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ABSTRACT
Guaranteeing timing constraints is the main purpose of analyses
for real-time systems. The satisfaction of these constraints may be
verified with probabilistic methods (relying on statistical estima-
tions of certain task parameters) offering both hard and soft guar-
antees. In this paper, we address the problem of sampling applied
to the distributions of worst-case execution times. The pessimism
of presented sampling techniques is then evaluated at the level of
response times.

Categories and Subject Descriptors
C.3 [ Special-purpose and Application-based Systems]: Real-
time and embedded systems; G.3 [Probability and Statistics ]:
Distribution functions; J.7 [Computers in other Systems ]: Real
time

General Terms
Real Time, Probability Distribution

Keywords
Probabilistic Real Time, Real Time Sampling, Pessimism, Proba-
bilistic Execution Time, Re-sampling

1. INTRODUCTION
Nowadays Critical Real-Time Embedded Systems (CRTESs) are

prevalent in many sectors and it is estimated that 98% of current
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processors are embedded. The performances of CRTESs are an-
alyzed not only from the point of view of their correctness, but
also from the perspective of time. Moreover, the increasing need
for new functionalities imposes the use of modern and complex ar-
chitectures. These architectures have a direct impact on the time
variability of programs and applications exploiting functional and
non-functional behavior of the CRTESs.

The timing analysis of such systems has been extensively studied
by considering deterministic approaches based on worst-case sce-
narios that induce a certain pessimism. Unfortunately not all real-
time systems can afford this pessimism and the consequent over-
provisioning, and for these cases other approaches should be con-
sidered. Alternative approaches could be statistical and probabilis-
tic, agent learning, game theory, etc. In this paper we are interested
in the statistical and probabilistic approaches. These approaches
offer an accurate and enriched representation of the parameters of
the CRTESs. For example, a task parameter can be described as a
random variable or the function expressing the resource given to a
task flow can be modeled in terms of probabilistic bounds.

1.1 Related Work
Probabilistic real-time systems and probabilistic real-time analy-

sis is becoming a common practice in the real-time community, [1].
Papers related to this topic used different terms like stochastic anal-
yses [2–4], probabilistic analyses [5] or statistical analysis [6] to
indicate usually that the considered CRTES has at least one param-
eter defined by a random variable. In this paper we make use of
the word statistic to indicate that the work is based on the theory of
statistics and the word of probabilistic to indicate that the work is
based on the theory of probability.

In this paper we are interested in the distributions of worst-case
execution times (WCETs). We consider these distributions as given
and obtaining them is beyond the scope of this paper.

The statistical timing analyses can provide empirical distribu-
tions of WCETs from (often) a large mass of data [7, 8]. These
distributions are difficult to use because of the impact that the large
number of possible values for the WCET has on the complexity of
the response time analysis [9].

Moreover the distributions of WCETs could also be obtained
using different statistical techniques like extreme values [10–13].
These techniques introduce errors, thus different levels of confi-
dence and pessimism are imposed on the CRTESs designer. We use
here the concept of pessimism with the meaning defined in [14].
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In order to avoid the problems cited before, re-sampling tech-
niques [15] could be applied to the distributions of the WCETs.
These techniques should be applied such that the real-time con-
straints are met and no relevant information is lost. To our best
knowledge [16] proposes the unique existing re-sampling technique
that decreases the number of possible values for the WCETs.

Contribution of the paper. The main contribution of our paper
is a framework for systematic analysis of re-sampling mechanisms
for real-time systems. Since we show that there is no absolute
optimal re-sampling method, we prove that, according to the pur-
poses and the requirements, some re-sampling methods behave bet-
ter than others. Moreover, we propose three re-sampling methods
that simplify the WCET distributions in order to ease timing anal-
yses of real-time systems. They offer three different perspectives
for the analysis and they have different effects on the pessimism
carried by the analysis itself.

Organization of the paper. The paper is organized as follows.
In Section 2 we motivate the need for re-sampling techniques in
reducing the complexity of the real-time analysis. In Section 3 and
Section 4 we define the notion of pessimism, and we propose three
re-sampling techniques. Sections 5 and 6 outline the effect of re-
sampling on the timing analysis in terms of improvements in the
processing time required to perform a series of convolutions, thus
making the problem tractable, and also in terms of the pessimism
introduced by the re-sampling as the changes in the response time
or the deadline miss ratio. In Section 7 we present a further im-
plementation level improvement. We conclude and present future
work in the last section of this paper.

