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Introduction

The use of computers to control safety-critical real-time functions has increased
rapidly over the past few years. As a consequence, real-time systems — computer
systems where the correctness of each computation depends on both the logical re-
sults of the computation and the time at which these results are produced — have
become the focus of important study. Since the concept of ”time” is important in
real-time application systems, and since these systems typically involve the shar-
ing of one or more resources among various contending processes, the concept of
scheduling is integral to real-time system design and analysis. Scheduling theory,
as it pertains to a finite set of requests for resources, is a well-researched topic.
However, requests in a real-time environment are often of a recurring nature. Such
systems are typically modelled as finite collections of simple, highly repetitive tasks,
each of which generates jobs in a predictable manner.

The scheduling algorithm determines which job[s] should be executed at each
time-instant. When there is at least one schedule satisfying all constraints of the
system, the system is said to be schedulable.

Uniprocessor real-time systems have been well studied since the seminal paper
of Liu and Layland [48], which introduces a model of periodic systems. There is a
tremendous amount of literature considering scheduling algorithms, feasibility tests
and schedulability tests for uniprocessor scheduling. During the last years the real-
time systems have evolved to more complex models and architectures. The two main
contributions of our work covers these two aspects with results on (probabilistic)
models and (multiprocessor) architectures. A real-time model is probabilistic if at
least one parameter is described by a random variable.

This document does not contain all our results and it presents a synthesis of the
main concepts and the description of the most relevant results. For each contribution
we will provide an exhaustive list of our related results and their place in the real-
time literature.

The order of the presentation of results is chronological and motivated by how
my1 reasoning evolved during this period since my PhD thesis.

My first year working on probabilistic (at ISEP following the suggestion of Prof.
Eduardo Tovar) has been spent on understanding how to get closer two worlds that

1
This part of the introduction shares with the reader on how I moved from deterministic schedul-

ing to probabilistic timing analysis and the utilisation of ”I” seems more appropriate.
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seem so di↵erent:

• the real-time community imposing worst-case reasoning as basic rule for ob-
taining safe results

• the probabilistic community attracted by average behavior of systems and the
central part of a distribution describing the parameters.

After publishing a first result on probabilistic [13], I had the conviction that the
di↵erences were less important than the misunderstanding surrounding the results
on probabilistic but by that time I didn’t have the means to explain what was the
misunderstanding. Continuing my visits in Europe, I had started to work on mul-
tiprocessor platforms and mainly on the predictability of such platforms (joining
Prof. Joel Goossens at ULB). The predictability of an algorithm indicates that any
task, that starts earlier and it is shorter than other task, should finish the execution
before that latter task. After proving that the first result on predictability had an
incorrect proof, we had proposed the most general result (as it was in 2010), here
general is defined with respect to the class of scheduling algorithms and architec-
tures. Since then, a more general result has been obtained in 2013 in collaboration
with J. Goossens and E. Grolleau [35].

ISEP%(Porto)% ULB%(Bruxelles)% INPL%(Nancy)% INRIA%%
TRIO%%AOSTE%

2005% 2006% 2008% 2013%

Figure 1: A timeline

After working at ISEP (Porto) on probabilistic schedulability analysis and at
ULB (Bruxelles) on multiprocessor schedulability analysis, I had naturally worked
on probabilistic multiprocessor analysis during my first years at INPL (Nancy),
where I had joined Prof. F. Simonot-Lion’s team. My first result on this topic [14]
has received criticism for the fact that the inputs for such problem (probability dis-
tributions for execution times) are impossible to obtain. This feedback had made me
realize that no probabilistic schedulability analysis will be understood and accepted
by the community as long as no methods for obtaining probability distributions
exist. At this point the first Dagstuhl seminar on scheduling (2008) gave me the
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opportunity to meet Prof. Alan Burns and this was the event ”provoking” in 2009
my work in the FP7 STREP project PROARTIS. At the end of this project we
have proposed several important results that solve partially the problem of obtain-
ing probability distributions for probabilistic worst-case execution times [10,17,65].
Therefore it is now a good timing to advance on probabilistic schedulability anal-
ysis [56] and my unpublished work on probabilistic multiprocessor scheduling [14]
will soon meet the appropriate PhD student to become a published paper.

During the first Dagstuhl seminar on scheduling, discussions with Prof. Jane
Liu (co-author of one of the first papers on probabilistic real-time systems) made
me, also, understand that a second mandatory condition for probabilistic real-time
reasoning was to establish the bases of the probabilistic worst-case reasoning. In
2013 I have provided the arguments to sustain the importance of the probabilistic
worst-case reasoning and its impact on independence property. These arguments
are related to the definition of probabilistic worst-case execution time as it is pro-
posed by Edgar and Burns [21]. The paper had proposed this new concept without
underlining its important impact on imposing a probabilistic worst-case reasoning.
Underling this impact is probably the most important contribution of this thesis.

Organization of this document In Chapter 1 we present our contribution
to the scheduling of real-time systems on multiprocessor platforms. We start the
chapter by providing an exhaustive list of all results we proposed on this topic and
then we detail two contributions: the predictability results and the schedulability
analysis. We present the proofs of these results as their details are important.
The first result on predictability is a corrected and extended version of previous
results from [38]. The results on schedulability analysis provide a methodology for
feasibility tests based on intervals.

In Chapter 2 we present our contribution to the definition and the analysis of
probabilistic real-time systems. We start the chapter by providing an exhaustive
list of all results we proposed on this topic and then we detail two contributions.
The first contribution concerns the proposition of probabilistic worst-case reason-
ing within response time analysis of systems with multiple probabilistic parameters.
The second contribution concerns the estimation of probabilistic worst-case execu-
tion times and its relation to rare events theory. It indicates that the real-time
community should use the mathematical results on the tails of the probability dis-
tributions.

In Chapter 3 we present the perspectives of our results and the vision of how
these results will modify the real-time community that needs to face data deluge
and increased connectivity with less critical systems that will coexist within one
larger system built following a mixed-critical model.

7



Chapter 1

Multiprocessor real-time
systems

This chapter contains results on multiprocessor scheduling of real-time systems.
These results are mainly obtained during my stay at Université Libre de Bruxelles
in collaboration with Prof. Joël Goossens’s research group.

These results belong to three main classes:

• Predictability of scheduling algorithms on multiprocessor architectures. After
proving that previous existing results on predictability for identical platforms
was incorrect, we have extended them to the case of unrelated platforms and
to a more general class of scheduling algorithms. Our result allows to under-
stand the ”mandatory” properties of a scheduling algorithm for multiprocessor
architectures and it indicates what algorithms are not predictable.

