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Introduction

These notes were written for the lecture ANN202 “Analyse et approximation par éléments finis
d’équations aux dérivées partielles”, held at ENSTA Paris in academic year 2020/21. They de-
tail the contents of the lecture catalogued at https://synapses.ensta-paris.fr/catalogue/
2020-2021/ue/221/ANN202-analyse-et-approximation-par-elements-finis-d-edp, with
description at https://who.rocq.inria.fr/Martin.Vohralik/Pages/FEM.html.

These lectures make a follow-up to the lecture ANN201 “Eléments finis”, see https://

synapses.ensta-paris.fr/catalogue/2020-2021/ue/212/ANN201-elements-finis. They
are organized into preliminary reminder and 6 chapters, each corresponding to one lecture block.

https://synapses.ensta-paris.fr/catalogue/2020-2021/ue/221/ANN202-analyse-et-approximation-par-elements-finis-d-edp
https://synapses.ensta-paris.fr/catalogue/2020-2021/ue/221/ANN202-analyse-et-approximation-par-elements-finis-d-edp
https://who.rocq.inria.fr/Martin.Vohralik/Pages/FEM.html
https://synapses.ensta-paris.fr/catalogue/2020-2021/ue/212/ANN201-elements-finis
https://synapses.ensta-paris.fr/catalogue/2020-2021/ue/212/ANN201-elements-finis
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Chapter 0

Preliminaries

We recall here some basic notions of numerical approximation of partial differential eque-
tions, following the lecture ANN201 “Eléments finis” https://synapses.ensta-paris.fr/

catalogue/2020-2021/ue/212/ANN201-elements-finis, the classical references Ciarlet [12]
and Allaire [2], or the lecture notes [45] on a posteriori error estimates available at https:

//who.rocq.inria.fr/Martin.Vohralik/Pages/APost.html.

0.1 Computational domain Ω

In these lecture notes, Ω ⊂ Rd, d ≥ 1, will be an open polytope (interval for d = 1, polygon for
d = 2, polyhedron for d = 3); Ω is thus open, bounded, and connected domain of polytopal type
in d space dimensions. Moreover, we suppose that the boundary ∂Ω is Lipschitz; recall that this
covers most cases of practical interest but excludes, for example, the two-brick setting in three
space dimensions. An example in two space dimensions, with d = 2, is given in Figure 1, left.
Note that Ω in Figure 1 is not convex, which we do not request.

Ω Ω

Th

Figure 1: Example of a computational domain Ω (left) in two space dimensions (d = 2) and of
a simplicial (triangular) mesh Th (right)

0.2 Lebesgue space L2(Ω)

We let L2(Ω) be the space of scalar-valued square-integrable functions defined on the polytope
Ω, and L2(ω) the space of scalar-valued square-integrable functions defined on a polytopal
subdomain ω ⊂ Ω. We denote by (v, w)ω the L2(ω)-scalar product of two functions v, w ∈ L2(ω),
given by

(v, w)ω :=

∫
ω
vw dx.

Then

∥v∥ω := (v, v)
1
2
ω

https://synapses.ensta-paris.fr/catalogue/2020-2021/ue/212/ANN201-elements-finis
https://synapses.ensta-paris.fr/catalogue/2020-2021/ue/212/ANN201-elements-finis
https://who.rocq.inria.fr/Martin.Vohralik/Enseig/APost/a_posteriori.pdf
https://who.rocq.inria.fr/Martin.Vohralik/Pages/APost.html
https://who.rocq.inria.fr/Martin.Vohralik/Pages/APost.html
https://www.researchgate.net/figure/The-two-bricks-set-fails-to-be-a-Lipschitz-domain-due-to-the-point_fig1_343969174
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denotes the associated norm on L2(ω). We drop the index in both the scalar product and the
norm notation when ω = Ω. A similar notation is used on (d− 1)-dimensional manifolds, where
we, however, rather employ ⟨·, ·⟩ to denote the scalar product. We also employ this notation for
vector-valued functions with each component in L2(ω):

(v,w)ω :=

∫
ω
v·w dx, ∥v∥ω := (v,v)

1
2
ω (0.2.1)

for v,w ∈ [L2(ω)]d, where v·w is the scalar product between the vectors v and w.

0.3 Sobolev space H1
0(Ω)

Let D(Ω) be the space of functions from C∞(Ω) with a compact support in Ω. We first need to
introduce the following concept:

Definition 0.3.1 (Weak partial derivative). Let a scalar-valued function v : Ω → R be given.
We say that v admits a weak i-th partial derivative, 1 ≤ i ≤ d, if

1. v ∈ L2(Ω);

2. there exists a function wi : Ω → R such that

(a) wi ∈ L2(Ω);

(b) (v, ∂xiφ) = −(wi, φ) ∀φ ∈ D(Ω).

We define the weak i-th partial derivative of v, denoted by ∂xiv, as

∂xiv := wi.

Weak partial derivative is a generalization of the concept of the partial derivative: whenever
the function in question v admits the usual partial derivative, then the weak partial derivative
equals the partial derivative. More functions, however, allow for a weak partial derivative. The
prominent example is the absolute value function of Figure 2. Its weak (partial) derivative equals
its derivative respectively on the left and right half-spaces. In general, in one space dimension,
any function that is of class C0(Ω) (continuous) and piecewise of class C1 (admitting derivative
on subintervals), admits a weak (partial) derivative, given by the derivative on subintervals.

x

y

−1 1

y = |x|

x

y

−1

1

−1 1

y = ∂x(|x|)

Figure 2: Ω = (−1, 1), d = 1. Example of a function y(x) = |x| (left) which admits a weak
partial derivative (right)

Definition 0.3.2 (Weak gradient). Let a scalar-valued function v : Ω → R be given. We say
that v admits a weak gradient if v admits the weak i-th partial derivative for all 1 ≤ i ≤ d. We
define the weak gradient of v, denoted by ∇v ∈ [L2(Ω)]d, as

∇v := (∂x1v, . . . , ∂xd
v)t. (0.3.1)
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Definition 0.3.3 (Space H1(Ω)). The space H1(Ω) is the space of all the functions which admit
the weak gradient.

Let us recall from [12, 2] that H1(Ω) is a Hilbert space for the scalar product and the
associated norm

(v, w)H1(Ω) := (v, w) + (∇v,∇w) v, w ∈ H1(Ω), (0.3.2a)

∥v∥2H1(Ω) := (v, v)H1(Ω) = ∥v∥2 + ∥∇v∥2 v ∈ H1(Ω). (0.3.2b)

A crucial property of functions from H1(Ω) is that they are continuous in the sense of traces: for
each (d− 1)-dimensional interface inside Ω, the values from both sides coincide, see Figure 3 for
an illustration, where the function in question is trace-continuous (actually, continuous) along
all the depicted lines.

−1

0

1−1

0

1
0

0.5

1

x y

z

0

0.2

0.4

0.6

0.8

1

Figure 3: Ω = (−1, 1) × (−1, 1), d = 2. Example of a function belonging to the Sobolev space
H1(Ω): note that v|Ω1 = v|Ω2 on the interface between any two subdomains Ω1 and Ω2 of Ω

Definition 0.3.4 (Space H1
0 (Ω)). The space H1

0 (Ω) is the space of functions v ∈ H1(Ω) such
that v|∂Ω = 0, where v|∂Ω is the trace of the function v on the boundary ∂Ω.

0.4 Sobolev space H(div,Ω)

The space H1
0 (Ω) from Section 0.3 is designed for scalar-valued functions. For vector-valued

functions, we will sometimes need the following concepts:

Definition 0.4.1 (Weak divergence). Let a vector-valued function v : Ω → Rd be given. We
say that v admits a weak divergence if

1. v ∈ [L2(Ω)]d;

2. there exists a scalar-valued function w : Ω → R such that

(a) w ∈ L2(Ω);

(b) (v,∇φ) = −(w,φ) ∀φ ∈ D(Ω).

We define the weak divergence of v, denoted by ∇·v, as

∇·v := w.

Definition 0.4.2 (SpaceH(div,Ω)). The space H(div,Ω) is the space of all the functions which
admit the weak divergence.
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Let us recall from [2] that H(div,Ω) is a Hilbert space for the scalar product

(v,w)H(div,Ω) := (v,w) + (∇·v,∇·w) v,w ∈ H(div,Ω).

A crucial property of functions v from the Sobolev space H(div,Ω) is that their normal compo-
nents are continuous in the sense of normal traces: for each (d−1)-dimensional interface dividing
Ω into Ω1 and Ω2, the values of v|Ωi ·n, where n is the unit normal vector of the interface between
Ω1 and Ω2, are equal in appropriate normal trace sense. Figure 4 gives an illustration where v·n
is well-defined everywhere in Ω, v·n on each interface Γ is an L2(Γ) function (actually piecewise
constant), and v·n is continuous in the usual, strong, sense (and not just in the “appropriate
normal trace” sense).

x

y

−1 10

1

Figure 4: Ω = (−1, 1) × (0, 1), d = 2. Example of a function belonging to the Sobolev space
H(div,Ω): note that, on the interface x = 0 between the two subdomains Ω1 = (−1, 0)× (0, 1)
and Ω2 = (0, 1) × (0, 1), v|Ω1 ·n = v|Ω2 ·n, with n = (1, 0)t; the function v is not (trace-
)continuous for each component (the y component of v is discontinuous, as it passes from value
0 in Ω1 to a nonzero constant value in Ω2), but v·n is (normal-trace) continuous (here v·n is
simply the x component of v, which has the same constant value in both Ω1 and Ω2)

0.5 Computational mesh Th
The computational mesh Th is a partition of the closure Ω of the polytope Ω such that

∪K∈ThK = Ω,

where any element K ∈ Th is a closed simplex (interval for d = 1, triangle for d = 2, tetrahedron
for d = 3), and the intersection of two different simplices is either empty, a vertex, or an l-
dimensional face, 1 ≤ l ≤ d−1. An example for d = 2 is given in Figure 1, right. It is customary
to define the mesh size

h := max
K∈Th

hK , (0.5.1)

where hK is the diameter of the simplex K. The shape-regularity parameter of the mesh Th is
the positive real number

κTh := max
K∈Th

hK
ρK

, (0.5.2)

where ρK is the diameter of the largest ball contained in K. We will only consider sequences
of meshes where this number is uniformly bounded: this forbids “flat” simplices. Note, though,
that highly graded meshes, containing a range of simplices from very small to very big, can be
constructed for κTh uniformly bounded, see Figure 5.1 below for an example.

We denote the set of vertices of the mesh Th by Vh; it is composed of vertices V int
h lying in

the interior of Ω and of vertices Vext
h lying on the boundary ∂Ω. Similarly, the set of (d − 1)-

dimensional faces of the mesh Th is denoted by Fh and is again composed of interior faces F int
h
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and faces Fext
h lying on the boundary ∂Ω. For each face F ∈ Fh, we fix a unique unit normal

vector nF , arbitrary for F ∈ F int
h and pointing outward of the domain Ω for F ∈ Fext

h . We will
use FK to denote the set of all the faces of the simplex K.

0.6 Broken Sobolev space H1(Th)
The spaces H1

0 (Ω) from Section 0.3 and H(div,Ω) from Section 0.4 are only related to the
computational domain Ω. In these lecture notes, we will often use the space H1(Th) rather
related to the computational mesh Th:

Definition 0.6.1 (Space H1(Th)). The so-called broken Sobolev space is given by

H1(Th) := {v ∈ L2(Ω); v|K ∈ H1(K) ∀K ∈ Th} =
∏
K∈Th

H1(K). (0.6.1)

The space H1(Th) is thus a collection of independent Sobolev spaces H1(K) over the indi-
vidual elements K of the mesh Th. In particular, functions from the space H1(Th) are possibly
completely discontinuous from one mesh element to the other (they admit no trace continuity
over the mesh interfaces) since H1(Th) ̸⊂ H1(Ω), see the illustration in Figure 5. Note, however,
that H1(Ω) ⊂ H1(Th).

Figure 5: Ω = (0, 1) × (0, 1), d = 2. Example of a function belonging to the broken Sobolev
space H1(Th) for a mesh composed of two elements: note that there is no continuity on the
interfaces between the two elements

An important concept related to the broken space H1(Th) is the concept of a jump:

Definition 0.6.2 (Jump of v ∈ H1(Th)). Let v ∈ H1(Th). The jump over an interior face
F ∈ F int

h is given by

[[v]]F := (v|K1)|F − (v|K2)|F , (0.6.2a)

where K1,K2 are the two simplices from the mesh Th that share the face F , enumerated such that
the normal nF points from K1 to K2. Here (v|Ki)|F is the trace of the function v|Ki ∈ H1(Ki)
on the face F , which in particular belongs to L2(F ). The jump over a boundary face F ∈ Fext

h

is then given by

[[v]]F := (v|K)|F , (0.6.2b)

where K ∈ Th has F as face.
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The following important relation holds between the spaces H1(Ω) of Definition 0.3.3 and
H1(Th) of Definition 0.6.1, see, e.g. [45, Theorems 4.4.1 and 4.4.3]:

Theorem 0.6.3 (Relations between the spaces H1(Ω), H1
0 (Ω), and H

1(Th)). There holds

v ∈ H1(Ω) ⇐⇒ v ∈ H1(Th) and [[v]]F = 0 ∀F ∈ F int
h , (0.6.3a)

v ∈ H1
0 (Ω) ⇐⇒ v ∈ H1(Th) and [[v]]F = 0 ∀F ∈ Fh. (0.6.3b)

For a function v ∈ H1(Th), there in general does not exist a weak gradient in the sense of
Definition 0.3.2. Since, of course, there exists a weak gradient for any function v ∈ H1(Th) when
restricted to each individual mesh element K ∈ Th, we are lead to a generalization of the notion
of the weak gradient:

Definition 0.6.4 (Broken weak gradient). Let a function v ∈ H1(Th) be given. The broken
weak gradient ∇hv ∈ [L2(Ω)]d is on each element of the computational mesh K ∈ Th given by

(∇hv)|K := ∇(v|K). (0.6.4)

With this notion, we then have:

Theorem 0.6.5 (Space H1(Th)). The space H1(Th) is a Hilbert space for the scalar product

(v, w)H1(Th) := (v, w) + (∇hv,∇hw)
=
∑
K∈Th

(v, w)H1(K)

=
∑
K∈Th

{
(v, w)K + (∇(v|K),∇(w|K))K

}
v, w ∈ H1(Th)

(0.6.5a)

and the associated norm

∥v∥2H1(Th) := (v, v)H1(Th) = ∥v∥2 + ∥∇hv∥2 =
∑
K∈Th

{
∥v∥2K + ∥∇(v|K)∥2K

}
v ∈ H1(Th).

(0.6.5b)

Proof. From (0.6.1),

H1(Th) =
∏
K∈Th

H1(K),

so H1(Th) is a Hilbert space as a product of the Hilbert spaces H1(K).

0.7 Poincaré–Friedrichs and trace inequalities

We recall here three basic inequalities that will be often used in the following chapters. We
make a concise presentation; more details and numerous references can be found, e.g., in [45,
Section 4.6]. Let ω ⊂ Ω be an open polytope with Lipschitz boundary and let hω denote its
diameter.

The Poincaré inequality states:

Theorem 0.7.1 (Poincaré inequality). There holds

∥v − vω∥ω ≤ CP,ωhω∥∇v∥ω ∀v ∈ H1(ω), (0.7.1)

where vω is the mean value of the function v over ω given by vω := (v, 1)ω/|ω|.
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The above generic constant CP,ω only depends on the shape of the polytope ω but not on its
size. It can be precisely estimated in many cases; in particular, whenever ω is convex, CP,ω can
be taken as 1/π, cf. Payne and Weinberger [33] and Bebendorf [5].

Let ∂ωD be a subset of the boundary ∂ω with nonzero (d−1)-dimensional measure, |∂ωD| ≠ 0.
Then the Poincaré–Friedrichs inequality states:

Theorem 0.7.2 (Poincaré–Friedrichs inequality). There holds

∥v∥ω ≤ CPF,ω,∂ωD
hω∥∇v∥ω ∀v ∈ H1(ω) such that v|∂ωD

= 0. (0.7.2)

The generic constant CPF,ω,∂ωD
only depends on the shape of the polytope ω and on the

boundary subset ∂ωD. As long as ω and ∂ωD are such that there exists a vector b ∈ Rd such
that for almost all points x ∈ ω, the first intersection of the straight semi-line defined by the
origin x and the vector b lies in ∂ωD, the constant CPF,ω,∂ωD

can be taken equal to 1, cf. [43,
Remark 5.8].

Let finally K be a simplex and let F be one of its faces. The trace inequalities state:

Theorem 0.7.3 (Trace inequalities). There holds

∥v∥2F ≤ C̃2
t,κK ,d

(h−1
K ∥v∥2K + ∥v∥K∥∇v∥K) ∀v ∈ H1(K), (0.7.3a)

∥v − vF ∥F ≤ C̄t,κK ,dh
1
2
K∥∇v∥K ∀v ∈ H1(K), (0.7.3b)

∥v − vK∥F ≤ Ct,κK ,dh
1
2
K∥∇v∥K ∀v ∈ H1(K), (0.7.3c)

where the mean values over the element K and face F are respectively given by vK := (v, 1)K/|K|
and vF := ⟨v, 1⟩F /|F |.

The above three generic constants only depend on the shape-regularity parameter of the
simplex K given by κK := hK/ρK (recall that hK is the diameter of K and ρK is the diameter
of the largest ball contained in K) and possibly on the space dimension d.

0.8 Piecewise polynomial space Pp(Th)
Numerical methods typically rely on finite-dimensional spaces. Let p ≥ 1 be a fixed polynomial
degree and let Pp(K) be the space of polynomials of total degree less than or equal to p defined
on one mesh element K ∈ Th. In these lecture notes, we will many times need:

Definition 0.8.1 (Piecewise polynomial space Pp(Th)). The piecewise polynomial space Pp(Th)
is given by

Pp(Th) := {vh ∈ L2(Ω); vh|K ∈ Pp(K) ∀K ∈ Th} =
∏
K∈Th

Pp(K). (0.8.1)

An illustration for p = 2 is given in Figure 6; clearly,

Pp(Th) ⊂ H1(Th) but Pp(Th) ̸⊂ H1(Ω).
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Figure 6: Ω = (−1, 1) × (0, 1), d = 2. Example of a piecewise polynomial belonging to the
piecewise polynomial space P2(Th) with four mesh elements



Chapter 1

The nonconforming finite element
method: a priori analysis

In this chapter, we are going to consider a finite element method that looks for an approxi-
mate solution of a model partial differential equation in a finite-dimensional space that is not a
subspace of the space where the exact solution lies. This gives rise to the nomenclature noncon-
forming finite element method. We will in particular consider the so-called Crouzeix–Raviart
nonconforming finite element method, named after Crouzeix and Raviart [13]. Our goal will be
to justify the method and to derive a priori error estimates . We will partly follow the original
analysis in Ciarlet [12], but we will also expose some recent achievements following, in particular,
Gudi [26], Veeser [41], Ern et al. [19], and Ern and Guermond [20].

1.1 The Poisson equation

The Poisson equation with a homogeneous Dirichlet boundary condition reads: for a given source
term f ∈ L2(Ω), find a scalar-valued function u : Ω → R such that

−∆u = f in Ω, (1.1.1a)

u = 0 on ∂Ω, (1.1.1b)

where ∆ stands for the Laplacian,

∆v :=

d∑
i=1

∂2xi
v = ∇·(∇v), (1.1.2)

a differential operator composed of the divergence and gradient.

