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Abstract—In this paper, we consider a probabilistic model
for real-time task systems with probabilistic worst-case execution
times, probabilistic minimum inter-arrival times and probabilistic
deadlines. We propose an analysis computing response time distri-
butions of the tasks scheduled on one processor under a task-level
fixed-priority preemptive scheduling policy. The complexity of our
method is analyzed and it is improved by re-sampling techniques
on worst-case execution time distributions and/or minimal inter-
arrival time distributions. The improvements are shown through
experimental results. Also, experiments are conducted in order
to investigate the improvement obtained by using a probabilistic
model in terms of precision and schedulability gained as opposed
to a deterministic worst-case reasoning.

Keywords—probabilistic real-time, fixed-priority, probabilistic
worst-case execution time, probabilistic minimum inter-arrival
times, probabilistic deadlines

I. INTRODUCTION

Critical real-time embedded systems integrate complex
architectures that evolve constantly in order to provide new
functionality required by the end users of the systems (auto-
motive, avionics, railway, etc). These new architectures have a
direct impact on the variability of the timing behavior of the
real-time system. For instance, the use of aggressive hardware
acceleration features like caches and deep memory hierarchies
imply an acceptable average execution time for a task, but
extremely large worst case values may be observed [1]. This
variability leads to important over-provisioning if the design
of the system is based only on worst case reasoning.

Since the seminal paper of Edgar and Burns [2], proba-
bilistic approaches propose solutions based on the probability
of occurrence of the worst case values in order to avoid
over provisioning while satisfying real-time constraints. These
approaches avoid systematically rejecting systems that are
unfeasible according to a deterministic approach1, when in
practice the probability of failure is extremely small compared
to the maximum tolerated failure level. For instance, in the
aerospace industry, one may compare the maximum allowed
probability of failure of 10−9 per hour of operation (required
by the certification authorities [3]) and the probability of
failure of 10−15 that the system might experience per hour
of operation [1].

Important examples where the worst case analysis is not
efficient include event triggered systems that interact with the
real world and for which it is difficult to place a bound on the

1We use deterministic as opposed to a probabilistic approach.

arrival rate of jobs generated by interrupts from external sen-
sors or network interfaces; systems for which their parameters
remain unknown until deployment; adaptive systems that need
to change their parameters due to changes in the environment
in which they are running.

Different industries may also build probabilistic real-time
systems on purpose by introducing some parameters with
random behaviour. For instance, some automotive manufac-
turers have randomised the sampling frequency for the reverse
parking ultra sound sensor in order to avoid the situation when
two vehicles reverse back-to-back as in Figure 1 and they
both have the same sampling frequency reducing the efficiency
of their parking sensors [4]. By randomising the sampling
frequency, the jobs that are generated by the sensor have a
random arrival pattern. These jobs belong to a task that can be
seen as a sporadic task with its period equal to the minimum
inter arrival time (MIT) amongst its jobs, but knowing that
job arrivals are random then we may describe the MITs by
distributions, i.e., the arrival distribution of the generated jobs.

The use of a probability distribution to describe at least
one parameter of the system requires a probabilistic analysis to
decide the feasibility of the system. In this paper we introduce
for the first time a response time analysis for systems that have
both worst case execution times and minimal inter-arrival times
described by probability distributions.

Fig. 1: When two vehicles reverse back-to-back, their respec-
tive parking sensors may sample at the same frequency, making
them less efficient, or even blind to one another.

Related work: The contribution of this paper belongs to
the realm of probabilistic real-time analysis. These analyses
exist mainly for real-time systems with random variables
describing the duration of a task’s execution [5]–[9]. The
first papers use the term probabilistic or stochastic execution
time to indicate that a random variable contains all possible
values for the execution time of a task. The use of this notion
was somehow confusing as the proposed analyses required



independent random variables to perform convolution2 and the
execution times of a task or several tasks may be dependent.
The work of Edgar and Burns [2] uses the term probabilistic
worst case execution time to indicate that the random variable
provides the value of the worst case execution time of a task for
a given probability of failure. This notion fulfills the hypothesis
of independent random variables (Definition 1) as this random
variable is common to all instances of a task [10].

Different models are considered for systems with proba-
bilistic inter-arrival times [5], [11]–[15] but only few papers
[14], [13], [15] exist for the case that we consider here:
systems with probabilistic execution times and probabilistic
inter-arrival times. In [14] Lehoczky considers parameters that
are identically distributed, i.e., all described by the same proba-
bility function. This hypothesis may be restrictive for systems
that need a more general model. The recent work of Abeni
et al. [15] is probably the closest to our paper. The authors
present an analysis framework for tasks with probabilistic
execution times and random arrivals, running on a preemptive
single processor according to a Constant Bandwidth Server
based on Earliest Deadline First. In [13], the authors extend
the contribution of [5] to tasks with probabilistic number of
arrivals within a time interval t∆3. Our work extends the results
presented in [5] to the case of systems with probabilistic
minimal inter-arrival times. With respect to this work we
consider probabilistic worst case execution times as indicated
by [2], whereas Diaz et al. [5] consider probabilistic execution
times.

One may note a relation between the non-cyclic Gener-
alised Multi-Frame (GMF) task model presented in [16] and
our probabilistic model. In the GMF task model, jobs can
take different values for their execution time, inter-arrival time
and deadline, be it in a cyclic manner [17], [18] or in a
non-cyclic manner [16]. In some respects, a non-cyclic GMF
task is a probabilistic task for which we do not provide the
associated probabilities of its parameters. Also, a probabilistic
task has different conditions of feasibility, i.e., a probabilistic
task may have deadline misses provided that their probability
of occurrence is below a maximum allowed threshold, e.g.,
10−9 for aerospace industry.

