diffusion–reaction prob-
lems where uh ≈ −S∇ch + chw. For the problem (2.2a)–(2.3b), it reads as follows (see [18,
Section 4] for the standard two- or three-dimensional case): for all n ∈ {1, . . . , N}, find cnh given
by cnK , K ∈ Th, and the vector functions un

h ∈ RT0(Th) satisfying 〈un
h · n, 1〉σ = (uR)

n
σ|σ| for

all σ ⊂ ΓR (this corresponds to the fulfillment of the Robin boundary condition (2.2e)) and
〈un

h · n, 1〉σ − wn
K,σc

n
K = (uN)

n
σ |σ| for all σ ⊂ ∂K ∩ ΓN for some K ∈ Th (this corresponds to the

fulfillment of the Neumann boundary condition (2.2d)) such that

(S−nun
h,vh)S − (∇ · vh, c

n
h)S − (cnhw

n,S−nvh)S = −
∑

σ⊂ΓD

〈vh · n, (uD)
n
σ〉σ∩ΓD

∀vh ∈ RT0
N,R(Th) , (3.3a)

(β(cnK)− β(cn−1
K )

△tn
, φK

)

K
+ (∇ · un

h, φK)K + (F (cnK), φK)K = (q, φh)K ∀K ∈ Th , (3.3b)

where we have used the notation from the previous section and where S−n andwn are, respectively,
the means of S−1 and w over the time interval (tn−1, tn] and φK is the characteristic function of
the element K ∈ Th. The initial condition is discretized by (3.1a).

3.3.2 Weighted upwind-mixed finite element scheme

The above centered scheme has the disadvantage of being unstable in the convection-dominated
case. An alternative is to use a finite volume upwind-type discretization of the convection term to
obtain an upwind-mixed finite element scheme, cf. [11, 4, 5]. Approximating this time uh ≈ −S∇ch
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and using the ideas of the local Péclet upstream weighting (3.2), we seek (cf. [18, Section 4],
[20, Section 3.3] for the standard two- or three-dimensional case), for all n ∈ {1, . . . , N}, the
concentration cnh given by cnK , K ∈ Th, and the vector functions un

h ∈ RT0(Th) satisfying 〈un
h ·

n, 1〉σ = (uN)
n
σ|σ| for all σ ⊂ ΓN (this corresponds to the fulfillment of the Neumann boundary

condition (2.2d)) and 〈un
h · n, 1〉σ +wn

K,σc
n
K = (uR)

n
σ|σ| for all σ ⊂ ∂K ∩ ΓR for some K ∈ Th (this

corresponds to the fulfillment of the Robin boundary condition (2.2e)) such that

(S−nun
h,vh)S − (∇ · vh, c

n
h)S = −

∑

σ⊂ΓD

〈vh · n, (uD)
n
σ〉σ∩ΓD

∀vh ∈ RT0
N,R(Th) , (3.4a)

(β(cnK)− β(cn−1
K )

△tn
, φK

)

K
+ (∇ · un

h, φK)K +
∑

L∈N (K)

wn
K,L cnK,L + (F (cnK), φK)K

+
∑

σ⊂∂K∩ΓD

wn
K,σ cnK,σ +

∑

σ⊂∂K∩(ΓN∪ΓR)

wn
K,σc

n
K = (q, φK)K ∀K ∈ Th , (3.4b)

where cnK,L is given by (3.2) with either αn
K,L given by user or by

αn
K,L := min

{

S
n
K,L

|wn
K,L|

,
1

2

}

if wn
K,L 6= 0 , αn

K,L := 0 if wn
K,L = 0 , (3.5)

where this time SnK,L is the harmonic average of the smallest eigenvalues of Sn, the mean of S over

the time interval (tn−1, tn], on K and L. For Dirichlet boundary sides, cnK,σ is defined similarly.
The initial condition is discretized by (3.1a).

3.3.3 Combination of a centered scheme with vector unknowns only representing
diffusive flux and of the upwind-mixed scheme

Another centered mixed finite element scheme for convection–diffusion–reaction problems corre-
sponds to the choice uh ≈ −S∇ch. For the problem (2.2a)–(2.3b), it reads as follows (see [20,
Sections 3.2 and 5.5] for the standard two- or three-dimensional case): for all n ∈ {1, . . . , N}, find
cnh given by cnK , K ∈ Th, and the vector functions un

h ∈ RT0(Th) satisfying 〈un
h · n, 1〉σ = (uN)

n
σ|σ|

for all σ ⊂ ΓN (this corresponds to the fulfillment of the Neumann boundary condition (2.2d)) and
〈un

h · n, 1〉σ + wn
K,σc

n
K = (uR)

n
σ|σ| for all σ ⊂ ∂K ∩ ΓR for some K ∈ Th (this corresponds to the

fulfillment of the Robin boundary condition (2.2e)) such that

(S−nun
h,vh)S − (∇ · vh, c

n
h)S = −

∑

σ⊂ΓD

〈vh · n, (uD)
n
σ〉σ∩ΓD

∀vh ∈ RT0
N,R(Th) , (3.6a)

(β(cnK)− β(cn−1
K )

△tn
, φK

)

K
+ (∇ · un

h, φK)K − (S−nun
hw

n, φK)K + (F (cnK) +∇ ·w, φK)K

= (q, φh)K ∀K ∈ Th . (3.6b)

The initial condition is again discretized by (3.1a). The advantage over the centered scheme (3.3a)–
(3.3b) is that this centered discretization can easily be combined with the (full-upwind variant of
the) scheme (3.4a)–(3.4b). Using the parameter (3.5) for determining the amount of the upstream
weighting, we now have a scheme that smoothly changes from a centered mixed finite element one
to an upwind-mixed one, guaranteeing optimal accuracy and stability in both the convection and
diffusion-dominated limits.
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3.3.4 Algebraic condensation to only scalar unknowns

The systems (3.3a)–(3.3b), (3.4a)–(3.4b), or (3.6a)–(3.6b), linearized by the Newton method, can
be written in the matrix form as

(

A C

B D

)(

U
P

)

=

(

F
G

)

.

We have proposed in [17, 18] an approach allowing for local elimination of the flux unknowns U
from the above system for standard two- or three-dimensional domains leading to a problem of the
form

EP = H

with a sparse matrix E. The mixed finite element schemes rewritten in this way are hereafter
termed condensed mixed finite element schemes.

3.3.5 A posteriori error estimates

A posteriori error estimates for the linear stationary version of (2.2a)–(2.2e) on a single fracture,
discretized by the schemes (3.4a)–(3.4b) or (3.6a)–(3.6b), have been derived in [20]. They are
implemented in FTRANS. As FTRANS is not an adaptive code, the a posteriori error estimates
can only be used by external applications to refine/coarsen the mesh where indicated. However,
the derived estimates do not contain any undetermined multiplicative constants, so that one can
immediately use them to reliably control the actual error in the approximate numerical solution.
This option for the moment only works when the MATLAB solver is chosen, see Section 4.2.4.

3.3.6 Brezzi–Douglas–Marini scheme

The Brezzi–Douglas–Marini scheme BDM1 (cf. [3, 16]) scheme has been recently added to FTRANS.

3.4 The combined finite volume–finite element scheme

The combined finite volume–finite element scheme is defined as the combined finite volume–
nonconforming finite element scheme below, with the difference that the dual volumes are as-
sociated with the vertices in place of the edges, see [9] for the details in the standard two- or
three-dimensional case.

3.5 The combined finite volume–nonconforming finite element scheme

Combined finite volume–finite element schemes use a dual partition Dh of S in addition to the
triangulation Th. In the combined finite volume–nonconforming finite element scheme, there is one
dual element D associated with each side σD of Th. We construct it by connecting the barycentres
of every K ∈ Th that contains σD through the vertices of σD. For σD ∈ Eext

h , the contour of D is
completed by the side σD itself. Note that σD may be multiply shared; see Figure 4 for an example
of the dual mesh in this case. For nonmatching interfaces, the dual volume has the above-defined
support in all the triangles connected via the element-edges correspondence. We denote by QD

the barycentre of the side σD, by D
int,ΓN,R

h the set of all interior dual volumes and of dual volumes

corresponding to edges from ΓN or ΓR; D
ΓD

h are then the dual volumes corresponding to edges from
ΓD. Finally, as for the finite volume scheme, N (D) is the set of all the neighboring dual volumes
to D. Note that in contrast to the finite volume case, they may never be two and more neighbors
through one edge of the dual volume, since this always lies in the interior of some triangle.
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Figure 4: Triangles K,L,M ∈ Th connected through one side and the associated dual volume

D ∈ D
int,ΓN,R

h together with its neighbor E ∈ DΓD

h

The fully implicit combined finite volume–nonconforming finite element scheme for the prob-
lem (2.2a)–(2.3b) then reads (cf. [10] for standard two- or three-dimensional domains): find the
values cnD, D ∈ Dh, n ∈ {0, 1, . . . , N}, such that

c0D =
1

|D|

∫

D

c0(x) dx D ∈ Dh , (3.7a)

cnD = (uD)
n
σD

D ∈ DΓD

h , n ∈ {1, . . . , N} , (3.7b)