1.2 Weak formulation

Problem (1.1.1), in general, does not have a classical solution u ∈ C2(Ω). We are thus led to
the weak formulation, relying on the Sobolev space H1

0 (Ω) recalled in Section 0.3:

Definition 1.2.1 (Weak formulation of problem (1.1.1)). Find u ∈ H1
0 (Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (1.2.1)

Recall that the existence and uniqueness of a solution of (1.2.1) can be shown as follows.
The Poincaré–Friedrichs inequality (0.7.2) states

∥v∥ ≤ CPFhΩ∥∇v∥ ∀v ∈ H1
0 (Ω), (1.2.2)
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where hΩ is the diameter of the computational domain Ω. It follows from the discussion below
Theorem 0.7.2, since here the zero trace boundary condition is imposed all along ∂Ω, that CPF

is a generic constant at most equal to 1. As a consequence of (0.3.2b) and (1.2.2),

∥∇v∥ ≤ ∥v∥H1(Ω) ≤
(
1 + C2

PFh
2
Ω

) 1
2 ∥∇v∥ ∀v ∈ H1

0 (Ω), (1.2.3)

i.e., on the Sobolev space H1
0 (Ω), the ∥∇·∥ norm is equivalent to the ∥·∥H1(Ω) norm. Thus,

H1
0 (Ω) equipped with the scalar product (∇v,∇w) is also a Hilbert space, and the existence and

uniqueness of a solution of (1.2.1) follows by the Riesz representation theorem. Note that one
does not need to invoke the Lax–Milgram theorem [12, Theorem 1.1.3], since problem (1.2.1) is
symmetric.

1.3 The nonconforming finite element method

Let p ≥ 1 be a fixed polynomial degree. Recall the piecewise polynomial space Pp(Th) from
Section 0.8, as well as the notion of the jump from Definition 0.6.2 (we will henceforth abbreviate
[[vh]]F as [[vh]]; there will be no ambiguity.) We will employ the following weakly-continuous
(Crouzeix–Raviart) space, with Pp′(F ) denoting polynomials of total degree less than or equal
to p′ ≥ 0 on the face F :

Definition 1.3.1 (Nonconforming finite element space). The weakly-continuous piecewise poly-
nomial space V nc

hp is given by

V nc
hp := {vh ∈ Pp(Th); ⟨[[vh]], qh⟩F = 0 ∀qh ∈ Pp−1(F ), ∀F ∈ Fh}. (1.3.1)

By definition, V nc
hp is a proper subspace of Pp(Th),

V nc
hp ⊊ Pp(Th),

since some conditions on the jumps over the faces are requested. This requested weak continuity
(1.3.1) is that the jumps [[vh]] are L

2(F )-orthogonal to all polynomials of degree p − 1 on each
mesh face F ; since vh ∈ Pp(Th), [[vh]]|F ∈ Pp(F ), the jumps have vanishing moments up to
degree p − 1, but are not entirely zero, [[vh]] ̸= 0. Consequently, recalling Theorem 0.6.3, the
functions in V nc

hp are not (trace-)continuous, so that

V nc
hp ̸⊂ H1

0 (Ω),

which is the nonconformity. An illustration for the lowest polynomial degree p = 1 is given
in Figure 1.1. Here the zero moments, i.e., the mean values of the jumps, have to vanish on
all mesh faces. Since for p = 1, the jumps are affine on each face F , this is equivalent to the
condition of pointwise continuity (equality to zero on boundary faces) at face barycentres (see
Section 1.6.1 below for more details).

Recalling the broken weak gradient from Definition 0.6.4, the finite element method we will
study is:

Definition 1.3.2 (Nonconforming finite element method for problem (1.1.1)). Find uh ∈ V nc
hp

such that

(∇huh,∇hvh) = (f, vh) ∀vh ∈ V nc
hp . (1.3.2)

Remark 1.3.3 (A first comparison with the conforming finite element method). The standard
conforming finite element method employs the H1

0 (Ω)-conforming piecewise polynomial space

Vhp := Pp(Th) ∩H1
0 (Ω) (1.3.3)
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Figure 1.1: Ω = (−1, 1) × (0, 1), d = 2. Example of a weakly-continuous piecewise polynomial
belonging to the Crouzeix–Raviart space V nc

hp with p = 1 (four mesh elements)

to look for uh ∈ Vhp such that

(∇uh,∇vh) = (f, vh) ∀vh ∈ Vhp. (1.3.4)

Following Theorem 0.6.3, we could have also written, in place of (1.3.3),

Vhp := {vh ∈ Pp(Th); [[vh]] = 0 ∀F ∈ Fh} = {vh ∈ Pp(Th); ⟨[[vh]], qh⟩F
= 0 ∀qh ∈ Pp(F ), ∀F ∈ Fh}.

Relying on the broken weak gradient (0.6.4), (1.3.2) and (1.3.4) take the same form. Since
it follows immediately from (1.3.1) that

Vhp ⊂ V nc
hp ,

it might come to one’s mind that (1.3.2) simply needs to be “better”. We will see below that such
considerations are a bit precipitous and that the analysis of (1.3.2) is rather involved, because
of the nonconformity V nc

hp ̸⊂ H1
0 (Ω). Later, we will actually prove that the two methods are of

the same quality in a quite sharp sense. Both of the approaches (1.3.2) and (1.3.4) have some
(distinct) important advantages in (distinct) applications, which we will discuss below.

Since V nc
hp ̸⊂ H1

0 (Ω), it is not obvious to show the existence and uniqueness of uh from (1.3.2).
It turns out that it would be good to have at our disposal an equivalent of the Poincaré–Friedrichs
inequality (1.2.2) on the space V nc

hp . This is indeed a central task that we will establish in a
(much) larger setting of the following section.

1.4 Weakly-continuous subspace of the broken Sobolev space
H1(Th) and a broken Poincaré–Friedrichs inequality

The space V nc
hp from (1.3.1) is a finite-dimensional subspace of the broken Sobolev space H1(Th)

of Definition 0.6.1. Its nonconforming nature can, however, be rather studied at the infinite-
dimensional level. This better highlights the central issue. Let us for this purpose introduce:

Definition 1.4.1 (Weakly-continuous subspace H1
[[ ]](Th) of the broken Sobolev space H1(Th)).

Let
H1

[[ ]](Th) := {v ∈ H1(Th); ⟨[[v]], qh⟩F = 0 ∀qh ∈ P0(F ), ∀F ∈ Fh}. (1.4.1)
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Remark 1.4.2 (Higher vanishing moments of jumps). We could have also defined spaces re-
questing orthogonality of jumps with respect to p′-degree polynomials on each face F , p′ ≥ 0, but
the space H1

[[ ]](Th) of Definition 1.4.1 will be completely sufficient for our purposes.

Remark 1.4.3 (Space H1
[[ ]](Th)). Clearly, H1

0 (Ω) ⊂ H1
[[ ]](Th), as (0.6.3b) requests completely

vanishing jumps as opposed to merely jumps with vanishing zero-order moments (i.e., mean
values) in (1.4.1).

The following theorem shows that Definition 1.4.1 is justified; the proof is given in Sec-
tion 1.9.1 below.

Theorem 1.4.4 (Space H1
[[ ]](Th)). The space H1

[[ ]](Th) is a non-empty closed subspace of H1(Th),
so that H1

[[ ]](Th) is a Hilbert space for the scalar product (0.6.5a). There holds V nc
hp ⊂ H1

[[ ]](Th).

Recalling that hΩ is the diameter of the computational domain Ω, a crucial property of the
space H1

[[ ]](Th) is the following generalization of (1.2.2):

Theorem 1.4.5 (Broken Poincaré–Friedrichs inequality). There exists a positive constant CbPF

only depending on the mesh shape-regularity parameter κTh from (0.5.2) and the space dimension
d such that

∥v∥ ≤ CbPFhΩ∥∇hv∥ ∀v ∈ H1
[[ ]](Th). (1.4.2)

Proof. The proof of the result as stated can be found in [43], see also Temam [40] (for piecewise
affine functions), Knobloch [29], or Brenner [9].

A crucial consequence of Theorem 1.4.5 is that H1
[[ ]](Th) is a Hilbert space for the scalar

product given by the broken weak gradient of Definition 0.6.4:

Theorem 1.4.6 (Space H1
[[ ]](Th)). The space H1

[[ ]](Th) from Definition 1.4.1 is a Hilbert space
for the scalar product

(∇hv,∇hw) v, w ∈ H1
[[ ]](Th).

Proof. The reasoning is as in (1.2.3). Definition (0.6.5b) and the broken Poincaré–Friedrichs
inequality (1.4.2) immediately imply

∥∇hv∥ ≤ ∥v∥H1(Th) ≤
(
1 + C2

bPFh
2
Ω

) 1
2 ∥∇hv∥ ∀v ∈ H1

[[ ]](Th),

so that the norms ∥∇h·∥ and ∥·∥H1(Th) are equivalent on the space H1
[[ ]](Th). Since, by Theo-

rem 1.4.4, H1
[[ ]](Th) is a Hilbert space for the scalar product (v, w)H1(Th), H

1
[[ ]](Th) is also a Hilbert

space for the scalar product (∇hv,∇hw).

1.5 Existence and uniqueness of the nonconforming finite ele-
ment approximation

Armed with the results of the previous section, we now straightforwardly deduce:

Theorem 1.5.1 (Space V nc
hp ). The space V nc

hp is a (finite-dimensional) Hilbert space for the
scalar product

(∇hvh,∇hwh) vh, wh ∈ V nc
hp . (1.5.1)

Proof. In Theorem 1.4.4, we have seen that V nc
hp ⊂ H1

[[ ]](Th). V nc
hp being piecewise polynomial on

the mesh Th and thus finite-dimensional, it is a closed subspace of H1
[[ ]](Th). Thus, the claim

follows by virtue of Theorem 1.4.6.

Consequently, there immediately holds:
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Theorem 1.5.2 (Existence and uniqueness of uh from (1.3.2)). There is one and only one
solution uh ∈ V nc

hp of the nonconforming finite element method of Definition 1.3.2.

Proof. By virtue of the broken Poincaré–Friedrichs inequality (1.4.2),

vh → (f, vh) vh ∈ V nc
hp ,

is a bounded linear form on V nc
hp equipped with the scalar product (1.5.1). Indeed,

|(f, vh)| ≤ ∥f∥∥vh∥ ≤ CbPFhΩ∥f∥∥∇hvh∥ ∀vh ∈ V nc
hp .

Thus in view of Theorem 1.5.1, the claim follows by the Riesz representation theorem.

1.6 Nonconforming finite elements for p = 1

We now restrict our attention to the lowest-order setting p = 1 (see Figure 1.1) and discuss three
important issues: we introduce a basis of the space V nc

h1 (handy for a computer implementation),
an interpolation operator for the space V nc

h1 (useful for analysis), and a reconstruction of a flux
in the H(div,Ω) space (which will be central later for a posteriori error estimates).

1.6.1 A basis of V nc
h1

For a face F ∈ Fh, denote by xF its barycenter.

Definition 1.6.1 (Basis function ψF ). For F ∈ F int
h , let ψF , a priori defined in the space

P1(Th), be such that

ψF (xF ) := 1, ψF (xF ′) := 0 ∀F ′ ∈ Fh, F ′ ̸= F.

Above, more precisely, we could have written ψF |K(xF ) for all K ∈ Th such that F ∈ FK .
An illustration in space dimension d = 2 is given in Figure 1.2. In words, ψF is a piecewise affine
function with respect to the mesh Th, taking value 1 in the barycenter of the face F ∈ F int

h and
the value 0 in all other barycenters of mesh faces. We now confirm that ψF , F ∈ F int

h , form a
basis of V nc

hp for p = 1. Thus, the dimension |V nc
h1 | of the space V nc

h1 will be |F int
h |, the number of

mesh interior faces:

Lemma 1.6.2 (ψF ). There holds

V nc
h1 = spanF∈F int

h
ψF (1.6.1)

Proof. We proceed in two steps.
1) We first show that

ψF ∈ V nc
h1 ∀F ∈ F int

h .

Recall for this purpose that for any vh ∈ V nc
h1 , the jump on all faces F ′ ∈ Fh has to be of mean

value zero, since p− 1 = 0 in (1.3.1). Notice now that the trace of any vh ∈ V nc
h1 on each mesh

face F ′ ∈ Fh is an affine function (since p = 1). Consequently, as a mean value of an affine
function on F ′ (which is a (d− 1)-simplex) is equal to the value in the barycenter, the condition
of the jump of mean value zero on F ′ is equivalent to the condition of the jump pointwise zero
in the barycenter xF ′ of F ′. Thus, ψF ∈ V nc

h1 .
2) We now prove (1.6.1). Let vh ∈ V nc

h1 be given. Restricted to a mesh element K ∈ Th,
vh|K ∈ P1(K), with possibly mean value zero on boundary faces, and thus vh|K can be combined
from ψF |K , F ∈ FK ∩F int

h . Now on any element K ′ ∈ Th sharing a face F ′ with K, again vh|K′

can be combined from ψF |K′ , F ∈ FK′ ∩F int
h , and the coefficients for ψF

′ |K and ψF
′ |K′ are the

same, given by the point value (from either K or K ′) of vh in the barycenter xF ′ of F ′.
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Figure 1.2: Basis function ψF of the space V nc
h1 for p = 1

1.6.2 An interpolation operator for V nc
h1

We will need below the following interpolation operator, taking values in the weakly-continuous
space H1

[[ ]](Th) of Definition 1.4.1 and producing a piecewise polynomial in the V nc
h1 space of

Definition 1.3.1.

Definition 1.6.3 (Interpolation operator Inc1 ). Let the global interpolation operator

Inc1 : H1
[[ ]](Th) → V nc

h1 , Inc1 v :=
∑

F∈F int
h

⟨v, 1⟩F
|F | ψF for v ∈ H1

[[ ]](Th). (1.6.2)

For K ∈ Th, let the local interpolation operator

Inc1,K : H1(K) → P1(K), Inc1,Kv :=
∑

F∈FK∩F int
h

⟨v, 1⟩F
|F | ψF |K for v ∈ H1(K). (1.6.3)

Actually, (1.6.2) is equivalent to

(Inc1 v)|K := Inc1,K(v|K) ∀v ∈ H1
[[ ]](Th), ∀K ∈ Th. (1.6.4)

Several remarks are in order:

� The interpolation operator Inc1 is well defined on the weakly-continuous space H1
[[ ]](Th); in-

deed, for both elements K1,K2 ∈ Th sharing a face F ∈ F int
h , the mean value ⟨v|Ki , 1⟩F /|F |

is the same by (1.4.1), giving a meaning to (1.6.2).

� Remarkably, as H1
0 (Ω) ⊂ H1

[[ ]](Th), see Remark 1.4.3, Inc1 is well defined over the whole

Sobolev space H1
0 (Ω), in contrast to common interpolation operators that take some point

values (recall that traces are well defined on H1
0 (Ω) but not point evaluations).

� One calls Inc1 the global interpolation operator since it is defined over the whole computa-
tional domain Ω and its action concerns functions from H1

[[ ]](Th). In turn, Inc1,K is the local
interpolation operator since it is connected with one mesh element K ∈ Th and it acts on
all v ∈ H1(K). Remark that the equivalent definition (1.6.4) again crucially hinges upon
the weak jump continuity of any v ∈ H1

[[ ]](Th).

The following is a simple but important result:
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Theorem 1.6.4 (Projection of Inc1 ). The operators Inc1 and Inc1,K from Definition 1.6.3 are
projections in that

Inc1 vh = vh ∀vh ∈ V nc
h1 , (1.6.5a)

Inc1,Kvh = vh ∀vh ∈ P1(K), ∀K ∈ Th. (1.6.5b)

Proof. The second statement (1.6.5b) is trivial. As for the first one (1.6.5a), any vh ∈ V nc
h1 can

be written as

vh =
∑

F∈F int
h

⟨vh, 1⟩F
|F | ψF

by the reasoning of Lemma 1.6.2, which is exactly the from in (1.6.2).

We finish this section by proving that Inc1 is a globally as well as locally stable operator:

Theorem 1.6.5 (Stability of Inc1 ). The global interpolation operator Inc1 is stable in that

∥∇h(Inc1 v)∥ ≤ C∥∇hv∥ ∀v ∈ H1
[[ ]](Th), (1.6.6)

where the constant C only depends on the mesh shape-regularity parameter κTh and on the space
dimension d. With the same constant, the local interpolation operator Inc1,K is also stable as

∥∇(Inc1,Kv)∥K ≤ C∥∇v∥K ∀v ∈ H1(K), ∀K ∈ Th. (1.6.7)

Proof. We only prove (1.6.7) which implies (1.6.6) in view of the link (1.6.4); in this proof, a ≲ b
means that a ≤ cb, where c only depends on κTh and d. Let K ∈ Th and v ∈ H1(K) be fixed. We
will rely on definition (1.6.3). First, we remark that if we shift v by a constant, both the gradient
and the gradient of the interpolant stay intact, ∇v = ∇(v + c) and ∇(Inc1,Kv) = ∇(Inc1,K(v + c)).
Thus, we can shift v (still denoted by v with an abuse of notation) such that the mean value
vK := (v, 1)K/|K| = 0. Using (1.6.3), we see that

∥∇(Inc1,Kv)∥K =

∥∥∥∥∥∇
( ∑
F∈FK∩F int

h

⟨v, 1⟩F
|F | ψF

)∥∥∥∥∥
K

≤
∑

F∈FK∩F int
h

|⟨v, 1⟩F |
|F | ∥∇ψF ∥K .

Now, since |∇ψF | ≲ h−1
K (note that ψF is affine on K and varies between 0 and 1 in faces

barycentres),

∥∇ψF ∥K ≲ h−1
K |K| 12 , (1.6.8)

where |K| is the d-volume (length/surface/volume) of the simplex K. Moreover, the Cauchy–
Schwarz inequality together with the trace inequality (0.7.3c) yield

|⟨v, 1⟩F | ≤ ∥v∥F |F |
1
2 = ∥v − vK∥F |F |

1
2 ≲ h

1
2
K∥∇v∥K |F | 12 .

Finally, since the mesh shape-regularity definition (0.5.2) implies

|K| ≲ hK |F | ∀F ∈ FK ,

we conclude that

∥∇(Inc1,Kv)∥K ≲
∑

F∈FK∩F int
h

h
1
2
K |F | 12 |F |−1h−1

K h
1
2
K |F | 12︸ ︷︷ ︸

=1

∥∇v∥K ≤ (d+ 1)∥∇v∥K .
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1.7 A priori error estimates: best approximation up to the con-
sistency error

We now move towards giving estimates on the error ∥∇h(u − uh)∥. The following is a crucial
result in this direction (below and in the sequel, we use the shorthand notation 0/0 = 0):

Theorem 1.7.1 (Second Strang lemma). Let u ∈ H1
0 (Ω) be the weak solution of Definition 1.2.1

and uh ∈ V nc
hp its nonconforming finite element approximation of Definition 1.3.2. Then

∥∇h(u− uh)∥2 = min
vh∈V nc

hp

∥∇h(u− vh)∥2 +
(

max
wh∈V nc

hp

(f, wh)− (∇u,∇hwh)
∥∇hwh∥

)2

. (1.7.1)

Proof. Let zh ∈ V nc
hp be such that

(∇hzh,∇hvh) = (∇u,∇hvh) ∀vh ∈ V nc
hp . (1.7.2)

Since the linear form on the right-hand side of (1.7.2) is bounded, |(∇u,∇hvh)| ≤ ∥∇u∥∥∇hvh∥,
and recalling Theorem 1.5.1, there exists a unique solution zh to (1.7.2) by the Riesz represen-
tation theorem. For an arbitrary vh ∈ V nc

hp ,

∥∇h(u− vh)∥2 = ∥∇h(u− zh + zh − vh)∥2

= ∥∇h(u− zh)∥2 + ∥∇h(zh − vh)∥2 + 2(∇h(u− zh),∇h(zh − vh))

= ∥∇h(u− zh)∥2 + ∥∇h(zh − vh)∥2,
(1.7.3)

where the second equality follows from (1.7.2) as zh − vh ∈ V nc
hp . Consequently,

∥∇h(u− zh)∥2 = ∥∇h(u− vh)∥2 − ∥∇h(zh − vh)∥2 ≤ ∥∇h(u− vh)∥2 ∀vh ∈ V nc
hp

and
∥∇h(u− zh)∥ = min

vh∈V nc
hp

∥∇h(u− vh)∥. (1.7.4)

The piecewise polynomial zh ∈ V nc
hp is simply the orthogonal projection of u onto the space V nc

hp

(note, however, that V nc
hp ̸⊂ H1

0 (Ω), so that one needs to consider u as an element of H1
[[ ]](Th)

rather than as an element of H1
0 (Ω)).