The random variables describing the parameters of a real-
time system may be obtained using techniques like those
proposed for obtaining worst case execution times [1], [2], [19]
or minimal inter-arrival times [20]–[22]. This paper considers
these random variables known and obtaining them is beyond
its scope.

Our contribution In this paper, we introduce a novel
response time analysis for probabilistic real-time tasks with
probabilistic minimum inter-arrival times and probabilistic
worst case execution times scheduled preemptively on a single
processor according to a task-level fixed-priority scheduling
policy. The model that we introduce is general, as there are
no constraints on the distributions of the parameters and the
associated response time analysis, as well, can handle any type
of distributions. We validate the analysis, and we show that it
is bounded in the number of steps. We also provide a means
of reducing the analysis duration via re-sampling and show the

2The convolution is the operation of summation between two random
variables, as detailed in Definition 2.

3The two models are compared in Appendix A of this paper.

effect that different re-sampling strategies have on the response
times distributions of the analysed tasks.

Organization of the paper: The paper is organized as
follows. In Section II we introduce preliminary notations and
definitions while in Section III we describe the system model
and our problem. Section IV contains the main contribution
of the paper, the response time analysis, which is validated
in Section V. We present in Section VI the experimental
evaluation of our probabilistic worst case response time. We
conclude in Section VII.

II. NOTATIONS AND DEFINITIONS

A random variable X has a probability function (PF )
fX (·) with fX (x) = P (X = x). The possible values of Xi
belong to the interval [Xmin, Xmax]. In this paper we associate
the probabilities with the possible values of a random variable
using the following notation:

X =

(
X0 = Xmin X1 · · · Xk = Xmax

fX (Xmin) fX (X1) · · · fX (Xmax)

)
(1)

where
∑ki
j=0 fX (Xj) = 1. A random variable may also

be specified using its cumulative distribution function (CDF)
FX (x) =

∑x
z=Xmin fX (z).

Definition 1. Two random variables X and Y are (probabilis-
tically) independent if they describe two events such that the
outcome of one event does not have any impact on the outcome
of the other.

Definition 2. The sum Z of two (probabilistically) indepen-
dent random variables X and Y is the convolution X ⊗ Y
where P{Z = z} =

∑k=+∞
k=−∞ P{X = k}P{Y = z − k}.

(
3 7

0.1 0.9

)
⊗
(

0 4
0.9 0.1

)
=

(
3 7 11

0.09 0.82 0.09

)

A complementary operator to the convolution is the oper-
ator 	, defined by X 	 Y = X ⊗ (−Y).

Definition 3. The coalescion of two partial random variables,
denoted by the operator ⊕ represents the combination of the
two partial random variables into a single (partial) random
variable so that values that appear multiple times are kept only
once gathering the summed probability mass of the respective
values.

(
5 8

0.18 0.02

)
⊕
(

5 6
0.72 0.08

)
=

(
5 6 8

0.9 0.08 0.02

)
Definition 4. [23] Let X1 and X2 be two random variables.
We say that X1 is greater than X2 if FX1(x) ≤ FX2(x), ∀x,
and denote it by X1 � X2.

For example, in Figure 2 FX1
(x) never goes below FX2

(x),
meaning that X2 � X1. Note that X2 and X3 are not
comparable.



Fig. 2: Possible relations between the CDFs of various random
variables

III. MODEL AND PROBLEM DESCRIPTION

We consider a system of n synchronous tasks
{τ1, τ2, . . . , τn} to be scheduled on one processor according
to a preemptive fixed-priority task-level scheduling policy.
Without loss of generality, we consider that τi has a higher
priority than τj for i < j. We denote by hp(i) the set of
tasks’ indexes with higher priority than τi. By synchronous
tasks we understand that all tasks are released simultaneously
the first time at t = 0.

Each task τi generates an infinite number of successive
jobs τi,j , with j = 1, . . . ,∞. All jobs are assumed to be
independent of other jobs of the same task and those of other
tasks.

Definition 5. The probabilistic execution time (pET) of a job
of a task describes the probability that the execution time of
the job is equal to a given value.

Each task τi is a generalized sporadic task [24] and it
is represented by a probabilistic worst case execution time
(pWCET) denoted by Ci4 and by a probabilistic minimal inter-
arrival time (pMIT). These notions are defined as follows.

Definition 6. The probabilistic worst case execution time
(pWCET) of a task describes the probability that the worst
case execution time of that task is equal to a given value.

A safe pWCET Ci is an upper bound on the pETs Cji , ∀j
and it may be described by the relation � as Ci � Cji , ∀j.
Graphically this means that the CDF of Ci stays under the
CDF of Cji , ∀j.

Following the same reasoning the probabilistic minimal
inter-arrival time (pMIT) denoted by Ti describes the prob-
abilistic minimal inter-arrival times of all jobs.

Definition 7. The probabilistic inter-arrival time (pIT) of a
job of a task describes the probability that the job’s arrival
time occurs at a given value.

Definition 8. The probabilistic minimal inter-arrival time
(pMIT) of a task describes the probability that the minimal
inter-arrival time of that task is equal to a given value.

A safe pMIT Ti is a bound on the pITs T ji , ∀j and it may
be described by the relation � as T ji � Ti, ∀j. Graphically
this means that the CDF of Ti stays below the CDF of T ji ,
∀j.

4In this paper, we use calligraphic typeface to denote random variables.

Hence, a task τi is represented by a tuple (Ci, Ti). A job of
a task must finish its execution before the arrival of the next
job of the same task, i.e., the arrival of a new job represents
the deadline of the current job5. Thus, the task’s deadline
may also be represented by a random variable Di which has
the same distribution as its pMIT, Ti. Alternatively, we can
consider the deadline described by a distribution different from
the distribution of its pMIT if the system under consideration
calls for such model [11], [25], or the simpler case when the
deadline of a task is given as one value. The latter case is
probably the most frequent in practice, nevertheless we prefer
to propose an analysis as general as possible and in the rest
of the paper, we consider tasks with implicit deadlines, i.e.,
having the same distribution as the pMIT.