β(cnD)− β(cn−1
D )

△tn
|D| −

∑

E∈N (D)

S
n
D,E (cnE − cnD) +

∑

E∈N (D)

wn
D,E cnD,E + F (cnD)|D|

+(uN)
n
σD∩ΓN

|σD ∩ ΓN|+ wn
D,σD∩ΓN

cnD + (uR)
n
σD∩ΓR

|σD ∩ ΓR|

= qnD|D| D ∈ D
int,ΓN,R

h , n ∈ {1, . . . , N} , (3.7c)

where
S
n
D,E := −

∑

K∈Th

(Sn∇ϕE ,∇ϕD)K D,E ∈ Dh , n ∈ {1, . . . , N} , (3.8)

with Sn being the mean of S over the time interval (tn−1, tn] and ϕD the basis functions of the
nonconforming finite element method (ϕD is linear on each K ∈ Th, equal to 1 at QD and to 0 at
all QE for D 6= E), wn

D,E is the mean of the flux of w from D to E over time interval (tn−1, tn],

cnD,E is given similarly as (3.2), and finally qnD is the mean value of the sources q over D and the
time interval (tn−1, tn].

4 Using FTRANS

4.1 Requirements

WINDOWS 3.1/95/98/Millenium/NT/2000/XP with a MS DOS command line and the executable
ftrans.exe are necessary to run FTRANS. MATLAB may be used as a computational engine
namely for the solution of the resulting systems of linear equations, cf. Section 4.2.4 below, or for
the CMFE scheme, see Section 4.2.7 below. In this case MATLAB 6.1 or higher has to be installed
on the computer. Another choice is to rely on the gm6 solver. Libraries Dforrt.dll and gm6.dll

then have to be in the same directory as ftrans.exe. One launches is FTRANS by typing
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ftrans.exe control_file_name

on the command line. In control_file_name, the full name of the control file (including the exten-
sion) has to be given. The address is either relative with respect to the directory where FTRANS.exe
is situated, or an absolute path. The control file contains all specifications for FTRANS, see Sec-
tion 4.2 for the description of its format. The data for FTRANS are then given separately, see
Sections 4.3–4.7. After the calculation, results are given in output files, see Section 4.8. Finally,
we give in Section 4.9 various important remarks on FTRANS possibilities and limitations.

4.2 Control file format

The control file has the format of a standard windows *.ini file, giving always section, key, and
value; the extension *.ini is not compulsory. For an example of a control file, see Appendix A.

4.2.1 Section [Global]

Section [Global] contains FTRANS basic parameters. The keys and their values are as follows.

Solution_method

Allowed values: Integers 1–5.
Description: Numerical method to be used.

1 Finite volume method (FV).

2 Mixed finite element method (MFE).

3 Condensed mixed finite element method (CMFE).

4 Combined finite volume–finite element method (FV–FE).

5 Combined finite volume–nonconforming finite element method (FV–NCFE).

Description

Allowed values: One-line text.
Description: A brief description of the given model.

4.2.2 Section [Input]

Section [Input] specifies the names of FTRANS input files (see Section 4.3–4.7 for their format).
The keys and their values are as follows.

Space_mesh

Allowed values: One-line text.
Description: Name of the file containing the description of spatial discretization. The format
is identical with that of FFLOW of the first generation.

Time_mesh

Allowed values: One-line text.
Description: Name of the file containing the description of the temporal discretization.

Coefficients

Allowed values: One-line text.
Description: Name of the file containing the description of the coefficients.
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Initial_conditions

Allowed values: One-line text.
Description: Name of the file containing the description of initial conditions.

Boundary_conditions

Allowed values: One-line text.
Description: Name of the file containing the description of boundary conditions.

4.2.3 Section [Run]

Section [Run] contains some options for runtime behavior of FTRANS. The keys and their values
are as follows.

Log_file

Allowed values: One-line text.
Description: Name of the file where FTRANS writes log messages.

Screen_verbosity

Allowed values: Integers 0–7.
Description: Intensity of messages written in the FTRANS run window (0 = no messages,
. . . , 7 = all messages).

Log_verbosity

Allowed values: Integers 0–7.
Description: Intensity of messages written in the log file (0 = no messages, . . . , 7 = all
messages).

4.2.4 Section [Solver]

Section [Solver] contains options controlling the solver of linear equations used by FTRANS.
Two solvers are now at the disposition. One can either use MATLAB as a computational engine
(this supposes that MATLAB is installed on your computer, see Section 4.1 for more details), or
the dll-linked solver gm6. The keys and their values are as follows.

Solver

Allowed values: Integers 0–1.
Description: Type of the solver.

0 MATLAB.

1 gm6.

Solver_method

Allowed values: Integers 0–5.
Description: Specification of the solver method (see MATLAB help).

0 Direct LU-based solver.

1 BI-CG.

2 Bi-CGStab.

3 QMR.
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4 GMRES.

5 CGS.

6 CG.

7 MYCG (only testing setting, needs mypcg.m, myiterapp.m, myiterchk.m, and myitermsg.m
in Matlab search path; same as CG, but keeps the data from the iterations in the mem-
ory – can be stopped and resumed later).

8 MULTIGRID (only testing setting).

Solver_accuracy

Allowed values: Double value > 0.
Description: Accuracy of the solution of a matrix problem for an iterative method—relative
residual (see MATLAB help). Recommended values: 1e-5 to 1e-8; they should be of the
same order as Prec_lin (see Section 4.2.6 below) for nonlinear problems.

Solver_max_iter

Allowed values: Positive integer.
Description: Maximal number of iterations for iterative solvers. For linear problems, the
range is roughly 100–1000. For nonlinear problems solved by the inexact Newton method
(see Section 4.9.3 below), 5–20 iterations should be optimal.

Preconditioning

Allowed values: Integers 0–4.
Description: Type of preconditioning (see MATLAB help).

0 No preconditioning.

1 LU.

2 LU incomplete.

3 Modified LU incomplete.

4 LU incomplete with zero level fill-in.

5 Diagonal.

Precond_accur

Allowed values: Double value > 0.
Description: Accuracy of incomplete LU preconditioning (see MATLAB help). Recom-
mended values: 1e-1 to 1e-5 (the lower the value, the longer the CPU time but the higher
the accuracy of LU factors and the faster solution by the preconditioned iterative method).

Save_matrix

Allowed values: Text Yes or No.
Description: Whether to save the matrix on each time and linearization step, if using the
gm6 solver.

4.2.5 Section [Output]

Section [Output] contains options controlling the output of FTRANS. The keys and their values
are as follows.
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Running_results

Allowed values: Text Yes or No.
Description: Whether the results will be written on each intermediate time step.

Final_results

Allowed values: Text Yes or No.
Description: Whether the final results will be written at the end.

Output_digits

Allowed values: Integers 1–16.
Description: The number of significant digits of the output.

Output_file

Allowed values: One-line text.
Description: Name of the file with the results (see Section 4.8.1 below for the description of
its format).

Output_file_a_post

Allowed values: One-line text.
Description: Name of the file with a posteriori error estimates for the MFE/CMFE schemes
(see Section 4.8.2 below for the description of its format).

Output_file_immob

Allowed values: One-line text.
Description: Name of the file with results for the immobile zone if Immobile = Yes.

POS_file

Allowed values: Text Yes or No.
Description: Whether make as well .POS (GMSH) output files.

4.2.6 Section [Parameters]

Section [Parameters] contains various options of FTRANS. The keys and their values are as
follows.

Parabolic

Allowed values: Text Yes or No.
Description: Whether the problem is parabolic or elliptic.

Evolving_BC

Allowed values: Text Yes or No.
Description: Whether the boundary conditions are evolving in time (for parabolic problems).

Evolving_sour

Allowed values: Text Yes or No.
Description: Whether the sources are evolving in time (for parabolic problems).

Evolving_coef

Allowed values: Text Yes or No.
Description: Whether the coefficients are evolving in time (for parabolic problems).
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Time_discr_par

Allowed values: Double value 0–1.
Description: Parameter of the discretization in time, ranging from fully implicit (0) through
Crank–Nicolson (0.5) to explicit (1), see Section 4.9.1 below for the discussion. For the
MFE/CMFE schemes, only fully implicit discretization is at disposal.

Nonlinear

Allowed values: Text Yes or No.
Description: Whether the problem is nonlinear or linear.

Prec_lin

Allowed values: Double value > 0.
Description: Precision of the Newton linearization procedure for nonlinear problems—relative
error in Lin_error_norm. Recommended values: 1e-5 to 1e-8; they should be of the same
order as Solver_accuracy (see Section 4.2.4) if an iterative solver is used.

Max_iter_lin

Allowed values: Positive integer.
Description: Maximal number of iterations of the Newton linearization. Recommended
values: virtually unlimited.

