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Abstract—Real-time embedded systems are becoming ever
more complex. We are reaching the stage where even if static
Response-Time Analysis (RTA) was feasible from a cost and
technical perspective, the results of such an analysis are overly
pessimistic. This makes them less useful to the practitioner. In
addition, the temporal validation and verification of such systems
in some applications, e.g., aeronautics, requires the probability
of obtaining a worst-case response time larger than a given
value in order to support dependable system functions. All these
facts advocate moving toward statistical RTA, which instead of
calculating absolute worst-case timing guarantees, computes a
probabilistic worst-case response time estimate. The contribution
of this paper is to present and evaluate such a statistical RTA
technique which uses a black box view of the systems under
analysis, by not requiring estimates of parameters such as worst-
case execution times of tasks. Furthermore, our analysis is
applicable to real systems that are complex, e.g., from a task
dependencies perspective.

Keywords-task execution and temporal dependencies; statistical
response-time analysis; timing traces; black box view

I. INTRODUCTION

When verifying non-functional properties related to system
timing behavior, analysis techniques are traditionally domi-
nated by deterministic Response-Time Analysis (RTA) [1], in
which the adhering methods are based around some restrictive
assumptions on how the system behaves and return an abso-
lute Worst-Case Response Time (WCRT) guarantee. However,
when it comes to RTA of real systems, it becomes complicated
or even impossible to use deterministic RTA as these systems
invalidate the simplistic assumptions that deterministic RTA
relies on. The problems are exacerbated by the recent trends
in system development. The trends include tasks not only in
themselves exhibit complex control flow behavior but also
there are explicit dependencies, e.g., complex transactions
[2], and implicit dependencies, e.g., through caches or global
shared state variables as illustrated in the case of the indus-
trial robotic control system studied in [3]. Furthermore, it is
difficult to obtain accurate task Worst-Case Execution Time
(WCET) estimates as the input to RTA. This is due to the
fact that the intricate temporal and execution dependencies
between tasks [4] are too hard to handle [5]. Additionally,
modern hardware that is designed to increase the overall
system performance makes the runtime behavior of these
systems inherently probabilistic in nature [6]. Therefore, it is
considered beneficial to develop a RTA technique which does

not rely on traditional system models used in deterministic
RTA and WCET analysis methods.

Looking at the development of RTA for real-time embedded
systems, as a step towards increasing its applicability in real
systems, Bate [2] and Mäki-Turja [7], [8] have introduced
more detailed RTA methods for dealing with task execution
precedence, task offsets and task execution dependencies on
different modes. These are still comparatively simple compared
to some development practices and the analysis still relies
on accurate WCET values. An option to deterministic RTA
is Real-Time Queueing Theory (RTQT) [9] that provides
a way to compute tasks’ response time distributions using
various real-time scheduling algorithms. However, preemption
between customers (or tasks) is not permitted. In 1991, Atlas
et al. [10] proposed a statistical rate monotonic scheduling
for the independent task model, which is a generalization of
the classical rate monotonic scheduling results for periodic
tasks with high variable execution times and statistical Quality-
of-Service (QoS) requirements. In this paper we develop a
statistical black box view RTA technique that does not require
any knowledge of accurate estimates of parameters of the
system under analysis, such as the WCET of tasks. Our method
also provides a solution to applications where users would like
to know the probability of missing a specific deadline within
some delay of the system functions, e.g., as required by the
certificates in aeronautics [11], [12].

Our work is not the first paper proposing solutions for
systems which cannot be properly analyzed by deterministic
RTA [6], [13], [14]. It is interesting to stress that probabilistic
WCET may also be obtained by using statistical methods [15],
[16], [17], and the resulting distributions can be later used
as inputs by the probabilistic response time analysis, such
like [14], [18]. Unfortunately, calculating such distributions
easily results in great complexity, and it is difficult to imple-
ment due to floating point problems [19]. Therefore in this
work, we avoid such problems by presenting a statistical RTA
based on traces of execution of target systems. A first result
of such an analysis is introduced by RapidRT [20], which
however has limitations in the following aspects:

1) RapidRT is lacking a rigorous statistical analysis frame-
work needed to choose appropriate analysis parameters in
order to achieve the desired properties of the results, e.g.,
the confidence in the value obtained and the likelihood
in the response time being exceeded.
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2) The parameters used in RapidRT (e.g., different sample
sizes) are obtained according to empirical evidence given
by few evaluation models, lacking the support given by
expert statistical evidence.

3) The adopted search algorithm [20] was designed to de-
termine the approximate best-fit algorithm parameters. In
this paper an algorithm to determine the exact best-fit
algorithm parameters is developed.

4) An automated tool chain and more thorough evaluations
were lacking in the presentation of RapidRT.

Our goal in this paper is therefore to remove the above men-
tioned four limitations and improve prior work in obtaining a
safe and tight upper bound on the WCRT estimate of the tasks
under analysis, based upon a calibrated and tight predictive
Probability Density Function (PDF) histogram of the task. To
be specific, by calibrated we mean that the result given by our
method can bound the true task WCRT, i.e., a safe task WCRT
estimate. Tightness (which is related to pessimism) is about
how close the safe result lies to the true task WCRT. Clearly,
the tighter, the less pessimistic, the better. In particular, the
technical contributions presented in this paper are two-fold:

1) We introduce the statistical RTA framework RapidRT∗,
which can deal with a wide range of systems includ-
ing complex industrial real-time embedded systems with
intricate task execution and temporal dependencies as
introduced in Chapter 3 in [4]. This is done by using
a novel sampling method to achieve training data that
will be corrected by a posterior process based on a set
of statistical techniques, search algorithms and a certain
task reliability requirement.

2) We present a new algorithm which significantly improves
the accuracy of results (in terms of obtaining a tighter
upper bound on the WCRT estimate of tasks) as well
as reduces algorithm computing time, comparing prior
work [20]. Specifically, such improvements have been
demonstrated by an extensive set of simulation models
containing representative features of real industrial con-
trol applications.