We now apply (1.7.3) to vh = uh. This gives

∥∇h(u− uh)∥2 = ∥∇h(u− zh)∥2 + ∥∇h(zh − uh)∥2.
Moreover, the second term above becomes

∥∇h(zh − uh)∥ = max
wh∈V nc

hp

(∇h(zh − uh),∇hwh)
∥∇hwh∥

= max
wh∈V nc

hp

(∇u,∇hwh)− (f, wh)

∥∇hwh∥
by (1.7.2) and (1.3.2). Thus (1.7.1) follows.

Remark 1.7.2 (Comparison with the conforming finite element method). In the weak formu-
lation (1.2.1), we can take test functions vh ∈ Vhp ⊂ H1

0 (Ω). Thus, subtracting with (1.3.4), in
the conforming finite element method, there immediately holds

(∇(u− uh),∇vh) = 0 ∀vh ∈ Vhp. (1.7.5)

This is called Galerkin orthogonality. Consequently, the conforming finite element approxima-
tion uh is nothing but the orthogonal projection of the weak solution u to the space Vhp, so
that

∥∇(u− uh)∥ = min
vh∈Vhp

∥∇(u− vh)∥. (1.7.6)

The first term in (1.7.1) is similar. It is the nonconformity that gives rise to the second term
in (1.7.1), often called consistency error term. Indeed, if the function space V nc

hp was conforming,

V nc
hp ⊂ H1

0 (Ω), then this second term would disappear by virtue of (1.2.1).
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1.8 A priori error estimates: rate of convergence for p = 1

We will now study how fast the error ∥∇h(u − uh)∥ goes to zero with respect to the maximal
mesh size h, which is, recall, defined by (0.5.1). We will see that the speed in the lowest-order
case p = 1 will be of order h1 if the exact solution u is sufficiently regular.

Let a subdomain ω ⊂ Ω be given. Then the Sobolev space of functions with second-order
weak derivatives H2(ω) can simply be described as

H2(ω) = {v ∈ H1(ω); ∂xiv ∈ H1(ω), 1 ≤ i ≤ d}. (1.8.1)

Note that, consequently, the weak derivatives ∂xj∂xiv, 1 ≤ j, i ≤ d, are well defined. Let
α = {α1, . . . , αd} ∈ Nd be a multi-index, a d-tuple of non-negative integers, with |α| := α1 +
. . . + αd ≤ 2. With the notation ∂αv := ∂α1

x1
. . . ∂αd

xdv and ∂αv := v if α = {0, . . . , 0}, the
associated semi-norm and norm on H2(ω) are then respectively

|v|2H2(ω) :=
∑
|α|=2

∥∂αv∥2ω =
d∑
i=1

d∑
j=i

∥∂xi∂xjv∥2ω, (1.8.2a)

∥v∥2H2(ω) :=
∑
|α|≤2

∥∂αv∥2ω =
∑
|α|=0

∥∂αv∥2ω +
∑
|α|=1

∥∂αv∥2ω +
∑
|α|=2

∥∂αv∥2ω (1.8.2b)

= ∥v∥2ω +
d∑
i=1

∥∂xiv∥2ω + |v|2H2(ω) (1.8.2c)

= ∥v∥2ω + ∥∇v∥2ω + |v|2H2(ω) = ∥v∥2H1(ω) + |v|2H2(ω). (1.8.2d)

Following Deny and Lions [15] or Bramble and Hilbert [8], we first have the following crucial
approximation result (the proof is given in Section 1.9.2 below):

Theorem 1.8.1 (Deny–Lions/Bramble–Hilbert lemma for p = 1). There holds

min
vh∈P1(K)

∥∇(v − vh)∥K ≤
√
2
hK
π

|v|H2(K) ∀v ∈ H2(K), ∀K ∈ Th. (1.8.3)

We now present a “classical” proof of a priori rate of convergence of the nonconforming finite
element method (1.3.2) for p = 1, in the spirit of Ciarlet [12]:

Theorem 1.8.2 (A priori rate of convergence, p = 1). Let u ∈ H1
0 (Ω) be the weak solution of

Definition 1.2.1 and uh ∈ V nc
hp its nonconforming finite element approximation of Definition 1.3.2

with the polynomial degree p = 1. Let additionally

u|K ∈ H2(K) ∀K ∈ Th. (1.8.4)

Then there exists a constant C only depending on the mesh shape-regularity parameter κTh and
the space dimension d such that

∥∇h(u− uh)∥ ≤ C

{ ∑
K∈Th

h2K |u|2H2(K)

} 1
2

≤ Ch

{ ∑
K∈Th

|u|2H2(K)

} 1
2

. (1.8.5)

Proof. From the characterization (1.7.1), we see that we need to bound two terms, so we proceed
in two steps. Here again, a ≲ b means that a ≤ cb, where c only depends on κTh and d.

1) Recall the interpolation operator Inc1 from Definition 1.6.3. There immediately holds

min
vh∈V nc

hp

∥∇h(u− vh)∥2 ≤ ∥∇h(u− Inc1 u)∥2 =
∑
K∈Th

∥∇(u− Inc1,Ku)∥2K ,
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so that we can henceforth only study the interpolation error ∥∇(u − Inc1,Ku)∥K on each single
mesh element K ∈ Th. For this purpose, we will use the orthogonal projector P1 onto P1(K):
for each v ∈ H1(K), P1v ∈ P1(K) is such that

(∇P1v,∇vh)K = (∇v,∇vh)K ∀vh ∈ P1(K); (1.8.6)

to make P1v unique, it is convenient to fix

(P1v, 1)K = (v, 1)K ,

i.e., having the same mean value on K as v. The orthogonal projection property (1.8.6) imme-
diately gives

∥∇(v − P1v)∥K = min
vh∈P1(K)

∥∇(v − vh)∥K , (1.8.7)

We will also use the projection property (1.6.5b) of the interpolation operator Inc1 , namely
Inc1,KP1u = P1u. This gives, on the element K,

u− Inc1,Ku = u− Inc1,Ku− P1u+ P1u = u− P1u+ Inc1,K(P1u− u),

so that

∥∇(u− Inc1,Ku)∥K ≤ ∥∇(u− P1u)∥K + ∥∇(Inc1,K(P1u− u))∥K ≤ (1 + C)∥∇(u− P1u)∥K ,

where C is the constant from the crucial local stability bound (1.6.7). Thus, (1.8.7) and (1.8.3)
allow us to conclude

min
vh∈V nc

hp

∥∇h(u− vh)∥ ≲

{ ∑
K∈Th

h2K |u|2H2(K)

} 1
2

.

2) Let wh ∈ V nc
hp be fixed. We manipulate, using the assumption u|K ∈ H2(K) for all

K ∈ Th, the Green theorem on each mesh element, (1.1.1a), the fact that wh ∈ V nc
hp , and the

Cauchy–Schwarz inequality

(f, wh)− (∇u,∇hwh) =
∑
K∈Th

{(f, wh)K − (∇u,∇hwh)K}

=
∑
K∈Th

{(f +∆u,wh)K − (∇u·nK , wh)∂K}

(1.1.1a)
= −

∑
K∈Th

(∇u·nK , wh)∂K

= −
∑
F∈Fh

(∇u·nF , [[wh]])F

(1.3.1)
= −

∑
F∈Fh

([∇u− (∇u)F ]·nF , [[wh]])F

≤
∑
F∈Fh

∥∇u− (∇u)F ∥F ∥[[wh]]∥F ,

where (∇u)F is the componentwise mean value of ∇u on the face F (recall that ∂xiu ∈ H1(K)
for all 1 ≤ i ≤ d from (1.8.1), so that ∂xiu on the faces F exists in the trace sense). We have
also crucially used here that

[[∇u·nF ]] = 0 ∀F ∈ F int
h ,

which is a consequence of assumption (1.8.4) together with the fact that ∇u ∈ H(div,Ω) by
Definitions 1.2.1 and 0.4.2.
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For a fixed face F ∈ F int
h shared by two mesh elements K1 and K2, we now on the one hand

have, using (0.6.2a) and the trace inequality (0.7.3b),

∥[[wh]]∥F = ∥wh|K1 − wh|K2∥F = ∥wh|K1 − (wh)F + (wh)F − wh|K2∥F

≤
∑

K∈Th, F∈FK

∥wh|K − (wh)F ∥F
(0.7.3b)

≲
∑

K∈Th, F∈FK

h
1
2
K∥∇wh∥K ,

and the same bound holds for any F ∈ Fext
h as well. On the other hand, the trace inequal-

ity (0.7.3b) also gives

∥∇u− (∇u)F ∥2F =

d∑
i=1

∥∂xiu− (∂xiu)F ∥2F ≲
d∑
i=1

hK∥∇∂xiu∥2K ≤ 2hK |u|2H2(K)

for any of the (two for F ∈ F int
h and one for F ∈ Fext

h ) elements K that share the face F , where
we have proceeded as in (1.9.4). Collecting the above bounds, the Cauchy–Schwarz inequality
gives

|(f, wh)− (∇u,∇hwh)| ≲
∑
F∈Fh

∑
K∈Th, F∈FK

hK∥∇wh∥K |u|H2(K)

≤ 2
∑
K∈Th

hK∥∇wh∥K |u|H2(K)

≤ 2

{ ∑
K∈Th

h2K |u|2H2(K)

} 1
2

∥∇wh∥,

which allows to conclude the proof.

1.9 Complements

We collect here some additional material, developing further the above contents.

1.9.1 Proof of Theorem 1.4.4

Proof of Theorem 1.4.4. From Remark 1.4.3,H1
[[ ]](Th) is non-empty. The inclusion V nc

hp ⊂ H1
[[ ]](Th)

follows immediately from definitions (1.3.1) and (1.4.1) since Pp(Th) ⊂ H1(Th) and the jumps
orthogonality constraint in (1.3.1) (requesting jump orthogonality with respect to (p−1)-degree
polynomials) is stronger than that in (1.4.1) (requesting jump orthogonality with respect to
0-degree polynomials).

To show that H1
[[ ]](Th) is a closed subspace of H1(Th), we will rely on the second characteriza-

tion in (0.6.1). Consider a sequence of functions vi ∈ H1
[[ ]](Th). We need to show that whenever

v ∈ H1(Th) is its limit, i.e., v is such that

lim
i→∞

∥vi − v∥H1(Th) = 0, (1.9.1)

where ∥·∥H1(Th) is the norm on the Hilbert space H1(Th) from (0.6.5b), then v ∈ H1
[[ ]](Th), i.e.,

⟨[[v]], qh⟩F = 0 ∀qh ∈ P0(F ), ∀F ∈ Fh. (1.9.2)

Consider an arbitrary face F ∈ Fh and a constant function qh ∈ P0(F ). Adding and subtracting
vi, and since vi ∈ H1

[[ ]](Th), we have

⟨[[v]], qh⟩F = ⟨[[v − vi]], qh⟩F + ⟨[[vi]], qh⟩F = ⟨[[v − vi]], qh⟩F .
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Now Definition 0.6.2 of the jump, the triangle inequality, the Cauchy–Schwarz inequality, and
the trace inequality (0.7.3a) imply

⟨[[v − vi]], qh⟩F ≤
∑

K∈Th;F∈FK

|⟨(v − vi)|K , qh⟩F | ≤
∑

K∈Th;F∈FK

∥(v − vi)|K∥F ∥qh∥F

≤
∑

K∈Th;F∈FK

C̃t,κK ,d(h
−1
K ∥v − vi∥2K + ∥v − vi∥K∥∇(v − vi)∥K)

1
2 ∥qh∥F ,

where, recall, FK denotes the set of faces of the simplex K (the above sum has two summands
for interior faces F and only one for boundary faces F ). Now assumption (1.9.1) and defini-
tion (0.6.5b) imply, for all mesh elements K ∈ Th,

lim
i→∞

∥v − vi∥K = 0,

lim
i→∞

∥∇(v − vi)∥K = 0,

so that |⟨[[v − vi]], qh⟩F | tends to zero and (1.9.2) follows.

1.9.2 Proof of Theorem 1.8.1

Proof of Theorem 1.8.1. We present a short direct proof, as in Ern and Guermond [20, Corol-
lary 9.13]. Let K ∈ Th and v ∈ H2(K) be fixed. Recall that P1v is the orthogonal projection
onto P1(K) given by (1.8.6). Choosing vh = xi|K , it follows from (1.8.6) that

(∂xi(v − P1v), 1)K = 0 ∀1 ≤ i ≤ d, (1.9.3)

i.e., the difference v − P1v has vanishing first order weak partial derivatives on K. We see,
using (0.3.1), (0.2.1), (1.9.3), (0.7.1) (recall that K is a convex, so that CP,K ≤ 1/π)

∥∇(v − P1v)∥2K =

d∑
i=1

∥∂xi(v − P1v)∥2K
(1.9.3)
=

d∑
i=1

∥∂xi(v − P1v)− (∂xi(v − P1v))K∥2K

(0.7.1)

≤ h2K
π2

d∑
i=1

∥∇∂xi(v − P1v)∥2K =
h2K
π2

d∑
i=1

∥∇∂xiv∥2K

=
h2K
π2

d∑
i=1

d∑
j=1

∥∂xj∂xiv∥2K ≤ 2
h2K
π2

d∑
i=1

d∑
j=i

∥∂xi∂xjv∥2K = 2
h2K
π2

|v|2H2(K);

(1.9.4)

crucially, we also use that P1v ∈ P1(K), so that ∇∂xiP1v = 0 for all 1 ≤ i ≤ d, and compensate
by the factor 2 the fact that the cross derivatives are not repeated in (1.8.2a). Now, using (1.8.7),
(1.8.3) follows.

1.9.3 A priori error estimates: best approximation up to data oscillation

We now present some recent extensions of Theorem 1.7.1.
For p′ ≥ 0, let Πp′ be the L2(Ω) orthogonal projection onto the space Pp′(Th) of Defini-

tion 0.8.1, i.e., for v ∈ L2(Ω),

Πp′v ∈ Pp′(Th), (v −Πp′v, vh) = 0 ∀vh ∈ Pp′(Th). (1.9.5)

Remark that this can be equivalently defined elementwise as

(Πp′v)|K ∈ Pp′(K), (v −Πp′v, vh)K = 0 ∀vh ∈ Pp′(K), ∀K ∈ Th.
With this notation, let us now define the following computable quantity ηosc. We note straight
away that for smooth right-hand sides f , ηosc goes to zero by one order faster than the error
∥∇h(u− uh)∥, which we will discuss in details in Section 1.9.4 below, see (1.9.16).
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Definition 1.9.1 (Data oscillation). Let

η2osc :=
∑
K∈Th

h2K
π2

∥f −Πp−1f∥2K . (1.9.6)

Theorem 1.9.2 (Best approximation in V nc
hp ). Let u ∈ H1

0 (Ω) be the weak solution of Defini-
tion 1.2.1 and uh ∈ V nc

hp its nonconforming finite element approximation of Definition 1.3.2.
Then

∥∇h(u− uh)∥ ≤ C

(
min
vh∈V nc

hp

∥∇h(u− vh)∥+ ηosc

)
, (1.9.7)

where the generic constant C only depends on the mesh shape-regularity parameter κTh, the space
dimension d, and the polynomial degree p.

Proof. We need to bound the second term in (1.7.1). On each mesh element K ∈ Th, let the
specific space of vector-valued polynomials of Raviart and Thomas [6, 36] of degree p′ ≥ 0 be
given by

RTp′(K) := [Pp′(K)]3 + Pp′(K)x. (1.9.8)

We then define
Vhp′ := {vh ∈ H(div,Ω);vh|K ∈ RTp′(K) ∀K ∈ Th}, (1.9.9)

where, recall, H(div,Ω) is introduced in Definition 0.4.2. Two particular features of vh ∈ Vh(p−1)

are that 1) (∇·vh)|K ∈ Pp−1(K) for all mesh elements K ∈ Th; 2) (vh·nF )|F ∈ Pp−1(F ) for
all mesh faces F ∈ Fh. This second property, together with the jump orthogonality assump-
tion (1.3.1), implies the discrete Green formula

(vh,∇hwh) + (∇·vh, wh) = 0 ∀vh ∈ Vh(p−1), ∀wh ∈ V nc
hp .

Let now wh ∈ V nc
hp be fixed and consider any vh ∈ Vh(p−1) such that ∇·vh = Πp−1f . Then

the Poincaré inequality (0.7.1) applied on convex simplices K (so that CP,K ≤ 1/π) together
with the Cauchy–Schwarz inequality give

(f, wh)− (∇u,∇hwh) = (f −Πp−1f, wh) + (Πp−1f, wh)− (∇u,∇hwh)
= (f −Πp−1f, wh) + (∇·vh, wh)− (∇u,∇hwh)
=
∑
K∈Th

(f −Πp−1f, wh −Π0wh)K − (vh +∇u,∇hwh)

≤
∑
K∈Th

∥f −Πp−1f∥K
hK
π

∥∇hwh∥K + ∥vh +∇u∥∥∇hwh∥

≤ (ηosc + ∥vh +∇u∥)∥∇hwh∥.

Consequently, the second term in (1.7.1) (without square) can be bounded by

ηosc + min
vh∈Vh(p−1)

∇·vh=Πp−1f

∥vh +∇u∥.

Thus the consistency error related to the nonconformity uh ̸∈ H1
0 (Ω) has been changed into a

best-approximation in the discrete subspace Vh(p−1) of the H(div,Ω) space plus data oscillation.
The decisive advantage is that this can now be manipulated without any complications related
to the treatment of the nonconformity. In particular, the results from [19] imply

min
vh∈Vh(p−1)

∇·vh=Πp−1f

∥vh +∇u∥ ≤ C

(
min

vh∈Pp(Th)
∥∇h(u− vh)∥+ ηosc

)
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with a generic constant C with same dependencies as in (1.9.7). Since

min
vh∈Pp(Th)

∥∇h(u− vh)∥ ≤ min
vh∈V nc

hp

∥∇h(u− vh)∥,

as V nc
hp ⊂ Pp(Th), this finishes the proof.

Theorem 1.9.3 (Best approximation in Pp(Th)). Let u ∈ H1
0 (Ω) be the weak solution of Defi-

nition 1.2.1 and uh ∈ V nc
hp its nonconforming finite element approximation of Definition 1.3.2.

Then

∥∇h(u− uh)∥ ≤ C

(
min

vh∈Pp(Th)
∥∇h(u− vh)∥+ ηosc

)
, (1.9.10)

where the generic constant C only depends on the mesh shape-regularity parameter κTh, the space
dimension d, and the polynomial degree p.

Proof. The seminal result of Veeser [41] shows that

min
vh∈Vhp

∥∇h(v − vh)∥ ≤ C min
vh∈Pp(Th)

∥∇h(v − vh)∥ ∀v ∈ H1
0 (Ω), (1.9.11)

i.e., up to a generic constant C, the capability of the (much) smaller space Vhp to approximate
a function from the space H1

0 (Ω) is comparable to that of the entire space Pp(Th). Recall that
Vhp ⊂ Pp(Th), which in particular immediately implies the converse inequality

min
vh∈Pp(Th)

∥∇h(v − vh)∥ ≤ min
vh∈Vhp

∥∇h(v − vh)∥ ∀v ∈ H1
0 (Ω).