Lin_error_norm

Allowed values: Integers 1–2.
Description: Type of the norm for the measurement of the relative error in Newton lineariza-
tion.

1 L2.

2 Maximum.

Dif_disp_by_cfs

Allowed values: Text Yes or No.
Description: Whether the diffusion–dispersion tensor is given by coefficients or directly (see
Section 4.5 below).

Sour_inj_pump_div

Allowed values: Text Yes or No.
Description: Whether the sources are divided to injections with prescribed concentration
and pumping without prescribed concentration or no, see Section 2.2.

Immobile

Allowed values: Text Yes or No.
Description: Whether the model will be a dual-porosity one, containing both mobile and
immobile zones.

MIM_coupled

Allowed values: Text Yes or No.
Description: Whether there will be separate matrix representations of the mobile and immo-
bile parts (if Immobile = Yes).
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4.2.7 Section [Particular]

Section [Particular] contains some particular options for FTRANS run. The keys and their
values are as follows.

Type_of_linearization

Allowed values: Integers 0–1.
Description: Type of the linearization of the nonlinear problem.

0 Linearization by the Newton method of the original numerical scheme. Works if β′ 6= ∞,
β′ = 0 is allowed.

1 Linearization by the Newton method for a new unknown uh = β(ch). Works even if
β′ = ∞ but β′ = 0 is forbidden. For the moment at the disposition only for the FV–
NCFE scheme if Adsorption_function = 11 or Adsorption_function = 12 and if
the first of Adsorption_parameters is either 0.5 or 2, see Section 4.5 below.

LU_fact_only_first

Allowed values: Text Yes or No.
Description: Whether to make the LU factorization only on the first time step (linear prob-
lems) or linearization step (nonlinear problems). See Section 4.9.4 below for more details.

GMRES_restart_iter

Allowed values: Positive integer.
Description: The number of iterations after which the GMRES method will be restarted.

FV_mixed_form

Allowed values: Integers 0–1.
Description: specification of the FV scheme.

0 Means the standard FV scheme.

1 Means the finite volume reformulation of the mixed finite element method of [22]. Only
elliptic diffusion case with Dirichlet boundary conditions for the moment.

2 The matrix from case 1, the source term from case 0.

Mixed_type

Allowed values: Integers 0–1.
Description: specification of the MFE/CMFE scheme.

0 Means the lowest-order Raviart–Thomas RT0 scheme. One unknown per edge and one
unknown per element.

1 Means the Brezzi–Douglas–Marini BDM1 scheme. Two unknowns per edge and one un-
known per element, see Section 3.3.6.

Mixed_conv_type

Allowed values: Integers 1–3.
Description: specification of the MFE/CMFE scheme, see Section 3.3.

1 Means the centered mixed finite element scheme (3.3a)–(3.3b). Precise for diffusion-domi-
nated problems but oscillates in convection-dominated problems.
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2 Means the weighted upwind-mixed finite element scheme (3.4a)–(3.4b). May be less pre-
cise for diffusion-dominated problems but does not oscillate in convection-dominated
problems.

3 Means the combination of the centered and upwind-mixed finite element scheme (3.6a)–
(3.6b). A compromise of the two above schemes, behaving well in both convection and
diffusion-dominated limits. A recommended alternative to use.

Mixed_upstr_weigh_par

Allowed values: Double value 0–0.5 or -1.
Description: Means the amount of upstream weighting in the MFE/CMFE schemes with
Mixed_conv_type = 2 or Mixed_conv_type = 3.

0 Means full upstream weighting.

0.5 Means centered weighting.

-1 The amount of upstream weighting is defined by the parameter (3.5) in the dependence
on the local ratio between convection and diffusion. Recommended value.

Mixed_column_ordering

Allowed values: Text Yes or No.
Description: Ordering of columns of matrices resulting from the MFE scheme so that
one could use, in connection with preconditioning, some of the proposed iterative meth-
ods. Without ordering and preconditioning, the proposed iterative methods will not (suffi-
ciently rapidly) converge because the matrices resulting from the MFE scheme (in contrast
to the CMFE scheme) are of the saddle-point type. So for the MFE scheme, one should
either use a direct solver, or always put Preconditioning = 2 or Preconditioning = 3 or
Preconditioning = 4 and Mixed_column_ordering = 1.

Mixed_alg_cond

Allowed values: Integers 1–4.
Description: Type of algebraic condensation for the CMFE scheme.

1–2 Works only for elliptic diffusion problems in the planar case.

3 Works for nonlinear parabolic reaction–diffusion problems in the planar case.

4 No restrictions on problems in the planar case. Needs however MATLAB as a compu-
tational engine. The file matr_A_inv_J.m has to be in some directory searched by
MATLAB. This version is strongly recommended.

5 Works only for elliptic diffusion problems in the planar case, with Dirichlet boundary
conditions. This approach is based on the definition of a new unknown in each element.
Three choices for G_problem.eval_point are possible in make_problem.c: BAR for the
barycenter, CIRC for the circumcenter (in the larger sense, the element geometry is
oriented by S), and OPT for an approximate optimal choice.

Mixed_alg_cond_cnd_nb

Allowed values: Text Yes or No.
Description: Whether to evaluate the condition number of the local condensation matrices.
Important in order to check whether the algebraic condensation works correctly. Not to
use for repeated runs on the same problem in order to save the CPU time. Only works for
Mixed_alg_cond = 4 and Mixed_alg_cond = 5.
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Mixed_min_term

Allowed values: Text Yes or No.
Description: Whether to include the additionnal minimalization term (for a posteriori error
estimates using MFE minimization).

FV_FE_sources

Allowed values: Integers 0–1.
Description: Whether to use sources in nodes (0) or weighted average of the sources in the
neighboring elements (1).

NC_alg_cond

Allowed values: Integers 1–2.
Description: Type of algebraic condensation for the FV–NCFE scheme.

1 From the original formulation with just interior sides for unknowns for a Dirichlet BC
(6-point stencil for MFEC close to the boundary).

2 Reformulation with all sides for unknowns (4-point stencil for MFEC close to the bound-
ary).

P_Laplacian

Allowed values: Integer 0 or double value 1–∞.
Description: Specification for the p-Laplacian case.

0 Not a p-Laplacian case.

1–∞ Value of the exponent p for the p-Laplacian.

P_Lap_Newton

Allowed values: Text Yes or No.
Description: Whether the Newton method should be used for the linearization of the p-
Laplacian (otherwise fixed point).

Inexact_Newton

Allowed values: Text Yes or No.
Description: Whether the inexact Newton (inexact fixed point) method should be used
(adaptive stopping of the algebraic solver).

Postprocessing

Allowed values: Integers 0–1.
Description: Postprocessing of the results for the FV/MFE/CMFE schemes.

0 No postprocessing, piecewise constant result.

1 Postprocessed piecewise linear (generally discontinuous) result in addition to the original
piecewise constant one. This result should be more precise.

A_posteriori_err_est

Allowed values: Integers 0–1.
Description: A posteriori error estimates for the MFE/CMFE schemes.

0 No estimates will be computed.

1 A posteriori error estimates will be computed, see Sections 3.2.1 and 3.3.5. The results will
be saved in the Output_file_a_post file, see Section 4.8.2 below for the description of
its format.
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4.3 Mesh file format

The mesh file format is identical with that of FFLOW of the first generation. This is also the
reason why the coefficients of hydraulic conductivity in each element are listed below; these values
are not compulsory. All the lengths have to be given in a unique [L] unit. For an example of a
mesh file, see Appendix B.1; the actual format is as follows:

First line: Compulsory heading [FRACTURE_FLOW_MESH]

Second line: Mesh identification number (int)
Third line: Dimensions of the simulated domain (3×double)

The data of individual fractures follow. The always begin by the line Fracture{ and end by
the line }Fracture. The structure between these two lines is as follows:

id number of the fracture (int), type (int), set according to orientation (int)
coordinates of the center of the fracture (3×double)
radius of the fracture (double)
normal vector of the fracture (3×double)
hydraulic conductivity exponent (double)
local coordinates origin in global (3×double) and local coordinates (2×double)
another point in global (3×double) and local coordinates (2×double)
direction vector of the local coordinate axis x (3×double)
direction vector of the local coordinate axis y (3×double)

Next the nodes of the mesh in the given fracture follow, beginning by the line Nodes{ and ending
by the line }Nodes. Each line between these two lines contains the data of one node in the following
format:
lid x2d y2d

Description:
lid (int) Id of the node.
x2d (double) The x coordinate in the local coordinates system.
y2d (double) The y coordinate in the local coordinates system.

Next the elements of the mesh in the given fracture follow, beginning by the line {Elements

and ending by the line }Elements. Each line between these two lines contains the data of one
element in the following format:
lid nod0 nod1 nod2 coef1 coef2 coef3

Description:
lid (int) Id number of the element in the fracture.
nod0, nod1, nod2 (3×int) Id number of the nodes of the element.
coef1, coef2, coef3 (3×double) Coefficients of the hydraulic conductivity in the element.