2. MOTIVATIONS: A PROBABILISTIC
MODEL

In this paper we deal with the preemptive fixed-priority schedul-
ing of asynchronous periodic tasks with probabilistic execution times
on one processor. We consider Γ = {τ1, τ2, · · · , τn} a set of n pe-
riodic tasks ordered according to their priorities, priority(τi) ≥
priority(τj) if i ≤ j. Each task is characterized by an offset
Oi, an exact inter-arrival time Ti and a relative deadline Di. This
means that the j-th job of τi is released at time instant Oi+(j−1)Ti

and it must finish its execution by time instant Oi+(j−1)Ti+Di.
A probabilistic real-time system is a real-time system with at

least one parameter defined by a random variable. In this paper we
consider the worst-case execution times to be described by random
variables. This is an enriched model compared to having one pos-
sible value for the WCET. We denote by Ci

1 the random variable
describing the WCETs of a task τi (see Equation (1)). The Proba-
bility Function PF Ci is represented as

Ci =

�
C

j
i

P{Ci = C
j
i }

�
, (1)

where C
j
i ∈ [Cmin

i , C
max
i ] and j ∈ [0, ki] with ki ∈ N∗ the

number of values that the random variable Ci has. We consider that
C

min
i , Cmax

i are given, thus known.
It is assumed that the random variables for the worst-case ex-

ecution time of tasks are independent from one another; this hy-
pothesis allows us to convolve random variables. This hypothesis
is not that restrictive and current studies indicate that randomized
architectures may fulfill them [17].

We note that Cmax
i is equal to the value of the WCET that a

deterministic worst-case analysis would consider. Thus, the proba-

1in this paper we utilise calligraphic letters to denote random vari-
ables

bilistic representation offers the possibility to ensure absolute guar-
antees as well as other intermediate levels of constraints.

In conclusion in this paper a probabilistic task τi is denoted by
(Oi, Ci, Ti, Di).

2.1 Probabilistic Real-Time Analysis
In [4, 18] the authors provide the calculation of the probabilis-

tic response time of a job under a preemptive uniprocessor fixed-
priority scheduling policy as given by Equation (2).

Ri,j = Wi,j(λi,j)⊗ Ci ⊗ Ii, (2)

where all the variables are random variables and the release time
λi,j of the job τi,j is deterministic. Here Wi,j(λi,j) is the back-
log at time λi,j obtained as the workload of higher priority jobs
than τi,j that have not yet been executed immediately prior to λi,j .
Equation (2) is solved iteratively in [18]. Ci is the execution time
of job τi,j and Ii,j is the interference in τi,j of all higher priority
jobs than τi,j , hp(i), released at or after τi,j , Ii =

�
τk,l∈hp(i) Ck.

The analysis takes as input the distributions Ci of all tasks and
computes the response time (as a distribution of values and prob-
abilities) by applying the convolution operator over PFs, here de-
noted as ⊗. The complexity of the response time computation is
related to the number of possible values of Ci. For instance, for
two discrete random variables Ci and Cj , during each iteration of
the timing analysis we obtain, for any convolution, a new random
variable that may have, in the worst-case, ki ∗ kj values, where
ki and kj are the respective numbers of values of the two distri-
butions. This implies that for any convolution ki ∗ kj operations
are done and it makes the real-time analysis intractable except for
simple scenarios, which is not always the case for real-time appli-
cations. Indeed, in complex applications the worst-case execution
time distributions may have thousands of values [7].

EXAMPLE 2.1. In this example we investigate the computational
costs of the response time analysis provided by Equation (2).

We used a task-set with 10 tasks, each task having a randomly
generated PF characterizing its worst-case execution time. For
this simple experiment, we assumed that the tasks were executed
non-pre-emptively and that the periods were long in relation to the
response time. Hence the problem simply involved the convolu-
tion of the PFs of the 10 tasks. The PFs contained just 100 values
spread over a range of approximately 10,000 possible values, in-
tended to simulate execution times measured to an accuracy of 0.1
microseconds, with a largest value of around 1 millisecond (typical
of embedded real-time systems).

Figure 1 shows how the computation time required to compute
the response time increases with each additional convolution. Even
for this simple example the computational cost becomes prohibitive
after about 10 convolutions.

The richness that the probabilistic real-time model offers to the
analysis [19] is limited by the complexity of the analysis itself. The
complexity problem has a possible solution via a reduction in the
number ki of possible values of Ci (samples) as long as the real-
time constraints are met.

Hence, in this paper we investigate the sampling problems in
real-time scenarios, in particular the simplification of distributions
of worst-case execution time and we give an answer to the question:
given a distribution with n values, how do we select k significant
values out of n so that the analysis is still ’accurate’?