The remainder of the paper is organized as follows. Sec-
tion II introduces the system model, the background theory,
related work, and an overview of our analysis. Section III
presents the RapidRT∗ framework in detail, followed by Sec-
tion IV that describes the evaluation framework, our testbed
and the developed tool chain, and the results of the evaluation.
Finally, conclusions and future work are drawn in Section V.

II. STATISTICAL RESPONSE-TIME ANALYSIS OF SYSTEMS

This section describes the analysis used in this paper
starting with the system model in Section II-A followed by
the background on the Extreme Value Theory (EVT) used
in Section II-B. Next the related work that has used EVT
for analysis of real-time systems is reviewed in Section II-C.
Finally an overview of our approach is given in Section II-D.

A. System Model

The systems considered in this work are comprised of a
number of non-blocking tasks, and the knowledge of the
parameters of these tasks is not required by our analysis.
Furthermore, no specific scheduling algorithm is assumed in
this work. Based on these properties of a black box approach,
our analysis does not need any internal knowledge of tasks.

B. Background on the EVT Used

EVT is a theory of statistics extending the Central Limit
Theorem [21] to the tail of a distribution. More precisely, for
a given random variable Y = max{X1, ..., Xn} formed from
the maxima of a set of n i.i.d. random variables Xi, EVT
predicts that the distribution of Y will converge to the Gener-
alized Extreme Value (GEV) distribution as n goes to infinity.
Therefore EVT is used to model the likelihood of infrequent
events. Typically, there are two common approaches [22]
associated with EVT: Peak Over Threshold (POT) and Block
Maxima. The first approach POT only studies the data which
exceed over a threshold μ to a Generalized Pareto Distribution.
One disadvantage of POT is that the choice of the threshold
value μ is not evident. Furthermore, POT is known to not
behave well when the data are not sufficient. Therefore, we
use the block maxima approach in this paper.

Though the independent and identically distributed (i.i.d.)
hypothesis is a common assumption made by statistics and
probability theory in order to simplify the underlying mathe-
matics, we will clarify a point about the difference between
such a statistical independence required by statistics and the
internal dependencies existing in the execution of tasks in
the target system: EVT does not require the system under
analysis to exclude any dependencies between non-blocking
tasks, instead it analyzes the execution of the target which
is independent of other executions. Moreover, in one system
execution (i.e., Xi in our notation), we may capture task
dependencies if they exist in the system, which are however
not forbidden by EVT.

According to EVT, Y converges only to one of the three
following forms: 1) Gumbel when the underlying distribution
has a non-heavy upper tail (e.g., Normal) and, 2) Fréchet when
the underlying distribution has a heavy upper tail (e.g., Pareto)
and, 3) Weibull when the underlying distribution has a bounded
upper tail (e.g., Uniform) and relates to minima (i.e., the
smallest extreme value). Particularly, a probabilistic estimate
can be computed by using the best-fit distribution parameters,
according to a certain probability of being exceeded, as shown
by Equation 1.

It is interesting to note that if we prove that the response
time distribution of tasks converges to a Gumbel distribution,
then according to EVT it cannot converge to Fréchet or
Weibull. We now explain the reasoning allowing us to choose
the correct distribution:
• We study the response time of probabilistic real-time

systems.
• This work should provide results that are as close as

possible to those given by any exact probabilistic RTA,
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such as [23], [18], which take as input, probabilistic
WCET estimates obtained by [16], [17]. Such probabilis-
tic WCET estimates are proved to converge to the Gumbel
Max distribution.

• Since the probabilistic worst-case response time is ob-
tained by convolving the probabilistic WCET estimates,
then their result is a distribution covering values with very
low probability.

• Since Weibull is finite and Fréchet is not defined for all
values (thus extremely low), then the result of a statistical
RTA can only converge to the Gumbel Max distribution.

The conclusion that the Gumbel Max distribution is the correct
one for the task RT sub-training data, has been backed up by
the results of two Goodness-Of-Fit (GOF) hypothesis tests,
i.e., the Exponential Tail (ET) test [24] and Chi-squared
test [25] used in our work. More details can be found in
Table I.

TABLE I
THE RESULTS OF TWO GOF HYPOTHESIS TESTS, I.E., THE ET TEST AND

CHI-SQUARED TEST, HAVE SHOWN THAT THE I.I.D. TASK RT
SUB-TRAINING DATA IN DIFFERENT EVALUATION MODELS, CONFORM TO

THE GUMBEL MAX DISTRIBUTION.

Models The ET test The Chi-squared test The confidence level

MV1-* Pass Pass 95%
MV2-* Pass Pass 95%
MV3-* Pass Pass 95%
MV4-* Pass Pass 95%

Equation 1 shows an example of using the percent-point
function of the Gumbel Max distribution in EVT, to compute
a probabilistic estimate, which is relevant to this work.

est = μ− β × log(−log((1− Pevt)b)) (1)

where μ and β are the two (best-fit) parameters of the Gumbel
Max distribution, Pevt is the acceptance probability in EVT,
and b is the block size.

C. Related Work for the Use of EVT in Real-Time Systems

EVT has been applied to the WCET analysis of a program
in the recent years, and the featured work includes [26], [16],
[17]. Specifically, in [26], Edgar presents the initial work
on using EVT for WCET estimation, by firstly fitting the
raw measured execution time sample to the Gumbel Max
distribution based upon an unbiased estimator. A WCET esti-
mate is then calculated using an excess distribution function.
Hansen [16] improves the work by using a block maxima
approach for the estimation of the probabilistic WCET, rather
than fitting the raw execution time sample to the Gumbel Max
distribution directly as in [26]. The limitations of [26], [16]
when applying EVT are presented in [27] and these limitations
are solved in [17]. Moreover, in [17] the authors have proved
the convergence to the Gumbel Max distribution by using the
ET test as the appropriate statistical test for this case. It is also
important to note that as pointed out in [27], EVT makes the
assumption required by statistics and probability theory, i.e.,
the sample elements in the sample have to be i.i.d..

D. Overview of Our Approach

The basic approach followed in this work is summarized by
the following five stages:

1) The first stage of the analysis is to capture information
from the available sources concerning the RT of the
individual tasks, e.g., the existing system logs containing
recorded RT data of the task under analysis. Specifically,
no assumption is made as to whether such sources are
collected either via simulation, or by monitoring the
behavior of the actual target using software probes as
introduced in Chapter 7 in [28].