Since
min
vh∈V nc

hp

∥∇h(u− vh)∥ ≤ min
vh∈Vhp

∥∇h(u− vh)∥, (1.9.12)

as Vhp ⊂ V nc
hp , one concludes (1.9.10) from (1.9.7), (1.9.12), and (1.9.11).

Remark 1.9.4 (Theorems 1.7.1, 1.9.2, and 1.9.3). In Theorem 1.7.1, the bound (1.7.1) consists
of the best approximation of u in the nonconforming finite element space V nc

hp plus the consistency
error. In Theorem 1.9.2, first shown in Gudi [26] for p = 1, the consistency term is absorbed
in the best approximation in V nc

hp plus the data oscillation. The result (1.9.7) makes, up to the

data oscillation term, a parallel with the characterization (1.7.6) in the H1
0 (Ω)-conforming space

Vhp. Finally, Theorem 1.9.3 is a nonconforming extension of Veeser [41]. The bound (1.9.10)
might seem quite surprising at a first sight, since the best approximation in Pp(Th) on the right-
hand side might initially seem to be (much) smaller than the best approximation in V nc

hp on the
left-hand side. This is structurally the sharpest result.

1.9.4 A priori error estimates: rate of convergence for p ≥ 1

In extension of Section 1.8, we prove here that the speed of convergence of ∥∇h(u − uh)∥ for
p ≥ 1 is of order hp. We first need to extend Definition 0.3.1 to higher-order derivatives:

Definition 1.9.5 (Weak multi-index derivative). Let a scalar-valued function v : Ω → R be
given. Let α = {α1, . . . , αd} ∈ Nd be a multi-index, i.e., a d-tuple of non-negative integers. We
say that v admits a weak α-th partial derivative if

1. v ∈ L2(Ω);

2. there exists a function wα : Ω → R such that

(a) wα ∈ L2(Ω);

(b) (v, ∂αφ) = (−1)|α|(wα, φ) ∀φ ∈ D(Ω),
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where |α| := α1 + . . .+ αd and ∂αφ := ∂α1
x1
. . . ∂αd

xdφ.

We define the weak α-th partial derivative of v, denoted by ∂αv, as

∂αv := ∂α1
x1
. . . ∂αd

xd
v := wα. (1.9.13)

We use the notation ∂αv := v if α = {0, . . . , 0}.

With the notation of Definition 1.9.5, the Sobolev space with m-th order weak partial deriva-
tives is defined as:

Definition 1.9.6 (Space Hm(Ω)). For an integer m ≥ 0, the space Hm(Ω) is the space of
all functions which admit the weak multi-index derivatives of order |α| ≤ m. This is often
abbreviated as

Hm(Ω) = {v ∈ L2(Ω); ∂αv ∈ L2(Ω) ∀α ∈ Nd with |α| ≤ m}.

The m-th order semi-norm is defined as

|u|2Hm(ω) =
∑

|α|=m
∥∂αv∥2ω. (1.9.14)

Equipped with the previous definitions, one can extend Theorem 1.8.1 to any order:

Theorem 1.9.7 (Deny–Lions/Bramble–Hilbert lemma). There holds

min
vh∈Pp(K)

∥∇(v − vh)∥K ≤
√

(p+ 1)!
hpK
πp

|v|Hp+1(K) ∀v ∈ Hp+1(K), ∀K ∈ Th. (1.9.15)

Finally, Theorems 1.9.3 and 1.9.7 immediately imply:

Theorem 1.9.8 (A priori rate of convergence). Let u ∈ H1
0 (Ω) be the weak solution of Defi-

nition 1.2.1 and uh ∈ V nc
hp its nonconforming finite element approximation of Definition 1.3.2.

Let additionally

u|K ∈ Hp+1(K) ∀K ∈ Th,
f |K ∈ Hp(K) ∀K ∈ Th.

Then there exists a constant C only depending on the mesh shape-regularity parameter κTh, the
space dimension d, and the polynomial degree p such that

∥∇h(u− uh)∥ ≤ C

({ ∑
K∈Th

h2pK |u|2Hp+1(K)

} 1
2

+ ηosc

)

≤ Chp

{ ∑
K∈Th

|u|2Hp+1(K)

} 1
2

+ Chp+1

{ ∑
K∈Th

|f |2Hp(K)

} 1
2

.

(1.9.16)





Chapter 2

Potential reconstruction in H1
0(Ω)

In this chapter, we show how to, from a possibly completely discontinuous piecewise polynomial,
efficiently reconstruct a continuous piecewise polynomial. This will turn as an important tool
to obtain reliable and efficient a posteriori error estimates in Chapter 4. As a theoretical device,
though, it also serves in a priori error analysis: was have already used in the background of the
proof of Theorem 1.9.3 in Chapter 1 (it serves to demonstrate the result of [41]), and we will
also use it in a priori error estimates in Chapter 6. Below, we follow the results in Karakashian
and Pascal [27], Burman and Ern [10], and [24, 25].

2.1 Setting

Let p ≥ 1 be a given polynomial degree. Recall Definition 0.8.1 of the piecewise polynomial
space

Pp(Th) = {vh ∈ L2(Ω); vh|K ∈ Pp(K) ∀K ∈ Th} (2.1.1)

and Definition 1.3.1 of the weakly-continuous (Crouzeix–Raviart) nonconforming finite element
space

V nc
hp = {vh ∈ Pp(Th); ⟨[[vh]], qh⟩F = 0 ∀qh ∈ Pp−1(F ), ∀F ∈ Fh}. (2.1.2)

Let p′ ≥ 1 be a polynomial degree, possibly different from p. The standard finite element space
from Remark 1.3.3 is then

Vhp′ = Pp′(Th) ∩H1
0 (Ω). (2.1.3)

2.2 Lagrangian nodes

Lagrangian nodes for a mesh element K ∈ Th are points xi ∈ K (recall that K is supposed
closed) that enable a unique prescription of a polynomial vh ∈ Pp(K) by its values in xi. The
typical (but not mandatory) choice is depicted in Figure 2.1 for p = 1 and p = 2 in two or
three space dimensions. Similarly, Lagrangian nodes for the entire computational domain Ω are
points xi ∈ Ω that enable a unique prescription of a continuous piecewise polynomial vh ∈ Vhp.
The typical (but again not mandatory) choice is depicted in Figure 2.2; this choice matches with
that in Figure 2.1, left. Note in particular that prescribing the point values in the “free” nodes
located inside Ω ensures the H1(Ω) trace-continuity, which is equivalent to the C0(Ω)-continuity
for piecewise polynomials, see the exercices. Imposing zero point values in the “frozen” nodes
located at the boundary ∂Ω then in turn ensures the homogeneous Dirichlet boundary condition.
We refer for details to Ciarlet [12, Section 2.2.2].
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Figure 2.1: Lagrangian nodes for a mesh element K ∈ Th, p = 1 and p = 2; d = 2 (left) and
d = 3 (right)
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Figure 2.2: Ω = (−1, 1) × (−1, 1), d = 2. Lagrangian nodes for the space Vhp with p = 1 (left)
and p = 2 (right); “free” nodes in black, “frozen” nodes where values are fixed to zero in grey

2.3 Potential reconstruction by averaging

The following is a simple locally-defined operator from Pp(Th) to Vhp. We illustrate it in Figure 2.3
when applied to vh ∈ V nc

h1 ⊂ P1(Th) given by the basis function ψF from Definition 1.6.1. A
more general example is given in Figure 2.4.

Definition 2.3.1 (Potential reconstruction by averaging). Let vh ∈ Pp(Th) be given. Then the
potential reconstruction by averaging, sh ∈ Vhp, is prescribed by its values in the Lagrange points
of the space Vhp by

sh(x) :=
1

|Tx|
∑
K∈Tx

vh|K(x) x is a Lagrange point of Vhp included in Ω, (2.3.1a)

sh(x) := 0 x is a Lagrange point of Vhp included in ∂Ω, (2.3.1b)

where Tx denotes the set of elements of the mesh Th that contain the point x and |Tx| is the
cardinality (number of elements) of this set.

2.4 Approximation properties

The procedure of Definition 2.3.1 has been analyzed in [27, 10, 1] to yield the following crucial
result. It states that, up to a generic constant, no function from the infinite-dimensional space
H1

0 (Ω), s ∈ H1
0 (Ω), can be made closer to vh than sh in the [L2(Ω)]d norm of the broken weak

gradient when vh ∈ V nc
hp . This is truly remarkable, since sh is only a piecewise polynomial that

has been constructed locally. Below, TK is the set of mesh elements that share at least a vertex
with K ∈ Th and ωK is the corresponding subdomain of Ω.
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Figure 2.3: d = 2, p = 1. The function vh = ψF ∈ V nc
h1 from Definition 1.6.1 and the corre-

sponding potential reconstruction sh ∈ Vh1 from Definition 2.3.1

Figure 5 – Solution post-traitée unh (à gauche) et solution conforme snh (à droite)
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Lemme 3.1. On suppose que sh,τ vérifie (3.7) et (3.10). Alors, pour tout 1 ≤ n ≤ N , on a
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maillages T n et T n+1. De même, sn−1

h et un−1
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0 (Ω)-conforme
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Figure 2.4: d = 2, p = 2. A function vh ∈ V nc
h2 and the corresponding potential reconstruction

sh ∈ Vh2 from Definition 2.3.1

Theorem 2.4.1 (Approximation of the potential reconstruction of Definition 2.3.1 on V nc
hp ). Let

vh ∈ V nc
hp be arbitrary and let sh ∈ Vhp be given by Definition 2.3.1. Then, for all s ∈ H1

0 (Ω),
there holds the local approximation property

∥∇h(vh − sh)∥K ≤ C∥∇h(vh − s)∥ωK ∀K ∈ Th, (2.4.1)

where the constant C only depends (unfavorably) on the mesh shape-regularity parameter κTh, on
the space dimension d, and on the polynomial degree p. With a constant with same dependencies,
there also holds the global approximation property

∥∇h(vh − sh)∥ ≤ C∥∇h(vh − s)∥. (2.4.2)

Proof. Each mesh element K ′ ∈ Th is only included a given number of times in TK for some K ∈
Th, where this number solely depends on d and κTh . Thus, upon squaring and summing (2.4.1)
over all mesh elements K ∈ Th, property (2.4.2) follows. Consequently, we only show (2.4.1).
For this purpose, we proceed in two steps. Let a ≲ b stand for a ≤ cb, where c only depends on
κTh , d, and p. Fix vh ∈ V nc

hp and K ∈ Th.
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1) We first show that

∥∇h(vh − sh)∥K ≲

 ∑
F∈FK

h−1
F ∥[[vh]]∥2F


1
2

, (2.4.3)

where FK denotes all the faces of the mesh Th that share at least a vertex with the simplex K.
We start preparing some concepts.

a) Recall that Pp(K) denotes the space of polynomials on the simplex K of total degree at
most p. Its Lagrangian basis is given by functions ψi ∈ Pp(K) such that

ψi(xj) = δij , (2.4.4)

where xj are the corresponding Lagrangian nodes.
b) Since ψi is polynomial on K and varies between 0 and 1 in the Lagrangian nodes, |∇ψi| ≲

h−1
K , so that

∥∇ψi∥K ≲ h−1
K |K| 12 , (2.4.5)

where |K| is the d-volume of the simplex K (cf. the similar reasoning in (1.6.8)).
c) Let F ∈ FK ∩ F int

h be an interior face shared by the simplex K together with simplex
K ′ ∈ Th, with nF pointing from, say, K to K ′. We distinguish four cases. Let i) xi be a
Lagrangian node in K located in the interior of the face F , so that Txi = {K,K ′} and |Txi | = 2
in (2.3.1a). Then, there holds

(vh − sh)|K(xi) = vh|K(xi)− 1
2(vh|K(xi) + vh|K′(xi))

= 1
2(vh|K(xi)− vh|K′(xi)) =

1
2 [[vh]]F (xi),

(2.4.6)

where we have also used Definition 0.6.2 of the jump. For ii) a Lagrangian node xi in K located
at the boundary of the above face F but not on ∂Ω, which in particular includes the mesh
interior vertices a, (2.3.1a) similarly gives

(vh − sh)|K(xi) = vh|K(xi)−
1

|Txi |
∑

K′∈Txi

vh|K′(xi)

=
1

|Txi |
∑

K′∈Txi

(
vh|K(xi)− vh|K′(xi)

)
=
∑
F ′∈Fi

αF ′,i[[vh]]F ′(xi),

(2.4.7)

where Fi ⊂ FK is a set of mesh faces located in the element patch TK specific for xi and αF,i
are some positive coefficients only depending on |Txi |, which itself only depends on d and κTh .
Remark that formula (2.4.6) is a specific instance of (2.4.7) with Fi = {F} and αF,i =

1
2 . Finally,

for iii) a Lagrangian node xi located in the interior of the element K, (2.3.1a) trivially gives

(vh − sh)|K(xi) = vh|K(xi)− vh|K(xi) = 0, (2.4.8)

since there no averaging was performed, whereas for iv) any Lagrangian node xi in K located
on F ∈ FK , F ⊂ ∂Ω, (2.3.1b) gives

(vh − sh)|K(xi) = vh|K(xi) = [[vh]]F (xi) (2.4.9)

in view of Definition 0.6.2 of the jump. From (2.4.6)–(2.4.9), we observe that, for any Lagrangian
node xi in K, there are non-negative coefficients αF,i only depending on d and κTh such that

(vh − sh)|K(xi) =
∑
F∈FK

αF,i[[vh]]F (xi). (2.4.10)
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d) Using (2.4.4) gives

(vh − sh)|K =

|Pp(K)|∑
i=1

(vh − sh)|K(xi)ψ
i, (2.4.11)

so that

∥∇(vh − sh)∥K
(2.4.11)
=

∥∥∥∥∥
|Pp(K)|∑
i=1

(vh − sh)|K(xi)∇ψi
∥∥∥∥∥
K

(2.4.10)
=

∥∥∥∥∥
|Pp(K)|∑
i=1

∑
F∈FK

αF,i[[vh]]F (xi)∇ψi
∥∥∥∥∥
K

≤
|Pp(K)|∑
i=1

∑
F∈FK

∣∣αF,i[[vh]]F (xi)∣∣∥∥∇ψi∥∥K
(2.4.5)

≲ h−1
K |K| 12

|Pp(K)|∑
i=1

∑
F∈FK

∣∣αF,i[[vh]]F (xi)∣∣
≲ h−1

K |K| 12 |Pp(K)|
∑
F∈FK

∥[[vh]]∥∞,F

≲ h−1
K

∑
F∈FK

|F | 12h
1
2
F |F |−

1
2 ∥[[vh]]∥F

≲
∑
F∈FK

h
− 1

2
F ∥[[vh]]∥F

≲

 ∑
F∈FK

h−1
F ∥[[vh]]∥2F


1
2

,

where we have also used the norm equivalence

∥[[vh]]∥∞,F ≲ |F |− 1
2 ∥[[vh]]∥F ,

the mesh shape-regularity consequences

|K| 12 ≲ |F | 12h
1
2
F , hF ≲ hK ,

the facts that the dimension |Pp(K)| only depends on p and d and that the number of faces |FK |
only depends on d and κTh , and the Cauchy–Schwarz inequality. This establishes (2.4.3).

2) Let s ∈ H1
0 (Ω) be arbitrary. We now crucially use that fact that [[s]] = 0 on all faces

F ∈ Fh by Theorem 0.6.3. Let F be a face from the element patch TK not lying on the domain
boundary ∂Ω, F ∈ FK ∩ F int

h . Let be F shared by two mesh elements K1 and K2. Then, using
the jump definition (0.6.2a) and the trace inequality (0.7.3b), there holds

∥[[vh]]∥F = ∥[[vh − s]]∥F = ∥(vh − s)|K1 − (vh − s)|K2∥F
= ∥(vh − s)|K1 − (vh − s)F + (vh − s)F − (vh − s)|K2∥F

≤
∑

K∈Th, F∈FK

∥(vh − s)|K − (vh − s)F ∥F
(0.7.3b)

≲
∑

K∈Th, F∈FK

h
1
2
K∥∇(vh − s)∥K ,

(2.4.12)

where (vh− s)F is the mean value of the function vh− s on the face F . We recall that (vh− s)F
is crucially uniquely defined from (1.3.1), independently of whether (vh)F means (vh|K1)F or
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(vh|K2)F ; it is at this place that we use the assumption vh ∈ V nc
hp and where we could not

proceed with a general vh ∈ Pp(Th). Since the inequality (2.4.12) also holds for boundary faces
F ∈ FK ∩ Fext

h , we deduce

h
− 1

2
F ∥[[vh]]∥F ≲

∑
K∈Th, F∈FK

∥∇(vh − s)∥K (2.4.13)

by the mesh shape-regularity. Now combining (2.4.3) and (2.4.13), (2.4.1) follows.

2.5 Complements

The potential reconstruction by averaging of Definition 2.3.1 is extremely simple to use in
practice and, as per Theorem 2.4.1, is a powerful tool. However, some structural limits can be
observed. We discuss some of them here and show possible improvements.

2.5.1 Improved potential reconstruction by averaging

In the eye-ball measure, the reconstruction by averaging of Definition 2.3.1 does not produce a
spectacular result in Figure 2.3, which, again in the eye-ball measure, seems to be well improved
in Figure 2.5. In particular when to be applied on the weakly-continuos space V nc

hp , this more
precise alternative is:

Remark 2.5.1 (Potential reconstruction by averaging, preserving the trace moments). Since
vh ∈ V nc

hp preserve polynomial moments of the traces up to degree p − 1, it is interesting to
maintain such a property, i.e.,

⟨sh, qh⟩F = ⟨vh, qh⟩F ∀qh ∈ Pp−1(F ), ∀F ∈ Fh.

Example of such a potential reconstruction for d = 2 and p = 1 is given Figure 2.5. Note,
however, that one has to increase the polynomial degree of the reconstruction sh; in Figure 2.5,
one defines sh ∈ Vh2 and not sh ∈ Vh1.

Figure 2.5: d = 2, p = 1. The function vh = ψF ∈ V nc
h1 from Definition 1.6.1 and the corre-

sponding potential reconstruction sh ∈ Vh2 from Remark 2.5.1

2.5.2 Potential reconstruction by solution of local Dirichlet problems and its
approximation properties

The potential reconstruction by averaging of Definition 2.3.1 only allows to bring to the space
Vhp functions vh that enable pointwise evaluations in each mesh element. Thus, one cannot
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apply it to functions vh from the spaces H1
[[ ]](Th) from Definition 1.4.1 or H1(Th) from Defini-

tion 0.6.1. This comes in concordance with the fact that the generic constant C in Theorem 2.4.1
unfortunately (unfavorably) depends on the polynomial degree p. These two issues are rectified
upon proceeding by following [24, 25].