As stated in [10], since we consider probabilistic worst case
values (for MIT and WCET), then the random variables are
(probabilistically) independent.

Definition 9 (Job deadline miss probability). For a job τi,j
the deadline miss probability DMPi,j is the probability that
the jth job of task τi misses its deadline and it is equal to:

DMPi,j = P (Ri,j > Di). (2)

where Ri,j is the response time distribution of the jth job
of task τi.

We show in Theorem 1 that the case when tasks are
simultaneously released yields the greatest response time dis-
tribution for each task respectively. Here, greatest is defined
with respect to the relation � and it indicates that the response
time distribution of the first job upper bounds the response
time distribution of any other job of that task. Since we are
considering synchronous tasks, calculating the response time
distribution of the first job of a task provides the worst case
response time distribution of the task and, implicitly, its worst
case DMP.

Problem: In this paper, we address the problem of com-
puting the response time distributions and, implicitly, Deadline
Miss Probabilities of tasks with pMIT and pWCET. The
response time of a job is the elapsed time between its release
and its completion. Since we consider jobs with probabilistic
parameters, the response time of a job is also described by a
random variable. The DMP of a job is obtained by comparing
the response time distribution of said job and its deadline, be it
a probabilistic deadline or a deterministic one. This is a novel
problem, and the fact that the system under consideration has
more than one task parameter given as a distribution makes it
a complex one. The solution that we describe is exponential
in the number of tasks and the size of the random variables
representing the task parameters. We describe techniques to
decrease the analysis duration and to make it tractable. Note
that in [26], the authors have shown that there can not be
any pseudo-polynomial exact test for fixed-priority task-level
scheduling of the non-cyclic GMF task model, or any more
general model - that encompasses it - such as the probabilistic
task model.

5In the analysis of GMF tasks this is known as the frame separation
constraint.



IV. RESPONSE TIME ANALYSIS

In this section, we introduce an analysis computing the
response time distribution of a given task. Since the system
under consideration is a task-level fixed-priority preemptive
one, then a given task is not influenced by tasks of lower
priority but only by those of higher priority. Thus, we consider
without loss of generality, the task of interest to be the lowest
priority task, τn, in a set of n tasks.

Before we proceed to the response time analysis for tasks
that have pWCET as well as pMIT, we first recall here the
response time analysis for tasks that have only the WCET
described by a random variable [5]. The response time Ri,j
of a job τi,j that is released at time instant λi,j is computed
using the following equation:

Ri,j = Bi(λi,j)⊗ Ci ⊗ Ii(λi,j), (3)

where Bi(λi,j) is the accumulated backlog of higher priority
tasks released before λi,j and still active (not completed yet) at
time instant λi,j . Ii(λi,j) is the sum of the execution times of
higher priority tasks arriving after λi,j and that could preempt
the job under analysis, τi,j . The operator ⊗ is the convolution
between two random variables. In the case of synchronous
tasks the backlog is equal to Bn =

⊗
i∈hp(n)

Ci.

Equation (3) is solved iteratively, integrating new possible
preemptions by modifying the tail of the response time distri-
bution Ri,j at each iteration. The iterations stop once either
there are no more preemptions to be integrated or all the newly
obtained values in the tail of the response time distribution are
larger than the tasks’ deadline.

Intuitively: In the case when the MIT is also given as a
random variable, we need to modify Equation (3) to take into
account the fact that a preemption can occur at different time
instants with different probabilities. We do so by making a
copy of Ri,j for each value in the pMIT distribution of the
preempting task and scaling each copy with the probability of
its respective value. We then modify the tail of each copy in
order to integrate, as in Equation (3), the execution requirement
of the preempting task. The distributions obtained are then
coalesced and the process is repeated until either there are
no more preemptions to be integrated or the newly obtained
values in the tails of each copy of the response time distribution
are larger than the tasks’ deadline. Note that, if the MIT of
the preempting task is deterministic, then the analysis is the
same as Equation (3). Furthermore, our analysis can handle any
combination of probabilistic and deterministic parameters, and
in the case that all parameters are deterministic the returned
result is the same as the one provided by the worst case
response time analysis in [27].

We present first a numerical example of the analysis before
introducing it formally.

Example 1. We introduce here an example of a task system
and the response time computation for the lowest priority task
of the system. In order to better understand the implication of
the probabilistic parameters, let us start with a deterministic
task set and slowly move our way to a probabilistic version of
it.

Given a task system τ = {τ1, τ2} scheduled under task-
level fixed-priority scheduling policy with τ1 at higher priority
and τ2 at lower priority, and the tasks described by the

following worst case values: τ1 = (C1 = 2, T1 = 5) and
τ2 = (C2 = 4, T2 = 7), with Di = Ti,∀i. A deterministic
analysis of this task system would conclude that it is unschedu-
lable, since the response time of τ2,1 (the first job of τ2) is
greater than its deadline.

First generalization (pMIT): Let us now assume that,
after studying the system, we have extra information about its
behaviour, namely that not all the jobs of τ1 arrive with 5 units
of time between them, but instead they follow a distribution

equal to T1 =

(
5 6

0.2 0.8

)
meaning that an instance of τ1

has a 20% probability of arriving 5 units of time after the
previous instance, and a 80% probability of arriving 6 time
units after the previous instance. All other parameters of the
system keep their worst case representation.

In this case, τ2,1 also has an 80% probability of finishing
execution before its deadline, i.e. the cases when τ1,2 arrives
at t = 6.