2) Next, a task RT training data (consisting of a number
of task RT sub-training data corresponding to the K
statistical models to be introduced in Section III-A) is
sampled from the set of available sources achieved in Step
One. Specifically, each sub-training data is taken such that
an i.i.d. assumption can be made, and such that there are
sufficient samples allowing for appropriate tuning of the
final analysis.

3) Then, a posterior statistical correction process is per-
formed to allow the primary objective of the analysis to be
achieved, i.e., to obtain a safe and tight WCRT estimate
of tasks. This step decomposes the reliability target for
the WCRT of tasks into a number of probabilities to
be used in the statistical analysis. Such probabilities are
associated with different analysis context, such as our
sampling method, EVT and the GOF hypothesis test (of
which more details are given in Section III-B).

4) Given an appropriate task RT sub-training data, the
statistical analysis in the posterior statistical correction
process is tuned such that the maximum of a probability
distribution (in this case the Gumbel Max distribution)
generated with a given set of parameters is a sufficiently
close match, at the required confidence level, to the
maximum of the actual distribution of the sub-training
data. At this step, a calibrated and tight PDF histogram
of the task WCRT consisting of the estimates of the
maximum of each task RT sub-training data is obtained.

5) The final stage is to use the achieved task WCRT PDF
to obtain the final WCRT of the task under analysis.

The first and fifth of the stages above are effectively the
same as Edgar’s approach, with the obvious difference here
response times are analyzed instead of execution times. The
second stage has been included to overcome the issue that the
EVT’s being used are intended for data without having strong
dependencies and hence conforming to the i.i.d. assumption.
The third stage decomposes the system’s objectives into a
set of probabilities used by the EVT concerning the Gumbel
Max distribution, the GOF hypothesis test, different search
algorithms, etc. Finally, the parameters of the i.i.d. task RT
sub-training data are tuned to give better results using the
percent-point function of the Gumbel Max distribution (as
shown in Equation 1) in the fourth stage. Figure 1 shows
the corresponding work flow. The first four stages of our
method ensure the i.i.d. hypothesis required by statistics and
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Task RT Training Data
(i.e., Timing Traces)

Task Reliability 
Requirements

Real-Time 
Embedded Systems

A Probabilistic Task
WCRT Estimate

Posterior Statistical 
Correction Process

Fig. 1. The work flow about RapidRT.

probability theory as well as EVT. Firstly our sampling method
(to be introduced in Section III-A) is applied on the original
RT data to remove some strong dependencies, in order to
provide the i.i.d. samples. Secondly, the adopted block maxima
approach also gives a set of independent data [22] which are
used for obtaining an estimate later.

III. RapidRT ∗ ANALYSIS FRAMEWORK

Note that we use the notation RapidRT∗, i.e., by adding the
symbol ∗ to RapidRT, in order to differentiate between our
new framework and the original framework presented in prior
work [20].

The core of the RapidRT∗ analysis framework presented in
this section is the law of total probability [29], which tells us
that a predictive PDF of tasks’ WCRT can be given by

P (rtest) =
K∑
k=1

p(rtest|Mk)p(Mk|rtTk ) (2)

where K is the number of statistical models required by the
analysis framework, each of which the form is a Gumbel Max
distribution, p(rtest|Mk) is the task WCRT PDF based on the
model Mk alone (which is corresponding to the task RT sub-
training data rtTk ), and p(Mk|rtTk ) is the posterior probability
of the model Mk being correct given the task RT sub-training
data rtTk . Here p(Mk|rtTk ) reflects how well the model Mk

fits the sub-training data.
In the following, we introduce the RapidRT∗ analysis

framework in detail by firstly presenting the description of
the proposed sampling method in Section III-A, followed
by the underpinning posterior statistical correction process in
Section III-B. Also, in this section the overall algorithm is
presented in pseudo-code format.

A. Sampling

As introduced in Section II-D, the first and second stage
in our approach is the sampling method which specifically
consists of three steps as follows:

Step One The collection of representative task RT samples:
First, the sample which could be representative of the

underlying task RT population has to be collected in a
way without introducing any bias [30]. Furthermore, this
step concerns with the issues of sampling strategy and
sample size. The samples achieved in this step will be
called Simple Random Sampling (SRS). In this work, we
employ the technique of SRS [21], which gives every
possible observation of a given size (i.e., system inputs)
the same chance to be chosen (based around the usage of
a uniform distribution). The main benefit of SRS is that
it guarantees that the chosen sample is representative of
the underlying population [30], without introducing any
bias to sampling.

Step Two The collection of the task RT sub-training data rtTk
satisfying the i.i.d. assumption: Based around the SRS
task RT samples achieved in the previous step, we next
construct the sub-training data rtTk which satisfies the
i.i.d. assumption (and hence can be used by the posterior
statistical correction process) and contains the sample
with higher response times, compared with the sampling
method in prior work RapidRT.

Step Three The collection of the training data rtT by re-
peating Step One and Two for K times and hence
comprising K sub-training data rtTk , which results in
rtT ← rtT1 , ..., rtTk , for the K statistical models corre-
sponding to the K sub-training data.

The main problem in Step One is the determination of the
appropriate sample size of an SRS task RT sample, which
depends on a number of accuracy factors that must be consid-
ered. In the context of RTA, such factors are desired precision
of results, confidence level and the degree of variability. We
introduce their definitions (based on [31] which introduces
how to determine the sample size in general) as follows:

1) Desired precision of results: The level of precision is the
closeness with which the sample predicts where the true
values in the population lie. The difference between the
sample and the real population is called the sampling
error. The commonly assumed sampling error is ±3%
and ±5%. In addition, the higher level of precision
required, the larger sample sizes and the higher cost to
achieve those samples will be.

2) Confidence level: The confidence level refers to the
percentage of the collected sample that would have the
true population value at the accepted level, at which
the sample is within the range of precision. The 95%
confidence level is more commonly used in practice.