Next the neighboring between the elements of the fracture at hand and elements in other fractures
follows, beginning by the line Neighbors{ and ending by the line }Neighbors. Each line between
these two lines contains the data of one neighbor in the following format:
my_fid my_eid my_sid fid eid sid

Description:
my_fid (int) Id number of the given fracture.
my_eid (int) Id number of the element in fracture my_fid.
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my_sid (int) Number of the side of element my_eid.
fid (int) Id number of the neighboring fracture.
eid (int) Id number of the neighboring element in fracture fid.
sid (int) Number of the neighboring side in element eid.

We finally recall that the neighboring edges do not have to coincide in the three-dimensional
geometrical sense; the above-given element edges correspondence is sufficient (cf. Figure 2). See [13]
for more details.

4.4 Time file format

The time file is composed of a compulsory heading and three (four) blocks as follows (all times
have to be given in a unique [T] unit):

First line: Compulsory heading [FRACTURE_TRANSPORT_TIME_MESH]

Key: Time_interval
Allowed values: Positive real number T .
Description: The time interval is (0, T ).

Key: Number_time_steps
Allowed values: Positive integer N .
Description: Number of time levels.

Key: Equidistant
Allowed values: Integers 0–1.
Description: Whether the time interval is not or is divided to N steps of equal length.

Key: Time_mesh
Line in the following format:
t_1 t_2 ... t_N

Description:
t_n (double) Length of n-th time interval. The sum must equal to T . Only compulsory when
Equidistant = 0.

4.5 Coefficients file format

The coefficients file is composed of several blocks following a compulsory heading. We first demon-
strate the default format of the blocks for sources and then describe the other blocks.

First line: Compulsory heading [FRACTURE_TRANSPORT_COEFFICIENTS]

Key: Sources
Follows a compulsory line in the following format:
default sources_1 ... sources_N

Allowed values for sources_n: Double value.
Description: Default source per unit volume [ML−2T−1]. For elliptic problems or in the case where
Evolving_sour = No, only the sources on the first time level (sources_1) are considered. The
same holds in the sequel for the other coefficients which may depend on time for elliptic problems
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or when Evolving_coef = No.
Follow optional blocks only containing the elements/sides/nodes where the sources are different
from the default ones. FTRANS only searches for the appropriate format according to the numer-
ical method used:

The schemes FV/MFE/CMFE. Compulsory first line FV/MFE/CMFE{, last line }FV/MFE/CMFE. Each
line between these two lines describes the sources for one element. The format is the following:
fid eid sources_1 ... sources_N

Description:
fid (int) Id number of the fracture.
eid (int) Id number of the element.
sources_n (double) Sources on n-th time interval.

The scheme FV–NCFE. Compulsory first line FV-NCFE{, last line }FV-NCFE. Each line between
these two lines describes the sources for one side. The format is the following:
fid eid sid sources_1 ... sources_N

Description:
fid (int) Id number of the fracture.
eid (int) Id number of the element.
sid (int) Id number of the side of the element (0, 1, 2).
sources_n (double) Sources on n-th time interval.
Since in this way, sources on one side may be described more then once for a side shared by two
or more elements, it is necessary that in this case all the given values coincide.

The scheme FV–FE. Compulsory first line FV-FE{, last line }FV-FE. Each line between these two
lines describes the sources for one node. The format is the following:
fid nid sources_1 ... sources_N

Description:
fid (int) Id number of the fracture.
nid (int) Id number of the node.
sources_n (double) Sources on n-th time interval.
Since in this way, sources on one node may be described more then once for a node shared by two
or more fractures, it is necessary that in this case all the given values coincide.

We now give a complete list of all the coefficients required. Except for the diffusion–dispersion
tensor and the velocity field, the format is as that for the sources, i.e. with (a) compulsory default
value(s) and a list of elements/sides/nodes with different values.

Key: Adsorption_function
Next compulsory line has the following format (no time-dependency):
default ads_fn

Allowed values for ads_fn: Integers 0–2, 11–12.
Description: Type of the adsorption function (of the function β); the unit of β(c) is [ML−2].

0 No adsorption: β(c) = θc, where θ is the water content wtr_cnt.

1 Freundlich: β(c) = θc + ρba1c
a2 , where θ is the water content wtr_cnt, ρb is the bulk den-

sity bulk_dens, a1 is the first adsorption parameter ads_par_1, and a2 is the second adsorp-
tion parameter ads_par_2.
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2 Langmuir: β(c) = θc+ ρba1a2c/(1 + a1c), where θ is the water content wtr_cnt, ρb is the bulk
density bulk_dens, a1 is the first adsorption parameter ads_par_1, and a2 is the second
adsorption parameter ads_par_2.

11 Academic 1: β(c) = c+ ca1 , where a1 is the first adsorption parameter ads_par_1.

12 Academic 2: β(c) = ca1 , where a1 is the first adsorption parameter ads_par_1.

Key: Adsorption_parameters
Next compulsory line has the following format (no time-dependency):
default ads_par_1 ads_par_2 ads_par_im,1 ads_par_im,2

Allowed values for ads_par_n, ads_par_im,n: Nonnegative double values.
Description: Parameters for the adsorption function. Parameters ads_par_im,n are only compul-
sory when Immobile = Yes. The unit for ads_par_1, ads_par_im,1 is [L2M−1], ads_par_2 and
ads_par_im,2 are dimensionless [-] for the Freundlich and Langmuir adsorption functions.

Key: Reaction_function
Next compulsory line has the following format (no time-dependency):
default react_fn

Allowed values for react_fn: Integers 0–2, 11–14.
Description: Type of the reaction function F ; the unit of F (c) is [ML−2T−1].

0 No reaction: F (c) = 0.

1 Radioactive decay: F (c) = r1β(c), where r1 is the first reaction parameter react_par_1.

2 Reaction 2: F (c) = r1c
r2 , where r1 is the first reaction parameter react_par_1 and r2 is the

second reaction parameter react_par_2.

11 Academic 1: F (c) = c.

12 Academic 2: F (c) = cr1 , where r1 is the first reaction parameter react_par_1.

13 Academic 3: F (c) = r1c
r1 , where r1 is the first reaction parameter react_par_1.

14 Academic 4: F (c) = 3c+ r1c
r1 , where r1 is the first reaction parameter react_par_1.

Key: Reaction_parameters
Next compulsory line has the following format (no time-dependency):
default react_par_1 react_par_2

Allowed values for react_par_n: Nonnegative double values.
Description: Parameters for the reaction function. For radioactive decay, the unit of react_par_1
is [T−1].

The diffusion–dispersion tensor can be given in two ways: either directly by its components in
block Diffusion_dispersion_tensor (when Dif_disp_by_cfs = No), or by diffusion–dispersion
coefficients in section Diffusion_dispersion_coefficients (when Dif_disp_by_cfs = Yes). It
is only given (as well as the following velocity field) for elements for all the schemes.

Key: Diffusion_dispersion_tensor
Next compulsory line has the following format:
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default coef_11_1 coef_22_1 coef_12_1 ... coef_11_N coef_22_N coef_12_N

Allowed values for coef_jk_n: Double values.
Description: The diffusion–dispersion tensor Sn [L2T−1] on time step n has the form

Sn =
coef_11_n coef_12_n

coef_12_n coef_22_n
.

Next compulsory line is {, last line of the block is }. Each line between these two lines describes
the diffusion–dispersion tensor for one element (different from the default one). The format is the
following:
fid eid coef_11_1 coef_22_1 coef_12_1 ... coef_11_N coef_22_N coef_12_N

Description:
fid (int) Id number of the fracture.
eid (int) Id number of the element.
coef_jk_n (double) Diffusion–dispersion tensor on n-th time interval.

Key: Diffusion_dispersion_coefficients
Next compulsory line has the following format (no time-dependency):
default coef_1 coef_2 coef_3

Allowed values for coef_j: Nonnegative double values.
Description: The diffusion–dispersion tensor S has the form

Sii = αT |w|+ (αL − αT )
w2

i

|w|
+ σ i = 1, 2 ,

Sij = Sji = (αL − αT )
wiwj

|w|
i, j = 1, 2 , i 6= j ,

where αL is the longitudinal dispersivity coef_1 [L], αT is the transverse dispersivity coef_2 [L],
σ is the molecular diffusion coefficient coef_3 [L2T−1], and wi are the components of the velocity
vector w and |w| is its length. Next compulsory line is {, last line of the block is }. Each line
between these two lines describes the diffusion–dispersion coefficients for one element (different
from the default ones). The format is the following:
fid eid coef_1 coef_2 coef_3

Description:
fid (int) Id number of the fracture.
eid (int) Id number of the element.
coef_j (double) Diffusion–dispersion coefficients.