From the original WCET distribution, we derive another distri-
bution of worst-case execution times which offers the same real-
time guarantees although with a reduced amount of information
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Figure 1: Computation time relative to the number of convolu-
tions

(simplified distribution). Furthermore, we build the basis for an
analysis of simplification mechanisms in order to provide a way of
judging them in terms of their accuracy.

3. RE-SAMPLING: SIMPLIFYING DISTRI-
BUTIONS

DEFINITION 3.1 (RE-SAMPLING). Let Ci be a distribution
with n values representing the probabilistic execution times of a
task τi. The process of re-sampling to k values or k-re-sampling
consists of reducing the initial distribution Ci from n values to k

values, while not being optimistic.

First re-sampling techniques have been presented in [16, 18, 20],
stating the necessity and the basic mechanism, but without a thor-
ough analysis of its effects on the response time. The re-sampling
techniques we propose simplify the original distribution of WCETs
but also take into account the pessimism that the operation intro-
duces to the analysis. In this section we improve previous results
presenting three new re-sampling techniques and studying their ef-
fect on the worst-case execution time distribution. In the next sec-
tion we study the effects of the re-sampling on the response time
distribution.

A re-sampling technique has two sequential steps, namely:

• Selecting the k samples to be kept in the reduced distribution.

• Re-distribution of the probabilities from the values that are
not kept.

Both steps differentiate and characterize a re-sampling method, al-
though in our opinion it is the selection of the remaining values that
differentiates them most. Therefore the selection step is the place
where the re-sampled distribution may be improved.

a) Selecting the k Samples.
In this phase, the question to answer is how do we select k sam-

ples out of n? For an input distribution of worst-case execution
times, we know that the largest value has to remain in the re-sampled
distribution in order to ensure the real-time analysis. Thus the
worst-case value is guaranteed as well as the worst-case analysis.
Deciding which are the k − 1 samples to stay is the decision that

impacts the most on the response time analysis. For instance in [16]
the k− 1 samples are chosen randomly, while in [20] they are cho-
sen among those with the largest probabilities. We present in the
next section three different selection techniques and study them in
detail.

b) Probability re-distribution.
Once the k values to be kept have been selected, the probabili-

ties of the un-drafted samples have to be re-distributed among these
k values. This is imposed by the fact that the final result of re-
sampling has to be a distribution. This means that the cumulative
probability of the re-sampled distribution C�

i has to be equal to 1,�
j P{C

�
i = C

j
i } = 1. Therefore we need to answer the question

How are the probabilities of the non selected samples re-distributed
to the k selected samples? In order to have a pessimistic re-sampled
distribution, and hence a safe analysis2, there are no alternatives
other than accumulating ’from-left-to-right’. This means that the
probabilities of a subset of samples have to be added to the prob-
abilities of a larger value. We note that in [16] the probabilities
of deleted values are accumulated and added to the probability of
the highest value. In [20] the remaining probabilities are added to
the probabilities of the k selected values. The later approach in-
creases the accuracy of the analysis and at the same time decreases
the pessimism. Therefore we use in this paper the probability re-
distribution methods presented in [20].

Another issue that a re-sampling mechanism has to take into ac-
count is how large k should be. It is intuitive that k plays a key
role in the accuracy of re-sampling methods. A large value of k
means less probability mass to re-distribute, so more accuracy in
the resulting distribution. On the other hand, a large computation
time to get results from the analysis. So, k comes from a trade-off
of complexity versus accuracy we want to achieve. In this paper we
consider k as given.

EXAMPLE 3.2. To better understand the re-sampling we present
an example. We consider a task with execution time given by a ran-
dom variable with 10 values. Without loss of generality we consider
these ten values as the integer numbers from 1 to 10. The probabil-
ities of these values are as follows:

C =
�

1 2 3 4 5 6 7 8 9 10
0.05 0.04 0.2 0.05 0.22 0.05 0.3 0.04 0.04 0.01

�
,

as can be seen in Figure 2(a). The objective is to reduce this ran-
dom variable to only k = 4 values instead of 10 in order to ease the
convolution and hence the real-time analysis. According to [20],
these 4 resulting values will be the last value of the original distri-
bution (10-th value) and the 3 values with the highest probabilities,
i.e., the 7-th value which has a probability of 0.3, the 5-th value
which has a probability of 0.22 and the 3-rd value which has a
probability of 0.2.

The samples according to the method in [16] should result from
a random selection. In order to compare the results with the next
method, we keep the same values that we would have chosen with
that solution. It is notable that the largest value of the distribution
gets all the mass-probabilities of the values that were not selected
to be kept in the new random variable. Because of that, the largest
value has a higher probability associated with it compared to the
original distribution, the resulting distribution being equal to CI =�

3 5 7 10
0.2 0.22 0.30 0.28

�
, represented in Figure 2(b).