3) Degree of variability: Variability is the degree to which
the attributes or concepts being measured in the questions
are distributed throughout the population.

The different sample sizes within our method are directly
related to the utilization of EVT. For instance, the ET test
works for poor data (size of 20), and it provides a Gumbel
distribution that is known to be pessimistic. If more data is
included, then the corresponding estimation is more accurate.
The application of EVT to the problem of the estimation of
probabilistic WCET indicates that the minimum sample size is
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less than 1 000. In addition, an interested user may determine
such minimum sample size for the estimation of probabilistic
WCRT by adding a convergence step to our algorithm and then
comparing consecutive results of EVT on those data. However,
this is beyond the purpose of this paper, and it is kept as future
work.

According to the statistical evidence [31], the determination
of such an SRS task RT sample size can be done using the
above definitions and the table in Appendix Two in [31]. In
this work, the detailed explanation is: since the underlying task
RT population is extremely large due to a very large system
search space consisting of task arrival jitter, task execution
time and environmental input stimulus [32], we therefore use
the maximum of all the specified population sizes in the table,
i.e., 100 000. Since the variability of task RT population is too
difficult to estimate, it is therefore best to use the conservative
figure of 50% as suggested by [31]. The confidence level is
chosen as 95%, which is standard in applied practice. The
sampling error is ±3%. Note that the reason for choosing
the sampling error to be ±3%, other than ±5%, is that
the larger the sample size is, the higher level of precision
is, which is especially important when we achieve the SRS
task RT samples. Consequently, by using the information
previously given, the sample size of each SRS task RT sample
is determined to be 1 099, when the population size is 100 000,
variability is 50% and sampling error is ±3%.

In Step Two, there are no dependencies between the maxi-
mum of any two independent SRS task RT samples, which are
collected by running two independent executions of the system
being analyzed. We are interested in the prediction of the
task WCRT. Therefore, maxima are taken to achieve the task
RT sub-training data rtTk which satisfies the i.i.d. assumption,
and hence can be used by our posterior statistical correction
process. Additionally, when we fit the sample elements in
the sub-training data rtTk to the Gumbel Max distribution (in
EVT) for the statistical model Mk (i.e., the i.i.d. task RT
sub-training data fitting process hereafter), the corresponding
sample size is 191. This is the smallest sample size when the
corresponding i.i.d. task RT sub-training data fitting process is
successful by using the upper-part binary search [33], based
on our evaluation (as shown in Table II).

In Step Three using the same table (Appendix One in [31]),
the sample size of the task RT training data rtT (which con-
tains K task RT sub-training data rtTk ) of 398 is chosen when
the population size is 100 000, variability is 50% and sampling
error is ±5%. Note that 398 sub-training data samples (when
the sampling error is ±5%) is sufficient enough to construct
the task WCRT estimate sample (in Section III-B) according
to our evaluation. The cost of sampling in our algorithm will
become expensive if i.e., 147 146 209 more sample elements
than necessary are taken (i.e., 1 099× 191× 1 099− 1 099×
191× 398). Having more samples would not yield significant
improvements in the results.

In order to have a better understanding about the sample
sizes in different context of our proposed method, we summa-
rize the above information as follows:

Fig. 2. Illustration of our proposed sampling method in RapidRT∗ . Since we
are only interested in showing the shape of different response time samples
of the same task achieved in different steps, the detailed ranges of task RT
data are not interesting to show clearly in the picture.

1) An SRS task RT sample contains a set of measured and
representative task RT data per each system execution by
using SRS (without introducing any bias when we achieve
those samples), and its sample size is 1 099.

2) A task RT sub-training data rtTk for the model Mk

contains a set of maxima of SRS task RT samples, and
its sample size is 191.

3) A training data rtT for K statistical models (referred as
the task WCRT estimate sample in the posterior statistical
correction process) is comprised of a set of sub-training
data rtTk , and its sample size is 398.

The proposed sampling method is illustrated in Figure 2,
and its implementation is shown in lines from 5 to 8 in
Algorithm 1 (to be introduced in Section III-B). The key aspect
of this figure is that the multi-modal actual distribution of the
task response time is transformed into a positive-skewed (i.e.,
right-skewed or right-tailed) distribution that can summarize
the tail of the actual distribution. Then, following Step Three
we repeat Step One and Two for 398 times.

TABLE II
IN THE TABLE, × INDICATES THAT THE I.I.D. TASK RT SUB-TRAINING

DATA FITTING PROCESS FAILED, CORRESPONDING TO THE CHOSEN

SAMPLE SIZE (WHICH IS DETERMINED BY THE UPPER-PART BINARY

SEARCH [33]);
√

REPRESENTS THE OPPOSITE CASE OTHERWISE.

100 150 175 188 194 191 190
GOF test × × × × √ √ ×

B. Posterior Statistical Correction Process

The RapidRT∗ analysis framework takes five input parame-
ters, and returns a probabilistic WCRT estimate of the task τ
under analysis. To be specific, the five input parameters are:
τ (the task under analysis), n (the sample size of the task RT
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training data rtT ), m (the sample size of a task RT sub-training
data rtTk ), l (the sample size of an SRS task RT sample) and
Prr (the given task reliability requirement). Specifically, Prr is
the probability of the task τ having a response time violation,
which is, e.g., no more than 10−9 per hour or 8.784× 10−6

per year (i.e., 24× 366× 10−9) when Prr is 10−9.
In order to use the given task reliability requirement in

the posterior statistical correction process in RapidRT∗, we
have to decompose the algorithm parameter Prr into a set of
probabilities according to different kinds of context as follows:

1) Psampling is the probability of having some sample
elements which are not included in the task RT training
data rtT collected by our proposed sampling method.
Since the confidence level of the training data rtT given
by our sampling method is 95%, the value of Psampling
is 0.05 (i.e., 1− 0.95).