J1 L. Cucu-Grosjean and J. Goossens, ”Predictability of Fixed-Job Priority
Schedulers on Heterogeneous Multiprocessor Real-Time Systems”, Infor-
mation Processing Letters 110(10): 399-402, April 2010

O1 E. Grolleau, J. Goossens and L. Cucu-Grosjean, ”On the periodic behavior
of real-time schedulers on identical multiprocessor platforms”, arxiv.org,
May 2013

The result of this class is published in J1 and it concerns memoryless algo-
rithms. This result and the definition of memoryless algorithms are presented
in Section 1.1. Recent work allowed us to extend J1 to algorithms that do not
have this memoryless constraint in O1.

• Schedulability tests for job-level fixed-priority scheduling algorithms for peri-
odic tasks, whatever the type of architecture (identical, uniform or unrelated).
These tests were the first exact tests of the real-time literature for such gen-
eral architectures. They are based on the construction of feasibility intervals,
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that have the existence guaranteed by the periodicity properties of feasible
schedules. This methodology was used later by other authors for di↵erent
real-time multiprocessor scheduling problems (parallel tasks, scheduling sim-
ulation, task-level optimal scheduling algorithms, etc).

The following publications belong to this class of results on multiprocessor
systems:

J2 L. Cucu-Grosjean and J. Goossens, ”Exact Schedulability Tests for Real-
Time Scheduling of Periodic Tasks on Unrelated Multiprocessor Plat-
forms”, Journal of System Architecture, 57(5): 561-569, March 2011

C4 B. Miramond and L. Cucu-Grosjean Generation of static tables in em-
bedded memory with dense scheduling, Conference on Design and Archi-
tectures for Signal and Image Processing (DASIP), Edinburgh, October
2010

C3 L. Idoumghar, L. Cucu-Grosjean and R. Schott, Tabu Search Type Algo-
rithms for the Multiprocessor Scheduling Problem, the 10th IASTED In-
ternational Conference on Artificial Intelligence and Applications (AIA),
Innsbruck, February 2010

C2 Cucu L. and Goossens, J. ”Feasibility Intervals for Multiprocessor Fixed-
Priority Scheduling of Arbitrary Deadline Periodic Systems ”, the 10th
Design, Automation and Test in Europe (DATE), ACM Press, Nice, April
2007

C1 Cucu L. and Goossens J., ”Feasibility Intervals for Fixed-Priority Real-
Time Scheduling on Uniform Multiprocessors”, the 11th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation,
(ETFA), Prague, September 2006

The publication J2 is the most general of this class and it is an extended version
of C1 and C2. The content of J2 is detailed in Section 1.2. The conferences
publications C4 and C5 make use of the results of J1 in di↵erent contexts (C4
for the utilisation of genetic algorithms and C5 for the introduction of memory
issues in a multiprocessor context).

• Model of parallel tasks for multiprocessor real-time. Historically, the first
models of tasks on multiprocessor architectures forbid the parallelism of tasks
without an appropriate justification. In C5 we have provided arguments in
favor of parallel tasks and the first model of parallel tasks on identical proces-
sors. This model is the starting point of several current results on real-time
parallel tasks. The results were published originally in C5 and J3 is an ex-
tended version of C5.

J3 Collette S., Cucu L. and Goossens J., ”Integrating job parallelism in real-
time scheduling theory”, Information Processing Letters, 106(5): 180-187,
May 2008
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C5 Collette S., Cucu L. and Goossens, J. ”Algorithm and complexity for the
global scheduling of sporadic tasks on multiprocessors with work-limited
parallelism”, the 15th International Conference on Real-Time and Net-
work systems (RTNS), Nancy, March 2007

Organization of the chapter This chapter has two parts. The first part (within
Section 1.1) presents the results on predictability. Most of the proofs are provided
as they indicate the misunderstanding within the previous existing proofs. The
second part of this chapter (within Section 1.2) collect the main results on feasibility
intervals for a large class of scheduling algorithms and architectures.

During this chapter we assume the notions defined below as known.
From a theoretical and a practical point of view, we can distinguish (at least)

between three kinds of multiprocessor architectures (from less general to more gen-
eral):

Identical parallel machines Platforms on which all processors are identical, in
the sense that they have the same computing power.

Uniform parallel machines By contrast, each processor in a uniform parallel
machine is characterized by its own computing capacity, a job that is executed
on processor ⇡i of computing capacity si for t time units completes si⇥ t units
of execution.

Unrelated parallel machines In unrelated parallel machines, there is an execu-
tion rate si,j associated with each job-processor pair, a job Ji that is executed
on processor ⇡j for t time units completes si,j ⇥ t units of execution.

We consider real-time systems that are modeled by set of jobs and implemented
upon a platform comprised of several unrelated processors. We assume that the
platform

• is fully preemptive: an executing job may be interrupted at any instant in
time and have its execution resumed later with no cost or penalty.

• allows global inter-processor migration: a job may begin execution on any
processor and a preempted job may resume execution on the same processor
as, or a di↵erent processor from, the one it had been executing on prior to
preemption.

• forbids job parallelism: each job is executing on at most one processor at each
instant in time.

The scheduling algorithm determines which job[s] should be executed at each
time-instant. Fixed-Job Priority (FJP) schedulers assign priorities to jobs statically
and execute the highest-priority jobs on the available processors. Dynamic Priority
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(DP) schedulers assign priorities to jobs dynamically (at each instant of time). Pop-
ular FJP schedulers include: the Rate Monotonic (RM), the Deadline Monotonic
(DM) and the Earliest Deadline First (EDF) [48]. Popular DP schedulers include:
the Least Laxity First (LLF) and the EDZL [11,58].

The specified execution requirement of job is actually an upper bound of its
actual value, i.e., the worst case execution time (WCET) is provided. The actual
execution requirement may vary depending on the input data, and on the system
state (caches, memory, etc.). The schedulability analysis, determining whether all
jobs always meet their deadlines, is designed by considering a finite number of
(worst-case) scenarios (typically a single scenario) assuming that the scheduler is
predictable with the following definition: For a predictable scheduling algorithm,
one may determine an upper bound on the completion-times of jobs by analyzing
the situation under the assumption that each job executes for an amount equal
to the upper bound on its execution requirement; it is guaranteed that the actual
completion time of jobs will be no later than this determined value.

1.1 Predictability of Fixed-Job Priority Schedulers
on Heterogeneous Multiprocessor Real-Time Sys-
tems

The results presented in this section were published in [15].

In this section we extend and correct [38] by considering unrelated multipro-
cessor platforms and by showing that any FJP schedulers are predictable on these
platforms. Ha and Liu [38] ”showed” that FJP schedulers are predictable on iden-
tical multiprocessor platforms. However, while the result is correct, an argument
used in the proof is not. Han and Park studied the predictability of the LLF sched-
uler for identical multiprocessors [39]. To the best of our knowledge a single work
addressed heterogeneous architectures, indeed we have showed in [12] that any FJP
schedulers are predictable on uniform multiprocessors.