2Safety and pessimism are clarified in sections 3.1 and 3.2 respec-
tively
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Applying the mechanism presented in [20], the re-sampled distri-

bution becomes CII =

�
3 5 7 10

0.29 0.27 0.35 0.09

�
, Figure 2(c).

With this method the probability of the unused samples are dis-
tributed to the closest larger sample in the new distribution. For in-
stance here the probabilities associated with the values 1 and 2 go
to value 3 which results in a probability of 0.29 = 0.2+0.05+0.04
in the new random variable. The last sample ends up with a proba-
bility of 0.09, much lower than the one obtained using the mecha-
nisms presented in [16], but still larger than in the original distri-
bution. Since that value represents the largest execution time, then
assigning a lower probability to it makes the second re-sampling
method less pessimistic in terms of response time and the result-
ing deadline miss ratio (see Section 5). Nonetheless, this is not
sufficient to judge the quality of re-sampling methods in real-time
scenarios.

(a) Distribution

(b) A version of re-sampling

(c) An improved version of re-sampling

Figure 2: The example distribution with two different basic re-
samplings.

3.1 Safeness at Execution Time Level
A safe real-time analysis has to guarantee the results in any pos-

sible conditions including those assured by the worst-case values in
the deterministic scenario. Since the re-sampling has an important
impact on the real-time analysis, it is mandatory that re-sampling
does not introduce optimism since the safety of real-time analysis
has to be guaranteed. Such a requirement affects the way of doing
re-sampling.

• If all random variables have a single value, then the re-sampling
has to keep that value so that the analysis could find the same
result as existing deterministic analyses; this is the limit con-
dition [21] for re-sampling algorithms as well as probabilistic
real-time analysis.

• A first constraint when re-sampling a worst-case execution
time distribution is that the largest value of the original dis-
tribution has to be included in the final distribution being
critical for the safety of the analysis. This is the worst-case
condition [21] for both the analysis and the re-sampling (that
the analysis requires and the re-sampling has to provide). In-
deed, removing that value would provide optimistic results

with respect to the exact analysis. The selection of the re-
maining values for the re-sampled distribution does not af-
fect the safety because the selected samples are a subset of
the original ones.

• The probability re-distribution among the new samples has
an effect on the safety of the new distribution. In order to
be safe, a distribution has to be pessimistic with respect to
the original one which is considered exact. This is again the
worst-case condition.

The input distribution of worst-case execution times (the original
one) is the one that results in the precise analysis, so we consider
it as the reference. We then say that a re-sampled distribution is
safe, from the real-time analysis perspective if it is pessimistic with
respect to the original distribution. In order to compare two distri-
butions (original and re-sampled or two re-sampled distributions),
we recall here the ordering relationship defined in [18].

DEFINITION 3.3 (ORDER AMONGST RANDOM VARIABLES [18]).
Let X and X � be two random variables. X � is greater than or equal
to X (or alternatively, X is less than or equal to X �), and denote it
by X � � X (alternatively, X � X �) if P{X � ≤ D} ≥ P{X ≤ D}
(alternatively P{X � ≤ D} ≤ P{X ≤ D}) for any D, and the two
random variables are not identically distributed.

The same ordering holds with the Cumulative Distribution Func-
tion (CDF) of PFs, F (x) = P{X ≤ x}.

DEFINITION 3.4. [18] The random variable X � is greater than
or equal to the random variable X (X � � X ), if FX �(x) ≤ FX (x),
for any x, and the two random variables are not identically dis-
tributed.

COROLLARY 3.5 (SAFE RE-SAMPLING). By moving proba-
bility mass from smaller execution times to larger execution times,
we obtain a distribution that is greater than the original one. This
new distribution is safe from the perspective of the execution time.

Indeed, the method of accumulating the probabilities from discarded
values up to the nearest larger values selected, so rightward with
increasing ordered values, results in a distribution X re−sampled

’greater than or equal to’ the exact one X original. This ends up in
a pessimistic distribution which is safe with respect to the original
one.

From Corollary 3.5, the definition of ordering among distribu-
tions and the results in [16] we can conclude that any probability
re-distribution ’from-left-to-right’ is safe because the unselected
probabilities are moved to larger execution time values. On the
other hand, the re-distribution right-to-left produces optimistic re-
sults in terms of response time.