Key: Velocity_field
Next compulsory line has the following format:
default coef_11_1 coef_12_1 coef_13_1 coef_21_1 coef_22_1 coef_23_1 ...

coef_11_N coef_12_N coef_13_N coef_21_N coef_22_N coef_23_N

Allowed values for coef_jk_n: Double values.
Description: The velocity field wn [LT−1] on time step n has the form

wn =
coef_11+ coef_12x+ coef_13 y
coef_21+ coef_22x+ coef_23 y

.

Next compulsory line is {, last line of the block is }. Each line between these two lines describes
the velocity field for one element (different from the default one). The format is the following:
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fid eid coef_11_1 coef_12_1 coef_13_1 coef_21_1 coef_22_1 coef_23_1 ...

coef_11_N coef_12_N coef_13_N coef_21_N coef_22_N coef_23_N

Description:
fid (int) Id number of the fracture.
eid (int) Id number of the element.
coef_jk_n (double) Velocity field coefficients on n-th time interval.

Finally, the two following blocks have again the same structure as the sources:

Key: Bulk_density
Next compulsory line has the following format (no time-dependency):
default bulk_dens

Allowed values for bulk_dens: Nonnegative double values.
Description: Bulk density [ML−2].

Key: Water_content
Next compulsory line has the following format:
default wtr_cnt_0 wtr_cnt_1 ... wtr_cnt_N

wtr_cnt_im,0 wtr_cnt_im,1 ... wtr_cnt_im,N

Allowed values for wtr_cnt_n, wtr_cnt_im,n: Nonnegative double values.
Description: Water content, immobile water content (dimensionless [-]). Note that the initial
water content wtr_cnt_0 has to be given as well when Evolving_coef = Yes. Coefficients
wtr_cnt_im,n are only compulsory when Immobile = Yes.

4.6 Initial conditions file format

The initial conditions file has the following format:

First line: Compulsory heading [FRACTURE_TRANSPORT_INITIAL_CONDITIONS]

Follow the initial conditions for the different schemes; FTRANS always only searches for the
appropriate format according to the numerical method.

The schemes FV/MFE/CMFE. Compulsory first line FV/MFE/CMFE{, last line }FV/MFE/CMFE. Each
line between these two lines describes the initial concentration for one element. The format is the
following:
fid eid conc_init conc_init_im

Description:
fid (int) Id number of the fracture.
eid (int) Id number of the element.
conc_init (double) Initial concentration on the given element.
conc_init_im (double) Immobile initial concentration (only read when Immobile = Yes).

The schemes FV–NCFE. Compulsory first line FV-NCFE{, last line }FV-NCFE. Each line between
these two lines describes the initial concentration for one side. The format is the following:
fid eid sid conc_init conc_init_im

Description:
fid (int) Id number of the fracture.
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eid (int) Id number of the element.
sid (int) Id number of the side of the element (0, 1, 2).
conc_init (double) Initial concentration on the given side.
conc_init_im (double) Immobile initial concentration (only read when Immobile = Yes).
Since in this way, initial concentrations on one side may be described more then once for a side
shared by two or more elements, it is necessary that in this case all the given values coincide.
For implicit time discretizations (Time_discr_par = 0) and when Type_of_linearization = 0,
initial conditions for non-Dirichlet sides are sufficient. Otherwise initial conditions on Dirichlet
sides are required as well.

The scheme FV–FE. Compulsory first line FV-FE{, last line }FV-FE. Each line between these two
lines describes the initial concentration for one node. The format is the following:
fid nid conc_init conc_init_im

Description:
fid (int) Id number of the fracture.
nid (int) Id number of the node.
conc_init (double) Initial concentration at the given node.
conc_init_im (double) Immobile initial concentration (only read when Immobile = Yes).
Since in this way, initial concentrations on one node may be described more then once for a node
shared by two or more fractures, it is necessary that in this case all the given values coincide. For
implicit time discretizations (Time_discr_par = 0), initial conditions for non-Dirichlet nodes are
sufficient. Otherwise initial conditions on Dirichlet nodes are required as well.

4.7 Boundary conditions file format

The boundary conditions file has the following format:

First line: Compulsory heading [FRACTURE_TRANSPORT_BOUNDARY_CONDITIONS]

Follow the boundary conditions for the different schemes; FTRANS always only searches for
the appropriate format according to the numerical method. For elliptic problems or in the case
where Evolving_BC = No, only the boundary conditions on the first time level (BC_1) are consid-
ered.

The schemes FV/MFE/CMFE/FV–NCFE. Compulsory first line FV/MFE/CMFE/FV-NCFE{, last
line }FV/MFE/CMFE/FV-NCFE. Each line between these two lines describes the boundary condition
for one side. The format is the following:
type fid eid sid BC_1 ... BC_N

Description:
type (int) Type of the boundary condition: 1 Dirichlet, 2 Neumann, 3 Robin (Newton).
fid (int) Id number of the fracture.
eid (int) Id number of the element.
sid (int) Id number of the side of the element (0, 1, 2).
BC_n (double) Boundary condition on n-th time level.

The scheme FV–FE. Compulsory first line FV-FE{, last line }FV-FE. Each line between these two
lines describes the boundary conditions for one node. The format is the following:
type fid nid BC_1 ... BC_N
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Description:
type (int) Type of the boundary condition: 1 Dirichlet, 2 Neumann, 3 Robin (Newton).
fid (int) Id number of the fracture.
nid (int) Id number of the node.
BC_n (double) Boundary condition on n-th time interval.
Since in this way, boundary concentrations on one node may be described more then once for a
node shared by two or more fractures, it is necessary that in this case all the given values coincide.

4.8 Output files format

Finally, the output files have the following format:

4.8.1 Output file with results

First line: Heading [FRACTURE_TRANSPORT_RESULTS]

Second line: The brief description of the given model given in Description.

Elliptic problems. Each line describes the results in one element and has the following form:
fid eid conc_e conc_s_1 conc_s_2 conc_s_3 conc_v_1 conc_v_2 conc_v_3

Description:
fid (int) Id number of the fracture.
eid (int) Id number of the element.
conc_e (double) Concentration in the given element (the result of the FV/MFE/CMFE schemes).
conc_s_i (double) Concentrations at the given element’s sides (the result of FV–NCFE scheme).
conc_v_i (double) Concentrations at the given element’s nodes (the result of FV–FE scheme).

Parabolic problems. Blocks of the form of elliptic problems, preceded by a number of the time
level.

4.8.2 Output file with a posteriori error estimates MFEs/FVs

First line: Heading [FRACTURE_TRANSPORT_A_POSTERIORI_ERROR_ESTIMATES]

Second line: The brief description of the given model given in Description.

Each line gives the a posteriori error estimate for the MFE/CMFE schemes (cf. [20]) for one
element and has the following form:
fid eid conc_e pol_1 ... pol_6 err_est norm est_res est_NC est_upw

pol_int_1 ... pol_int_6 err

Description:
fid (int) Id number of the fracture.
eid (int) Id number of the element.
conc_e (double) Concentration in the given element.
pol_i (double) Coefficients for the second-order postprocessed polynomial p̃h.
err_est (double) Error estimate in the given element.
norm (double) Estimate on the norm of p̃h in the given element.
est_res (double) Residual estimator in the given element.
est_NC (double) Nonconformity estimator in the given element.
est_upw (double) Upwinding estimator in the given element.
pol_i (double) Coefficients for the second-order polynomial—modified Oswald interpolate of
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p̃h.
err (double) Error in the given element.

4.8.3 Output file with a posteriori error estimates FEs

First line: Heading [FRACTURE_TRANSPORT_A_POSTERIORI_ERROR_ESTIMATES]

Second line: The brief description of the given model given in Description.

Each line gives the a posteriori error estimate for the FE scheme for one node (dual volume) and
has the following form:
fid eid err_est_1 est_res_1 est_DF_1 err_est_2 est_res_2 est_DF_2

err_est_3 est_res_3 est_DF_3

Description:
fid (int) Id number of the fracture.
eid (int) Id number of the element.
err_est (double) Error estimate in the given dual volume.
est_res (double) Residual estimator in the given dual volume.
est_DF (double) Diffusive flux estimator in the given dual volume.

4.9 Various remarks

We give in this section several important remarks on using of FTRANS.

4.9.1 Time discretization

The preferred choice for the time discretization scheme is the fully implicit (backward Euler) one
(Time_discr_par = 0). The stability is then guaranteed in the sense of the discrete maximum
principle under some conditions on the mesh geometry and the diffusion–dispersion tensor for FV,
FV–FE, and FV–NCFE schemes (see [8, Lemma 18.1], [9, Theorem 4.11], and [10, Theorem 4.5],
respectively). If these conditions are not verified, the oscillations shall still be very limited, which
holds true also for the MFE/CMFE scheme. Approaching Time_discr_par =0.5, precision may be
gained, but the stability may suffer. Anytime Time_discr_par is different from 1, linear system(s)
(on each time level) have to be solved. This suggests the use of the explicit time discretization,
where however very strong stability conditions hold: when no diffusion is present, the orders of
the time and space steps have to be equivalent; when there is some diffusion, the time step has to
be of the order of the square of the space step, which is usually too restrictive.