1.1.1 Definitions and assumptions

Within Section 1.1 we consider that a real-time system is modelled as a finite col-
lection of independent recurring tasks, each of which generates a potentially infinite
sequence of jobs. Every job is characterized by a 3-tuple (ri, ei, di), i.e., by a release
time (ri), an execution requirement (ei), and a deadline (di), and it is required that
a job completes execution between its arrival time and its deadline.

We consider multiprocessor platforms ⇡ composed of m unrelated processors:
{⇡

1

,⇡
2

, . . . ,⇡m}. Execution rates si,j are associated with each job-processor pair, a
job Ji that is executed on processor ⇡j for t time units completes si,j ⇥ t units of
execution. For each job Ji we assume that the associated set of processors ⇡n

i,1 >
⇡n

i,2 > · · · > ⇡n
i,m

are ordered in a decreasing order of the execution rates relative
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to the job: si,n
i,1 � si,n

i,2 � · · · � si,n
i,m

. For identical execution rates, the ties are
broken arbitrarily, but consistently, such that the set of processors associated with
each job is totally ordered. For the processor-job pair (⇡j , Ji) if si,j 6= 0 then ⇡j is
said to be an eligible processor for Ji.

Definition 1 (Schedule �(t)). For any set of jobs J
def

= {J
1

, J
2

, J
3

, . . .} and any set
of m processors {⇡

1

, . . . ,⇡m} we define the schedule �(t) of system ⌧ at time-instant

t as � : N! Nm where �(t)
def

= (�
1

(t),�
2

(t), . . . ,�m(t)) with

�j(t)
def

=

⇢
0, if there is no job scheduled on ⇡jat time-instant t;
i, if job Ji is scheduled on ⇡j at time-instant t.

Definition 2 (Work-conserving algorithm). An unrelated multiprocessor scheduling
algorithm is said to be work-conserving if, at each instant, the algorithm schedules
jobs on processors as follows: the highest priority (active) job Ji is scheduled on
its fastest (and eligible) processor ⇡j. The very same rule is then applied to the
remaining active jobs on the remaining available processors.

Throughout this paper, J denotes a (finite or infinite) set of jobs: J
def

= {J
1

, J
2

, J
3

, . . .}.
We consider any FJP scheduler and without loss of generality we consider jobs in
a decreasing order of priorities (J

1

> J
2

> J
3

> · · · ). We suppose that the actual
execution time of each job Ji can be any value in the interval [e�i , e

+

i ] and we denote

by J+

i the job defined as J+

i
def

= (ri, e
+

i , di). The associated execution rates of J+

i are

s+i,j
def

= si,j , 8j. Similarly, J�
i is the job defined from Ji as follows: J

�
i = (ri, e

�
i , di).

Similarly, the associated execution rates of J�
i are s�i,j

def

= si,j , 8j. We denote by

J (i) the set of the i highest priority jobs (and its schedule by �(i)). We denote also

by J
(i)
� the set {J�

1

, . . . , J�
i } and by J

(i)
+

the set {J+

1

, . . . , J+

i } (and its schedule by

�
(i)
+

). Note that the schedule of an ordered set of jobs using a work-conserving and
FJP scheduler is unique. Let S(J) be the time-instant at which the lowest priority
job of J begins its execution in the schedule. Similarly, let F (J) be the time-instant
at which the lowest priority job of J completes its execution in the schedule.

Definition 3 (Predictable algorithm). A scheduling algorithm is said to be pre-

dictable if S(J (i)
� )  S(J (i))  S(J (i)

+

) and F (J (i)
� )  F (J (i))  F (J (i)

+

), for all

1  i  #J and for all schedulable J
(i)
+

sets of jobs.

Definition 4 (Availability of the processors). For any ordered set of jobs J and any
set of m unrelated processors {⇡

1

, . . . ,⇡m}, we define the availability of the proces-
sors A(J, t) of the set of jobs J at time-instant t as the set of available processors:

A(J, t)
def

= {j | �j(t) = 0} ✓ {1, . . . ,m}, where � is the schedule of J .

1.1.2 Proof from Ha and Liu [38]

The result we extend in this work is the following:
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Theorem 5. For any FJP scheduler and identical multiprocessor platform, the start

time of every job is predictable, that is, S(J (i)
� )  S(J (i))  S(J (i)

+

).

We give here the first part of the original (adapted with our notations) proof of
Ha and Liu, Theorem 3.1, page 165 of [38].

Proof from [38]. Clearly, S(J (1))  S(J (1)

+

) is true for the highest-priority job

J
1

. Assuming that S(J (k))  S(J (k)
+

) for k < i, we now prove S(J (i))  S(J (i)
+

) by

contradiction. Suppose S(J (i)) > S(J (i)
+

). Because we consider a FJP scheduler,

every job whose release time is at or earlier than S(J (i)
+

) and whose priority is higher

than Ji has started by S(J (i)
+

) according to the maximal schedule �
(i)
+

. From the

induction hypothesis, we can conclude that every such job has started by S(J (i)
+

) in

the actual schedule �(i). Because ek  e+k for all k, in (0, S(J (i)
+

)), the total demand

of all jobs with priorities higher than Ji in the maximal schedule �
(i)
+

is larger than

the total time demand of these jobs in the actual schedule �(i). In �
(i)
+

, a processor

is available at S(J (i)
+

) for Ji to start; a processor must also be available in �(i) at or

before S(J (i)
+

) on which Ji or a lower-priority job can be scheduled.

Counter-example. The use of the notion of “total demand” used in the original
proof is not appropriate considering multiprocessor platforms. Consider, for in-

stance, two set of jobs: J
def

= {J
1

= J
2

= (0, 3,1)} and J 0 def

= {J
3

= (1, 5,1), J
4

=
(1, 1,1)}. In (0, 2) the total demands of both job sets are identical (i.e., 6 time
units), if we schedule the system using FJP schedulers, e.g., J

1

> J
2

and J
3

> J
4

it is not di�cult to see that in the schedule of J 0 a processor is available at time
2 while in the schedule of J we have to wait till time-instant 3 to have available
processor(s).

1.1.3 Predictability

In this section we prove our main property, the predictability of FJP schedulers on
unrelated multiprocessors which is based on the following lemma.

Lemma 1.1.1. For any schedulable ordered set of jobs J (using a FJP and work-
conserving scheduler) on an arbitrary set of unrelated processors {⇡

1

, . . . ,⇡m}, we
have A(J (i)

+

, t) ✓ A(J (i), t), for all t and all i. In other words, at any time-instant

the processors available in �
(i)
+

are also available in �(i). (We consider that the sets
of jobs are ordered in the same decreasing order of the priorities, i.e., J

1

> J
2

>
· · · > J` and J+

1

> J+

2

> · · · > J+

` .)