3.2 Metric of Pessimism
Once re-sampling has been performed on a distribution, we know

that pessimism (inaccuracy) has been introduced due to the loss
of information (with respect to the original distribution), but the
question is how much? In order to have an answer to this question
we need to define a metric that computes the pessimism introduced
by the re-sampling, and maybe a metric or a method to compare
two re-sampling techniques to see which one is better.

An effective approach is to multiply the probability and execu-
tion time values at each point together to obtain the overall ’weight’
(linear combination ) of the distribution and then compare the re-
sampled distributions to the original. In the probability theory,
this is the expectation E(X ) of a distribution X , and is defined
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as
�

x ∈ val(X ) x · P{X = x}, where val(X ) is the set of values
of X . The weight Wi of a distribution i with ki values is given by

Wi =
ki�

j=1

vj · pj (3)

where vj is the value C
j
i at the j-th position in the distribution and

pj is it’s corresponding probability, P{Ci = C
j
i }.

We note that the closer the weight of a re-sampled distribution is
to the weight of the original distribution, the better the re-sample is
at representing the distribution as a whole.

4. RE-SAMPLING: TECHNIQUES
In this section we present three of the re-sampling techniques

that we have implemented and we currently use in our analysis
tool which has been developed at Rapita Systems [22]. We com-
pare these three methods in order to underline the impact that re-
sampling has on the probabilistic response time analysis. The first
one is a ’uniform spacing’ re-sampling technique that is frequently
used in practice and provides good results. The second one, which
we introduce in this paper, is a more complex technique that pro-
vides better results, i.e., introduces less pessimism, compared with
other techniques that we have studied. The third technique is ’do-
main quantisation’ which reduces the number of distinct values
produced by convolution and so increases performance.

Figure 3: Original distribution

4.1 Uniform Spacing Re-sampling
We present here a first re-sampling method that we use and we

have analyzed in order to see its effects on the response time analy-
sis of probabilistic real time tasks. The technique is called uniform
spacing and it is frequently used in the probabilistic real-time do-
main as it is easy to implement.

The re-sampling is done by choosing equally distanced values
out of the initial distribution. Algorithm 1 describes the steps of this
re-sampling technique. Here C is the initial distribution, Cnew is the
distribution obtaining after the re-sampling process. We denote by
C.size the number of values of C, and by Cj the j-th value of C.
The probability associated with the j-th value of C is denoted by
Cj .prob.

For example, by applying the uniform re-sampling technique
(with the objective of obtaining 50 values) to the distribution pre-
sented in Figure 3, that has 650 values, then the new distribution

contains every 13-th value of the original. This value gathers the
probability mass of the 12 values that precedes it. The resulting
distribution can be seen in Figure 4. Although it keeps the general
form of the original distribution, it gathers high peeks, the largest
probability being close to 0.2 compared to 0.016 in the initial dis-
tribution.

Algorithm 1 Uniform Spacing Re-sampling Algorithm
Input: C a distribution and k the number of values to be selected
Output: Cnew

m = 1;
p = 0;
q = ceil(C.size/k)
for i = 0; i ≤ C.size; i++ do

p = p+ Cj .prob;
if i mod q = 0 or i = C.size then

Cnew
m .value = Cj .value

Cnew
m .prob = p

p = 0;
m = m+ 1;

end if
end for

Figure 4: Re-sampling obtained by Uniform Spacing

4.2 Domain Quantization
We now introduce an enhanced re-sampling technique, which we

refer to as Domain Quantisation. The rationale for this technique
is as follows. When convolving two distribution that have m and
respectively n values each, the resulting distribution can have up
to m × n values. This is true when the two distributions that are
convolved are very different from one another. In the best case the
resulting distribution can have as little as m + n − 1 values. For
large distributions, having only m+n− 1 values instead of m×n

values can make a big difference, reducing the total amount of re-
sampling required since the number of values per distribution does
not increase so fast.

For example, by convolving two distributions that have respec-
tively the values (1 4 7) and (2 6 19) we obtain a distribution that
has the values(3 6 7 9 10 13 16 19 22), i.e. by convolving two dis-
tributions that have three values each we obtain a distribution with
nine values. If, on the other hand, the second distribution has the
values (9 12 15), so the distance between values is the same as for
the first input distribution, then we obtain a resulting distribution
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that has only five values, namely (10 13 16 19 22). By virtue of
having less values, the resulting distribution does not need to be
re-sampled and so less pessimism is introduced.

This suggests that a way of decreasing the number of values in
the resulting distribution is to quantize the values of the input dis-
tributions using a re-sampling strategy so that they have the same
spacing between them. In this way, a first re-sampling is necessary
in order to obtain the same quantization for the input distributions.
Further re-sampling of the results with the same quanta will then
be unnecessary.