2) Since the confidence interval for the task WCRT estimate
predictive PDF is chosen at the level of 95% and the
significance level of the hypothesis tests in the posterior
statistical correction process is 0.05, the value of the
probabilities PREFcl

(the significance level of the task
WCRT estimate predictive PDF) and PGOF (the signifi-
cance level of the GOF hypothesis test) is therefore 0.05.
The value 0.05 is a typical value based on preliminary
assessments that provided appropriate results [34])

3) Pevt is the acceptance probability in EVT which is
used in the Gumbel percent-point function (as shown in
Equation 1) to obtain a probabilistic WCRT estimate of
the task.

In the RapidRT∗ analysis framework, all the steps outlined
above have to be taken one by one, as a result, Prr is a
multiple of Psampling , PREFcl

, PGOF and Pevt as expressed
by Equation 3.

Prr = Psampling × PREFcl
× PGOF × Pevt (3)

where Psampling , PREFcl
and PGOF are 0.05, and Prr is

10−9.
Consequently, the value of Pevt can be calculated by the

following equation:

Pevt =
Prr

Psampling × PREFcl
× PGOF

(4)

where Psampling , PREFcl
and PGOF are 0.05, and Prr is

10−9, and hence Pevt is 8× 10−6 (i.e., 10−9

0.05×0.05×0.05 ).

Next, RapidRT∗ will verify if the task WCRT estimate
sample consisting of n probabilistic task WCRT estimates
(corresponding to K task RT sub-training data, where K =
n) conforms to a normal distribution or not, based around
the result given by the non-parametric GOF hypothesis test
Kolmogorov-Smirnov test [35] (the KS test hereafter). If it is,
then the algorithm will calculate the confidence interval (i.e.,
the CI hereafter) of the task WCRT estimate sample at the con-
fidence level 95%, and choose the upper bound on the CI as the
final WCRT of the task. Otherwise, if the task WCRT estimate

sample cannot be fitted to a normal distribution, the resampling
statistical method bootstrapping will be adopted. Specifically,
the way of using the most widely-used bootstrapping method
i.e., bias-corrected and accelerated (BCA) bootstrap to obtain
the confidence intervals of a population can be found in [36].
The outline of the posterior statistical correction process in the
RapidRT∗ analysis framework is as follows:

1) Compute the task WCRT estimate estk per each sub-
training data rtTk corresponding to the statistical model
Mk (which uses the Gumbel Max distribution in EVT and
a given task reliability requirement). The detailed steps
are as follows, i.e.,

a) Set the initial block size b to 1, for each sub-training
data rtTk .

b) If the number of blocks k =
⌊m

b

⌋
is less than 30, the

algorithm stops since there are not enough samples to
generate an estimate [16].

c) Segment m response times into blocks of size b, and
for each of the

⌊m

b

⌋
blocks find its maximum.

d) Estimate the best-fit Gumbel parameters μ and β to the
block maxima by using the exhaustive search algorithm
as shown in lines 16 to 23 in Algorithm 1.

e) Calculate a probabilistic task WCRT estimate based on
the best-fit Gumbel Max parameters obtained through
Step d) (i.e., μ, β) and the acceptance probability in
EVT (i.e., Pevt). In addition, evtgumbelmax in line 19
in Algorithm 1 represents the implementation of the
Gumbel percent-point function as shown by Equation 1
(introduced in Section II-B).

2) After verifying if the task WCRT estimate sample (i.e.,
EST ← est1, ..., esti, ..., estn) can successfully be fitted
to a normal distribution by using the KS test, RapidRT∗

will return the result, i.e., EST + 2σEST (the sum of
mean value and 2 standard deviation of EST at the
confidence level 95%).

The precise description of the algorithm using pseudo-code
is outlined in Algorithm 1, in which the lines 8 to 33 show
the posterior statistical correction process.
Parameters:

τ : the task under analysis
n: integer value - the sample size of a task WCRT estimate

sample
m: integer value - the sample size of a task RT sub-training

data
l: integer value - the sample size of an SRS task RT sample
Prr: double value - the given task reliability requirement

in terms of a certain probability
Returns:

rtest: double value - the WCRT estimate of the task τ

IV. CASE STUDY: AN INDUSTRIAL ROBOTIC CONTROL

SYSTEM

This section is split into four parts: Section IV-A presents
the setup of the evaluations performed in this case study.
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Algorithm 1 RapidRT ∗(τ, n, m, l, Prr)

1: Psampling , PREFcl
, PGOF ← 0.05, Prr ← 10−9

2: Pevt ← 8× 10−6 ← Prr
Psampling × PREFcl

× PGOF
3: n ← 398, m← 191, l← 1 099
4: for all esti such that 1 ≤ i ≤ n do
5: for all rti,j such that 1 ≤ j ≤ m do
6: rti,j ←MAX(SRS(τ, l))
7: end for
8: Xi ← rti,1, ..., rti,m
9: b ← 1

10: k ←
⌊m

b

⌋

11: μ, β ← 0
12: success← false
13: while k ≥ 30 and success = false do
14: Si ← si,1, ..., si,k ← segment(Xi, b)
15: Yi ← yi,1, ..., yi,k ← maxima(Si)
16: if passChiSquareTest(Yi, GumbelMax, PGOF ) >

0 then
17: success← true
18: μ, β ← ChiSquareTest(Yi, PGOF )
19: esti ← evtgumbelmax(μ, β, Pevt, b)
20: else
21: b ← b + 1
22: k ←

⌊m

b

⌋

23: end if
24: end while
25: end for
26: EST ← est1, ..., esti, ..., estn
27: if passKS(EST, Normal, PGOF , PREFcl

) then

28: EST ← 1
n
×

n∑
i=1

esti

29: σEST ←
√√√√ 1

n

n∑
i=1

(esti − EST )2

30: rtest ← EST + 2σEST
31: else
32: rtest ← bootstraptest(EST )
33: end if
34: return rtest

Section IV-B outlines the evaluation models followed by our
testbed and toolchain in Section IV-C. Finally, Section IV-D
presents our results and their validity.

A. Evaluation Setup

In the evaluation of the proposed framework, we are inter-
ested in the tightness of analysis results given by RapidRT∗,
the corresponding improvements over RapidRT from the per-
spectives of sampling methods, the pessimism of analysis
results as well as the computing time.