Proof. The proof is made by induction by ` (the number of jobs). Our inductive

hypothesis is the following: A(J (k)
+

, t) ✓ A(J (k), t), for all t and 1  k  i.
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The property is true in the base case since A(J (1)

+

, t) ✓ A(J (1), t), for all t.

Indeed, S(J (1)) = S(J (1)

+

). Moreover J
1

and J+

1

are both scheduled on their fastest
(same) processor ⇡n1,1 , but J+

1

will be executed for the same or a greater amount
of time than J

1

.
We will show now that A(J (i+1)

+

, t) ✓ A(J (i+1), t), for all t.

Since the jobs in J (i) have higher priority than Ji+1

, then the scheduling of
Ji+1

will not interfere with higher priority jobs which have already been scheduled.

Similarly, J+

i+1

will not interfere with higher priority jobs of J (i)
+

which have already

been scheduled. Therefore, we may build the schedule �(i+1) from �(i), such that
the jobs J

1

, J
2

, . . . , Ji, are scheduled at the very same instants and on the very same

processors as they were in �(i). Similarly, we may build �
(i+1)

+

from �
(i)
+

.

Note that A(J (i+1), t) will contain the same available processors as A(J (i), t) for

all t except the time-instants at which J (i+1) is scheduled, and similarly A(J (i+1)

+

, t)

will contain the same available processors as A(J (i)
+

, t) for all t except the time-

instants at which J
(i+1)

+

is scheduled. From the inductive hypothesis we have

A(J (i)
+

, t) ✓ A(J (i), t), we will consider time-instant t, from ri+1

to the comple-
tion of Ji+1

(which is actually not after the completion of J+

i+1

, see below for a
proof), we distinguish between four cases:

1. A(J (i), t) = A(J (i)
+

, t) = 0: in both situations no processor is available. There-

fore, both jobs, Ji+1

and J+

i+1

, do not progress and we obtain A(J (i+1), t) =

A(J (i+1)

+

, t). The progression of Ji+1

is identical to J+

i+1

.

2. A(J (i), t) 6= ; and A(J (i)
+

, t) = ;: if an eligible processor exists, Ji+1

progress

on an available processor in A(J (i), t) not available in A(J (i)
+

, t), J+

i+1

does not

progress. Consequently, A(J (i+1)

+

, t) ✓ A(J (i+1), t) and the progression of Ji+1

is strictly larger than J+

i+1

.

3. A(J (i), t) = A(J (i)
+

, t) 6= ;: if an eligible processor exists, Ji+1

and J+

i+1

progress on the same processor. Consequently, A(J (i+1)

+

, t) = A(J (i+1), t) and
the progression of Ji+1

is identical to J+

i+1

.

4. A(J (i), t) 6= A(J (i)
+

, t) 6= ;: if the faster processor in A(J (i), t) and A(J (i)
+

, t)
is the same see previous case of the proof (case 3); otherwise Ji+1

progress

on a faster processor than J+

i+1

, that processor is not available in A(J (i)
+

, t),

consequently a slower processor remains idle in A(J (i), t) but busy in A(J (i)
+

, t).

Consequently, A(J (i+1)

+

, t) ✓ A(J (i+1), t) and the progression of Ji+1

is larger
than J+

i+1

.

Therefore, we showed that A(J (i+1)

+

, t) ✓ A(J (i+1), t) 8t, from ri+1

to the completion
of Ji+1

and that Ji+1

does not complete after J+

i+1

. For the time-instant after the
completion of Ji+1

the property is trivially true by induction hypothesis.
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Theorem 6. FJP schedulers are predictable on unrelated platforms.

Proof. In the framework of the proof of Lemma 1.1.1 we actually showed extra
properties which imply that FJP schedulers are predictable on unrelated platforms:
(i) Ji+1

completes not after J+

i+1

and (ii) Ji+1

can be scheduled either at the very
same instants as J+

i+1

or may progress during additional time-instants (case (2) of
the proof) these instants may precede the time-instant where J+

i+1

commences its
execution.

Since multiprocessor real-time scheduling researchers pay attention to uniform
platforms (at least nowadays), we find convenient to emphasize the following corol-
lary:

Corollary 7. FJP schedulers are predictable on uniform platforms.

1.2 Exact Schedulability Tests for Periodic Tasks on
Unrelated Multiprocessor Platforms

The results presented in this section were published in [16].

In this section, we study the global scheduling of periodic task systems on un-
related multiprocessor platforms. We first show two general properties which are
well-known for uniprocessor platforms and which are also true for unrelated mul-
tiprocessor platforms: (i) under few and not so restrictive assumptions, we prove
that feasible schedules of periodic task systems are periodic starting from some
point in time with a period equal to the least common multiple of the task periods
and (ii) for the specific case of synchronous periodic task systems, we prove that
feasible schedules repeat from their origin. We then characterize, for task-level fixed-
priority schedulers and for asynchronous constrained or arbitrary deadline periodic
task models, upper bounds of the first time-instant where the schedule repeats. For
task-level fixed-priority schedulers, based on the upper bounds and the predictabil-
ity property, we provide exact schedulability tests for asynchronous constrained or
arbitrary deadline periodic task sets.

The problem of scheduling periodic task systems on multiprocessors was origi-
nally studied in [47]. Recent studies provide a better understanding of this schedul-
ing problem and provide the first solutions, e.g., [9] presents a categorization of
real-time multiprocessor scheduling problems and [19] an up-to-date state of the
art. To the best of our knowledge, a single work [5] provides exact schedulability
tests for the global scheduling of periodic systems on multiprocessors. Baker and
Cirinei present a test for global preemptive priority-based scheduling of sporadic
tasks on identical processors. Our work di↵ers for several reasons: (i) we extend
the model by considering unrelated platforms, and (ii) we provide a schedulability
interval and the periodic characterization of the schedule. Such characterization is
not straightforward since we know that not all uniprocessor schedulability results
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or arguments are true for multiprocessor scheduling. For instance, the synchronous
case (i.e., considering that all tasks start their execution synchronously) is not the
worst case on multiprocessors anymore [33]. Another example is the fact that the
first busy period (see [45] for details) does not provide a schedulability interval on
multiprocessors (see [33] for such counter-examples). By schedulability interval we
mean a finite interval such that, if no deadline is missed while only considering
requests within this interval then no deadline will ever be missed.

The tests that we present have, for a set of n tasks, a time complexity O(lcm{T
1

,
T
2

, . . . , Tn}), which is unfortunately also the case of most schedulability tests for
simpler uniprocessor scheduling problems.