Choosing the quanta to be used is an important problem, since it
determines the number of samples to be kept per distribution, scal-
ing a large distribution to a large quanta means that few values are
kept out of its initial number of values, and so the loss in precision
is potentially large; on the other hand, scaling a large distribution
to a small quanta results in too many values of the distribution to
be kept, which makes the re-sampling inefficient.

This problem can be solved by taking advantage of the fact that
the convolution is commutative, so, when there are multiple distri-
butions to be convolved with each other, which is often the case
in probabilistic response time analysis, first the small distributions
(representing tasks with relatively short execution times) are con-
volved amongst themselves until they become bigger and they can
be convolved with larger distributions. To facilitate this, we set
the quanta for each distribution to the smallest power of 2 (e.g.
1,2,4,8...) that results in at most k samples. We note that this
form of re-sampling has much in common with the Piece-wise
Constant Approximation (PCA) method used in re-sampling time-
series data [23].

Figure 5: Re-sampling obtained by Domain Quantization

4.3 Reduced-Pessimism Re-sampling
A uniform selection of values for re-sampling will, most of the

time, not result in a satisfactory reallocation of probability mass.
Some of the selected values will accumulate a disproportionate
share of the overall probability. This can lead to large amounts
of pessimism in the re-sampled profile, and this pessimism is com-
pounded by later applications of re-sampling which may occur dur-
ing response time computation.

We have implemented an improved algorithm for the selection of
re-sampling values which we call Reduced-Pessimism Re-sampling.
It works by considering ranges of values and calculating the pes-
simism that would be introduced if the range of values were to be
aggregated into a single entry with the highest value in the range
taking all of the probability mass.

Algorithm 2 describes the method we use for computing the pes-
simism, which is based on the relative probability ‘weight’ as de-
scribed in Section 3.2: the execution time multiplied by the proba-
bility.

Algorithm 3 provides the method by which re-sampling values
are selected. Starting with the entire distribution, ranges are exam-
ined to identify the range with the highest pessimism. The selected
range is then split into two sub-ranges. When sufficient sub-ranges
have been generated, the upper bound of each range is used to per-
form re-sampling using the method described in Section 4.1.

Algorithm 2 Algorithm to compute the pessimism associated with
replacing a range with a single value
Input: C and (x, y) a range of values;
Output: p pessimism;

shifted = (
�y

i=x Ci.probability)× Cy.value;
original =

�y
i=x(Ci.probability × Ci.value);

p = shifted− original;

Algorithm 3 Algorithm for selecting values which create the least
pessimism when re-sampling
Input: C a distribution and k the number of values to be selected
Output: Cnew

Q = ∅; // Priority queue
r = (1, C.size); // Full range of C
p = pessimism(C, r);
Q.add(r, p); // Add r to Q with priority p

while Q.size < n do
r = Q.remove_first;
(a, b) = split(r); // Split into two equal sub-ranges
Q.add(a, pessimism(C, a));
Q.add(b, pessimism(C, b));

end while
Cnew = resample(C,Q.upper_bounds);

Figure 6: Re-sampling obtained with Reduced-Pessimism
method

4.4 Comparison
To compare the three methods at execution time level we make

use of the metric presented in section 3.2. The original distribu-
tion depicted in Figure 3 has a weight of 340, while the distri-
bution obtained using Uniform Spacing and Reduced-Pessimism
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Re-sampling have weights of 346 and 342 respectively. The distri-
bution obtained using Domain Quantization has the highest weight,
equal to 348.

At execution time level the Reduced-Pessimism Re-sampling tech-
nique performs best, having a weight that is closer to that of the
original distribution.

We will further analyze the three re-sampling methods in the next
section, where they are applied in the response time analysis and
compared via the pessimism introduced in the exceedence func-
tions, i.e. at the level of deadline miss probabilities.

5. IMPACT OF RE-SAMPLING ON THE RE-
SPONSE TIME ANALYSIS

In probabilistic analysis, where the response times are random
variables, the real-time constraints are expressed in terms of proba-
bilities of deadline misses. The response time R is one of the met-
rics applied to evaluate the probabilistic real-time analysis. Based
on that, Diaz et al. in [18] have defined relationships in order to
tackle the pessimism in probabilistic analyses.

DEFINITION 5.1 (EXACT PROBABILISTIC ANALYSIS). An ex-
act random variable defines the exact results of a probabilistic
analysis.