4.9.2 Direct solvers

Today’s direct solvers are very efficient. For linear problems with up to roughly 20 000 unknowns,
in MATLAB (Solver = 0), we suggest the use of the combination of column minimum degree
ordering and LU factorization (see the description of the backslash \ operator in MATLAB help),
which is in FTRANS specified by setting Solver_method = 0 and Preconditioning = 1, see
Section 4.2.4.

4.9.3 Inexact Newton method

For nonlinear problems, we suggest the use of the inexact Newton method, see e.g. [14]. It is a
connection of the classical Newton method for the solution of a nonlinear matrix problem with
an iterative method for the solution of resulting linear matrix problems. One limits here the
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maximum number of iterations of the iterative solver Solver_max_iter while not limiting the
maximal number of iterations of the Newton linearization Max_iter_lin. Having an approximate
solution on a k-th step of the Newton method, several iterations of the iterative method started
from this solution do not give an exact result of the (k + 1)-th step of the Newton method,
but are usually sufficient to move the approximate solution towards the exact solution of the
(k + 1)-th step of the Newton method. Then assembling the Newton matrix of this approximate
solution is usually sufficient to move the approximation towards the exact solution of the original
nonlinear matrix problem. Bi-CGStab and GMRES iterative methods (Solver_method = 2 and
Solver_method = 4) work well in this respect.

4.9.4 LU factorization only at the first step

In the preconditioning technique, it is sufficient that the obtained L and U matrices represent only
approximate LU decomposition of the matrix at hand. What is important is finally the condition
number of the preconditioned matrix. Hence it may not be necessary to decompose the matrix
at hand always if we already have “some” decomposition. So that in particular for a nonlinear
problem, we may only make the LU factorization on the first linearization step and then keep
the obtained L and U factors also for subsequent Newton linearization steps. This may lead to
important savings in CPU time. For a linear parabolic problem with constant coefficients and time
step, the system matrix in fact even does not change at all. Hence in this case, we may make a very
precise incomplete LU decomposition at the first time step and then the preconditioned iterative
method on each time step will converge in only one iteration. Alternatively, full LU decomposition
may be made and then only triangular systems are to be solved by substitution on each time level.

4.9.5 Particular cases for the different schemes

We list here for the sake of completeness the particular cases, exceptions, and (temporary) limita-
tions for the different schemes of FTRANS.

The finite volume scheme

Mesh We recall that all the triangular elements of the mesh for the finite volume scheme have to
have all angles smaller than 90 degrees.

Diffusion–dispersion tensor We recall that only scalar diffusion–dispersion tensors, S = sId,
are allowed in the finite volume scheme.

The mixed/condensed mixed finite element schemes

Time discretization We recall that for the moment, only fully implicit time discretizations
(Time_discr_par = 0) are possible for MFE/CMFE.

Relation MFE–CMFE We recall that the MFE and CMFE schemes are completely equivalent.
The only difference is that in the MFE scheme, the matrix problems contain both scalar and
flux unknowns, whereas in the CMFE scheme, the flux unknowns are locally eliminated and
the final matrix problems only contain the scalar unknowns, thus using the CMFE scheme
is likely to considerably reduce the CPU time. For the details, see [17, 18].

Type of algebraic condensation for CMFE We recall that the only type of algebraic conden-
sation enabling the discretization of the full problem (2.2a)–(2.2e) is Mixed_alg_cond = 4.
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This is also the optimized variant, so that we strongly recommend its use; note however that
this variant needs MATLAB as a computational engine and that the file matr_A_inv_J.m

has to be in some directory searched by MATLAB.

Feasibility of CMFE The feasibility of the algebraic condensation is in [17, 18] only proven un-
der some hypotheses on the mesh Th and the diffusion–dispersion tensor S. This hypothesis
is not too restrictive and allows for fairy general meshes and diffusion–dispersion tensors.
However, an example showing a particular case where the choice Mixed_alg_cond = 4 does
not work is given in these references. In order to check whether the algebraic conden-
sation works properly for the problem at hand, one should make a test calculation with
Mixed_alg_cond_cnd_nb = Yes. As soon as the condition numbers of the local condensa-
tion matrices are well bounded, there is no risk at using the algebraic condensation. Shall
the local condensation matrices be singular or close to, FTRANS will automatically stop the
calculation. To conclude, for all test calculations made with FTRANS, we did not observe
any difficulty.

CMFE on fracture networks We recall that CMFE for the moment only works for planar
domains and not for fracture networks.

The combined finite volume–finite element scheme

Imposing boundary conditions In the combined finite volume–finite element scheme, the un-
knowns are located at the vertices. Imposing the Dirichlet/Neumann/Newton boundary
conditions for this scheme amounts to specifying the mean of the functions uD, uN, uR,
respectively, over the set of all line segments given by one-half of the exterior edges ⊂ ΓD,
⊂ ΓN, or ⊂ ΓR, respectively, that share the given vertex. In contrast to the other schemes,
the boundaries ΓD, ΓN, and ΓR are supposed to conform with such sets and not with the
exterior triangle edges.

The combined finite volume–nonconforming finite element scheme

Degenerate parabolic problems We recall that as soon as β′ = ∞ at some point (usually 0)
and as soon as the solution may take this value (i.e. usually as soon as there may be some part
of the domain with zero concentration), the problem at hand is degenerate parabolic. This is
in particular the case of the Freundlich adsorption isotherm (ads_fn = 1) when ads_par_2

is less than one. In this case, one has to use the option Type_of_linearization = 1. This
option is for the moment only at the disposal for the FV–NCFE scheme.

4.9.6 Recommendations on the choice between the different schemes

A lot of factors may be comprised in a comparison of different schemes; precision, stability in the
convection-dominated case, satisfaction of the discrete maximum principle, behaviour for strongly
inhomogeneous and anisotropic diffusion–dispersion tensors, and memory and CPU time require-
ments are just some of them. Moreover, it is impossible to generally say that one scheme is better
than the other for all problems. We however try to outline here the strengths of the individual
schemes of FTRANS.

The numerical experiments for the contaminant transport problem (2.2a)–(2.2e) carried out
in [17, Section 3.5] indicate that for problems with discontinuous coefficients and inhomogeneous
and anisotropic diffusion–dispersion tensors (which is the case of contaminant transport one),
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mixed finite element schemes clearly give the best results. Using their condensed form, one can
reduce the necessary CPU times by a factor comprised between 2 and 4, so that this variant is
both the most precise and efficient (meaning the dependence of precision on the CPU time). This
has been shown for planar domains in [17, Section 3.5] as well. There is no need to construct
any dual mesh but the overall complexity of implementation however stays higher than that of the
combined finite volume–finite element or the finite volume schemes. Recall that in the condensed
form, the number of unknowns is equal to the number of triangles. The two combined schemes are
based on the same ideas. In the combined finite volume–nonconforming finite element scheme, the
construction of the dual volumes is straightforward and the overall structure of the scheme is much
simpler. In particular, it has a more compact stencil (in planar regions, there are always at most
five nonzero entries on each matrix row), a future appealing from the parallelization viewpoint.
Generalization to the three-dimensional casw is equally straightforward. These advantage are
however compensated by the fact that the number of unknowns is increased, equaling to the
number of sides. Whereas the number of unknowns of the combined finite volume–finite element
scheme is given by the number of nodes, the dual volumes are less easy to construct (especially for
the potential extensions to three space dimensions) and the overall scheme structure is a bit more
complicated. The two schemes give reasonable results for the contaminant transport problem in
its complete form and are fully applicable without any restrictions on the triangular mesh. The
use of the local Péclet upstream weighting in particular permits to reduce the excessive numerical
diffusion necessary to stabilize the schemes in convection-dominated cases. Finally, when the
diffusion–dispersion tensor reduces to a scalar function and when all the angles of the mesh are
smaller or equal to 90 degrees (which are however quite restrictive assumptions), the finite volume
method represents a vital alternative, easy to implement, not requiring the construction of any
dual volumes and being well efficient.

5 FTRANS organization

We give here a short note on the organization of FTRANS so as to enable a rapid orientation for
those aiming at further developments of the basic code. Since FTRANS is based on FFLOW by
Otto Severýn from the Department of Process Modeling in TU Liberec, its basic organization is
inherited from this program.

5.1 Structures

The basic structure of TRANS is Problem, containing in particular all the parameters from the
control file, see Section 4.2. Structure Mesh then contains all the parts of the mesh, given by
structures Fracture, Neighbour, Boundary and Element (for triangles), Node, and Side. These
structures are common for all the schemes of FTRANS and sufficient for the FV, MFE, and CMFE
schemes. The dual volumes around nodes for the FV–FE scheme are given by D_volume, whereas
the dual nodes by D_node and the dual sides by D_side. Similarly for the dual mesh of the FV–
NCFE scheme, the structure Covolume is used. Error messages in FTRANS has a separate (and
last structure) Error.