1.2.1 Definitions and assumptions

We consider the preemptive global scheduling of periodic task systems. A system
⌧ is composed of n periodic tasks ⌧

1

, ⌧
2

, . . . , ⌧n, where each task is characterized by
a period Ti, a relative deadline Di, an execution requirement Ci and an o↵set Oi.
Such a periodic task generates an infinite sequence of jobs, with the kth job arriving
at time-instant Oi + (k� 1)Ti (k = 1, 2, . . .), having an execution requirement of Ci

units, and a deadline at time-instant Oi+(k�1)Ti+Di. It is important to note that
we assume first that each job of the same task ⌧i has the same execution requirement
Ci; we relax this assumption then by showing that our analysis is robust.

We will distinguish between implicit deadline systems where Di = Ti, 8i; con-
strained deadline systems where Di  Ti, 8i and arbitrary deadline systems where
there is no relation between the deadlines and the periods.

In some cases, we will consider the more general problem of scheduling a set of
jobs, each job Jj is characterized by a release time rj , an execution requirement ej
and an absolute deadline dj . The job Jj must execute for ej time units over the
interval [rj , dj). A job becomes active from its release time to its completion.

A periodic system is said to be synchronous if there is a time-instant where all
tasks make a new request simultaneously, i.e., 9t, k

1

, k
2

, . . . kn such that 8i : t =
Oi+ kiTi (see [30] for details). Without loss of generality, we consider Oi = 0, 8i for
synchronous systems. Otherwise the system is said to be asynchronous.

We denote by ⌧ (i)
def

= {⌧
1

, . . . , ⌧i}, by Oi
max

def

= max{O
1

, . . . , Oi}, by O
max

def

=

On
max

, by P
0

def

= 0, Pi
def

= lcm{T
1

, . . . , Ti} (0 < i  n) and by P
def

= Pn. In the
following, the quantity P is called the task set hyper-period.

We consider multiprocessor platforms ⇡ composed of m unrelated processors
(or one of its particular cases: uniform and identical platforms): {⇡

1

,⇡
2

, . . . ,⇡m}.
Execution rates si,j are associated with each task-processor pair. A task ⌧i that
is executed on processor ⇡j for t time units completes si,j ⇥ t units of execution.
For each task ⌧i we assume that the associated set of processors ⇡n

i,1 > ⇡n
i,2 >

· · · > ⇡n
i,m

are ordered in a decreasing order of the execution rates relative to the
task: si,n

i,1 � si,n
i,2 � · · · � si,n

i,m

. For identical execution rates, the ties are broken
arbitrarily, but consistently, such that the set of processors associated with each task
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is totally ordered. Consequently, the fastest processor relative to task ⌧i is ⇡n
i,1 ,

i.e., the first processor of the ordered set associated with the task. Moreover, for a
task ⌧i in the following we consider that a processor ⇡a is faster than ⇡b (relative
to its associated set of processors) if ⇡a > ⇡b even if we have si,a = si,b. For the
processor-task pair (⇡j , ⌧i) if si,j 6= 0 then ⇡j is said to be an eligible processor for ⌧i.
Note that these concepts and definitions can be trivially adapted to the scheduling
of jobs on unrelated platforms.

In this work we consider a discrete model, i.e., the characteristics of the tasks
and the time are integers. Moreover, in the following we will illustrate main concepts
and definitions using the following system.

Example 1. Let ⌧ be a system of three periodic tasks

Oi Ci Di Ti

⌧
1

0 2 6 6
⌧
2

5 4 6 6
⌧
3

4 5 7 6

Let ⇡ be a multiprocessor platform of 2 unrelated processors ⇡
1

and ⇡
2

. We have
s
1,1 = 1, s

1,2 = 2, s
2,1 = 2, s

2,2 = 1, s
3,1 = 2 and s

3,2 = 1. Note that according to our
definition above and regarding task ⌧

1

we have that ⇡
2

> ⇡
1

.

The notions of the state of the system and the schedule are as follows.

Definition 1 (State of the system ✓(t)). For any arbitrary deadline task system
⌧ = {⌧

1

, . . . , ⌧n} we define the state ✓(t) of the system ⌧ at time-instant t as ✓ :

N! (Z⇥ N⇥ N)n with ✓(t)
def

= (✓
1

(t), ✓
2

(t), . . . , ✓n(t)) where

✓i(t)
def

=

8>>>>>>>>>>>><>>>>>>>>>>>>:

(�1, x, 0), if no job of task ⌧i was activated before or at t. In this
case, x time units remain until the first activation of
⌧i. We have 0 < x  Oi.

(y, z, u), otherwise. In this case, y denotes the number of active
jobs of ⌧i at t, z denotes the time elapsed at time-
instant t since the arrival of the oldest active job of
⌧i, and u denotes the amount that the oldest active job
has executed for. If there is no active job of ⌧i at t,
then u is 0.

Note that at any time-instant t several jobs of the same task might be active
and we consider that the oldest job is scheduled first, i.e., the FIFO rule is used to
serve the various jobs of a given task.

Definition 2 (Schedule �(t)). For any task system ⌧ = {⌧
1

, . . . , ⌧n} and any set of
m processors {⇡

1

, . . . ,⇡m} we define the schedule �(t) of system ⌧ at time-instant t
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as � : N! {0, 1, . . . , n}m where �(t)
def

= (�
1

(t),�
2

(t), . . . ,�m(t)) with

�j(t)
def

=

8<:
0, if there is no task scheduled on ⇡j

at time-instant t;
i, if task ⌧i is scheduled on ⇡j at time-instant t.

81  j  m.

A system ⌧ is said to be schedulable on a multiprocessor platform if there is at
least one feasible schedule, i.e., a schedule in which all tasks meet their deadlines.
If A is an algorithm which schedules ⌧ on a multiprocessor platform to meet its
deadlines, then the system ⌧ is said to be A-schedulable.

Note that for a feasible schedule from Definition 1 we have 0  y  dDi

T
i

e,
0  z < Ti · dDi

T
i

e and 0  u < Ci.
The scheduling algorithms considered in this paper are work-conserving (see

Definition 2) and deterministic with the following definition:

Definition 3 (Deterministic algorithm). A scheduling algorithm is said to be de-
terministic if it generates a unique schedule for any given set of jobs.

Note that we assume in this work that no two jobs/tasks share the same priority.
It follows by Definition 2 that a processor ⇡j can be idle and a job Ji can be active
at the same time if and only if si,j = 0.

Moreover, we will assume that the decision of the scheduling algorithm at time
t is not based on the past, nor on the actual time t, but only on the characteristics
of active tasks and on the state of the system at time t. More formally, we consider
memoryless schedulers.

Definition 4 (Memoryless algorithm). A scheduling algorithm is said to be memo-
ryless if the scheduling decision it made at time t depends only on the characteristics
of active tasks and on the current state of the system, i.e., on ✓(t).

Consequently, for memoryless and deterministic schedulers we have the following
property:

8t
1

, t
2

such that ✓(t
1

) = ✓(t
2

) then �(t
1

) = �(t
2

).