Second generalization (pWCET): Going back to the
deterministic task system that we started with this time let us
assume that we have extra information about the execution
requirement of τ2, namely that it follows the distribution

C2 =

(
3 4

0.9 0.1

)
meaning that only 10% of the jobs

generated by τ2 have an execution requirement of 4 time
units and the other 90% require only 3 time units. All other
parameters of the system are considered with their worst case
values.

In this case as well τ2,1 has a high probability, 90%, of
finishing execution before its deadline, namely the cases when
it requires 3 units of execution time.

Combining the two cases: If we now combine both cases
presented above, taking into consideration the probabilistic
nature of T1 and of C2, we note that τ2,1 misses its deadline
only when the two worst case scenarios happen at the same
time, i.e. τ1,2 arrives at t = 5 and τ2,1 needs to execute for 4
units of time. The probability of this happening is the combined
probability of the two scenarios, namely τ2,1 has a probability
of DMP2 = 0.2× 0.1 = 0.02 of missing its deadline.

For this example we have found the deadline miss proba-
bility of τ2,1 by (manually) exploring all the possible combi-
nations of inter-arrival times and execution times of the two
tasks. This is not always possible to do, considering that a
system can have many tasks and each parameter distribution
may have tens, hundreds or even thousands of values, leading
to a large number of possible combinations.

The analysis that we introduce computes the worst case
response time distribution of a task by means of convolution
of random variables, ensuring in this way that all scenarios
have been taken into account without needing to explicitly
investigate all of them.

The analytical response time computation: The prob-
abilistic representation of the system under analysis is τ =

{τ1 = (C1 =

(
2
1

)
, T1 =

(
5 6

0.2 0.8

)
), τ2 = (C2 =(

3 4
0.9 0.1

)
, T2 =

(
7
1

)
)} and we are interested in

finding the response time distribution R2,1 of τ2,1 by applying
our analysis.



The computation starts by initialising the response time
distribution R2,1 with the combined execution time require-
ments of higher priority tasks, in this case C1, and adding to
it the execution requirement of the task under analysis:

R2,1 = C1 ⊗ C2 =

(
2
1

)
⊗
(

3 4
0.9 0.1

)
=(

5 6
0.9 0.1

)
.

The possible preemption that can occur from τ1,2 can be
either at t = 5 with probability 0.2 or at t = 6 with probability
0.8. For each of these two cases we make a copy of R2,1 and
proceed in the following way:

R1
2,1 =

(
5

0.9

)
⊕
((

6
0.1

)
⊗
(

2
1

))
⊗
(

0
0.2

)
=(

5
0.9

)
⊕
(

8
0.1

)
⊗
(

0
0.2

)
=

(
5 8

0.9 0.1

)
⊗(

0
0.2

)
=

(
5 8

0.18 0.02

)
represents the case that τ1,2

arrives at t = 5 preempting τ2,1. In this case, τ1,2 can
only affect the tail of the distribution, i.e. τ2,1 did not finish
execution by t = 6. Two units of time are added to the tail of
the distribution, and the entire resulting distribution is updated
with the probability 0.2 of τ1,2 arriving at t = 5.

R2
2,1 =

(
5 6

0.9 0.1

)
⊗
(

0
0.8

)
represents the case that

τ1,2 arrives at t = 6 and so it does not preempt τ2,1. The tail
of the distribution is not affected, but the entire distribution is
updated with the probability 0.8 of τ1,2 arriving at t = 6.

Once the two copies of R2,1 have been obtained they are
coalesced and the final result is obtained:

R2,1 = R1
2,1 ⊕ R2

2,1 =

(
5 8

0.18 0.02

)
⊕(

5 6
0.72 0.08

)
=

(
5 6 8

0.9 0.08 0.02

)
.

The value 8 of the response time distribution is not possible
since τ2,1 will not be allowed to continue its execution past
t = 7. Any value strictly greater that the jobs deadline
is replaced by ”DMP” and their summed probability mass
represents the Deadline Miss Probability of the job: R2,1 =(

5 6 DMP
0.9 0.08 0.02

)
.

Since the earliest arrival of τ1,3 is at t = 10 then this
task cannot preempt τ2,1 and the analysis stops here. We have
obtained the worst case response time distribution of τ2 and its
Deadline Miss Probability, 0.02, which is exactly the same as
the one obtained earlier by enumerating all possible scenarios.

Third generalization (probabilistic deadline): In order
to show the effect of a probabilistic deadline, we further
generalize the task system by considering that the arrival
distribution and hence the deadline distribution of τ2 is equal

to T2 =

(
7 8

0.3 0.7

)
. In this case τ2,1 will miss its deadline

if and only if the following worst case scenario happens:
τ1,2 arrives at t = 5 (probability 0.2), τ2,1 executes for 4
units of time (probability 0.1) and τ2,2 arrives at t = 7
(probability 0.3). The probability of this scenario happening
is DMP2 = 0.2× 0.1× 0.3 = 0.006.

This probability can be obtained directly by applying
Equation (9):

B2 = R2,1 	 D2 =

(
5 6 8

0.9 0.08 0.02

)
	(

7 8
0.3 0.7

)
=

(
−3 −2 −1 0 1
0.63 0.83 0.24 0.014 0.006

)
.

The value that are less or equal to zero are discarded,
since they represent the cases when the job finishes execution
before or at the deadline. The strictly positive values are kept
and their added probabilities represent the tasks’ DMP, in this
case the probability of the value 1 which is 0.006 as found by
the descriptive method above.