Let Ta be the set of mesh elements that share the given vertex a ∈ Vh and ωa the corre-
sponding subdomain of Ω. Let also ψa ∈ Vh1 be such that ψa(a) = 1 and ψa(a′) = 0 for all
other vertices a′ ∈ Vh different from a (ψa are the Lagrange basis functions of the space Vh1,
supported on ωa). Let:

Definition 2.5.2 (Potential reconstruction by solution of local Dirichlet problems). Let vh ∈
H1(Th) and a polynomial degree p′ ≥ 1 be given. For each vertex a ∈ Vh, define sah ∈ Pp′(Ta) ∩
H1

0 (ωa) by

(∇sah ,∇wh)ωa = (∇h(ψavh),∇wh)ωa ∀wh ∈ Pp′(Ta) ∩H1
0 (ωa). (2.5.1)

Then, extending sah by zero outside of the vertex patch subdomain ωa, set

sh :=
∑
a∈Vh

sah ∈ Vhp′ . (2.5.2)

Remark that the existence and uniqueness of each sah in (2.5.1) is straightforward from the
Riesz representation theorem; an illustration of the construction of sah for vh ∈ P1(Th) and
p′ = 2 in one space dimension is provided in Figure 2.6. The key ideas of the procedure of
Definition 2.5.2 are the following:

� One performs a local minimization in the patch subdomain ωa around each vertex a ∈ Vh
to find the best-possible local reconstruction contribution sah . Indeed, each s

a
h of (2.5.1) is

equivalently given by

sah := arg min
wh∈Pp′ (Ta)∩H1

0 (ωa)
∥∇h(ψavh − wh)∥ωa . (2.5.3)

Thus, (2.5.1) are localized version of

s̃h := arg min
wh∈Pp′ (Th)∩H1

0 (Ω)
∥∇h(vh − wh)∥ (2.5.4)

which would give the best choice for the potential reconstruction in terms of its distance
to vh. Since (2.5.4) has a practically unacceptable solution price of a global minimization
problem, (2.5.1)/(2.5.3) is tempting.

� One applies a cut-off by hat basis functions ψa to the datum vh, so that ψavh takes the
value zero on ∂ωa for a ∈ V int

h . This is compatible with the zero trace condition in H1
0 (ωa)

appearing in (2.5.1) and (2.5.3).

� The contributions sah satisfy a homogeneous Dirichlet boundary condition on ∂ωa, so that
they can indeed be combined to sh ∈ Vhp′ ⊂ H1

0 (Ω) in (2.5.2).

� Behind the construction, there is the partition of unity∑
a∈Vh

ψa = 1,

which is then crucial for the analysis.

In practice, we can apply Definition 2.5.2 to vh ∈ V nc
hp and choose the reconstruction polyno-

mial degree p′ = p+ 1 in order to obtain sh ∈ Vh(p+1). Then, the following improvement of the
dependencies of the generic constant C of Theorem 2.4.1 is achieved; note that the constant C
below is independent of the polynomial degree p:
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• • •
a′ a a′′

ωa

vh

ψa

ψavh

sah

Figure 2.6: d = 1, p = 1, p′ = 2. Illustration of the local projection sah from Definition 2.5.2

Theorem 2.5.3 (Approximation of the potential reconstruction of Definition 2.5.2 on V nc
hp ). Let

vh ∈ V nc
hp be arbitrary and let sh ∈ Vh(p+1) be given by Definition 2.5.2 for p′ = p+ 1. Then, for

all s ∈ H1
0 (Ω), there holds the local approximation property

∥∇h(vh − sh)∥K ≤ C∥∇h(vh − s)∥ωK ∀K ∈ Th, (2.5.5)

where the constant C only depends on the mesh shape-regularity parameter κTh and on the space
dimension d when 1 ≤ d ≤ 3. With a constant with same dependencies, there also holds the
global approximation property

∥∇h(vh − sh)∥ ≤ C∥∇h(vh − s)∥. (2.5.6)



Chapter 3

Flux reconstruction in H(div,Ω)

In this short chapter, we show that the noncoforming finite element method allows for a straight-
forward elementwise reconstruction a normal-trace continuous vector-valued piecewise polyno-
mial lying in the H(div,Ω) space introduced in Section 0.4. This will turn as in important
tool to obtain a posteriori error estimates in Chapter 4 below. This remarkable property was
probably first noted by Marini [30]. We consider uh of (1.3.2) for simplicity for the polynomial
degree p = 1. Again for simplicity, let the source term f be piecewise constant,

f ∈ P0(Th). (3.0.1)

3.1 Setting and definition

For a simplex K ∈ Th, let xK denote its barycenter and define

fh|K(x) :=
f |K
d

(x− xK) ∀K ∈ Th. (3.1.1)

Note that, on each mesh element K ∈ Th, this is an affine vector-valued function only depending
on the barycenter xK , the constant value f |K , and the space dimension d.

Then we can state:

Definition 3.1.1 (Elementwise flux prescription for the nonconforming finite element method).
Let uh be given by (1.3.2) for p = 1, with f satisfying (3.0.1). Then prescribe

σh|K := −∇huh|K + fh|K ∀K ∈ Th. (3.1.2)

3.2 Properties

The function σh from Definition 3.1.1 satisfies:

Theorem 3.2.1 (Equilibrated flux reconstruction). Let σh be given by Definition 3.1.1. Then
it is an equilibrated flux reconstruction in that

σh ∈ H(div,Ω), (3.2.1a)

∇·σh = f. (3.2.1b)

More precisely, σh ∈ Vh0, where the vector-valued piecewise polynomial space Vh0 is introduced
in (1.9.9) above.

Proof. (3.2.1b) is obvious, taking into account that −∇huh is piecewise constant and thus its
elementwise divergence is zero, whereas the piecewise divergence of fh prescribed by (3.1.1) is
precisely f (supposing f piecewise constant as per (3.0.1)). So we are left with verifying that σh
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given by (3.1.2) belongs to the space H(div,Ω). As discussed in Section 0.4, we need to show
that

[[σh·nF ]] = 0

for all interior mesh faces F ∈ F int
h .

Let F ∈ F int
h be given, and let K1 and K2 be the two elements that share the face F . Now

consider the test function vh = ψF in (1.3.2), where ψF is the basis function associated with
the face F of Definition 1.6.1. Taking into account that ψF is only supported on K1 ∪K2, that
∇huh is piecewise constant (so that its piecewise divergence vanishes and ∇huh·nKi is constant
on each face), the properties of the basis function ψF (recall Figure 1.2), and the Green theorem
gives

(∇huh,∇hψF )K1∪K2 = ⟨∇huh·nK1 , ψ
F ⟩∂K1 + ⟨∇huh·nK2 , ψ

F ⟩∂K2

= ⟨∇huh·nK1 , 1⟩F + ⟨∇huh·nK2 , 1⟩F .

Note the simple property of the barycentre xK of the simplex K ∈ Th

(x,∇hψF )K = (xK ,∇hψF )K ,

which implies
(fh,∇hψF )K = 0

for all K ∈ Th, and recall that ∇·fh|K = f |K on all K ∈ Th. Thus, the Green theorem, the fact
that the normal component fh·nKi is facewise constant (please verify!), and the properties of
ψF imply

(f, ψF )K1∪K2 = (fh,∇hψF )K1 + (fh,∇hψF )K2 + (∇·fh, ψF )K1 + (∇·fh, ψF )K2

= ⟨fh·nK1 , ψ
F ⟩∂K1 + ⟨fh·nK2 , ψ

F ⟩∂K2

= ⟨fh·nK1 , 1⟩F + ⟨fh·nK2 , 1⟩F .

The assertion follows by combining the two above identities with (1.3.2) for vh = ψF and the
definition (3.1.2) of σh.



Chapter 4

The nonconforming finite element
method: a posteriori analysis

Theorems 1.8.2 and 1.9.8 ensure that for a fixed polynomial degree p and a piecewise smooth
weak solution u, u|K ∈ Hp+1(K) for all K ∈ Th, the error by the nonconforming finite element
approximation uh ∈ V nc

hp of Definition 1.3.2 decreases as hp. These bounds justify the noncon-
forming finite element method in that a higher effort (finer mesh with smaller mesh size h or a
higher polynomial degree p) will make uh approach u. Unfortunately, these bounds but do not
allow to assess the actual distance of uh to u measured as ∥∇h(u− uh)∥.

This is the subject of the present chapter, where we will in particular design a procedure of
obtaining a quantity η(uh), fully and locally computable from uh, which structurally gives

∥∇h(u− uh)∥ ≤ η(uh), η(uh) ≤ C∥∇h(u− uh)∥, (4.0.1)

where C is a generic constant only depending (unfavorably) on the shape-regularity parameter
κTh , the space dimension d, and (typically) on the polynomial degree p (actually we will show
how to avoid this last dependency at least for 1 ≤ d ≤ 3). The quantity η(uh) is called an a
posteriori error estimate, since it can only be obtained a posteriori, once uh has been computed.
This is another difference with the a priori error estimates from Theorems 1.8.2 and 1.9.8 which
can be obtained a priori, before uh has been computed. We will in this chapter mainly follow
the expositions in Prager and Synge [34], Destuynder and Métivet, [16, 17], Karakashian and
Pascal [27], Repin [37], Braess and Schöberl [7], and [24, 25], with some technical tools from
Verfürth [42].

4.1 Setting

We adopt here the setting of Chapter 1. We consider the Poisson equation with a homogeneous
Dirichlet boundary condition, where, for f ∈ L2(Ω), we look for u : Ω → R such that

−∆u = f in Ω, (4.1.1a)

u = 0 on ∂Ω; (4.1.1b)

recall that the Laplace differential operator ∆ is defined by (1.1.2). The weak formulation of
problem (4.1.1) consists in finding u ∈ H1

0 (Ω) such that

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω). (4.1.2)

Relying on Definition 1.3.1, the nonconforming finite element method for problem (4.1.1) looks
for uh ∈ V nc

hp such that

(∇huh,∇hvh) = (f, vh) ∀vh ∈ V nc
hp . (4.1.3)
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4.2 Error characterization

To start with, we have the following characterization of the error which reveals that ∥∇h(u−uh)∥
is given by the distance of uh to the correct space for the primal variable (potential) u, which is
H1

0 (Ω), plus the distance of ∇huh to the correct space for the dual variable (flux) −∇u, which is
H(div,Ω), subject to a divergence constraint (recall at this occasion Definitions 0.3.4 and 0.4.2).

Theorem 4.2.1 (Error characterization). Let u ∈ H1
0 (Ω) be the weak solution of (4.1.2) and

let uh ∈ H1(Th) be arbitrary. Then

∥∇h(u− uh)∥2 = min
v∈H(div,Ω)

∇·v=f

∥∇huh + v∥2 + min
v∈H1

0 (Ω)
∥∇h(uh − v)∥2. (4.2.1)

Proof. Let us define a function s ∈ H1
0 (Ω) by

(∇s,∇v) = (∇huh,∇v) ∀v ∈ H1
0 (Ω). (4.2.2)

There exists one and only one s by the Riesz representation theorem. The function s is the
orthogonal projection of the approximate solution uh (when seen as uh ∈ H1

[[ ]](Th)) onto the space
H1

0 (Ω) with respect to the scalar product (∇h ·,∇h ·); recall in this respect from Theorem 1.4.6
that H1

[[ ]](Th) is a Hilbert space for this scalar product. With the aid of s, we can thus write the
Pythagorean equality

∥∇h(u− uh)∥2 = ∥∇(u− s)∥2 + ∥∇h(s− uh)∥2. (4.2.3)

To see this shortly,

∥∇h(u−uh)∥2 = ∥∇h(u− s+ s−uh)∥2 = ∥∇(u− s)∥2+∥∇h(s−uh)∥2+2(∇(u− s),∇h(s−uh)),

and the last term in the above expression vanishes in view of the orthogonality (4.2.2), since
u− s can be taken as a test function v ∈ H1

0 (Ω) in (4.2.2). We now continue in two steps.
1) Since s is a projection of uh,

∥∇h(s− uh)∥2 = min
v∈H1

0 (Ω)
∥∇h(v − uh)∥2. (4.2.4)

This can again be proven directly from (4.2.3) used for any function v ∈ H1
0 (Ω) in place of

u ∈ H1
0 (Ω),

∥∇h(v − uh)∥2 = ∥∇(v − s)∥2 + ∥∇h(s− uh)∥2,
from where we get

∥∇h(s− uh)∥2 = ∥∇h(v − uh)∥2 − ∥∇(v − s)∥2 ≤ ∥∇h(v − uh)∥2 ∀v ∈ H1
0 (Ω).

This handles the second term in (4.2.3) in the form needed in (4.2.1).
2) As for the first term in (4.2.3), we first notice that u− s ∈ H1

0 (Ω). Thus, (4.2.2) gives

∥∇(u− s)∥ = max
φ∈H1

0 (Ω)
∥∇φ∥=1

(∇(u− s),∇φ) = max
φ∈H1

0 (Ω)
∥∇φ∥=1

(∇h(u− uh),∇φ). (4.2.5)

Let now φ ∈ H1
0 (Ω) with ∥∇φ∥ = 1 be fixed. Using the characterization (4.1.2) of the weak

solution, we have
(∇h(u− uh),∇φ) = (f, φ)− (∇huh,∇φ). (4.2.6)

Finally, for an arbitrary v ∈ H(div,Ω) such that ∇·v = f , the Green theorem gives

(f, φ)− (∇huh,∇φ) = (∇·v, φ)− (∇huh,∇φ) = −(∇huh + v,∇φ).



4.2 Error characterization 43

Consequently, by the Cauchy–Schwarz inequality,

∥∇(u− s)∥ ≤ min
v∈H(div,Ω)

∇·v=f

∥∇uh + v∥. (4.2.7)

In the rest of the proof, we show that actually

∥∇(u− s)∥ = min
v∈H(div,Ω)

∇·v=f

∥∇huh + v∥, (4.2.8)

which handles the first term in (4.2.3) in the form needed in (4.2.1).
The argument of the minimum in (4.2.7) is

σ := arg min
v∈H(div,Ω)

∇·v=f

∥∇huh + v∥

and is characterized by the Euler–Lagrange conditions as a function σ ∈ H(div,Ω) with∇·σ = f
such that

(σ,v) = −(∇huh,v) ∀v ∈ H(div,Ω) with ∇·v = 0.

This problem is in turn equivalent to finding σ ∈ H(div,Ω) and r ∈ L2(Ω) such that

(σ,v)− (r,∇·v) = −(∇huh,v) ∀v ∈ H(div,Ω), (4.2.9)

(∇·σ, q) = (f, q) ∀q ∈ L2(Ω). (4.2.10)

Now, (4.2.9) implies, see, e.g., [45, Theorem 6.3.1], that r ∈ H1
0 (Ω) with ∇r = −σ − ∇huh.

Consequently, by the Green theorem,

min
v∈H(div,Ω)

∇·v=f

∥∇huh + v∥ = ∥∇huh + σ∥ = ∥∇r∥ = max
φ∈H1

0 (Ω)
∥∇φ∥=1

(∇r,∇φ)

= max
φ∈H1

0 (Ω)
∥∇φ∥=1

(−σ −∇huh,∇φ) = max
φ∈H1

0 (Ω)
∥∇φ∥=1

{(f, φ)− (∇huh,∇φ)},
(4.2.11)

and (4.2.5)–(4.2.6) show that (4.2.8) holds true. Thus (4.2.3), (4.2.4), and (4.2.8) imply the
claim (4.2.1).

The heart of the above result can be traced back to at least Prager and Synge [34] who
showed the following result. Here uh is supposed conforming, uh ∈ H1

0 (Ω).

Theorem 4.2.2 (Prager–Synge equality). Let u ∈ H1
0 (Ω) be the weak solution of (4.1.2) and

let uh ∈ H1
0 (Ω) and v ∈ H(div,Ω) with ∇·v = f be arbitrary. Then

∥∇(u− uh)∥2 + ∥∇u+ v∥2 = ∥∇uh + v∥2. (4.2.12)

Proof. Adding and subtracting ∇u, we develop

∥∇uh + v∥2 = ∥∇(uh − u)∥2 + ∥∇u+ v∥2 + 2(∇(uh − u),∇u+ v).

It follows from (4.1.2) that ∇u ∈ H(div,Ω) with ∇·(∇u) = −f , see the weak divergence
Definition 0.4.1. Thus (∇u+ v) ∈ H(div,Ω), and, importantly, ∇·(∇u+ v) = 0. Consequently,
using that uh − u ∈ H1

0 (Ω), the Green theorem gives

(∇u+ v,∇(uh − u)) = −(∇·(∇u+ v), uh − u) = 0,

whence the assertion follows.



44 Chapter 4. The nonconforming finite element method: a posteriori analysis

4.3 A posteriori error estimate for the nonconforming finite el-
ement method, p = 1

In order to arrive at our first goal in (4.0.1), we can use the characterization of Theorem 4.2.1
which gives

∥∇h(u− uh)∥2 ≤ ∥∇huh + σh∥2 + ∥∇h(uh − sh)∥2

for any
sh ∈ H1

0 (Ω) and σh ∈ H(div,Ω) such that ∇·σh = f.

For nonconforming finite elements with p = 1, suitable sh and σh are:

Theorem 4.3.1 (A posteriori error estimate for the nonconforming finite element method,
p = 1). Let f ∈ P0(Th) for simplicity, let u ∈ H1

0 (Ω) be the weak solution of (4.1.2), and
let uh ∈ V nc

hp from (4.1.3) be its nonconforming finite element approximation for p = 1. Let
sh ∈ Vh1 be the potential reconstruction given by Definition 2.3.1 for vh = uh, and let σh ∈
Vh0 ⊂ H(div,Ω) be the flux reconstruction given by Definition 3.1.1. Then

∥∇h(u− uh)∥2 ≤
∑
K∈Th

(
∥∇huh + σh∥2K + ∥∇h(uh − sh)∥2K

)
︸ ︷︷ ︸

η2(uh)

. (4.3.1)

Proof. Immediate from Theorem 4.2.1, relying on Theorem 3.2.1.

A few remarks are in order:

� Define
η2K(uh) := ∥∇huh + σh∥2K + ∥∇h(uh − sh)∥2K . (4.3.2)

This is often called an element estimator. It is remarkably calculable from the noncon-
forming finite element approximation uh, locally on the element K and in the elements
sharing a vertex with K.

� The estimator ηK is extremely cheap to compute: actually

∥∇huh + σh∥K = ∥fh∥K (4.3.3)

from (3.1.2), where, recall, fh is given by (3.1.1).

� There is no hidden unknown constant: (4.3.1) allows to control the error and thus assess
the quality of the numerical solution.

The second goal in (4.0.1) aims at ensuring the quality of the a posteriori error estimate
η(uh): whatever happens (nice or ugly domain Ω, fine or coarse mesh Th, regular or singular
solution u), η(uh) needs to behave as the error ∥∇h(u− uh)∥. Only then the known a posteriori
error estimate η(uh) is sound, mathematically equivalent to the unknown error. Actually, better
than the second property in (4.0.1), we even achieve a local bound on ωK , the subdomain
corresponding to TK , all mesh elements that share at least a vertex with K ∈ Th. The following
is a useful result in this direction, following Verfürth [42]:

Lemma 4.3.2 (Element residual). For K ∈ Th, let uh ∈ Pp(K) and f ∈ Pp(K). Then

hK∥f +∆uh∥K ≤ C∥∇h(u− uh)∥K , (4.3.4)

where the constant C only depends on the mesh shape-regularity parameter κTh, on the space
dimension d, and on the polynomial degree p.
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Proof. Let a ≲ b stand for a ≤ cb, where c only depends on κTh , d, and p. Set

vK := (f +∆uh)|K . (4.3.5)

Let ψK be the bubble function on K given by the product of the d + 1 Lagrange hat basis
functions ψa, a ∈ VK , on the element K. Note that ψK |∂K = 0. Also note that both vK and
ψK are polynomials. By equivalence of norms on finite-dimensional spaces, there consequently
holds

(vK , vK)K ≲ (vK , ψKvK)K . (4.3.6)

Using the inverse inequality (cf. Quarteroni and Valli [35, Proposition 6.3.2]), we obtain

hK∥∇(ψKvK)∥K ≲ ∥ψKvK∥K . (4.3.7)

Finally, from the definition of the bubble function ψK , there holds

∥ψKvK∥K ≤ ∥ψK∥∞,K∥vK∥K ≤ ∥vK∥K . (4.3.8)

Thus, using these properties and noting that ψKvK ∈ H1
0 (K), together with (4.1.2), the Green

theorem, and the Cauchy–Schwarz inequality, we see

∥vK∥2
(4.3.6)

≲ (vK , ψKvK)K
(4.3.5)
= (f +∆uh, ψKvK)K

(4.1.2)
Green= (∇(u− uh),∇(ψKvK))K

≤ ∥∇(u− uh)∥K∥∇(ψKvK)∥K

(4.3.7)
(4.3.8)

≲ ∥∇(u− uh)∥Kh−1
K ∥vK∥K .