Note that popular real-time schedulers, e.g., EDF and Deadline Monotonic
(DM), are memoryless: the priority of each task is only based on its absolute (EDF)
or relative (DM) deadline.

In the following, we will distinguish between two kinds of schedulers:

Definition 5 (Task-level fixed-priority). A scheduling algorithm is a task-level
fixed-priority algorithm if it assigns the priorities to the tasks beforehand; at run-
time each job priority corresponds to its task priority.

Definition 6 (Job-level fixed-priority). A scheduling algorithm is a job-level fixed-
priority algorithm if and only if it satisfies the condition that: for every pair of jobs
Ji and Jj, if Ji has higher priority than Jj at some time-instant, then Ji always has
higher priority than Jj.

18



Popular task-level fixed-priority schedulers include the RM and the DM al-
gorithms; popular job-level fixed-priority schedulers include the EDF algorithm,
see [48] for details.

Definition 7 (Job Jk
i of a task ⌧i). For any task ⌧i, we define Jk

i to be the kth job

of task ⌧i, which becomes active at time-instant Rk
i

def

= Oi+(k� 1)Ti. For two tasks
⌧i and ⌧j, by Jk

i > J `
j we mean that the job Jk

i has a higher priority than the job J `
j .

Definition 8 (Executed time ✏ki (t) for a job Jk
i ). For any task ⌧i, we define ✏ki (t)

to be the amount of time already executed for Jk
i in the interval [Rk

i , t).

We now introduce the availability of the processors for any schedule �(t).

Definition 9 (Availability of the processors a(t)). For any task system ⌧ = {⌧
1

, . . . , ⌧n}
and any set of m processors {⇡

1

, . . . ,⇡m} we define the availability of the processors

a(t) of system ⌧ at time-instant t as the set of available processors a(t)
def

= {j |
�j(t) = 0} ✓ {1, . . . ,m}.

In Example 1 for a preemptive task-level fixed-priority algorithm with ⌧
1

the
highest priority task and ⌧

3

the lowest priority task, we obtain the schedule provided
in Figure 1.1. In this figure the execution on the first processor is indicated by black
boxes. The releases of jobs are indicated by " and the deadlines by #.

For instance we have ✓
2

(2) = (�1, 3, 0), ✓
1

(3) = (3, 0, 0) and ✓
3

(6) = (2, 1, 3).
Moreover �(6) = (2, 1) and �(7) = (3, 0). Concerning task ⌧

1

, its job J2

1

becomes
active at R2

1

= 6 and this job has a higher priority than the job J1

2

of task ⌧
2

. For
this schedule a(1) = {1} and a(6) = ;.

-
0 4 5 7 1011 13 1617 19

-
0 5 11 17

-
0 6 12 18

⌧
3

⌧
2

⌧
1

6 6 6 6

6 6 6

6 6 66 6 6

? ? ?

? ?

? ?

Figure 1.1: Schedule (obtained using a task-level fixed-priority scheduling) for the
task set of Example 1
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1.2.2 Periodicity of feasible schedules

We assume in this section that each job of the same task ⌧i has the same execution
requirement Ci. We will relax this assumption in Section 1.2.3.

This section contains four parts. In each part of this section we give results
concerning the periodicity of feasible schedules. By periodicity (assuming that the
period is �) of a schedule �, we mean there is a time-instant t

0

and an interval
length � such that �(t) = �(t+ �), 8t � t

0

. For instance, in Figure 1.1 the schedule
is periodic from t = 5 with a period equal to 6.

The first part of this section provides periodicity results for a general scheduling
algorithm class: deterministic, memoryless and work-conserving schedulers. The
second part of this section provides periodicity results for synchronous periodic task
systems. The third and the fourth parts of this section present periodicity results for
task-level fixed-priority scheduling algorithms for constrained and arbitrary deadline
systems, respectively.

Periodicity of deterministic, memoryless and work-conserving scheduling
algorithms

We show that feasible schedules of periodic task systems obtained using determin-
istic, memoryless and work-conserving algorithms are periodic starting from some
point. Moreover, we prove that the schedule repeats with a period equal to P for
a sub-class of such schedulers. Based on that property, we provide two interesting
corollaries for preemptive task-level fixed-priority algorithms (Corollary 1) and for
preemptive deterministic EDF 1 (Corollary 2).

We first present two basic results in order to prove Theorem 1.

Lemma 1. For any deterministic and memoryless algorithm A, if an asynchronous
arbitrary deadline system ⌧ is A-schedulable on m unrelated processor platform ⇡,
then the feasible schedule of ⌧ on ⇡ obtained using A is periodic with a period di-
visible by P .

Proof. First note that from any time instant t
0

� O
max

all tasks are released,
and the configuration ✓i(t0) of each task is a triple of finite integers (↵,�, �) with
↵ 2 {0, 1, . . . , dDi

T
i

e}, 0  � < max
1in(Ti ⇥ dDi

T
i

e) and 0  � < max
1inCi.

Therefore, there is a finite number of di↵erent system states, hence we can find
two distinct instants t

1

and t
2

(t
2

> t
1

� t
0

) with the same state of the system
(✓(t

1

) = ✓(t
2

)). The schedule repeats from that instant with a period dividing
t
2

� t
1

, since the scheduler is deterministic and memoryless.
Note that, since the tasks are periodic, the arrival pattern of jobs repeats with

a period equal to P from O
max

.
We now prove by contradiction that t

2

� t
1

is necessarily a multiple of P . We
suppose that 9k

1

< k
2

2 N such that ti = O
max

+ kiP + �i, 8i 2 {1, 2} with

1
i.e., the method chosen to break deadline ties must be deterministic.
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�
1

6= �
2

, �
1

,�
2

2 [0, P ) and ✓(t
1

) = ✓(t
2

). This implies that there are tasks for
which the time elapsed since the last activation at t

1

and the time elapsed since
the last activation at t

2

are not equal. But this is in contradiction with the fact
that ✓(t

1

) = ✓(t
2

). Consequently, �
1

must be equal to �
2

and, thus, we have
t
2

� t
1

= (k
2

� k
1

)P .

For a sub-class of schedulers, we will show that the period of the schedule is P
and we provide first a definition (inspired from [32]):

Definition 10 (Request-dependent scheduler). A scheduler is said to be request-

dependent when 8i, j, k, ` : Jk+h
i

i > J
`+h

j

j if and only if Jk
i > J `

j , where hi
def

= P
T
i

.

Note that Definition 10 (request-dependent) is stronger than Definition 6 (job-
level fixed-priority) ; informally speaking Definition 10 requires that the same total
order is used each hyper-period between “corresponding” jobs (Jk

i “corresponds” to

Jk+h
i

i ). For instance in Example 1 for the schedule of Figure 1.1 we have J1

1

> J1

2

and J3

1

> J3

2

because the hyper-period is 6.
The next lemma extends results given for arbitrary deadline task systems in the

uniprocessor case (see [29], p. 55 for details).

