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Garner, van den Berg [6] and Lumsdsaine [3] independently showed that in type theory,
each type can be equipped with a structure of weak ω-groupoids. For this, they show that a
minimal fragment MLID of Martin-Löf type theory, where identity types are the only allowed
type constructors, bears a weak ω-category structure. Informally, these results state the possi-
bility to express groupoid laws of weak ω-groupoids as types and in each case to �nd a canonical
inhabitant of these types re�ecting the fact that the law holds. Identities, inversion and concate-
nation of paths, associativities, idempotency of inversion, horizontal and vertical compositions
of 2-paths, are all examples of groupoid laws.

In this work1, we follow a syntactic approach proposed by Brunerie [2] to formalize the notion
of groupoid laws. We call groupoid law any closed type ∀Γ.c such that the sequent Γ ` c : Type
is derivable in MLID and the context Γ is contractible. A contractible context is a context of
the following shape: X : Type, x : X,x1 : C1, y1 : M1 = x1, . . . , xn : Cn, yn : Mn = xn where
xi does not occur in Mi. A canonical inhabitant of a groupoid law may always be obtained by
successive path inductions. Some examples of groupoid laws are given in Figure 1.

Moreover, one can prove that any term M such that Γ ` M : c is derivable in MLID is
extensionally equal to the canonical one. The natural question we answer positively here is:
does this uniqueness property of groupoid laws holds in the whole Martin-Löf type theory
(MLTT) (with function spaces, universes, sigma types, and inductive families) ? We prove that
if Γ ` M : c is derivable in MLTT then M is equal to the canonical derivation of the groupoid
law.

The main idea of the proof is to use successive path inductions to reduce the problem of
the uniqueness of inhabitants of a given groupoid law to the uniqueness of the canonical point
inhabiting a parametric loop space. Given a base type X and a point x : X, the n-th loop space

and its canonical point are inductively de�ned by:

Ω0(A, a) := A

Ωn+1(A, a) := Ωn(a = a, 1a)

ω0(A, a) := a

ωn+1(A, a) := ωn(a = a, 1a)

where 1a : a = a denotes the re�exivity. Thus for any integer n, ∀X : Type, x : X.Ωn(X,x)
is a groupoid law inhabited by λX : Type, x : X.ωn(X,x) (note that using one universe, it
is possible to internalize the quanti�cation over n; everything that we state here will be true
whether or not this is used). We call this groupoid law the n-th parametric loop space.

The 0-th parametric loop space, is the polymorphic type ∀X : Type.X → X of identity
functions, and its canonical inhabitant is λX : Type, x : X.x, ie. the identity function. This
term is the only one in MLTT up to function extensionality inhabiting its type. The standard
tool to prove this kind of property is by using Reynold's parametricity theory [4] which was

1We believe that Lumsdaine's construction of a contractible globular operad may be described in our frame-

work, but we have not checked it. More generally, a precise study of how models of MLID restricted to contractible

contexts compare to de�nitions of ω-groupoids is out of the scope of the present work.
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id : ∀X : Type.X → X

sym : ∀X : Type, x : X.x = y → y = x

concat : ∀X : Type, x : X, y : X.x = y → ∀z : X.y = z → x = z

assoc : ∀X : Type, x : X, y : X, p : x = y, z : X, q : y = z, t : X, r : z = t.

concatX xz (concatX xy p z q) t r = concatX xy p t (concatX y z q t r)

horizontal : ∀X : Type, x : X, y : X, p : x = y, p′ : x = y.p = p′ →
∀z : X, q : x = z, q′ : x = z.q = q′ → concatX xy p z q = concatX xy p′ z q′

Figure 1: Examples of groupoid laws with aliases for canonical inhabitants

introduced to study the behavior of type quanti�cations within polymorphic λ-calculus (a.k.a.
System F). It refers to the concept that well-typed programs cannot inspect types; they must
behave uniformly with respect to abstract types. Reynolds formalizes this notion by showing
that polymorphic programs satisfy the so-called logical relations de�ned by induction on the
structure of types. This tool has been extended by Bernardy et al. [1] to dependent type
systems. It provides a uniform translation of terms, types and contexts preserving typing
(the so-called abstraction theorem). In its unary version (the only needed for this work), logical
relations are de�ned by associating to any well-formed type A : Type a predicate JAK : A→ Type
and to any inhabitant M : A a witness JMK : JAKM that the M satis�es the predicate. This
translation may be extended to cope with identity types by taking Ja = bK : a = b → Type to
be the predicate de�ned by λp : a = b.p∗(JaK) = JbK where p∗ is the transport along p of the
predicate generated by the common type of a and b. Then, it is easy -although quite verbose- to
�nd a translation of introduction and elimination rules of identity types as well as checking that
these translations preserve computation rules. This allows to extend the Bernardy's abstraction
theorem to identity types. Using this framework, we are able to generalize the uniqueness
property of the polymorphic identity type to any parametric loop space. The proof proceed by
induction on the dimension of the loop space and uses algebraic properties of transport.

This work shows that parametricity theory may be used to deduce properties about the
algebraic structure of identity types. The most interesting question that remains open is whether
or not we can extend the translation and the uniqueness property of groupoid laws to deal with
Voevodsky's univalence axiom.
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