Therefrom, the assertion of the lemma follows.

We are now ready to assess the quality of the estimates of Theorem 4.3.1:

Theorem 4.3.3 (Efficiency of the a posteriori error estimate for the nonconforming finite el-
ement method, p = 1). Let the assumptions of Theorem 4.3.1 be verified. Then, with the
notation (4.3.2), the local efficiency holds,

ηK(uh) ≤ C∥∇h(u− uh)∥ωK , (4.3.9)

where the constant C only depends on the mesh shape-regularity parameter κTh and on the space
dimension d. With a constant with same dependencies, there also holds the global efficiency

η(uh) ≤ C∥∇h(u− uh)∥. (4.3.10)

Proof. The property (4.3.10) is clearly a consequence of (4.3.9), just as in the proof of Theo-
rem 2.4.1. Actually, choosing vh = uh and s = u in Theorem 2.4.1, we immediately have

∥∇h(uh − sh)∥K ≤ C∥∇h(u− uh)∥ωK .

For the other term in (4.3.2), we use (4.3.3), which together with the definition (3.1.1) of fh
gives

∥∇huh + σh∥K = ∥fh∥K =
∥∥∥f |K
d

(x− xK)
∥∥∥
K

≤ hK
d

∥f +∆uh∥K ;

here, we have used the fact that, since p = 1, ∆(uh|K) = 0, as well as the estimate |x−xK | ≤ hK .
Thus, Lemma 4.3.2 allows us to conclude

∥∇huh + σh∥K ≤ C∥∇h(u− uh)∥K ,

and consequently (4.3.9) follows.
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4.4 Numerical illustration: a posteriori error localization and
control

Consider a problem of the form (4.1.1), featuring additionally a diffusion coefficient S:

−∇·(S∇u) = 0 in Ω = (−1, 1)× (−1, 1). (4.4.1)

Let more precisely S|Ωi = siI on the four subdomains Ωi of Ω, as illustrated in the two settings
of Figure 4.1. Here I is the identity matrix and si are positive constants.
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Figure 4.1: Subdomains Ωi, 1 ≤ i ≤ 4, and the diffusion tensor S

Figure 4.2: Exact solutions of the from (4.4.2) for α ≈ 0.54 (left) and α ≈ 0.13 (right)

The considered setting leads to exact solutions featuring the singularity at the origin (0, 0)
which take the form, following Kellogg [28],

u(r, θ) = rα(ai sin(αθ) + bi cos(αθ)), (4.4.2)

where

� (r, θ) are the polar coordinates in Ω,

� ai, bi are constants depending on Ωi,

� α is the regularity of the exact solution; u ∈ H1+α(Ω), where α ≈ 0.54 for the left setting
of Figure 4.1 and α ≈ 0.13 for the right setting of Figure 4.1.
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These exact solutions for the two settings of Figure 4.1 are depicted in Figure 4.2. We also use
them to impose an inhomogeneous Dirichlet boundary condition that complements (4.4.1).

We now apply the nonconforming finite element method with the polynomial degree p = 1 to
problem (4.4.1) and evaluate the a posteriori error estimators ηK(uh) following Theorem 4.3.1.
The forthcoming results are taken from [44]. The estimators ηK(uh) are depicted in the left part
of Figure 4.3, whereas the errors ∥∇(u−uh)∥K (using the knowledge of the exact solution u given
by (4.4.2) in this model test case) (α ≈ 0.54) are depicted in the right part of Figure 4.3. We
clearly see that the estimators ηK(uh) allow to predict where the error is localized, without the
knowledge of the exact solution u. This is the practical consequence of the local efficiency (4.3.9):
if we predict the error to be of some size in some element, then it is the case (possibly also in
the neighborhood of the element).
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Figure 4.3: Estimated error distribution ηK(uh) (left) and exact error distribution ∥∇(u−uh)∥K
(right), α ≈ 0.54

We finally assess the overall quality of the a posteriori error estimators of Theorem 4.3.1.
This is best done in terms of the effectivity index

Ieff :=
η(uh)

∥∇h(u− uh)∥
.

From (4.3.1), we know that Ieff ≥ 1, and from (4.3.10) of Theorem 4.3.3, we know that Ieff is
bounded from above by a generic constant. Figure 4.4 shows that Ieff is actually quite close to
the optimal value of 1.
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Figure 4.4: Effectivity indices, α ≈ 0.54 (left) and α ≈ 0.13 (right)
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4.5 Complements

We collect here some additional material, developing further the above contents.

4.5.1 An abstract a posteriori error estimate

Theorem 4.2.1 is the basis for the following more general result:

Theorem 4.5.1 (Abstract a posteriori error estimate). Let u ∈ H1
0 (Ω) be the weak solution

of (4.1.2) and let uh ∈ H1(Th) be arbitrary. Let

sh ∈ H1
0 (Ω) and σh ∈ H(div,Ω) such that (∇·σh, 1)K = (f, 1)K ∀K ∈ Th (4.5.1)

be arbitrary. Then

∥∇h(u− uh)∥2 ≤
∑
K∈Th

(
∥∇huh + σh∥K +

hK
π

∥f −∇·σh∥K
)2

+
∑
K∈Th

∥∇h(uh − sh)∥2K . (4.5.2)

Proof. We build on (4.2.1). The second term is trivially bounded by ∥∇h(uh − sh)∥2, so we are
left with the first one. From (4.2.11), we need to work with

(f, φ)− (∇huh,∇φ)

for a given φ ∈ H1
0 (Ω) with ∥∇φ∥ = 1. Adding and subtracting (σh,∇φ) and using the Green

theorem, we infer

(f, φ)− (∇huh,∇φ) = (f −∇·σh, φ)− (∇huh + σh,∇φ).

The Cauchy–Schwarz inequality gives for the second term above

−(∇huh + σh,∇φ) = −
∑
K∈Th

(∇huh + σh,∇φ)K ≤
∑
K∈Th

∥∇huh + σh∥K∥∇φ∥K ,

whereas the approximate equilibrium property (4.5.1), the Poincaré inequality (0.7.1) applied
on convex mesh elements K, and the Cauchy–Schwarz inequality give for the first term above

(f −∇·σh, φ) =
∑
K∈Th

(f −∇·σh, φ)K =
∑
K∈Th

(f −∇·σh, φ− φK)K

≤
∑
K∈Th

hK
π

∥f −∇·σh∥K∥∇φ∥K .

The Cauchy–Schwarz inequality concludes the proof in that

min
v∈H(div,Ω)

∇·v=f

∥∇huh + v∥ = max
φ∈H1

0 (Ω)
∥∇φ∥=1

{(f, φ)− (∇huh,∇φ)}

≤
{ ∑
K∈Th

(
∥∇huh + σh∥K +

hK
π

∥f −∇·σh∥K
)2} 1

2

.

Remark 4.5.2 (Theorem 4.5.1). The three estimators of Theorem 4.5.1 reflect respectively the
three possible violations of physical properties of an approximate solution uh. Note that whenever
uh ∈ H1

0 (Ω), we can set sh = uh, and the corresponding estimator vanishes. Similarly, shall it
happen that −∇huh ∈ H(div,Ω) and ∇·(−∇huh) = f , we can set σh = −∇huh, and the two
other estimators vanish.
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4.5.2 A posteriori error estimate for the nonconforming finite element method,
p ≥ 1

We will now finally indicate how to perform an a posteriori error analysis in the spirit of (4.0.1)
for the nonconforming finite element method (4.1.3) for any polynomial degree p ≥ 1.

Recall the definition Πp′ of the L
2(Ω) orthogonal projection onto the piecewise polynomial

space Pp′(Th) from (1.9.5). We will adjust Definition 1.9.1 here to:

Definition 4.5.3 (Data oscillation). For p′ ≥ 0, let

ηosc,K,p′ :=
hK
π

∥f −Πp′f∥K , (4.5.3)

η2osc,p′ :=
∑
K∈Th

η2osc,K,p′ . (4.5.4)

Recall next the Raviart–Thomas space (1.9.8) as well as the notation Ta for the set of mesh
elements that share the given vertex a ∈ Vh and ωa for the corresponding patch subdomain.
Then we define

RTp′(Ta) := {vh ∈ [L2(ωa)]
d;vh|K ∈ RTp′(K) ∀K ∈ Ta}. (4.5.5)

The following is the counterpart of Definition 2.5.2 for the vector-valued dual variable; an illus-
tration is given in Figure 4.5.

Definition 4.5.4 (Flux reconstruction by solution of local Neumann problems). Let vh ∈
H1(Th) such that

(∇hvh,∇ψa) = (f, ψa) ∀a ∈ V int
h (4.5.6)

and a polynomial degree p′ ≥ 0 be arbitrary. For each vertex a ∈ Vh, set up the local space

V a
hp′ :=

{
vh ∈ RTp′(Ta) ∩H(div, ωa);

vh·n = 0 on ∂ωa for a ∈ V int
h ,

vh·n = 0 on ∂ωa \ faces sharing a for a ∈ Vext
h

}
.

Define
σa
h := arg min

vh∈V a
hp′

∇·vh=Πp′ (fψ
a−∇hvh·∇ψa)

∥ψa∇hvh + vh∥ωa . (4.5.7)

Then, extending σa
h by zero outside of ωa, set

σh :=
∑
a∈Vh

σa
h ∈ Vhp′ . (4.5.8)

Following [7, 24, 25], we can now identify a practical variant of Theorem 4.5.1, extending
Theorems 4.3.1 and 4.3.3 to an arbitrary polynomial degree p ≥ 1. Crucially, this result is robust
with respect to the polynomial degree p, at least for 1 ≤ d ≤ 3 (with a constant C independent
of p, not deteriorating with p). This is typically very useful when working with hp finite elements
that we will discuss in the following Chapter 6.

Theorem 4.5.5 (A posteriori error estimate for the nonconforming finite element method and
its efficiency). Let u ∈ H1

0 (Ω) be the weak solution of (4.1.2) and let uh ∈ V nc
hp from (4.1.3) be

its nonconforming finite element approximation for p ≥ 1. Let sh ∈ Vh(p+1) be given by Defini-
tion 2.5.2 for vh = uh and p′ = p+1 and let σh ∈ Vhp ⊂ H(div,Ω) be given by Definition 4.5.4
for vh = uh and p′ = p. Then

∥∇h(u− uh)∥2 ≤
∑
K∈Th

(
∥∇huh + σh∥K + ηosc,K,p

)2
+
∑
K∈Th

∥∇h(uh − sh)∥2K︸ ︷︷ ︸
η2(uh)

. (4.5.9)
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Figure 4.5: Ω = (−1, 1) × (−1, 1), d = 2, p = 1. A function vh ∈ Vh1 (top), its broken weak
gradient ∇hvh ∈ [P0(Th)]d (bottom left), and the corresponding equilibrated flux reconstruction
−σh ∈ Vh1 from Definition 4.5.4 (bottom right)

Moreover, there holds the local efficiency

∥∇huh + σh∥K + ∥∇h(uh − sh)∥K ≤ C

(
∥∇h(u− uh)∥ωK +

{ ∑
K′∈TK

η2osc,K′,p−1

} 1
2
)
, (4.5.10)

as well as the global efficiency

η(uh) ≤ C∥∇h(u− uh)∥+ ηosc,p−1, (4.5.11)

where the constant C only depends on the mesh shape-regularity parameter κTh and on the space
dimension d when 1 ≤ d ≤ 3.



Chapter 5

Adaptive finite elements

In this rather exploratory chapter, we first continue the numerical example of Section 4.4. We
then quickly present some important theoretical results.

5.1 Adaptive finite elements: numerical illustration of mesh
adaptivity

We now continue further with the numerical example from Section 4.4.

From (4.3.9) and (4.5.10), illustrated in Figure 4.3, we know where the error is localized: if
we predict that an error of some size in mesh element K ∈ Th, then, up to a generic constant,
error of this size is indeed present in the element K and possibly in its neighbors. We can then
try to adapt the mesh Th by refining it in the problematic parts only, there where the values of
the estimators ηK(uh) are increased, to hopefully better approximate the exact solution u. The
outcome for the example from Section 4.4 is visualized in Figure 5.1 and is clearly beneficial
visually.
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Figure 5.1: Nonconforming finite element approximate solution (left) on an adaptively refined
mesh (right), α ≈ 0.13

We can now ask the following important question: does the adaptive mesh refinement (driven
by the estimators ηK(uh)) from Theorem 4.3.1 or 4.5.5 lead to a faster error decrease than the
uniform mesh refinement, where each triangle is always cut into four congruent triangles (so that
all mesh elements are of comparable size h, in the spirit of the a priori bound of Theorem 1.8.2)?
The answer, presented in Figure 5.2, is decisively yes. Actually, for the uniform mesh refinement,
the error decrease is of order hα, i.e., it depends (and deteriorates) with the exact solution
regularity. In contrast, the speed of the error decrease (rate of convergence) with respect to the
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number of mesh elements/degrees of freedom in the space V nc
hp (these two numbers are similar,

up to a constant) is independent of the exact solution regularity α. Actually, the speed of the
error decrease (convergence rate) is the best-possible by piecewise first-order polynomials, the
same as the order h from Theorem 1.8.2 for regular solution and uniform mesh refinement. Note
that the maximal mesh size h does not give much sense anymore whereas the number of degrees
of freedom always gives a good sense.
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Figure 5.2: Errors and estimators for uniform and adaptive mesh refinement, α ≈ 0.54 (left),
α ≈ 0.13 (right)

We finally again assess the quality of the a posteriori error estimators in terms of the effec-
tivity index

Ieff :=
η(uh)

∥∇h(u− uh)∥
,

now both for uniform and adaptive mesh refinement. Still, from (4.3.1) of Theorem 4.3.1, we
know that Ieff ≥ 1, and from (4.3.10) of Theorem 4.3.3, we know that Ieff is bounded from above
by a generic constant; this holds on any sequence of meshes, uniformly or adaptively refined.
Figure 5.3 shows that Ieff is still quite close to the optimal value of 1, and, additionally, improves
with adaptive mesh refinement.
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Figure 5.3: Effectivity indices, α ≈ 0.54 (left) and α ≈ 0.13 (right)

5.2 Adaptive finite elements: some theoretical background

Let us now quickly present some important theoretical results that are beyond what can be
observed in the numerical experiment above in Section 5.1. We do so in the context of the
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conforming finite element method of Remark 1.3.3, following the seminal contributions in [18,
31, 39, 11].

The central point is to select visely the mesh elements to be refined. This is done by
identifying the (minimal) subset Mℓ of all mesh elements in Tℓ containing the θ-fraction of the
whole estimated error: ∑

K∈Mℓ

ηK(uℓ)
2 ≥ θ2

∑
K∈Tℓ

ηK(uℓ)
2.

Here, we have quitted the notation Th, uh that gives no much sense anymore, since not all mesh
elements will have a comparable diameter h. Instead, we give a number ℓ to each mesh (and we
will form a sequence od meshes). Now, we do not refine all mesh elements in Tℓ but only those
contained in the set Mℓ; we call the elements in Mℓ marked for refinement. In practice, one
needs to also refine some neighbors of the elements Mℓ.

The first important (and maybe a little surprising, since in adaptive mesh refinement,
some mesh elements may not be refined at all, so that the maximal element diameter hℓ :=
maxK∈Tℓ hK may stay constant) result shows that

∥∇(u− uℓ)∥ → 0 for ℓ→ ∞, (5.2.1)

i.e., the sequence of the adaptive finite element approximations uℓ converges towards u.
The second, and crucial, result states that

∥∇(u− uℓ)∥ ≤ C|DoFℓ|−p/d, (5.2.2)

where DoFℓ stands for the number of degrees of freedom in the finite element space Vℓp :=
Pp(Tℓ) ∩ H1

0 (Ω). To apprehend formula (5.2.2), recall the standard a priori error decay re-
sult (1.9.16) of Theorem 1.9.8: it’s essentially like if we had ∥∇(u−uh)∥ ≤ Chp but all the time,
for both smooth and singular solutions, and for both uniform and adaptive mesh refinement. In
other words, the standard claim that convergence rates are limited by the exact solution regular-
ity, so that higher-order finite elements only pay-off for smooth solutions, when u|K ∈ Hp+1(K)
for all K ∈ Th, is only valid on uniformly refined meshes; on adaptively refined meshes, this
is, fortunately, not true anymore. Moreover, the result in (5.2.2) actually shows that the error
∥∇(u−uℓ)∥ decays to zero as fast as in a best-possible way, on a best-possible sequence of meshes.
This is termed optimality with respect to the number of degrees of freedom.





Chapter 6

hp finite elements

In Chapter 1, we have performed the so-called h-analysis of the Crouzeix–Raviart nonconforming
finite element method of Definition 1.3.2. Namely, Theorems 1.8.2 and 1.9.8 assert hat for each
fixed polynomial degree p, the error ∥∇(u − uh)∥ goes to zero as hp when the mesh size h goes
to zero. The deficiency of this traditional analysis is that it does not allow one to assess what
happens if the role of the two discretization parameters is flipped: h is fixed and p goes to
infinity, neither what happens if simultaneously h goes to zero and p to infinity. This is the
purpose of the so-called hp-analysis that we briefly outline here. To simplify ideas, we will work
in this chapter in the context of the conforming finite element method of Remark 1.3.3. We
follow the developments in Babuška and Suri [4] and Schwab [38].

6.1 Conforming finite element method

We start with the conforming finite element space that we have already seen in Remark 1.3.3:

Definition 6.1.1 (Conforming finite element space). The continuous piecewise polynomial space
Vhp is given by

Vhp := Pp(Th) ∩H1
0 (Ω). (6.1.1)

The conforming finite element method is the same as in Remark 1.3.3; it is the analysis that
will done differently than in Chapter 1:

Definition 6.1.2 (Conforming finite element method for problem (1.1.1)). Find uh ∈ Vhp such
that

(∇uh,∇vh) = (f, vh) ∀vh ∈ Vhp. (6.1.2)

6.2 hp approximation on a simplex

The first central result is the following structural improvement of the Deny–Lions/Bramble–
Hilbert Theorem 1.9.7, following Babuška and Suri [4, Lemma 4.1]:

Theorem 6.2.1 (hp approximation on a simplex). There holds

min
vh∈Pp(K)

∥∇(v − vh)∥K ≤ C
h
min{s−1,p}
K

ps−1
∥v∥Hs(K) ∀v ∈ Hs(K), s ≥ 1, ∀K ∈ Th, (6.2.1)

where the constant C only depends on the mesh shape-regularity parameter κTh, the space di-
mension d, and the regularity exponent s.
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Remark 6.2.2 (hp approximation on a simplex). If the function v above has at least Hp+1(K)-
regularity, i.e., s ≥ p+ 1, than the above bound gives

min
vh∈Pp(K)

∥∇(v − vh)∥K ≤ C
(hK
p

)p
∥v∥Hp+1(K) ∀v ∈ Hp+1(K), ∀K ∈ Th. (6.2.2)

Thus, in comparison with Theorem 1.9.7, we gain approximation properties in the polynomial
degree p: the right-hand side in (6.2.1) goes to zero both when the polynomial degree p is fixed
and the mesh size h goes to zero and when h is fixed and p goes to infinity (for sufficiently
smooth v).