A probabilistic response time R� is pessimistic when it is greater
than or equal to the exact one R, R� � R. The challenge when us-
ing re-sampling techniques is how to perform approximations with
probabilistic analysis parameters, while guaranteeing that the re-
sultant response time is pessimistic or identically distributed, thus
making the approximated analysis safe.

The pessimism introduced when re-sampling execution times is
propagated through the analysis to the response time distribution.
A good re-sampling technique should not introduce so much pes-
simism that the system is deemed unfeasible when in reality it is
feasible, i.e., a more precise analysis done on the system without
any re-sampling would deem the system feasible. In other words,
the response time distribution obtained when re-sampling is per-
formed should be as close as possible to that obtained when re-
sampling is not performed.

A way of computing the relative pessimism introduced at the
response time level is to use the weight presented in the previous
section, Equation (3). A simpler way is to compare the exceedence
functions and deadline miss probability of the jobs [24] for which
we have computed the response time.

DEFINITION 5.2 (JOB DEADLINE MISS PROBABILITY). For a
job τi,j and a priority assignment Φ, the deadline miss probability
DMPi,j is the probability that τi,j misses its deadline:

DMPi,j(Φ) = P{Ri,j(Φ) > Di}. (4)

When re-sampling is done, the pessimism introduced translates
in an increased DMP. A decreased DMP in the re-sampled results
with respect to the original results means that optimism has been
introduced and the result is no longer safe.

6. EXPERIMENTAL INVESTIGATION
In this section, we provide details of three experiments used to

investigate the performance and precision of the three re-sampling
techniques described in section 4.

As the basis of these experiments, we used randomly generated
sets of tasks with a PF characterizing the worst-case execution time

Figure 7: Computation time in the exact case and with different
re-samplings

of each task. We assumed that the tasks were executed non-pre-
emptively and that their periods were long in relation to the re-
sponse time. Hence the problem simply involved the convolution of
the PFs of the tasks. (Thus each convolution effectively represents
the addition of a further task; or equivalently, the computation of
the response time of a further lower priority task). This assumption
does not change the nature of the problem, it simply means that less
convolutions need to be performed to compute the response time of
a job. We have opted for a simplified problem since the task-sets
that we analyze are randomly generated and taking into account
preemptions would have meant a more strict control on the gener-
ated task-sets, in order to avoid cases when a job suffers many pre-
emptions, making the problem highly intractable, or even that the
mentioned job never finishes execution. Nevertheless, the effects
of the re-sampling strategies proposed and the results presented are
valid for any number of convolutions and tasks in a task-set, regard-
less on whether preemptions are present or not.

The PFs contained 100 values spread over a range of approxi-
mately 10,000 possible values, intended to simulate execution times
measured to an accuracy of 0.1 microseconds, with a largest value
of around 1 millisecond, typical of embedded real-time systems.

All the data was obtained from a prototype java implementation
running on an i7-2720QM CPU @ 2.20GHz computer.

In the first experiment, we examined the computational cost of
the three re-sampling techniques, compared to an exact approach.
For this experiment, 10 task-sets were randomly generated with 25
tasks each. When re-sampling was enabled, once the PF of each
task was convolved, the resulting distribution was re-sampled to
a maximum of 1000 values (the re-sampling threshold). Figure 7
plots the total computation time required in milliseconds (averaged
over 10 task-sets) versus the number of convolutions from 1-25.
Note the log scale on the graph. From Figure 7 it is clear that the
exact approach initially exhibits exponential growth, with the com-
putation time required approaching 100,000ms for 10 convolutions.
All of the re-sampling techniques exhibit significantly improved
performance with respect to the exact analysis; with an improve-
ment of around a factor of 100 for 10 convolutions for the Domain
Quantisation technique. We observe that the more complex reduced
pessimism re-sampling takes significantly longer than the uniform
spacing and domain quantisation techniques.

In the second experiment, we examined the precision of the re-
sampling techniques by comparing the exceedence functions (1 −
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Figure 8: 1− CDF of re-sampled distributions and exact one

CDF ) of the resulting distribution after 25 convolutions, i.e., the
response time of the 25th highest priority task. This experiment
used a similar configuration to the first experiment, i.e., a randomly
generated task-set with 25 tasks, each task having an execution
time given by a random variable with 100 values, but a lower re-
sampling threshold of 100 to highlight the differences between the
re-sampling techniques. Figure 8 shows the exceedence functions
for the resultant distribution. We observe that the reduced pes-
simism technique results in a distribution that remains very close
to the exact distribution at high probabilities, even when the re-
sampling threshold is just 100 values. This is because the technique
is designed to minimise the increase in the weight of the distribu-
tion. However, Figure 9 shows the same exceedence functions on a
log scale, thus illustrating the tails of the distributions. This shows
that by selecting values to minimise the overall pessimism in the
distribution, the shape of the tail is heavily compromised. (The re-
duced pessimism technique does not provide enough values in this
region where the probabilities are small). With the Uniform Spac-
ing and Domain Quantisation techniques although correspondence
to the exact distribution is worse at high probabilities, it is much
better in the tail of the distribution. This is reflected by the fact
that the response time with a 10−9 probability of being exceeded is
89,600 for the exact distribution, 94,300 for the Domain Quantisa-
tion technique, and 141,500 for Reduced Pessimism re-sampling.