Lemma 2. For any preemptive, job-level fixed-priority and request-dependent al-
gorithm A and any asynchronous arbitrary deadline system ⌧ on m unrelated pro-
cessors, we have: for each task ⌧i, for any time-instant t � Omax and k such
that Rk

i  t  Rk
i + Di, if there is no deadline missed up to time t + P , then

✏ki (t) � ✏k+h
i

i (t+ P ) with hi
def

= P
T
i

.

Proof. Note first that the function ✏ki (·) is a non-decreasing discrete2 step function

with 0  ✏ki (t)  Ci, 8t and ✏ki (R
k
i ) = 0 = ✏k+h

i

i (Rk+h
i

i ), 8k.
Note, also that, since the tasks are periodic, the arrival pattern of jobs repeats

with a period equal to P from Omax.
The proof is made by contradiction. Thus, we assume that a first time-instant t

exists such that there are j and k with Rk
j  t  Rk

j +Dj and ✏kj (t) < ✏
k+h

j

j (t+P ).
This assumption implies that:

1. either there is a time-instant t0 with Rk
j  t0 < t such that J

k+h
j

j is scheduled

at t0+P while Jk
j is not scheduled at t0. We obtain that there is at least one job

Jk
`

+h
`

` of a task ⌧` with ` 2 {1, 2, . . . , n} that is not scheduled at t0 +P , while

Jk
`

` is scheduled at t0 (h`
def

= P
T
`

). This implies (since the tasks are scheduled
according to a request-dependent algorithm, the arrival pattern of jobs repeats
with a period equal to P from Omax and there is no deadline missed) that Jk

`

`

has not finished its execution before t0, but Jk
`

+h
`

` has finished its execution

2
We assume that the time unit chosen is small enough such that all execution requirements/dead-

lines are natural numbers.
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before t0 + P . Therefore, we have ✏k`+h
`

` (t0 + P ) = C`, which implies that

✏k`` (t0) < ✏k`+h
`

` (t0 + P ). This last relation is in contradiction with the fact
that t is the first such time instant.

2. or there is at least one time-instant t00+P < t+P when J
k+h

j

j is scheduled on a

faster processor than the processor on which Jk
j is scheduled at t00. This implies

(since the tasks are scheduled according to a request-dependent algorithm)
that there is, at least, one job Jk

`

+h
`

` of a task ⌧` with ` 2 {1, 2, . . . , n} that is

not scheduled at t00 + P , while Jk
`

` is scheduled at t00 (h`
def

= P
T
`

). As proved in
the first case, this situation leads us to a contradiction with our assumption.

For the task set of Example 1 and the schedule of Figure 1.1, we have from
Lemma 2 that for t = 6 and k = 1, ✏1

3

(6) = 3 = ✏2
3

(12) and no deadline missed up
to 12.

Theorem 1. For any preemptive job-level fixed-priority and request-dependent al-
gorithm A and any A-schedulable asynchronous arbitrary deadline system ⌧ on m
unrelated processors the schedule is periodic with a period equal to P .

Proof. By Lemma 1 we have 9ti = O
max

+ kiP + d, 8i 2 {1, 2} with 0  d < P
such that ✓(t

1

) = ✓(t
2

). We know also that the arrivals of task jobs repeat with a
period equal to P from O

max

. Therefore, for all time-instants t
1

+ kP , 8k < k
2

� k
1

(i.e. t
1

+ kP < t
2

), the time elapsed since the last activation at t
1

+ kP is the same

for all tasks. Moreover since ✓(t
1

) = ✓(t
2

) we have ✏`ii (t1) = ✏
`
i

+

(k2�k1)P
T

i

i (t
2

) with

`i
def

= d t1�O
i

T
i

e, 8i. But by Lemma 2 we also have ✏`ii (t1) � ✏
`
i

+

P

T

i

i (t
1

+ P ) � · · · �

✏
`
i

+

(k2�k1)P
T

i

i (t
2

), 8i. Consequently we obtain ✓(t
1

) � ✓(t
1

+ P ) � · · · � ✓(t
2

) and
✓(t

1

) = ✓(t
2

) which 3 implies that ✓(t
1

) = ✓(t
1

+ P ) = · · · = ✓(t
2

).

Corollary 1. For any preemptive task-level fixed-priority algorithm A, if an asyn-
chronous arbitrary deadline system ⌧ is A-schedulable on m unrelated processors,
then the schedule is periodic with a period equal to P .

Proof. The result is a direct consequence of Theorem 1, since task-level fixed-priority
algorithms are job-level fixed-priority and request-dependent schedulers.

Corollary 2. A feasible schedule obtained using deterministic request-dependent
global EDF on m unrelated processors of an asynchronous arbitrary deadline system
⌧ is periodic with a period equal to P .

3
where ✓(t) � ✓(t0) means that, for each task, the system state at time t and t0 are identical

regarding n1 and t2, moreover if n1 > 0 we must have that the time elapsed for the oldest active

request of the task at time t is not shorter than the time elapsed for the oldest active request of

the task at time t0.
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Proof. The result is a direct consequence of Theorem 1, since EDF is a job-level
fixed-priority scheduler.

The particular case of synchronous arbitrary deadline periodic systems

In this section, we deal with the periodicity of feasible schedules of synchronous
arbitrary deadline periodic systems. Using the results obtained for deterministic,
memoryless and work-conserving algorithms, we study synchronous arbitrary dead-
line periodic systems and the periodicity of feasible schedules of these systems under
preemptive task-level fixed-priority scheduling algorithms.

In the following, and without loss of generality, we consider the tasks ordered in
decreasing order of their priorities ⌧

1

> ⌧
2

> · · · > ⌧n.

Lemma 3. For any preemptive task-level fixed-priority algorithm A and for any
synchronous arbitrary deadline system ⌧ on m unrelated processors, if no deadline
is missed in the time interval [0, P ) and if ✓(0) = ✓(P ), then the schedule of ⌧ is
periodic with a period P that begins at time-instant 0.

Proof. Since at time-instants 0 and P the system is in the same state, i.e. ✓(0) =
✓(P ), then at time-instants 0 and P a preemptive task-level fixed-priority algorithm
will make the same scheduling decision and the scheduled repeats from 0 with a
period equal to P .

Theorem 2. For any preemptive task-level fixed-priority algorithm A and any syn-
chronous arbitrary deadline system ⌧ on m unrelated processors, if all deadlines are
met in [0, P ) and ✓(0) 6= ✓(P ), then ⌧ is not A-schedulable.

Proof. The proof is provided in [16].

Corollary 3. For any preemptive task-level fixed-priority algorithm A and any
synchronous arbitrary deadline system ⌧ on m unrelated processors, if ⌧ is A-
schedulable, then the schedule of ⌧ obtained using A is periodic with a period P
that begins at time-instant 0.