We introduce now a formal description of our analysis.
Formally: The arrival time of the jth job of a task τn is

computed for j ≥ 1 as follows

Tn,j = Tn ⊗ ...⊗ Tn, j − 1 times (4)

and for j = 0 we have Tn,0 = 0.
The worst case response time of task τn is initialized as:

R0
n = Bn ⊗ Cn (5)

where the backlog at the arrival of τn is equal to

Bn =
⊗

i∈hp(n)

Ci (6)

After adding the execution time of the task under analysis
to the backlog accumulated at its arrival, its response time is
updated iteratively with the possible preemptions as follows:

Rin =

k⊕
j=1

Ri,jn (7)

where i is the current iteration, k is the number of values in
the random variable representing the pMIT distribution of the
preempting task, j is the current value taken into consideration
from the pMIT distribution of the preempting task, and Ri,jn is
the jth copy of the response time distribution and it integrates
the possible preemption in the following way:

Ri,jn = (Ri−1,head
n ⊕ (Ri−1,tail

n ⊗ Cprm ))⊗ Ppr (8)

where:

• n is the index of the task under analysis;
• i is the current step of the iteration;
• j represents the index of the current value taken

into consideration from the pMIT distribution of the
preempting task;

• Ri−1,head
n is the part of the distribution that is not af-

fected by the current preemption under consideration;
• Ri−1,tail

n is the part of the distribution that may be af-
fected by the current preemption under consideration;

• m is the index of the higher priority task that is
currently taken into account as a preempting task;

• Cprm is the execution time distribution of the currently
preempting task;



• Ppr is a fake random variable used to scale the jth
copy of the response time with the probability of
the current value i from the pMIT distribution of the
preempting task. This variable has one unique value
equal to 0 and its associated probability is equal to
the ith probability in the pMIT distribution of the
preempting job.

For each value vjm,i in T(m,j) for which there exists at least
one value vn,i inRi−1

n so that vin > vjm,i, the distributionRi−1
n

is split in two parts:

• Ri−1,head
n which contains all values v−n,i of Ri−1

n that
are less or equal than vjm,i, i.e., v−n,i ≤ v

j
m,i, and

• Ri−1,tail
n which contains all values v+

n,i of Ri−1
n that

are greater than vjm,i, i.e., v+
n,i > vjm,i.

The iterations end when there are no more arrival values
vjm,i of any job i of any higher priority task τm that is smaller
than any value of the response time distribution at the current
step. A stopping condition may be explicitly placed in order
to stop the analysis after a desired response time accuracy
has been reached. For example, the analysis can be terminated
once an accuracy of 10−9 has been reached for the response
time. In our case, the analysis stops when new arrivals of the
preempting tasks are beyond the deadline of the task under
analysis, i.e., the type of analysis required for systems where
jobs are aborted once they reach their deadline.

Once the jobs’ response time distribution can be computed,
the Deadline Miss Probability can be obtained by comparing
the response time distribution with that of the deadline, as
follows:

Bi = Ri 	Di = Ri ⊕ (−Di), (9)

where the 	 operator indicates that the values of the distri-
bution are negated. We use the notation Bi even though the
resulting distribution is not a backlog distribution in the strict
sense for the model we consider, but it is still the formula
for computing backlog for systems where jobs are allowed to
execute past their deadline.

The DMP of the job under analysis is given by the
probability mass corresponding to the values strictly greater
than 0, i.e. the job would need more units of time to finish its
execution. The probability mass corresponding to the values
less or equal to 0 gives the probability that the job finishes
execution before its deadline and the next release.

A. Critical instant of a task with multiple probabilistic param-
eters
Lemma 1. We consider a task system of n tasks with τi
described by deterministic Ci and probabilistic Ti,∀i ∈
{1, 2, · · · , n}. The set is ordered according to the priorities of
the tasks and the system is scheduled preemptively on a single
processor. The response time distribution Ri,1 of the first job
of task τi is greater than the response time distribution Ri,j
of any jth job of task τi, ∀i ∈ {1, 2, · · · , n}.

Proof. The response time distribution Ri,j of a job within
a probabilistic system may be obtained by composing response
time values Rki,j of jobs within all corresponding deterministic
systems obtained by considering all values of the minimal
inter-arrival times and the probability associated with the

respective scenario k and we have
(

Rki,j
pscenariok

)
. For each

of these deterministic systems we know from [28] that the
critical instant of a task occurs whenever the task is released
simultaneously with its higher priority tasks. Thus we have
that Rki,1 ≥ Rki,j ,∀k, j > 1 and we obtain Ri,1 � Ri,j as the
associated probabilities of Rki,1 andRki,j ,∀k are the same. �

Theorem 1. We consider a task system of n tasks with τi
described by probabilistic Ci and Ti,∀i ∈ {1, 2, · · · , n}. The
set is ordered according to the priorities of the tasks and the
system is scheduled preemptively on a single processor. The
response time distribution Ri,1 of the first job of task τi is
greater than the response time distribution Ri,j of any jth job
of task τi, ∀i ∈ {1, 2, · · · , n}.

Proof. The response time distribution Ri,j of a job within
a probabilistic system is obtained by convolving response time
distributionsRli,j of jobs within all corresponding probabilistic
systems obtained by considering tasks described by Ci, Ti,∀i.
Then within each scenario l we have from Lemma 1 that
Rli,1 � Rli,j . We have then Ri,1 = ⊗nbofscenariosl=1 Rli,1 �
⊗nbofscenariosl=1 Rli,j = Ri,j . �

V. VALIDATION OF THE METHOD

Our response time analysis provides safe, but pessimistic
results with respect to an exact analysis that would provide
the response time of any job of a task. We leave the reduction
of pessimism as future work, for now we just note that a
pessimistic result is safe, and since this is the first analysis
framework of its kind, we do not strive for absolute accuracy,
only for safeness. We validate our method by ensuring the
following three conditions: limit condition, insurance of the
worst case scenario and convergence (conditions originally
presented in [29]).