1) Tightness: The first property to investigate in this evalu-
ation is whether the results are calibrated and tight, or not.
The tightness of the results obtained by RapidRT∗ is of

highest importance from an applicability and usefulness point
of view. Specifically, we are not allowed to provide optimistic
or too pessimistic results of the task WCRT estimate. If the
results were optimistic, then they are invalid, i.e., they are
not calibrated. If the results would be a little bit pessimistic,
they are safe and good to use. If the results would be too
pessimistic, then they are not tight and as a result less useful
from a practical point of view.

Tightness of the analysis results is difficult to evaluate,
unless we have access to the true WCRT of the task under
analysis. Hence, in order to assess the tightness of the results
obtained by RapidRT∗, we need to compare such results of
RapidRT∗ to some known best-practice response time values.
A natural candidate for comparison would be to use the
traditional RTA – a technique commonly used to compute the
exact WCRT of tasks. However, we cannot compare our results
against such traditional RTA techniques, not only because
there are different analysis views adopted, but also because
the system model assumptions in traditional RTA are invalid,
due to the black box view with possible intricate task execution
and temporal dependencies in our target systems.

On the other hand, as a reference for comparison, we can
compare the performance of RapidRT∗ against HCRR [32] –
a meta-heuristic search algorithm that guides the traditional
Monte Carlo Simulation (MCS), in order to find good and
representative response time values that cannot be obtained
by the traditional MCS. However, HCRR requires an accurate
model of the system under analysis in order to compute
useful results. Under such circumstances, HCRR has shown
to perform very well, hence, hinting on a good performance
also on models that cannot be analyzed by using traditional
RTA techniques, such as our evaluation models.

It should be noted that RapidRT∗ does not require an
accurate model of the system under analysis, but merely the
training data (in terms of task RT traces) to be used by the
analysis. In our experiments, however, we do have accurate
models of the evaluation systems such that the values given
by HCRR could be used to indicate the level of pessimism of
RapidRT∗ results, as the known best-practice WCRT of tasks.

2) Improvements: Since we have removed a number of
limitations in RapidRT such that the performance of the new
analysis RapidRT∗ should significantly increase, the second
property to investigate is the improvement over our prior work.
Interesting properties to investigate include improvements in
our sampling method, the pessimism in the computed task
response time estimates, and the performance with respect to
computing time.

B. Evaluation Models

In order to assess the performance of RapidRT∗, we decide
to evaluate a large number of models of applications. To be
specific, our evaluation models are based around four different
base models, which are designed to include some behavioral
mechanisms adopted by an industrial robotic control system.
Moreover, we have applied system evolution scenarios to these
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base models to create a total of 32 different models used for
our evaluation.

Next, we outline the characteristics of our evaluation mod-
els, followed by some details of the base models, as well as
the way of designing different variations of the base models
pertaining to system evolution.

1) Model Characteristics: The characteristics of the behav-
ioral mechanisms in our evaluation models include intricate
task execution and temporal dependencies, e.g., asynchronous
message-passing by sending and receiving messages from
buffers (as shown in lines 1 to 4 in Figure 3), execute
statements representing some computation time taken by the
(sub-)task (as shown in Line 6 in Figure 3), Global Shared
State Variables (GSSVs) used in selecting control branches in
tasks, runtime changeability of task priorities and periods (as
shown in lines 8 to 13 in Figure 3), and task offsets.

1 msg = recvMessage(MyMessageQueue);
2 while (msg != NO_MESSAGE){
3 process_msg(msg);
4 msg = recvMessage(MyMessageQueue);}
5
6 execute(for_some_time);
7
8 if (GSSV1 == 1){
9 var1 = 10;

10 tcb->period = 20000;}
11 else{
12 var2 = 5;
13 tcb->period = 10000;}

Fig. 3. Iteration-loop wrt. message passing and GSSVs, and runtime
changeability of task priorities and periods in the tasks in the industrial robotic
control system evaluated in our work.

2) Base Models: As we mentioned previously, our evalua-
tion models are centering around four different base models,
which are designed to have increasing complexity. The dif-
ferences between these base models are mainly concerning
the contained task execution and temporal dependencies as
well as the number of sub-tasks, queues and GSSVs, which
are increased from MV1-∗ to MV4-∗, as shown in Table III,
making them more complex. The system architecture of the
most complicated base model MV4-∗, is shown in Figure 4.
More details about our base models, including their detailed
pseudo code can be found in [37] (unfortunately we have to
leave out such details in this paper due to space limitations).

3) Model Variations: In order to have a large number
of evaluation models, we simply apply some typical system
evolution scenarios to the four base models, each resulting in
a set of new system models to analyze. In doing this, we either
increase or decrease the execution time of sub-tasks in tasks
in our base models, which reflects the scenarios of the change
on system CPU speed. In practice, such scenarios can happen
e.g., when the system is ported to a new hardware platform,
which thereby is upgraded or downgraded according to new
design requirements.

• For the increase in system CPU speed, we limit ourselves
to use 2, 5 and 10 as relevant factors in the work.

• For the decrease in system CPU speed, we limit ourselves

Fig. 4. An industrial robotic control system architecture.

to use 0.9, 0.8, 0.7 and 0.6 as relevant factors in the
work. It is worth noticing that a factor of 0.5 will result
in the corresponding known best-practice task WCRT
longer than the corresponding task period, i.e., if one
would assume the deadline of a task to be equal to its
corresponding period, applying a factor of 0.5 would
violate schedulability of the system.

Each of the factors highlighted above is marked as a postfix
to the model name, i.e., MV1-2 represents that the CPU speed
of the model variation MV1-2 is two times as fast as the CPU
speed of the model MV1;.In other words, the corresponding
execution time of sub-tasks in MV1-2 is 0.5 times as large as
the corresponding ones in MV1.

To summarize, the task parameters used in these evaluation
models are shown in Table IV, where the CTRL task is the
task under analysis in Section IV-D, which is the task with the
most complicated timing behavior.

In addition, the variability within the Execution Time (ET)
of tasks is also taken into consideration in all our evaluation
models. One example of such variability is shown by Figure 5,
where the variability of task execution time is featured in terms
of a multi-modal distribution having two peaks.