6.3 A priori error estimate: hp rate of convergence

The elementwise interpolation result of Theorem 6.2.1 together with further important (in-
volved) developments which we do not detail enable to give the following result in the spirit of
Theorem 1.9.8:

Theorem 6.3.1 (A priori hp rate of convergence). Let u ∈ H1
0 (Ω) be the weak solution of

Definition 1.2.1 and uh ∈ Vhp its conforming finite element approximation of Definition 6.1.2.
Let additionally

u|K ∈ Hs(K), s ≥ 1, ∀K ∈ Th.
Then there exists a constant C only depending on the mesh shape-regularity parameter κTh, the
space dimension d, and the regularity exponent s such that

∥∇(u− uh)∥ ≤ C
hmin{s−1,p}

ps−1

{ ∑
K∈Th

∥u∥2Hs(K)

} 1
2

. (6.3.1)

Remark 6.3.2 (A priori hp rate of convergence). The result of Theorem 1.9.8 can be in a
simplified way (for sufficiently smooth u and f) described as

∥∇(u− uh)∥ ≤ Chp, (6.3.2)

where the constant C only depends on the mesh shape-regularity parameter κTh, the space di-
mension d, the weak solution u, and additionally (in an unfavorable way) on the polynomial
degree p. In contrast, a simplified writing of (6.3.1) (for sufficiently smooth u) gives

∥∇(u− uh)∥ ≤ C
(h
p

)p
, (6.3.3)

where the constant C only depends on the mesh shape-regularity parameter κTh, the space dimen-
sion d, and the weak solution u, but is independent of the polynomial degree p. In comparison
with (6.3.2), (6.3.3) allows to asses the convergence rate when the mesh size h goes to zero or
the polynomial degree p goes to infinity. The hp-analysis of Theorem 6.3.1 thus improves over
the h-analysis of Theorem 1.9.8.

6.4 A priori error estimate: exponential convergence rate with
respect to the number of the degrees of freedom

We finish this chapter by the following claim that we again state without a proof:

Theorem 6.4.1 (Exponential convergence rate). Let u ∈ H1
0 (Ω) be the weak solution of Defini-

tion 1.2.1 and uh ∈ Vhp its conforming finite element approximation of Definition 6.1.2. Let the
space dimension d = 2. Then, for sufficiently smooth u, only increasing the polynomial degree p
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while keeping the mesh size h constant, there exist constants C1 and C2 only depending on the
mesh shape-regularity parameter κTh and the weak solution u such that

∥∇(u− uh)∥ ≤ C1
1

eC2|Vhp|1/3
, (6.4.1)

where |Vhp| denotes the dimension of the space Vhp, i.e., the number of the degrees of freedom
in Vhp.

The strength of Theorem 6.4.1 is best seen in a comparative example:

Remark 6.4.2 (Exponential convergence rate). Let the space dimension d = 2, let the poly-
nomial degree p = 1, let the computational domain Ω be a unit square, and let the mesh Th be
composed of uniform isosceles triangles of diameter h that we decrease. One easily sees that
there are roughly 1/h2 degrees of freedom in the space V nc

hp of Definition 1.3.1, |V nc
hp | ≈ 1/h2.

Then, Theorem 1.8.2 gives

∥∇(u− uh)∥ ≤ Ch ≈ C
1

|Vhp|1/2
, (6.4.2)

which is a rate of convergence algebraic with respect to |Vhp|, in contrast to (6.4.1), which is
exponential.

Remark 6.4.3 (Exponential convergence rate, singular solutions). The power of the result
of Theorem 6.4.1 is further enhanced in that it actually holds also for a vast class of singular
solutions. Adapting the mesh Th and the distribution of the polynomial degree in a non-uniform
way to the exact solution u (in an a priori way, using the knowledge of u (impractical) or relying
on a posteriori error estimates of the form of Theorem 4.5.5 (practical)) (simultaneous mesh
and polynomial degree adaptivity), a bound of the form (6.4.1) can still be obtained. Typically,
one refines the mesh Th towards the singularities of u and increases the polynomial degree in the
smooth regions of u. The hp (adaptive) method and analysis then spectacularly outperform the
traditional uniform h-refinement and analysis, see Figure 6.1 for an example.
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Chapter 7

Finite elements for a nonlinear
elliptic problem

We generalize in this chapter the linear differential operator of the Poisson equation (1.1.1) into
a nonlinear one. We then define its conforming finite element approximation and perform its a
priori h-convergence analysis. We will follow Ciarlet [12] and Zeidler [46].

7.1 A nonlinear elliptic problem

Let f ∈ L2(Ω) be given. We consider in this chapter a nonlinear function A : Rd → Rd giving
rise to the nonlinear elliptic boundary value problem: find a scalar-valued function u : Ω → R
such that

−∇·A(∇u) = f in Ω, (7.1.1a)

u = 0 on ∂Ω. (7.1.1b)

This generalizes the Poisson equation (1.1.1), where A(v) = v for all v ∈ Rd, i.e., A is the
identity. We will establish the existence and uniqueness of a weak solution u of (7.1.1) under
appropriate assumptions on the nonlinear function A, relying on the Banach fixed-point theorem
that we recall.

7.2 Strongly monotone and Lipschitz-continuous operators

We will focus on the following generalization of the weak gradient of Definition 0.3.2, which was
a linear differential operator H1

0 (Ω) → [L2(Ω)]d, v → ∇v:
Definition 7.2.1 (Strongly monotone and Lipschitz-continuous differential operator). We say
that a differential operator H1

0 (Ω) → [L2(Ω)]d, v → A(∇v) is strongly monotone if there exists
a positive constant α such that

α∥∇(v − w)∥2 ≤ (A(∇v)−A(∇w),∇(v − w)) ∀v, w ∈ H1
0 (Ω). (7.2.1)

We say that it is Lipschitz-continuous if there exists a positive constant L such that

∥A(∇v)−A(∇w)∥ ≤ L∥∇(v − w)∥ ∀v, w ∈ H1
0 (Ω). (7.2.2)

Remark 7.2.2 (Constants α and L). There necessarily holds α ≤ L. Indeed, (7.2.1) together
with (7.2.2) and the Cauchy–Schwarz inequality yield

α∥∇(v − w)∥2 ≤ (A(∇v)−A(∇w),∇(v − w))

≤ ∥A(∇v)−A(∇w)∥∥∇(v − w)∥
≤ L∥∇(v − w)∥2 ∀v, w ∈ H1

0 (Ω).
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Note that when A is the identity, then α = L = 1.

Example 7.2.3 (Mean-curvature flow). A prototypical example of a nonlinear operator A is

A(∇v) := A(|∇v|)∇v with A(x) = α+ (L− α)
√
1 + x2. (7.2.3)

Note that when L = α, A becomes linear, A(∇v) = α∇v.

7.3 Weak formulation

Generalizing the concepts of Section 1.2, the weak formulation of problem (7.1.1) is:

Definition 7.3.1 (Weak formulation of problem (7.1.1)). Find u ∈ H1
0 (Ω) such that

(A(∇u),∇v) = (f, v) ∀v ∈ H1
0 (Ω). (7.3.1)

7.4 A contractive nonlinear operator

The key for the study of problem (7.3.1) is the following nonlinear operator:

Definition 7.4.1 (Nonlinear operator Φ). Define the operator Φ : H1
0 (Ω) → H1

0 (Ω), v → Φ(v)
by

(∇Φ(v),∇z) = (∇v,∇z) + α

L2

[
(f, z)− (A(∇v),∇z)

]
∀z ∈ H1

0 (Ω). (7.4.1)

Note that the above operator Φ is nonlinear whenever A is a nonlinear function. In contrast,
problem (7.4.1) that defines Φ(v) ∈ H1

0 (Ω) is a linear Poisson problem of the same form as
problem (1.2.1), so that Φ(v) is uniquely defined by the Riesz representation theorem. Indeed,
for the right-hand side, there holds∣∣∣(∇v,∇z) + α

L2

[
(f, z)− (A(∇v),∇z)

]∣∣∣ ≤ ∥∇v∥∥∇z∥+ α

L2

[
∥f∥CPFhΩ∥∇z∥+ ∥A(∇v)∥∥∇z∥

]
by the Cauchy–Schwarz inequality and the Poincaré–Friedrichs inequality (1.2.2), so that it is
a bounded linear form on H1

0 (Ω); A(∇v) is a datum here whose action is well-defined in that
∥A(∇v)∥ = ∥A(∇v)−A(∇0) +A(∇0)∥ ≤ L∥∇v∥+ ∥A(∇0)∥ by (7.2.2).

The crucial property of operator Φ is that it is a contraction on the Sobolev space H1
0 (Ω):

Theorem 7.4.2 (Contraction of Φ). There holds

∥∇(Φ(v)− Φ(w))∥ ≤
(
1− α2

L2

)
︸ ︷︷ ︸

<1

1
2

∥∇(v − w)∥ ∀v, w ∈ H1
0 (Ω). (7.4.2)

Proof. Let v, w ∈ H1
0 (Ω) be fixed. Introduce the following Riesz representers ṽ, w̃ ∈ H1

0 (Ω):

(∇ṽ,∇z) = (A(∇v),∇z) ∀z ∈ H1
0 (Ω), (7.4.3a)

(∇w̃,∇z) = (A(∇w),∇z) ∀z ∈ H1
0 (Ω). (7.4.3b)

Note that ∥A(∇v)∥ ≤ L∥∇v∥+ ∥A(∇0)∥ by (7.2.2) and similarly for w, so that the right-hand
sides in (7.4.3) are again well-defined bounded forms and A(∇v) is fixed, so that these forms are
indeed linear. It follows immediately by subtracting the lines in (7.4.3) and the Cauchy–Schwarz
inequality that

∥∇(ṽ − w̃)∥ = sup
z∈H1

0 (Ω)
∥∇z∥=1

(∇(ṽ − w̃),∇z)

= sup
z∈H1

0 (Ω)
∥∇z∥=1

(A(∇v)−A(∇w),∇z)

≤ ∥A(∇v)−A(∇w)∥.

(7.4.4)
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To conclude, we carefully develop, noting that all Φ(v)− Φ(w), v − w, and ṽ − w̃ ∈ H1
0 (Ω) can

be taken as the test function z in (7.4.1) and Φ(v)− Φ(w) and v − w ∈ H1
0 (Ω) can be taken as

the test function z in (7.4.3),

∥∇(Φ(v)− Φ(w))∥2 = (∇(Φ(v)− Φ(w)),∇(Φ(v)− Φ(w)))

(7.4.1)
= (∇(v − w),∇(Φ(v)− Φ(w)))− α

L2

[
(A(∇v)−A(∇w),∇(Φ(v)− Φ(w)))

]
(7.4.1)
= ∥∇(v − w)∥2 − α

L2

[
(A(∇v)−A(∇w),∇(v − w))

]
− α

L2

[
(A(∇v)−A(∇w),∇(Φ(v)− Φ(w)))

]
(7.4.3)
= ∥∇(v − w)∥2 − α

L2

[
(A(∇v)−A(∇w),∇(v − w))

]
− α

L2

[
(∇(ṽ − w̃),∇(Φ(v)− Φ(w)))

]
(7.4.1)
= ∥∇(v − w)∥2 − α

L2

[
(A(∇v)−A(∇w),∇(v − w))

]
− α

L2

[
(∇(ṽ − w̃),∇(v − w))− α

L2

[
(A(∇v)−A(∇w),∇(ṽ − w̃))

]]
(7.4.3)
= ∥∇(v − w)∥2 − 2

α

L2

[
(A(∇v)−A(∇w),∇(v − w))

]
+
α2

L4

[
(A(∇v)−A(∇w),∇(ṽ − w̃))

]
(7.2.1)

≤ ∥∇(v − w)∥2 − 2
α2

L2
∥∇(v − w)∥2 + α2

L4

[
(A(∇v)−A(∇w),∇(ṽ − w̃))

]
(7.4.4)

≤ ∥∇(v − w)∥2 − 2
α2

L2
∥∇(v − w)∥2 + α2

L4
∥A(∇v)−A(∇w)∥2

(7.2.2)

≤ ∥∇(v − w)∥2 − 2
α2

L2
∥∇(v − w)∥2 + α2

L2
∥∇(v − w)∥2.

7.5 Existence and uniqueness of a weak solution by the Banach
fixed-point theorem

The following lemma is instrumental in understanding the role of the operator Φ of Defini-
tion 7.4.1 in the proof of existence and uniqueness of u from (7.3.1):

Lemma 7.5.1 (Fixed point of Φ and existence and uniqueness of u from (7.3.1)). The following
equivalence holds: u ∈ H1

0 (Ω) is a fixed point of the operator Φ if and only if u solves (7.3.1),
i.e.,

Φ(u) = u⇐⇒ (7.3.1) holds. (7.5.1)

Proof. Definition (7.4.1) applied to u ∈ H1
0 (Ω) gives

(∇(Φ(u)− u),∇z) = α

L2

[
(f, z)− (A(∇u),∇z)

]
∀z ∈ H1

0 (Ω),

which readily implies the assertion.

Theorem 7.5.2 (Existence and uniqueness of u ∈ H1
0 (Ω) from Definition 7.3.1, Banach fixed–

point theorem). There exists a unique solution u ∈ H1
0 (Ω) from Definition 7.3.1.

Proof. The space H1
0 (Ω) is Hilbert for the scalar product (∇v,∇w), v, w ∈ H1

0 (Ω), and the
associated norm given by the [L2(Ω)]d-norm of the weak gradient, ∥∇v∥. Since the operator
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Φ is contractive in this setting by Theorem 7.4.2, the Banach fixed-point theorem, see, e.g.,
Zeidler [46, Section 25.4], implies that Φ has a unique fixed point. Thus the conclusion follows
by Lemma 7.5.1.

For illustration and to make the text self-contained, we include the proof of the Banach
fixed-point theorem directly in our setting. Denote by q the contraction factor from (7.4.2),

q :=
(
1− α2

L2

) 1
2
< 1.

Consider an arbitrary u0 ∈ H1
0 (Ω) and define a sequence

uk := Φ(uk−1), k ≥ 1.

Then (7.4.2) immediately implies

∥∇(uk+1 − uk)∥ = ∥∇(Φ(uk)− Φ(uk−1))∥
(7.4.2)

≤ q∥∇(uk − uk−1)∥ ≤ . . . ≤ qk∥∇(u1 − u0)∥.

We will use this property to show that the sequence uk is Cauchy. Consider integer indices k > 0
and m > 0. We have, by the triangle inequality, the above property, and a geometric series sum

∥∇(uk+m − uk)∥ ≤ ∥∇(uk+m − uk+m−1)∥+ ∥∇(uk+m−1 − uk+m−2)∥+ . . .+ ∥∇(uk+1 − uk)∥
≤ (qk+m−1 + qk+m−2 + . . .+ qk)∥∇(u1 − u0)∥
= qk(qm−1 + qm−2 + . . .+ 1)∥∇(u1 − u0)∥

≤ qk
∞∑
i=0

qi∥∇(u1 − u0)∥

≤ qk
1

1− q
∥∇(u1 − u0)∥.

Thus, for any real ϵ > 0, we can take k > 0 large enough such that

qk
1

1− q
∥∇(u1 − u0)∥ < ϵ,

so that

∥∇(uk+m − uk)∥ < ϵ

for any m > 0. The space H1
0 (Ω) being complete, we conclude that there exists u ∈ H1

0 (Ω) such
that

u = lim
k→∞

uk ⇐⇒ lim
k→∞

∥∇(u− uk)∥ = 0.

Finally, the triangle inequality and (7.4.2) show that for any k > 0

∥∇(Φ(u)− u)∥ ≤ ∥∇(Φ(u)− uk)∥+ ∥∇(uk − u)∥
= ∥∇(Φ(u)− Φ(uk−1))∥+ ∥∇(uk − u)∥
≤ q∥∇(u− uk−1)∥+ ∥∇(u− uk)∥︸ ︷︷ ︸

→0 for k→∞

.

Thus, we conclude that u is a fixed point of Φ, Φ(u) = u. Moreover, Φ cannot have two distinct
fixed points u and ũ, since

∥∇(Φ(u)− Φ(ũ))∥ = ∥∇(u− ũ)∥ ̸≤ q∥∇(u− ũ)∥.
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7.6 The conforming finite element method for problem (7.1.1)

The discretization of the weak formulation (7.3.1) by conforming finite elements is straightfor-
ward:

Definition 7.6.1 (Conforming finite element method for problem (7.1.1)). Find uh ∈ Vhp such
that

(A(∇uh),∇vh) = (f, vh) ∀vh ∈ Vhp. (7.6.1)

We also readily obtain:

Theorem 7.6.2 (Existence and uniqueness of uh ∈ Vhp from Definition 7.6.1). There exists a
unique solution uh ∈ Vhp from Definition 7.6.1.

Proof. One merely replaces the Hilbert space H1
0 (Ω) by the Hilbert space Vhp and proceeds as

above for u. More concretely, one defines a nonlinear operator Φh : Vhp → Vhp, vh → Φh(vh) by

(∇Φh(vh),∇zh) = (∇vh,∇zh) +
α

L2

[
(f, zh)− (A(∇vh),∇zh)

]
∀zh ∈ Vhp, (7.6.2)

as a finite-dimensional equivalent of (7.4.1). One then finds easily that it is contractive just as
Φ in Theorem 7.4.2,

∥∇(Φh(vh)− Φh(wh))∥ ≤
(
1− α2

L2

) 1
2 ∥∇(vh − wh)∥ ∀vh, wh ∈ Vhp. (7.6.3)

Thus, it has a fixed point in the space Vhp, and one concludes by the equivalent of (7.5.1), stating
that

Φh(uh) = uh ⇐⇒ (7.6.1) holds, (7.6.4)

which yields the assertion.

7.7 A priori error estimates: rate of convergence by h-analysis

Recall the monotonicity and Lipschitz-continuity constants α and L from Definition 7.2.1. We
now have all the ingredients to rather quickly perform an a priori h-convergence analysis:

Theorem 7.7.1 (A priori rate of convergence). Let u ∈ H1
0 (Ω) be the weak solution of Defi-

nition 7.3.1 and uh ∈ Vhp its conforming finite element approximation of Definition 7.6.1. Let
additionally

u|K ∈ Hp+1(K) ∀K ∈ Th.
Then there exists a constant C only depending on the mesh shape-regularity parameter κTh, the
space dimension d, and the polynomial degree p such that

∥∇(u− uh)∥ ≤ L

α
Chp

{ ∑
K∈Th

|u|2Hp+1(K)

} 1
2

. (7.7.1)

Proof. By subtracting (7.6.1) from (7.3.1), we obtain the Galerkin orthogonality

(A(∇u)−A(∇uh),∇vh) = 0 ∀vh ∈ Vhp. (7.7.2)

Consequently, there holds, for an arbitrary vh ∈ Vhp,

∥∇(u− uh)∥2
(7.2.1)

≤ 1

α
(A(∇u)−A(∇uh),∇(u− uh))

(7.7.2)
=

1

α
(A(∇u)−A(∇uh),∇(u− vh))

(7.2.2)

≤ L

α
∥∇(u− uh)∥∥∇(u− vh)∥.



64 Chapter 7. Finite elements for a nonlinear elliptic problem

Thus, we see that

∥∇(u− uh)∥ ≤ L

α
min
vh∈Vhp

∥∇(u− vh)∥, (7.7.3)

which is, up to the ratio α/L, a best-approximation result as in (1.7.6). Consequently, (1.9.11)
allows to reduce the question to elementwise best-approximation, and (7.7.1) follows by the
Deny–Lions/Bramble–Hilbert Theorem 1.9.7.

From Theorem 7.7.1, we see that the rate of convergence for a finite element approximation
of the nonlinear problem (7.1.1) is the same as that for the linear problem (1.1.1).