5.2 Basic code organization

The code is organized around the FTRANS.bpr project file. All the structures are declared in
the structs.h file, the basic function headers are in the header.h file, and error messages
in the messages.h file. Function main is in the file main.c and ensures the actual execution
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of the program, where calculation.c is responsible for the preparation of the schemes and
parabolic_cycle.c controls the advancement of FTRANS and in particular calls matrix_rhs.c
passing the matrix and right-hand side assembly tasks to the individual files for the different
FTRANS schemes. All the communication with MATLAB is coded in the solve_matlab.c file;
solve_gm6.c is responsible for calling the gm6 solver.

5.3 Treatment of the data for parabolic problems

There may be a significant amount of time-dependent data for real problems. FTRANS treats them
in the following way: all the time-dependent entries are first read, controlled, and associated to ele-
ments, sides, or nodes. Then three files __BC_time.bin, __coef_time.bin, and __sour_time.bin

are created, where all the time-dependent data are stored in the binary format, being previously
sorted by time levels. In FTRANS subsequent execution, all the boundary conditions, coefficients,
and sources necessary for the given time step are read from this binary file.
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A Example of a control file

[Global]

Solution_method = 5

Description = Experimental, non-real problem

[Input]

Space_mesh = _space_mesh.txt

Time_mesh = _time_mesh.txt

Coefficients = _coef.txt

Initial_conditions = _init_cond.txt

Boundary_conditions = _bound_cond.txt

[Run]

Log_file = debug.log

Screen_verbosity = 7

Log_verbosity = 7

[Solver]

Solver = 0

Solver_method = 2

Solver_accuracy = 1e-8

Solver_max_iter = 1000

Preconditioning = 2

Precond_accur = 2e-4

Save_matrix = No

[Output]

Running_results = Yes

Final_results = Yes

Output_digits = 16

Output_file = FTRANS_out.txt

Output_file_a_post = FTRANS_out_a_post.txt

Output_file_immob = FTRANS_out_im.txt

POS_file = No

[Parameters]

Parabolic = Yes

Evolving_BC = Yes

Evolving_sour = Yes

Evolving_coef = No

Time_discr_par = 0

Nonlinear = Yes

Prec_lin = 1e-8

Max_iter_lin = 50

Lin_error_norm = 1

Dif_disp_by_cfs = No

Sour_inj_pump_div = No

34



Immobile = No

MIM_coupled = No

[Particular]

Type_of_linearization = 0

LU_fact_only_first = Yes

GMRES_restart_iter = 5

Mixed_type = 0

Mixed_conv_type = 3

Mixed_upstr_weigh_par = -1

Mixed_column_ordering = No

Mixed_alg_cond = 4

Mixed_alg_cond_cnd_nb = No

Postprocessing = 1

A_posteriori_err_est = 0

B Examples of input files

B.1 Example of a mesh file

[FRACTURE_FLOW_MESH]

1

1 1 -1

Fracture{

0 1 2

0 0 0

3

0 0 1

1

0 0 0 0 0

3 0 0 3 0

3 0 0

0 3 0

Nodes{

0 0 0

1 1 0

2 0 1

3 0.3 0.3

4 0.7 0.7

5 1 1

}Nodes

Elements{

0 0 1 3 1 1 0

1 0 3 2 1 1 0

2 3 1 2 1 1 0

3 1 4 2 1 1 0

4 1 5 4 1 1 0

5 2 4 5 1 1 0
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}Elements

Neighbours{

0 1 2 1 1 2

0 1 2 2 1 2

}Neighbours

}Fracture

Fracture{

1 1 2

0 0 1

3

0 0 1

1

0 0 1 0 0

3 0 1 3 0

3 0 0

0 3 0

Nodes{

0 0 0

1 1 0

2 0 1

3 0.3 0.3

4 0.7 0.7

5 1 1

}Nodes

Elements{

0 0 1 3 1 1 0

1 0 3 2 1 1 0

2 3 1 2 1 1 0

3 1 4 2 1 1 0

4 1 5 4 1 1 0

5 2 4 5 1 1 0

}Elements

Neighbours{

1 1 2 2 1 2

1 1 2 0 1 2

}Neighbours

}Fracture

Fracture{

2 1 2

0 0 2

3

0 0 1

1

0 0 2 0 0

3 0 2 3 0

3 0 0

0 3 0

Nodes{
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0 0 0

1 1 0

2 0 1

3 0.3 0.3

4 0.7 0.7

5 1 1

}Nodes

Elements{

0 0 1 3 1 1 0

1 0 3 2 1 1 0

2 3 1 2 1 1 0

3 1 4 2 1 1 0

4 1 5 4 1 1 0

5 2 4 5 1 1 0

}Elements

Neighbours{

2 1 2 0 1 2

2 1 2 1 1 2

}Neighbours

}Fracture

B.2 Example of a time file

[FRACTURE_TRANSPORT_TIME_MESH]

Time_interval

1

Number_time_steps

2

Equidistant

0

Time_mesh

0.4 0.6

B.3 Example of a coefficients file

[FRACTURE_TRANSPORT_COEFFICIENTS]

Adsorption_function

default 11

FV/MFE/CMFE{

}FV/MFE/CMFE

FV-NCFE{

}FV-NCFE

FV-FE{

}FV-FE

Adsorption_parameters

default 0.5 1 1 1

FV/MFE/CMFE{

}FV/MFE/CMFE
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FV-NCFE{

}FV-NCFE

FV-FE{

}FV-FE

Reaction_function

default 12

FV/MFE/CMFE{

}FV/MFE/CMFE

FV-NCFE{

}FV-NCFE

FV-FE{

}FV-FE

Reaction_parameters

default 0.5 1

FV/MFE/CMFE{

}FV/MFE/CMFE

FV-NCFE{

}FV-NCFE

FV-FE{

}FV-FE

Diffusion_dispersion_tensor

default 1 1 0

{

2 0 8 20 -10

2 1 8 20 -10

2 2 8 20 -10

2 3 8 20 -10

2 4 8 20 -10

2 5 8 20 -10

}

Diffusion_dispersion_coefficients

default 1 2 3

{

}

Velocity_field

default -1 1 0 0 0 0

{

1 0 0.5 1 0 0 0 0

1 1 0.5 1 0 0 0 0

1 2 0.5 1 0 0 0 0

1 3 0.5 1 0 0 0 0

1 4 0.5 1 0 0 0 0

1 5 0.5 1 0 0 0 0
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2 0 0.5 1 0 0 0 0

2 1 0.5 1 0 0 0 0

2 2 0.5 1 0 0 0 0

2 3 0.5 1 0 0 0 0

2 4 0.5 1 0 0 0 0

2 5 0.5 1 0 0 0 0

}

Bulk_density

default 2.5

FV/MFE/CMFE{

}FV/MFE/CMFE

FV-NCFE{

}FV-NCFE

FV-FE{

}FV-FE

Sources

default 0 0

FV/MFE/CMFE{

0 0 0.9845701523385473 0.8339430542264101

0 1 0.4894619093631114 0.1388254781939984

0 2 0.9845701523385473 0.8339430542264101

0 3 1.295159780384606 1.23343476110585

0 4 2.922014831292236 3.558853454266147

0 5 1.157184814468891 0.6491406663594344

1 0 4.107583778456231 5.982922048292974

1 1 2.727198955825017 3.828230144929424

1 2 4.107583778456231 5.982922048292974

1 3 5.372582523073173 7.955968366612946

1 4 10.86374990699728 16.65256099984635

1 5 9.098919890173935 13.74284821193963

2 0 -8.384470726014506 -14.61299392797328

2 1 -6.223749230022607 -10.92938852201228

2 2 -8.384470726014506 -14.61299392797328

2 3 -10.93710844768109 -18.93416605541544

2 4 -20.9031903958229 -35.72226918247446

2 5 -22.66802041264624 -38.63198197038118

}FV/MFE/CMFE

FV-NCFE{

0 0 0 1.121724969154648 1.07311973921749

0 0 1 1.521683266089526 1.606908850300689

0 0 2 0.5246250449365031 0.162542351860004

0 1 1 0.1625423518600035 -0.6339356848683435

0 2 1 1.07311973921749 0.7724965820253864

0 3 0 2.412349066179013 2.875680322631878

0 3 1 0.3847490827566764 -0.4672668985077557

0 4 0 3.509470277888987 4.50624903591965
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0 4 1 2.875680322631878 3.326698927008579