C. Implementation

RapidRT∗ is developed to work on samples of timing data,
and these samples can be taken either from monitoring of a
real system, or from sampling a simulation of a system. For
our evaluation purpose, the timing data in the experiments
presented in this section are taken from the latter, i.e., by
simulating the system models.

The implementation of RapidRT∗ consists of two parts,
and its first part, i.e., our sampling method, is implemented
in a relatively straightforward manner, which chooses the
maximum of the recorded SRS task RT sample corresponding
to each of a set of independent simulation runs by using
MCS. Typically, MCS is realized by providing some generated
simulator input data (conforming to a uniform distribution)
in RTSSim, which is a simulation framework based on C
programming language. RTSSim includes the typical RTOS
services to the task models, such as task scheduling (e.g.,
fixed-priority preemptive scheduling), IPC via message pass-
ing and synchronization (semaphore). RTSSim also measures
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Fig. 5. One example of the variability of the ET distribution of the task under analysis in our evaluation models.

TABLE III
MODELS DESCRIPTION AND THE RELEVANT COMPLEXITY. THE LOWER

NUMBERED COMPLEXITY IS LESS COMPLEX, I.E., 1 STANDS FOR THE
SIMPLEST EVALUATION MODEL.

ModelsSub-tasksQueuesGSSVs Description Complexity
MV1-* 40 7 8 IPC via the bounded

number of messages
and GSSVs, and task
offsets.

1

MV2-* 42 7 8 IPC via the bounded
number of messages
and GSSVs, and run-
time changeability of
priorities of tasks, and
task offsets.

2

MV3-* 42 7 8 IPC via the bounded
number of messages
and GSSVs, and run-
time changeability of
priorities and periods
of tasks, and task off-
sets.

3

MV4-* 59 12 10 IPC via the
unbounded number
of messages and
GSSVs, and runtime
changeability of
priorities and periods
of tasks, and task
offsets.

4

response time and execution time for each finished instance
of a specified task, and reports the maximum value observed
during the simulation. The interested reader can refer to [38]
for a thorough description of RTSSim. The other part of
RapidRT∗, i.e., the posterior statistical correction process, is
implemented as an executable program with a friendly GUI
developed using Microsoft’s C# programming language. More
details can be found in [39].

TABLE IV
TASKS AND TASK PARAMETERS FOR EVALUATION MODELS. THE LOWER

NUMBERED PRIORITY IS MORE SIGNIFICANT, I.E., 0 STANDS FOR THE
HIGHEST PRIORITY. CTRL H AND CTRL L REPRESENT THE CTRL TASK

WITH A HIGHER AND A LOWER PRIORITY RESPECTIVELY.

Task Period (μs) Offset (μs) Priority Models

DRIVE 2 000 12 000 2 MV1-*, MV2-*, MV3-*,
MV4-*

CTRL H 20 000 0 4 MV2-*, MV3-*, MV4-*
IO 5 000 500 5 MV1-*, MV2-*, MV3-*,

MV4-*
CTRL L 10 000 0 6 MV1-*, MV2-*, MV3-*,

MV4-*
PLAN 80 000 0 8 MV1-*, MV2-*, MV3-*,

MV4-*

D. Evaluation Results

In this section we discuss the evaluation results, by firstly
presenting the calibration and tightness of the task WCRT
computed by RapidRT∗, which is followed by its improvement
over our prior work RapidRT.

1) Tightness: Here we evaluate the performance of
RapidRT∗ in terms of calibration and tightness of the re-
sults, comparing the WCRTs derived with an alternative best
practice approach, HCRR. In Table V and VI, the values
in Column BP are the values for the WCRTs derived with
the alternative approach for all the models MV1-*, MV2-*,
MV3-* and MV4-*. The inherent pessimism in the resulting
WCRT estimates that are provided by RapidRT∗ is expressed
as percentages which are calculated in the following way, i.e.,
rtRapidRT∗

est −rtBP

rtBP
× 100%. As shown in the tables, the results

given by RapidRT∗ are at most 14.78% more pessimistic
compared with the known best-practice task WCRTs.

Note that one may argue, after looking at the results, why
not use the best practice approach as it gives accurate task
response time values, i.e., hinting on less pessimism compared
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Fig. 6. Our new sampling method can find higher task response time data in
all evaluation models, comparing the sampling method in prior work RapidRT.

to RapidRT∗. Recall that the restriction of the best practice
approach is that it needs an accurate model of the system
under analysis, whereas RapidRT∗ does not have such a
requirement. Instead we believe of a broader applicability of
RapidRT∗ in complex industrial embedded software systems,
while the evaluation setup in this section is merely designed
to investigate the properties of calibration and tightness.

2) Improvements: Here we firstly evaluate the performance
of the proposed sampling method, in terms of the improve-
ments of results with regard to the collected higher task
RT data, comparing the sampling method in our prior work
RapidRT. As shown in Figure 6, our sampling method can
find higher task RT data in all the evaluation models with
the maximum improvement 5.37% comparing our prior work.
More importantly, the samples achieved by our method satisfy
the i.i.d. assumption which is required by any statistical cor-
rection process, while the samples achieved by the traditional
sampling method Monte Carlo Experiment [40] are not i.i.d.,
due to the existence of dependencies between tasks.

Next we present the improvement of RapidRT∗ concern-
ing the pessimism in the computed task response time esti-
mates, comparing the previous work RapidRT. Typically, the

percentages of such improvement (i.e., ( rt
RapidRT
est −rtBP

rtBP
−

rtRapidRT∗
est −rtBP

rtBP
) × 100%) are shown in Column Imprv. in

both Table V and VI. As shown in the tables, the significant
improvements compared with the ones obtained by the prior
work, are shown by a reduction of pessimism up to 36.26%.

Finally, looking at the time it takes to practically use
RapidRT∗ on a model of a system, Figure 7 shows that the
computing time taken by RapidRT∗ is dramatically shortened
in the range from 7.45% and 96.14%, compared to the time
consumed by RapidRT. Typically, for the most complicated
models MV4-*, the relevant improvement is at least 19.32%
and on average 71.22%. The reason here is that in this work,
we effectively reduce different sample sizes used in our statis-
tical analysis framework based upon some statistical evidence
(as introduced in Section III-A). Additionally, such sample
sizes also result in more accurate task WCRT computation, as
shown by our evaluation.