Limit condition: To ensure the limit condition we need
to prove that our method provides the same or larger than the
worst case response time of a corresponding deterministic task
system obtained by considering only the worst case values for
all parameters of the tasks.

By applying the analysis to a deterministic task system, the
convolution specific to random variables becomes the summa-
tion of deterministic values, the coalescing operator ⊕ that
combines two random variables is no longer necessary since
there is no head and tail sections of random variables, the
splitting into head and tail is replaced with the corresponding
inequality verification, checking if the next arrival of a higher
priority task will preempt the job under execution. The analysis
stops when there are no higher priority jobs left that can
preempt the job under analysis.

Insurance of the worst case scenario: In order to obtain
the worst case response time of the given probabilistic task
system, the existing deterministic analysis [27] is applied to the
deterministic task system obtained by considering from each
task its minimum inter-arrival time value and its maximum
worst case execution time value. Besides the worst case
response time, the probabilistic analysis framework that we
propose also provides the best case response time of the task,
and all possible response time values between the best case
and the worst case, each with its probability of occurring.

Convergence: In order to ensure the convergence condition
we need to prove that the analysis of a task system does not



run indefinitely without, i.e., sooner or later returning a result.
This condition follows from these two assumptions over the
system model:

a) the distribution representing the tasks’ parameters are
of finite length and so the analysis will complete a loop of
integrating new preemptions in the tail of the response time
distribution in a finite time.

b) the system under consideration makes use of an abort
on deadline policy, which means that the analysis stops when
the returned response time values are larger than the largest
possible deadline of the task under analysis, i.e. the largest
value in the pMIT distribution.

VI. IMPLEMENTATION AND EVALUATION OF THE METHOD

We implemented our response time analysis in MATLAB.
The pseudo-code for the associated steps is presented in
Algorithms 1 and 2 and the complete scripts are available6.

Before we proceed with the description of the simulations
performed we recall here the concept of re-sampling7.

Definition 10. [30] [Re-sampling] Let Xi be a distribution
with n values describing a parameter of a task τi. The
process of re-sampling to k values or k-re-sampling consists
of reducing the initial distribution Xi from n values to a
distribution X ∗i with k values.

The re-sampling is safe with respect to the response time
analysis as the response time Ri of any task τi of the initial
system is greater than the response time R∗i of the considered
task within the re-sampled task system.

The re-sampling of a real-time distribution is performed
in the following two sequential steps: 1) selection of the
k samples to be kept in the reduced distribution and 2)
redistribution of the probabilities from the values that are not
kept.

Re-sampling for pWCET differs from re-sampling for
pMIT in the second step, namely, as larger values of pWCET
produce greater probabilistic response times as well as smaller
values of pMIT produce greater probabilistic response times.

A. Experiment 1: Complexity
One may be concerned when mentioning probabilistic

analyses by their complexity as operations like convolutions
of random variables are involved. Our analysis is tested first
with respect to the complexity.

In Figure 3, a 3D plot of the analysis duration is presented.
On the z-axis the analysis duration is given in seconds, on the
x-axis is the variation of the number of values per random
variable, from 2 to 16 values, and on the y-axis is the number
of tasks per task system, also from 2 to 16 tasks. Every point on
the surface corresponds to the average analysis duration of 100
task sets. The worst case utilization of each considered task
is between 1.5 and 2 and the expected utilization is between
0.5 and 1. The pWCETs are decreasing distributions while the
pMITs are increasing distributions.

6The scripts are available at http://www.loria.fr/˜maxim
7Note that in statistics, re-sampling has a different meaning from that used

in real-time systems. For an example of re-sampling in real-time systems
see Appendix B or refer to [30]. In statistics, the technique presented in
Appendix B is designed by terms like Bootstrap of Jackkife, the interested
reader may refer to [31].

Algorithm 1 Worst case response time distribution computa-
tion
Input: Γ a task set and target the index of the task we analyze
Output: Rtarget the worst case response time distribution of
τtarget
Rtarget = Ctarget; //initialize the response time with the execution time of

the task under analysis

for (i = 1; i < target; i+ +) do
Rtarget = Rtarget⊗Ci; //add the execution times of all higher priority

tasks

end for
for (i = 1; i < target; i+ +) do
Ai = Ti; //initialize the arrivals of each higher priority task with their inter-

arrival times distribution

end for
for (i = 1; i < max(Ttarget); i+ +) do

for (j = 1; j < target; j + +) do
if max(Rtarget) > min(Aj) and min(Aj) = i then
Rtarget = doPreemption(Rtarget,Aj , Cj); //update

the response time with the current possible preemption

Aj = Aj ⊗ Tj ; //the next arrival of τj
end if

end for
end for
Rtarget = sort(Rtarget)

Output: Rtarget

Algorithm 2 doPreemption function
Input: R the current response time,
A the arrival distribution of the preempting job and
C the execution time distribution of the preempting job

Output: R the response time distribution updated with the
current preemption
Rintermediary = empty;
Afake = empty;
for (i = 1; i < length(A); i+ +) do

//constructing the fake random variable giving the probability of the preemption

occurring

Afake.value = 0; //the value of the fake random variable

Afake.probability = A(i).probability; //the probability of the fake

random variable

Split R into head and tail according to the preemption
value;
if tail != empty then

tail = tail⊗ C;
end if
Rintermediary = head ⊕ tail;
Rintermediary = Rintermediary ⊗Afake;
R = R + Rintermediary;
R = sort(R)

end for
R = sort(Rintermediary)

Output: R

We note that the analysis duration of a task set with 16
tasks, each of its random variables having 16 values, takes in
average 140 seconds, i.e. the highest point on the z-axis.