0 5 2 0.7724965820253864 -0.006257713797412023

1 0 0 4.142354030360363 6.053295123322311

1 0 1 5.599106008778094 8.329442455807786

1 0 2 2.997706950986695 4.239965094548571

1 1 1 4.239965094548571 6.088597920638755

1 2 1 6.053295123322313 8.983417669616188

1 3 0 8.495149016446025 12.90452198605078

1 3 1 6.467549033023687 9.561574764911146

1 4 0 11.72039136547979 18.04376928507083

1 4 1 12.90452198605078 19.86146349797098

1 5 2 8.983417669616188 13.53126253535377

2 0 0 -7.940162214462496 -13.86740641309698

2 0 1 -10.71058496197618 -18.56069196622061

2 0 2 -6.894620673214073 -12.0697258762057

2 1 1 -12.0697258762057 -20.80153650138964

2 2 1 -13.86740641309697 -23.86026668074702

2 3 0 -15.83605078462202 -27.21084466762483

2 3 1 -17.86365076804436 -30.55379188876446

2 4 0 -21.12329298488342 -36.10631171153389

2 4 1 -27.21084466762483 -46.27759478587863

2 5 2 -23.86026668074702 -40.61881846125095

0 1 2 -1.898904092051067 -3.907055644887332

}FV-NCFE

FV-FE{

0 1 2.733178200585764 3.509470277888987

0 3 0.6798583965171781 0.3048035761873731

0 4 1.852401665420167 1.836625703324449

0 5 4.50624903591965 5.786138296045463

1 1 7.713353584690585 11.72039136547979

1 3 4.01816978925588 5.808748577616241

1 4 9.28195030201284 14.08588057217593

1 5 18.04376928507084 28.10573588335472

2 1 -12.2073479517287 -21.12329298488342

2 3 -9.335075781698929 -16.20703142809923

2 4 -20.43624424435786 -34.91113890322998

2 5 -36.10631171153391 -61.1726544658823

0 0 -0.7850491392068685 -1.898904092051067

0 2 -3.907055644887331 -7.438424505565415

}FV-FE

Water_content

default 1

FV/MFE/CMFE{

}FV/MFE/CMFE

FV-NCFE{

}FV-NCFE

FV-FE{
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}FV-FE

B.4 Example of initial conditions file

[FRACTURE_TRANSPORT_INITIAL_CONDITIONS]

FV/MFE/CMFE{

0 0 1.704604865322754

0 1 1.22140275816017

0 2 1.704604865322754

0 3 2.225540928492467

0 4 4.334761826185209

0 5 4.334761826185209

1 0 1.704604865322754

1 1 1.22140275816017

1 2 1.704604865322754

1 3 2.225540928492467

1 4 4.334761826185209

1 5 4.334761826185209

2 0 1.704604865322754

2 1 1.22140275816017

2 2 1.704604865322754

2 3 2.225540928492467

2 4 4.334761826185209

2 5 4.334761826185209

}FV/MFE/CMFE

FV-NCFE{

0 0 0 1.648721270700128

0 0 1 2.225540928492468

0 0 2 1.349858807576003

0 1 1 2.225540928492468

0 1 2 1.648721270700128

0 2 1 2.718281828459046

0 3 0 3.320116922736547

0 3 1 3.320116922736547

0 4 0 4.481689070338065

0 4 1 5.473947391727199

0 5 2 4.481689070338065

1 0 0 1.648721270700128

1 0 1 2.225540928492468

1 0 2 1.349858807576003

1 1 1 2.225540928492468

1 1 2 1.648721270700128

1 2 1 2.718281828459046

1 3 0 3.320116922736547

1 3 1 3.320116922736547

1 4 0 4.481689070338065

1 4 1 5.473947391727199

1 5 2 4.481689070338065
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2 0 0 1.648721270700128

2 0 1 2.225540928492468

2 0 2 1.349858807576003

2 1 1 2.225540928492468

2 1 2 1.648721270700128

2 2 1 2.718281828459046

2 3 0 3.320116922736547

2 3 1 3.320116922736547

2 4 0 4.481689070338065

2 4 1 5.473947391727199

2 5 2 4.481689070338065

}FV-NCFE

FV-FE{

0 0 1

0 1 2.718281828459046

0 2 2.718281828459046

0 3 1.822118800390509

0 4 4.055199966844675

0 5 7.389056098930652

1 0 1

1 1 2.718281828459046

1 2 2.718281828459046

1 3 1.822118800390509

1 4 4.055199966844675

1 5 7.389056098930652

2 0 1

2 1 2.718281828459046

2 2 2.718281828459046

2 3 1.822118800390509

2 4 4.055199966844675

2 5 7.389056098930652

}FV-FE

B.5 Example of boundary conditions file

[FRACTURE_TRANSPORT_BOUNDARY_CONDITIONS]

FV/MFE/CMFE/FV-NCFE{

1 0 0 0 2.45960311115695 4.481689070338065

3 0 4 0 -6.68589444227927 -12.18249396070348

1 0 5 2 6.68589444227927 12.18249396070348

1 1 0 0 2.45960311115695 4.481689070338065

3 1 4 0 3.342947221139635 6.091246980351738

1 1 5 2 6.68589444227927 12.18249396070348

1 2 0 0 2.45960311115695 4.481689070338065

3 2 4 0 23.40063054797745 42.63872886246217

1 2 5 2 6.68589444227927 12.18249396070348

}FV/MFE/CMFE/FV-NCFE

FV-FE{
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1 0 0 1.49182469764127 2.718281828459046

1 0 2 4.055199966844675 7.389056098930652

1 0 1 4.055199966844675 7.389056098930652

1 0 5 11.02317638064161 20.08553692318768

1 1 0 1.49182469764127 2.718281828459046

1 1 2 4.055199966844675 7.389056098930652

1 1 1 4.055199966844675 7.389056098930652

1 1 5 11.02317638064161 20.08553692318768

1 2 0 1.49182469764127 2.718281828459046

1 2 2 4.055199966844675 7.389056098930652

1 2 1 4.055199966844675 7.389056098930652

1 2 5 11.02317638064161 20.08553692318768

}FV-FE

C Example of an output file

[FRACTURE_TRANSPORT_RESULTS]

Experimental, non-real problem

1

0 0 0 2.45960311115695 3.446763136931259 1.64745796908299 0 0 0

0 1 0 1.64745796908299 3.292085509024633 2.227765940077287 0 0 0

0 2 0 3.446763136931259 4.184159977409498 3.292085509024633 0 0 0

0 3 0 5.05026714798563 5.12083659952068 4.184159977409498 0 0 0

0 4 0 6.603613597321377 7.179774257085176 5.05026714798563 0 0 0

0 5 0 5.12083659952068 7.179774257085176 6.68589444227927 0 0 0

1 0 0 2.45960311115695 3.341416487306315 1.7129871756627 0 0 0

1 1 0 1.7129871756627 3.118863603991642 2.227765940077287 0 0 0

1 2 0 3.341416487306315 3.991703642623759 3.118863603991642 0 0 0

1 3 0 4.646600899867071 5.12214024867777 3.991703642623759 0 0 0

1 4 0 6.229371424920504 7.15906679246168 4.646600899867071 0 0 0

1 5 0 5.12214024867777 7.15906679246168 6.68589444227927 0 0 0

2 0 0 2.45960311115695 3.62505187623178 1.564758936395174 0 0 0

2 1 0 1.564758936395174 3.269992989753237 2.227765940077287 0 0 0

2 2 0 3.62505187623178 4.379237881395313 3.269992989753237 0 0 0

2 3 0 4.601767834201824 5.483412271213194 4.379237881395313 0 0 0

2 4 0 5.953932895329543 7.059921442415086 4.601767834201824 0 0 0

2 5 0 5.483412271213194 7.059921442415086 6.68589444227927 0 0 0

2

0 0 0 4.481689070338065 6.343621860381246 2.920214566890867 0 0 0

0 1 0 2.920214566890867 6.040676050394491 4.04283907631766 0 0 0

0 2 0 6.343621860381246 7.692305284285964 6.040676050394491 0 0 0

0 3 0 9.268709598765152 9.400691600122482 7.692305284285964 0 0 0
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0 4 0 12.04268076512371 12.94860744023239 9.268709598765152 0 0 0

0 5 0 9.400691600122482 12.94860744023239 12.18249396070348 0 0 0

1 0 0 4.481689070338065 6.057096000851955 3.086524209806753 0 0 0

1 1 0 3.086524209806753 5.619689778927603 4.04283907631766 0 0 0

1 2 0 6.057096000851955 7.195380185908584 5.619689778927603 0 0 0

1 3 0 8.150136170013463 9.420212765761335 7.195380185908584 0 0 0

1 4 0 10.92788504625798 12.68746591500146 8.150136170013463 0 0 0

1 5 0 9.420212765761335 12.68746591500146 12.18249396070348 0 0 0

2 0 0 4.481689070338065 6.649729808896692 2.811656138997174 0 0 0

2 1 0 2.811656138997174 5.996228254106752 4.04283907631766 0 0 0

2 2 0 6.649729808896692 8.030303521310053 5.996228254106752 0 0 0

2 3 0 8.435272097122487 10.03284281046946 8.030303521310053 0 0 0

2 4 0 10.85210455908557 12.8413350214933 8.435272097122487 0 0 0

2 5 0 10.03284281046946 12.8413350214933 12.18249396070348 0 0 0
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