Fig. 7. The improvement of the computing time taken by RapidRT∗
compared with the prior work RapidRT, when they are used to analyze the
same evaluation models.

TABLE V
RAPIDRT∗ CAN MORE TIGHTLY BOUND THE KNOWN BEST-PRACTICE

WCRT OF TASKS IN ALL EVALUATION MODELS, WHEN CPU SPEED OF
SYSTEMS IS INCREASED (OR THE ET OF ALL SUB-TASKS IN TASKS IS

DECREASED), COMPARING PRIOR WORK RAPIDRT.

Models BP RapidRT RapidRT∗ Pessimism Imprv.

MV1-1 4 432 5 196.68 4 512.923 1.83% 15.43%
MV1-2 1 842 2 019.36 1 954.082 6.09% 3.54%
MV1-5 740 809.42 784.087 5.96% 3.42%
MV1-10 346 387.67 374.283 8.17% 3.87%
MV2-1 5 332 6 994.932 5 986.396 12.27% 18.91%
MV2-2 1 892 2 073.429 1 970.612 4.16% 5.43%
MV2-5 760 831.996 790.591 4.03% 5.45%
MV2-10 356 397.434 394.068 10.69% 0.95%
MV3-1 4 432 5 921.68 5 086.828 14.78% 18.84%
MV3-2 1 842 2 032.48 1 949.110 5.82% 4.53%
MV3-5 740 813.03 788.158 6.51% 3.36%
MV3-10 346 387.52 375.177 8.43% 3.57%

M4-1 8 474 8 698.289 8 595.674 1.44% 1.21%
M4-2 3 804 4 108.012 4 058.691 6.70% 1.30%
M4-5 1 342 1 414.212 1 387.387 3.38% 2.00%
M4-10 668 709.705 695.133 4.06% 2.18%

TABLE VI
RAPIDRT∗ CAN MORE TIGHTLY BOUND THE KNOWN BEST-PRACTICE

WCRT OF TASKS IN ALL EVALUATION MODELS, WHEN CPU SPEED OF

SYSTEMS IS DECREASED (OR THE ET OF ALL SUB-TASKS IN TASKS IS
INCREASED), COMPARING PRIOR WORK RAPIDRT.

Models BP RapidRT RapidRT∗ Pessimism Imprv.

MV1-0.9 4 901 5 897.087 5 200.832 6.12% 14.21%
MV1-0.8 6 857 9 851.958 7 606.950 10.94% 32.74%
MV1-0.7 7 823 9 654.238 8 452.365 8.05% 15.36%
MV1-0.6 9 340 12 245.315 10 383.397 11.17% 19.93%
MV2-0.9 6 796 7 594.867 7 010.435 3.16% 8.60%
MV2-0.8 7 419 9 173.447 8 406.046 13.30% 10.34%
MV2-0.7 9 204 10 407.086 9 864.532 7.18% 5.89%
MV2-0.6 11 127 12 195.437 11 718.066 5.13% 4.29%
MV3-0.9 4 901 6 439.785 5 229.438 6.70% 24.70%
MV3-0.8 6 857 9 534.211 7 497.974 9.35% 29.70%
MV3-0.7 7 823 10 199.179 8 891.231 13.66% 16.72%
MV3-0.6 9 340 12 800.490 9 414.106 0.79% 36.26%
M4-0.9 9 312 10956.003 10 153.057 9.03% 8.62%
M4-0.8 11 089 12 138.439 11 141.422 0.47% 8.99%
M4-0.7 13 108 14 811.001 13 639.713 4.06% 8.94%
M4-0.6 15 167 21 536.190 16 706.451 10.15% 31.84%

Overall, these results give us confidence to state that
RapidRT∗ can handle a real-life-scale task system in a few
minutes, which consequently shows its practical feasibility.
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3) Experiments summary: Summarizing the above obser-
vations, our evaluation results confirm the following points:

• Our proposed statistical RTA method (which does not
require any knowledge about the task execution time),
corresponding to different model complexities, can find
calibrated and tight task response time estimates, by
bounding the known best-practice task worst-case re-
sponse times in all our evaluation models. To be specific,
such estimates are in the close proximity to the known
best-practice WCRT of tasks, i.e., less than 15% more
pessimistic compared with our best practice approach.

• Comparing prior work, the pessimism of the computed
response time estimates given by RapidRT∗ is reduced up
to 36.26%, and such computed response time estimates
obtained by the new analysis framework is always more
accurate than the ones given by RapidRT.

• The computing time required by the new method is
significantly shortened by on average 62.62% (for all the
evaluation models), comparing its previous version. On
average the trials took only a few minutes to compute.
This is an important step toward handling real life-scale
task systems exhibiting high degrees of variability.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a new statistical RTA
technique to derive calibrated and tight upper bounds on re-
sponse time estimates of tasks in real-time embedded systems
containing intricate task execution and temporal dependencies.
Specifically, the work presented in this paper includes three
contributions:

1) To the best of our knowledge, this is the first approach
to RTA which does not require any knowledge of the
task execution times. Our method uses the measured
task response time sample satisfying the independent
and identically distributed assumption, as the qualified
training data.

2) We have shown how to compute an upper bound on the
task worst-case response time estimate for a given task
reliability requirement. This has been achieved with a
sampling method, and a posterior statistical correction
process that uses a selection of search algorithms and
statistical techniques.

3) The analysis results are calibrated and tight, and the
corresponding computing time has been significantly
improved against an alternative state of the art work.
This has been shown by our intensive evaluations using
information from real industrial applications.

For future work, we will extend the proposed technique
to deal with software systems running on multi cores or
multiprocessors. We will explore the possibility of using
our proposed approach for WCET analysis. Currently, the
correlation between the tightness of the analysis results given
by RapidRT∗ and the selected factors of the change on system
CPU speed in our evaluation is not so obvious to observe. We
may conduct some relevant investigation of this using other
types of evaluation models.
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