The analysis duration increases both with respect to the
number of tasks per task system and with respect to the number



Fig. 3: Analysis duration of random task system

of values per random variable, indicating the exponential
complexity of the analysis. Nevertheless, solutions exist to
make such analysis affordable even for large task systems with
parameters described by large random variables.

A solution to decreasing the probabilistic analysis duration
is re-sampling, which reduces the analysis duration while
introducing minimal pessimism [30].

In Figure 4, the diagonal of the surface from Figure 3 is
represented by a solid line, having an exponential behaviour.
The same analysis is performed with re-sampling of the
pWCET to 50 values and of the pMIT to 5 values both done
after each iteration. The improvement is shown in the same
figure, represented by the dotted line; this time the average
analysis duration over 100 task sets each having 16 task with
16 values per random variable is only 1.29 seconds, compared
to 140 seconds when no re-sampling was performed. We note
the important gain in speed when the analysis is performed
with re-sampling, even for systems that have 32 tasks and
each random variable has 32 values it takes 11 seconds to
perform the analysis, indicating that it is affordable even for
considerable larger systems. We show in the next experiment
that distributions with 5 values for pMIT bring significant
increase in precision with respect to the worst case response
time analysis.

B. Experiment 2: Improvement with respect to existing analy-
sis

The second set of experiments that we performed show the
precision that is gained by having tasks’ parameters given as
random variables. In order to do so we randomly generated
probabilistic task systems to which we applied our analysis
with different levels of re-sampling applied either at pWCET
level or at pMIT level.

1) Precision gained by having a more detailed pMIT dis-
tribution: To show the increase in precision brought by a
more detailed pMIT distribution, we repeated three times the
analysis on the generated task system, each time varying the
re-sampling level of the pMIT, using 10 values, 5 values and
1 value, respectively. A pMIT distribution with only one value
is in fact a worst case MIT. The pWCET distribution was not
re-sampled.

Fig. 4: Analysis duration of random task systems , increasing
both the number of tasks per task system and the number of
values per random variable in the same time

Figure 5 shows the task Deadline Miss Probability averaged
over 100 task systems of 10 tasks. We note that the determin-
istic reasoning that considers one value for the MIT (and no
re-sampling for pWCET) provides a DMP equal to 0.0167
(left bar in Figure 5) - this is the case of the existing analysis
presented in [5]. By considering a probabilistic reasoning with
10 values for the pMIT we decrease by a factor of 3 the
DMP. Then further increasing the number of values within the
pMIT only marginally decreases the DMP and this is shown
by comparing the values of DMP for 1, 5 and 10.

Nevertheless, having a 10-value pMIT does not bring much
increased precision over a 5-value pMIT, as can also be seen
in Figure 5 where their respective DMPs are almost equal. We
note that it is not necessary to have a large pMIT distribution
to have a precise analysis, depending on the system under
analysis just 5 values can be sufficient.

This increase in precision comes at a cost, namely an
increase in the analysis duration: the larger the distribution,
the more time it takes to perform the analysis. In Figure 6 we
show the analysis duration of the three cases described above.
The duration of the 10 values analysis is close to that of no-re-
sampling, where the duration of 5 values analysis is decreased.
In this case the 5 values analysis seems to be a comfortable
compromise between the duration and the gained DMP.

2) Precision gained by having a more detailed pWCET
distribution: We performed a set of experiments to show the
difference in precision when the tasks’ pWCET distribution
has 1000 values, 100 values, 10 values or only 1 value. A
pWCET distribution with only one value is a deterministic
WCET. The analysis was performed on the randomly generated
task systems on which there were applied, in turn, different
levels of re-sampling to the pWCET distribution. The pMIT
distribution was not re-sampled.

In Figure 7 the difference in DMP between the four cases
is depicted. Note that having 1 or 10 values in the pWCET
distribution returns a task DMP equal to 1 which means that
the system would be deemed unfeasible. This is not necessarily
true, as can be seen from the bar representing the case when the
pWCET distribution has 100 values. In this case the average
DMP values of the analysed tasks does not surpass 0.02 which



Fig. 5: The difference in DMP when the tasks’ pMIT distribu-
tion has 1, 5 and respectively 10 values. Here 1 value indicates
that only the worst case value of the pMIT distribution is
considered.

Fig. 6: The difference in seconds of the analysis duration when
the tasks’ pMIT distribution has 10, 5 and respectively 1 value,
i.e. only the worst case value of the pMIT distribution.

means that the systems could be feasible if they can afford a
0.02 Deadline Miss Probability for their lowest priority tasks.
In conclusion we decreased the DMP fifty times by analysing
the system with 100 values for the pWCET.

As in the case of re-sampling at pMIT level, the re-
sampling at pWCET level also comes with an increase in
the analysis duration. Figure 8 depicts the analysis duration
of the four cases described above, with the 1000 values for

Fig. 7: The difference in DMP when the tasks’ pWCET
distribution has 1000, 100, 10 and respectively 1 value, i.e.
only the worst case value of the pMIT distribution.

Fig. 8: The difference in seconds of the analysis duration
when the tasks’ pWCET distribution has 1000, 100, 10 and
respectively 1 value, i.e. only the worst case value of the pMIT
distribution.

the pWCET having an exponential behavior but also being
the distribution that has the most precision at DMP level. For
pWCET re-sampling 100 is a compromise level that allows to
obtain affordable duration and important increase in DMP.

In [30] a study is performed on different re-sampling
strategies and novel re-sampling strategies are proposed that
introduce very little pessimism. Also, by combining pWCET
re-sampling and pMIT re-sampling, the analysis duration can
be decreased considerably while retaining a high level of



accuracy, regardless of the system under analysis.

VII. CONCLUSION

In this paper, we introduced for the first time a probabilistic
worst case response time analysis for tasks with multiple
probabilistic parameters scheduled on one single processor
under a task-level fixed-priority preemptive scheduling policy.
This model of tasks generalizes the sporadic task model.