Chapter 8

Finite elements for the heat equation

The purpose of this last chapter is to present a second important extension of the linear ellip-
tic Poisson problem (1.1.1), this time into a time-dependent partial differential equation. We
investigate the existence and uniqueness of a weak solution and an appropriate finite element
discretization. We will follow Ern and Guermond [20, 21] and [23, 22].

8.1 The heat equation

The heat equation reads as follows: for a final time T > 0 and source term f ∈ L2(0, T ;L2(Ω)),
find a scalar-valued function u : Ω× (0, T ) → R such that

∂tu−∆u = f in Ω× (0, T ), (8.1.1a)

u = 0 on ∂Ω× (0, T ), (8.1.1b)

u(0) = 0 in Ω. (8.1.1c)

8.2 Bochner function spaces

Bochner function spaces are a generalization of Lebesgue spaces to functions whose values lie in
a Banach space, instead of real or complex numbers, cf. Ern and Guermond [21, Section 56.1].
We will in particular need the function space with weak partial derivatives with respect to the
spatial variables to belong to L2 in both space and time

X := L2(0, T ;H1
0 (Ω)). (8.2.1)

We will also need its subspace additionally requesting the weak partial derivative with respect
to the time variable to belong to H−1 in space and L2 in time,

Y := {v ∈ X; ∂tv ∈ L2(0, T ;H−1(Ω))} = L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)). (8.2.2)

We will also impose the zero initial condition in the subspace

Y0 := {v ∈ Y ; v(0) = 0}, (8.2.3)

where we note that Y ⊂ C(0, T ;L2(Ω)). We equip the spaces X and Y with the following norms:

∥v∥2X :=

∫ T

0
∥∇v∥2 dt v ∈ X, (8.2.4a)

∥v∥2Y :=

∫ T

0
∥∇v∥2 + ∥∂tv∥2H−1(Ω) dt+ ∥v(T )∥2 v ∈ Y0, (8.2.4b)
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where H−1(Ω) is the dual space to H1
0 (Ω). With ⟨·, ·⟩ the duality pairing between H−1(Ω) and

H1
0 (Ω),

∥v∥H−1(Ω) = max
φ∈H1

0 (Ω)
∥∇φ∥=1

⟨v, φ⟩. (8.2.5)

8.3 Weak formulation

The weak formulation for the heat equation is:

Definition 8.3.1 (Weak formulation of problem (8.1.1)). Find u ∈ Y0 such that∫ T

0
⟨∂tu, v⟩+ (∇u,∇v) dt =

∫ T

0
(f, v) dt ∀v ∈ X. (8.3.1)

One remarks that in contrast to the developments of the previous chapters, one looks for the
weak solution in the trial space Y which is different from the test space X. This is in line with
the nonsymmetry between space and time in (8.1.1). This is also the origin of the fact that the
analysis of (8.3.1) will be more involved. We also remark that formulation (8.3.1) is equivalent
to finding u ∈ Y0 such that

⟨∂tu(t), v⟩+ (∇u(t),∇v) = (f(t), v) ∀v ∈ H1
0 (Ω), for a.e. t ∈ (0, T ). (8.3.2)

8.4 Inf-sup condition

Recall that

∥∇φ∥ = max
v∈H1

0 (Ω)
∥∇v∥=1

(∇φ,∇v) = max
v∈H1

0 (Ω)

(∇φ,∇v)
∥∇v∥ ∀φ ∈ H1

0 (Ω), (8.4.1)

where we use the shorthand notation 0/0 = 0. One finds similarly

∥φ∥X = max
v∈X

∫ T
0 (∇φ,∇v) dt

∥v∥X
∀φ ∈ X. (8.4.2)

Indeed, on the one hand,

max
v∈X

∫ T
0 (∇φ,∇v) dt

∥v∥X
≤ ∥φ∥X max

v∈X
∥v∥X
∥v∥X

= ∥φ∥X

by virtue of (8.2.4a) and the Cauchy–Schwarz inequality. On the other hand,

max
v∈X

∫ T
0 (∇φ,∇v) dt

∥v∥X
≥
∫ T
0 (∇φ,∇φ) dt

∥φ∥X
=

∥φ∥2X
∥φ∥X

= ∥φ∥X ,

where the lower bound follows by picking φ ∈ X in the max.

The following is a central result for problem (8.1.1), identifying a suitable extension of the
property (8.4.2):

Theorem 8.4.1 (Inf-sup identity). For every φ ∈ Y0, there holds

∥φ∥Y = max
v∈X

∫ T
0 ⟨∂tφ, v⟩+ (∇φ,∇v) dt

∥v∥X
. (8.4.3)
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Proof. For a fixed φ ∈ Y0, let w∗ ∈ X be defined by, a.e. in (0, T ),

(∇w∗,∇v) = ⟨∂tφ, v⟩ ∀v ∈ H1
0 (Ω). (8.4.4)

Using (8.4.1) and (8.2.5), this implies the identity

∥∇w∗∥ = ∥∂tφ∥H−1(Ω) (8.4.5)

a.e. in (0, T ), as well as∫ T

0
⟨∂tφ, v⟩+ (∇φ,∇v) dt =

∫ T

0
(∇(w∗ + φ),∇v) dt ∀v ∈ X.

Consequently, using (8.4.2),

∥w∗ + φ∥X = max
v∈X

∫ T
0 ⟨∂tφ, v⟩+ (∇φ,∇v) dt

∥v∥X
. (8.4.6)

Moreover, the following useful identity holds true on the space Y0:

2

∫ T

0
⟨∂tφ,φ⟩ dt =

∫ T

0

d

dt
∥φ∥2 dt = ∥φ(T )∥2 − ∥φ(0)∥2 = ∥φ(T )∥2. (8.4.7)

Consequently,

∥w∗ + φ∥2X
(8.2.4a)
=

∫ T

0
∥∇(w∗ + φ)∥2 dt

=

∫ T

0
∥∇w∗∥2 + 2(∇w∗,∇φ) + ∥∇φ∥2 dt

(8.4.4)
(8.4.5)
=

∫ T

0
∥∂tφ∥2H−1(Ω) + 2⟨∂tφ,φ⟩+ ∥∇φ∥2 dt

(8.4.7)
(8.2.4b)
= ∥φ∥2Y ,

so that the claim (8.4.3) follows from (8.4.6).

Remark 8.4.2 (Inf-sup condition). One remarks easily that (8.4.3) in particular implies

inf
φ∈Y0

sup
v∈X

∫ T
0 ⟨∂tφ, v⟩+ (∇φ,∇v) dt

∥v∥X∥φ∥Y
≥ C. (8.4.8)

We from (8.4.3) actually have an equality with C = 1 and min and max in place of inf and
sup. The writing (8.4.8) gives rise to the nomenclature “inf-sup condition”, which is central
in analysis of partial differential equations and finite element methods of nonsymmetric prob-
lems, see Nečas [32], Babuška [3], or the summary in the form of the Banach–Nečas–Babuška
(also called inf-sup or Babuška–Brezzi–Ladyzhenskaya) theorem in, e.g., Ern and Guermond [20,
Theorem 22.8].

8.5 Existence and uniqueness of a weak solution by the Banach
closed range and open mapping theorems

Let X ′ be the dual of X, X ′ = L2(0, T ;H−1(Ω)), and let ⟨·, ·⟩X′,X denote the corresponding
duality pairing. Define the operator BY : Y0 → X ′ by

⟨BY (φ), v⟩X′,X :=

∫ T

0
⟨∂tφ, v⟩+ (∇φ,∇v) dt v ∈ X, φ ∈ Y0. (8.5.1)
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This operator is clearly linear and bounded as, for all φ ∈ Y0,

∥BY (φ)∥X′ = sup
v∈X

⟨BY (φ), v⟩X′,X

∥v∥X
(8.5.1)
= sup

v∈X

∫ T
0 ⟨∂tφ, v⟩+ (∇φ,∇v) dt

∥v∥X
(8.4.3)
= ∥φ∥Y ;

(8.5.2)

BY is actually an isometry. The weak formulation (8.3.1) can then be equivalently rewritten as:
find u ∈ Y0 such that

BY (φ) = f in X ′. (8.5.3)

Let Y ′
0 be the dual of Y0 and ⟨·, ·⟩Y ′

0 ,Y0
the corresponding duality pairing. We will also need

below the adjoint operator B∗
Y : X → Y ′

0 defined by

⟨B∗
Y (v), φ⟩Y ′

0 ,Y0
:= ⟨BY (φ), v⟩X′,X v ∈ X, φ ∈ Y0. (8.5.4)

We can now state and prove the central result of this chapter:

Theorem 8.5.1 (Existence and uniqueness of u ∈ Y0 from Definition 8.3.1 by the Banach closed
range and open mapping theorems). There exists a unique solution u ∈ Y0 from Definition 8.3.1.

Proof. Since (8.3.1) is equivalent to (8.5.3), the existence and uniqueness of a weak solution
u ∈ Y0 follows when the operator BY from (8.5.1) is bijective. By the Banach closed range and
open mapping theorems, this is in turn equivalent to showing that

(1)BY is injective, (2)BY is surjective, (8.5.5a)

(A)B∗
Y is surjective, (B)B∗

Y is injective, (8.5.5b)

(i)BY is injective, (ii) range of BY is closed in X ′, (iii)B∗
Y is injective, (8.5.5c)

see, e.g., Ern and Guermond [21, Section 22.1] and [21, Lemmas A.43 and A.44]. We will prove
the three properties in (8.5.5c), as in [21, Theorem 56.21].

(i) Let BY (φ) = 0 for some φ ∈ Y0. Then, by (8.5.1),∫ T

0
⟨∂tφ, v⟩+ (∇φ,∇v) dt = 0 v ∈ X.

By virtue of Theorem 8.4.1, this implies φ = 0, i.e., injectivity (actually, BY is automatically
injective, since it is an isometry).

(ii) Consider a sequence φi ∈ Y0 such that BY (φi) is a Cauchy sequence in X ′. Thus, for
any real ϵ > 0, there exists k > 0 such that for all m > 0,

∥BY (φk+m)−BY (φk)∥X′ ≤ ϵ.

This, however, immediately implies that φi is a Cauchy sequence in Y0, since

∥BY (φk+m)−BY (φk)∥X′ = ∥BY (φk+m − φk)∥X′
(8.5.2)
= ∥φk+m − φk∥Y .

Taking its limit φ ∈ Y0, we obtain that

lim
k→∞

∥BY (φ)−BY (φk)∥X′
(8.5.2)
= lim

k→∞
∥φ− φk∥Y = 0,

so that the range of BY is closed in X ′.



8.5 Existence and uniqueness of a weak solution by the Banach closed range and
open mapping theorems 69

(iii) Finally, let B∗
Y (v) = 0 for some v ∈ X. Then, by (8.5.4) and (8.5.1),

⟨B∗
Y (v), φ⟩Y ′

0 ,Y0
= ⟨BY (φ), v⟩X′,X =

∫ T

0
⟨∂tφ, v⟩+ (∇φ,∇v) dt = 0 ∀φ ∈ Y0 (8.5.6)

Define ξ ∈ L2(0, T ;H−1(Ω)) by, a.e. in (0, T ),

⟨ξ, w⟩ = (∇v,∇w) ∀w ∈ H1
0 (Ω). (8.5.7)

Then (8.5.6) in particular implies∫ T

0
⟨∂tφ, v⟩dt = −

∫ T

0
⟨ξ, φ⟩ dt ∀φ ∈ D((0, T )× Ω) ⊂ Y0,

which is (compare with Definition 0.3.1) the meaning of

∂tv = ξ (8.5.8)

and in particular shows that, actually, v ∈ Y .

Consider now an arbitrary function w ∈ H1
0 (Ω), so that when multiplied by the time variable

t, tw ∈ Y0. Taking tw as a test function φ in (8.5.6) and using the integration by parts in time
formula, we see

0
(8.5.7)
=

∫ T

0
⟨∂t(tw), v⟩+ ⟨ξ, tw⟩ dt

(8.5.8)
=

∫ T

0
⟨∂t(tw), v⟩+ ⟨∂tv, tw⟩dt

= T (w, v(T ))− 0 = T (w, v(T )).

Since w ∈ H1
0 (Ω) was arbitrary and since H1

0 (Ω) is dense in L2(Ω), we infer that

v(T ) = 0. (8.5.9)

We finally use tv as a test function φ ∈ Y0 in (8.5.6). This gives, similarly as in (8.4.7),∫ T

0
⟨∂t(tv), v⟩dt

(8.5.7)
= −

∫ T

0
⟨ξ, tv⟩ dt (8.5.8)

= −
∫ T

0
⟨∂tv, tv⟩ dt

= −
∫ T

0
t⟨∂tv, v⟩dt = −1

2

∫ T

0
t
d

dt
∥v∥2 dt

= −1

2

[
T∥v(T )∥2 − 0∥v(0)∥2 −

∫ T

0
∥v∥2 dt

]
(8.5.9)
=

1

2

∫ T

0
∥v∥2 dt.

Consequently, still taking tv as a test function φ ∈ Y0 in (8.5.6), and using this result,

0 =

∫ T

0
⟨∂t(tv), v⟩+ (∇(tv),∇v) dt

=
1

2

∫ T

0
∥v∥2 dt+

∫ T

0
t∥∇v∥2 dt.

From here, we conclude v = 0, i.e., the injectivity of B∗
Y .
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8.6 The conforming finite element method for problem (8.1.1)

In all the previous chapters, the application of a finite element method to a weak formulation was
straightforward. Moreover, for a conforming discretization, the finite element method turned out
to give a projection of the weak solution, as in (1.7.5)–(1.7.6), or at least a best approximation up
to a constant as in (7.7.3). Unfortunately, both conception of the finite element approximation
and analysis and more involved in the present nonsymmetric, time-dependent setting. We will
thus only describe a possible discretization with the simplest approximation of the time derivative
and we do not perform analysis here.

Let N > 1 be the number of time steps and let 0 = t0 < t1 < . . . < tn < . . . < tN = T
be the discrete times; we will denote by In the n-th time interval, [tn−1, tn] and τn the length
of the n-th time step, τn := tn − tn−1 = |In|, 1 ≤ n ≤ N . As in the previous chapters, we let
Th be a simplicial mesh of the closure of the computational domain Ω. Recall from (1.3.3) that
Vhp = Pp(Th) ∩H1

0 (Ω).

Definition 8.6.1 (Conforming finite elements in space and backward Euler in time for prob-
lem (8.1.1)). Let u0 = 0. For all 1 ≤ n ≤ N , find unh ∈ Vhp such that(

unh − un−1
h

τn
, vh

)
+ (∇unh,∇vh) =

1

τn

∫
In

(f, vh) dt ∀vh ∈ Vhp. (8.6.1)

In contrast to the (rather involved) proof of Theorem 8.5.1, existence and uniqueness of all
unh from (8.6.1) is straightforward:

Theorem 8.6.2 (Existence and uniqueness of unh ∈ Vhp from Definition 8.6.1). There exists a
unique solution unh ∈ Vhp from Definition 8.6.1 for all 1 ≤ n ≤ N .

Proof. Let 1 ≤ n ≤ N be fixed. Definition 8.6.1 can be equivalently rewritten as: find unh ∈ Vhp
such that

(unh, vh) + τn(∇unh,∇vh) =
∫
In

(f, vh) dt+ (un−1
h , vh) ∀vh ∈ Vhp. (8.6.2)

The claim is thus a consequence of the Riesz representation theorem, since the left-hand side
of (8.6.2) is equivalent to the H1(Ω) scalar product (0.3.2a) and the right-hand side of (8.6.2) is
a bounded linear form. The twist is that in contrast to (8.3.1), (8.6.2) is discrete; in particular
when the time step size τn goes to zero, the left-hand side of (8.6.2) stops to be equivalent to
the H1(Ω) scalar product (0.3.2a).

The outcome of Definition 8.6.1 is a collection of piecewise polynomial functions in Vhp. The
procedure is sequential, where one first poses u0 = 0, then one computes u1 from u0, then u2
from u1, . . . , and finally uN from uN−1. This is advantageous for computation, since the size of
the arising linear systems is still as in the steady cases (but one has to solve N such systems).

By the finite element approximation of the heat equation, one usually understands:

Definition 8.6.3 (Space-time finite element approximation). A finite element approximation
of (8.1.1) is the space-time function uhτ : Ω× (0, T ) → R

uhτ |In := unh ∀1 ≤ n ≤ N.

Recalling the function spaces X and Y from (8.2.1)–(8.2.2), it unfortunately turns our that
the finite element approximation uhτ is nonconforming in the sense that uhτ ∈ X but uhτ ̸∈ Y .
Indeed, uhτ is piecewise constant, discontinuous in time, so that ∂tuhτ does not exist. This can
be remedied partly in using a reconstruction Iuhτ :
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Definition 8.6.4 (Conforming reconstruction of the finite element approximation). Define Iuhτ ,
piecewise affine and continuous in time, such that Iuhτ (tn) := unh, Iuhτ (tn−1) := un−1

h , 1 ≤ n ≤
N , and Iuhτ varies affinely inbetween, that is

Iuhτ (t) := un−1
h +

unh − un−1
h

τn
(t− tn−1), t ∈ In ∀1 ≤ n ≤ N.

Using Definition 8.6.4, two important properties arise. First, there holds

Iuhτ ∈ Y0,

so that Iuhτ is now a conforming approximation of the weak solution u ∈ Y0. Second, there
holds

∂tIuhτ |In =
unh − un−1

h

τn
∀1 ≤ n ≤ N,

so that (8.6.1) yields

(∂tIuhτ , vh) + (∇uhτ ,∇vh) =
1

τn

∫
In

(f, vh) dt ∀vh ∈ Vhp, ∀1 ≤ n ≤ N. (8.6.3)

The link of (8.6.3) to (8.3.2) may at a first sight seem much more in line with, e.g., the link
between (1.2.1) and (1.3.4). The nonconformity bottleneck has, however, not been resolved but
merely reshaped, since in (8.6.3), two different objects appear, namely the space-time finite
element approximation uhτ and its conforming reconstruction Iuhτ . This is yet another obstacle
that one has to overcome if one wishes to accomplish a convergence analysis of the finite element
approximation of the heat equation.
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Arch. Rational Mech. Anal. 5 (1960), 286–292.

[34] Prager, W., and Synge, J. L. Approximations in elasticity based on the concept of function
space. Quart. Appl. Math. 5 (1947), 241–269.

[35] Quarteroni, A., and Valli, A. Numerical approximation of partial differential equations,
vol. 23 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1994.

[36] Raviart, P.-A., and Thomas, J.-M. A mixed finite element method for 2nd order elliptic
problems. In Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz.
delle Ricerche (C.N.R.), Rome, 1975). Springer, Berlin, 1977, pp. 292–315. Lecture Notes
in Math., Vol. 606.

[37] Repin, S. A posteriori estimates for partial differential equations, vol. 4 of Radon Series
on Computational and Applied Mathematics. Walter de Gruyter GmbH & Co. KG, Berlin,
2008. http://dx.doi.org/10.1515/9783110203042.

[38] Schwab, C. Theory and applications in solid and fluid mechanics. p- and hp-finite element
methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford
University Press, New York, 1998.

[39] Stevenson, R. An optimal adaptive finite element method. SIAM J. Numer. Anal. 42
(2005), 2188–2217. http://dx.doi.org/10.1137/S0036142903425082.

[40] Temam, R. Navier-Stokes equations, revised ed., vol. 2 of Studies in Mathematics and its
Applications. North-Holland Publishing Co., Amsterdam, 1979.

[41] Veeser, A. Approximating gradients with continuous piecewise polynomial functions. Found.
Comput. Math. 16 (2016), 723–750. http://dx.doi.org/10.1007/s10208-015-9262-z.

[42] Verfürth, R. A review of a posteriori error estimation and adaptive mesh-refinement tech-
niques. Teubner-Wiley, Stuttgart, 1996.
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