In the third experiment, we examined the trade-off between per-
formance (computation time) and pessimism introduced in terms of
the weight of the resulting distributions as a function of varying the
re-sampling threshold. The experimental configuration was similar
to that of the second experiment, but averaged over 10 task-sets, i.e.
10 runs, 25 tasks per task-set, 100 values per random variable. Fig-
ure 10 gives corresponding results showing how the weight of the
resultant distributions changes in relation to the exact analysis. The
values plotted in Figure 10 are the ratio of the weight of the distri-
bution produced via the re-sampling technique to the weight of the
distribution from the exact analysis. Here the Reduced Pessimism
technique shows a significant advantage albeit at the expense of
precision in the tail of the distribution.

7. FUTURE IMPROVEMENTS
While re-sampling is a good way of reducing the computation

time of convolutions, it is not the only one. There are further im-
provements that can be made at the implementation level so that the

Figure 9: Zoom-in in logarithmic scale on 1 − CDF of re-
sampled distributions and exact one

Figure 10: Relative weight of re-sampled distributions with dif-
ferent re-sampling thresholds after 10 convolutions
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time it takes to perform convolutions and response time analysis is
reduced even more.

7.1 Range quantization
One reason why performing convolutions is costly, besides the

fact that there are many operations (multiplications, additions) to be
performed, is how these operations are performed and, implicitly,
the way data is stored and handled by the computer.

In order to represent and to perform operations on very small
numbers, of the order of 10−k where k can be tens or even hun-
dreds, one needs to use arbitrary precision arithmetic, which is very
expensive.

One solution is to change the representation to something faster
and simpler, like floats in the manner of one or few significant fig-
ures in the mantissa and a variable exponent. For example, the
number x = 0.0000000000000007 can be written as 7 × 10−16,
so, one only needs to store the mantissa, which in this case is 7, and
the exponent, which is 16.

Using this form of representation, performing multiplication is
as simple as multiplying the two mantissas and adding the two ex-
ponents.

The addition of two such numbers can be more complicated if
they are of different sizes, for example adding 7 × 10−16 and 2 ×
10−4 results in 2.00000000007 × 10−4 which takes us back to
the problem of requiring a large amount of precision. This can be
solved by truncating the probability value to the largest exponent,
keeping a few values in the mantissa, and moving the probability
mass that is cut off to the smallest larger value of the probability
distribution, computing it and potentially decreasing its exponent.
The truncation is done to all values of the distribution, starting from
the smallest one to the largest one.

8. CONCLUSIONS
In this paper, we addressed the problem of re-sampling complex

distributions of worst-case execution times, with a large number
of values. We compared three re-sampling techniques, uniform
spacing which is commonly used, and two techniques which we
derived; reduced pessimism re-sampling and domain quantisation.

We showed via a series of experiments that all three techniques
are effective in addressing the complexity problem of exact anal-
ysis, which exhibits an exponential increase in computation times
with the number of convolutions.

Our experiments showed that reduced pessimism re-sampling is
highly effective in terms of obtaining a close, but safe approxima-
tion to the distribution resulting from exact analysis at high levels
of probability, even when the re-sampling threshold is set as low as
100 values. However, selecting points in this way can compromise
the shape of the tail of the distribution leading to significant and
undesirable pessimism in that region, which is an issue for prob-
abilistic real-time analysis. The domain quantisation and uniform
spacing techniques did not suffer from this problem to the same
extent.

In future we intend to investigate the performance of re-sampling
techniques aimed at preserving the shape of the tail of the distribu-
tion after a variable number of convolutions. We also intend to
investigate the use of the complementary technique referred to as
range quantisation (described in section 7). This technique is or-
thogonal to the re-sampling techniques described in this paper, and
so can be applied in conjunction with any of them. Range quantisa-
tion removes the requirement to use arbitrary precision arithmetic
and so can significantly increase the speed of the basic multipli-
cation and addition operations used in convolution. Initial experi-
ments in this area are promising, with the pessimism introduced by

range quantisation found to be insignificant.
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