Our worst case response time analysis provides a prob-
abilistic worst case response time that is described by a
probability distribution. Our analysis is safe as we prove that
the critical instant of a task occurs whenever the task is
released simultanously with its higher priority tasks.

We provide experimental evaluation for our analysis and
we compare it against existing results. We show that for a
affordable duration analysis we decrease the Deadline Miss
Probability by important factor.

This research provides a basis for the proposing of optimal
fixed-priority scheduling algorithms for system with proba-
bilistic worst case execution times and probabilistic minimum
inter-arrival times.
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APPENDIX A
DIFFERENCES BETWEEN TWO MODELS OF PROBABILISTIC

ARRIVALS

In this section, we present the differences between two
models of probabilistic arrivals that co-exist in the real-time
literature: one associating probabilities to the possible values
of the inter-arrival times and a second model associating
probabilities to the number of arrivals within a time interval.
We recall the first model in Section A-A and in Section A-B
we present the second model. In Section A-C we provide a
comparison of the two models.

A. Real-time systems with probabilistic MIT
Our paper uses the first model, that has been introduced in

papers like [11], [14].
Within this model, for a task τi the pMIT Ti is defined by

a distribution as follows:

Ti =

(
T 0 = Tmin T 1 · · · T k = Tmax

fTi(T
min) fTi(T

1) · · · fTi(T
max)

)

For instance τ1 has a pMIT T1 =

(
5 10

0.3 0.7

)
indicating

that the MIT of τ1 is equal to 5 with a probability of 0.3 and
to 10 with a probability of 0.7 .

B. Real-time systems with probabilistic number of arrivals
This model has been used in papers like [13], [32].
Within this model, for a task τ∗i the number of possible

arrivals Ni within a time interval of length t∆ is defined by a
distribution as follows:

Ni =

(
N0 = Nmin N1 · · · Nk = Nmax

fNi(N
min) fNi(N

1) · · · fNi(N
max)

)

For instance if N1 =

(
1 2 4

0.4 0.3 0.3

)
for t∆ = 12,

then the task τ∗1 has at most 4 arrivals from t = 0 to t = 12.

C. Comparing the two models
We present here the main difference between the two

models from Section A-A and Section A-B.
We consider here the tasks defined in Sections A-B and

A-A. For those tasks only the parameters related to the arrival
of the tasks are relevant to our discussion.

The first model provides information to a schedulability
analysis, information that the second model does not
provide
• Probabilistic MIT: The task τ1 has at most two

arrivals before t = 7 (with a probability 0.3).
• Probabilistic number of arrivals: It is not possible to

estimate how many times τ∗1 was released from 0 to 7.
Different situations are possible like those described
in Figure 9.

The first model can also provide the information that
the second model provides to a schedulability analysis
• Probabilistic MIT: From t = 0 to t = 12 there are

three scenarios of arrivals for task τ1:

Fig. 9: The arrivals defined using the number of arrivals may
correspond to these situations

◦ 3 arrivals at t = 0, t = 5 and t = 10 with a
probability of 0.21;

◦ 2 arrivals at t = 0 and t = 5 with a probability
of 0.09;

◦ 2 arrivals at t = 0 and t = 10 with a
probability of 0.7.

Thus, from t = 0 to t = 12 the possible number of

arrivals of τ1 is described by
(

2 3
0.79 0.21

)
.

• Probabilistic number of arrivals: from t = 0 to t =
12 the number of arrivals of τ∗1
N1 =

(
1 2 4

0.4 0.3 0.3

)
is provided by the model.

APPENDIX B
RE-SAMPLING

We present here a summary of the notion of real-time re-
sampling of execution time distributions that is used in Section
V in order to better understand the mechanism. We note that re-
sampling of minimum inter-arrival time distribution is similar
to re-sampling of pWCET distributions with the exception that
probability mass is transferred from larger values to smaller
values.

Definition 11 (Re-sampling of pWCET distributions). Let
Ci be a distribution with n values representing the probabilistic
execution times of a task τi. The process of re-sampling to
k values or k-re-sampling consists of reducing the initial
distribution Ci from n values to k values.

A re-sampling technique has two sequential steps, namely:
1) Selecting the k samples to be kept in the reduced

distribution. The number of samples to be kept, k, comes
from a trade-off of complexity versus accuracy that we want
to achieve. A constraint while choosing the k samples to be
kept is that the largest value has to remain in the re-sampled
distribution in order to ensure the real-time analysis.

2) Re-distribution of the probabilities from the values
that are not kept. In order to have a pessimistic re-sampled
distribution, and hence a safe probabilistic analysis, there are
no alternatives other than accumulating from-left-to-right. This
means that the probabilities of a subset of samples have to be
added to the probability of a larger value.

Example 2. To better understand how re-sampling works we
present an example. We consider a task with execution time
given by a random variable with 10 values. Without loss of



(a) Original distribution C

(b) Re-sampled distribution C’

Fig. 10: Re-sampling a probabilistic worst case execution time
distribution from 10 values to 4 values.

generality we consider these ten values as the integer numbers
from 1 to 10. The probabilities of these values are as follows:

C =
(

1 2 3 4 5 6 7 8 9 10
0.05 0.04 0.2 0.05 0.22 0.05 0.3 0.04 0.04 0.01

)
,

as depicted in Figure 10a.
The objective is to reduce this random variable to only

k = 4 values instead of 10 in order to ease the convolution
and hence the real-time analysis.

For example, if the values 3, 5, 7 and 10 are
kept, then the re-sampled distribution will be

C′ =

(
3 5 7 10

0.29 0.27 0.35 0.09

)
which is represented in

Figure 10b.