Proof. Since ⌧ is A-schedulable, we know by Theorem 2 that ✓(0) = ✓(P ). Moreover,
a deterministic and memoryless scheduling algorithm will make the same scheduling
decision at those instants. Consequently, the schedule repeats from its origin with
a period of P .

Task-level fixed-priority scheduling of asynchronous constrained deadline
systems

In this section we describe another important result: any feasible schedule on m
unrelated processors of asynchronous constrained deadline systems, obtained using
preemptive task-level fixed-priority algorithms, is periodic from some point (Theo-
rem 3) and we characterize that point.
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Without loss of generality, we consider the tasks ordered in a decreasing order
of their priorities ⌧

1

> ⌧
2

> · · · > ⌧n.

Theorem 3. For any preemptive task-level fixed-priority algorithm A and any A-
schedulable asynchronous constrained deadline system ⌧ on m unrelated processors,
the schedule is periodic with a period Pn from time-instant Sn where Si is defined
inductively as follows:

• S
1

def

= O
1

;

• Si
def

= max{Oi, Oi + dSi�1�O
i

T
i

eTi}, 8i 2 {2, 3, . . . , n}.

Proof. The proof is provided in [16].

Example 2. Let ⌧ be a system of three periodic tasks

Oi Ci Di Ti

⌧
1

0 2 6 6
⌧
2

5 4 6 6
⌧
3

4 5 6 6

Let ⇡ be a multiprocessor platform of 2 unrelated processors ⇡
1

and ⇡
2

. We have
s
1,1 = 1, s

1,2 = 2, s
2,1 = 2, s

2,2 = 1, s
3,1 = 2 and s

3,2 = 1.
Using a task-level fixed-priority scheduling algorithm with ⌧

1

the highest priority,
we obtain the schedule provided in Figure 1.2. For this schedule and the notations
of Theorem 3, we have S

1

= 0, S
2

= 5 and S
3

= 10. In Figure 1.2 the execution on
the first processor is indicated by black boxes.

-
0 4 5 7 1011 13 1617 19

-
0 5 11 17

-
0 6 12 18

⌧
3

⌧
2

⌧
1

6 6 6 6

6 6 6

6 6 66 6 6

? ? ?

? ?

? ?

Figure 1.2: Schedule (obtained using a task-level fixed-priority scheduling) for the
task set of Example 2
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Task-level fixed-priority scheduling of asynchronous arbitrary deadline
systems

In this section we present another important result: any feasible schedule on m
unrelated processors of asynchronous arbitrary deadline systems, obtained using
preemptive task-level fixed-priority algorithms, is periodic from some point (Theo-
rem 4).

Corollary 4. For any preemptive task-level fixed-priority algorithm A and any asyn-
chronous arbitrary deadline system ⌧ on m unrelated processors, we have: for each
task ⌧i, for any time-instant t � Oi and k such that Rk

i  t  Rk
i +Di, if there is

no deadline missed up to time t+ P , then ✏ki (t) � ✏k+h
i

i (t+ P ) with hi
def

= P
T
i

.

Proof. This result is a direct consequence of Lemma 2 since preemptive task-level
fixed-priority algorithms are job-level fixed-priority and request-dependent sched-
ulers.

In the following corollary we use the notation ✓i(t) = (↵i(t),�i(t), �i(t)), 8⌧i.

Corollary 5. For any preemptive task-level fixed-priority algorithm A and any asyn-
chronous arbitrary deadline system ⌧ on m unrelated processors, we have: for each
task ⌧i, for any time-instant t � Oi

max

, if there is no deadline missed up to time
t+ P , then either (↵i(t) < ↵i(t+ P )) or [↵i(t) = ↵i(t+ P ) and �i(t) � �i(t+ P )].

Proof. The proof is provided in [16].

Lemma 4. For any preemptive task-level fixed-priority algorithm A and any
A-schedulable asynchronous arbitrary deadline system ⌧ of n tasks on m unrelated
processors, let �(i) the schedule obtained by considering only the task subset ⌧ (i).
Moreover, let the set of {bS

1

, · · · , bSn} be defined inductively as follows:

• bS
1

def

= O
1

• bSi
def

= max{Oi, Oi + d
bS
i�1�O

i

T
i

eTi}+ Pi, (i > 1)

If ✓i+1

(bSi+1

) 6= ✓i+1

(bSi+1

+ Pi+1

), then @t 2 [bSi+1

, bSi+1

+ Pi+1

) such that at t
there is at least one available (and eligible) processor for ⌧i+1

in �(i) and no job of
⌧i+1

is scheduled at t in �(i+1).

Proof. The proof is made by contradiction and it is provided in [16].

Theorem 4. For any preemptive task-level fixed-priority algorithm A and any A-
schedulable asynchronous arbitrary deadline system ⌧ on m unrelated processors,
the schedule is periodic with a period Pn from time-instant bSn where bSn are defined
inductively as follows:

• bS
1

def

= O
1
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• bSi
def

= max{Oi, Oi + d
bS
i�1�O

i

T
i

eTi}+ Pi, (i > 1)

Proof. The proof is made by induction and it is provided in [16].

1.2.3 Exact schedulability tests

In the previous sections, we assumed that the execution requirement of each task
is constant while the designer actually only knows an upper bound on the actual
execution requirement, i.e., the worst case execution time (WCET). Consequently,
we need tests that are robust relatively to the variation of the execution times up to
a worst case value. More precisely, we need predictable schedulers on the considered
platforms.

In order to provide exact schedulability tests for various kind schedulers and
platforms we use the predictability results provided in Section 1.1.

We introduce and formalize the notion of the schedulability interval necessary
to provide the exact schedulability tests:

Definition 11 (Schedulability interval). For any task system ⌧ = {⌧
1

, . . . , ⌧n} and
any set of m processors {⇡

1

, . . . ,⇡m}, the schedulability interval is a finite interval
such that if no deadline is missed while considering only requests within this interval
then no deadline will ever be missed.

Asynchronous constrained deadline systems and task-level fixed-priority
schedulers

Now we have the material to define an exact schedulability test for asynchronous
constrained deadline periodic systems.

Corollary 6. For any preemptive task-level fixed-priority algorithm A and for any
asynchronous constrained deadline system ⌧ on unrelated multiprocessors, ⌧ is A-
schedulable if all deadlines are met in [0, Sn + P ) and ✓(Sn) = ✓(Sn + P ), where Si

is defined inductively in Theorem 3. Moreover, for every task ⌧i only the deadlines
in the interval [Si, Si + lcm{Tj | j  i}) have to be checked.

Proof. Corollary 6 is a direct consequence of Theorem 3 and Theorem 6, since task-
level fixed-priority algorithms are job-level fixed-priority schedulers.

The schedulability test given by Corollary 6 may be improved as it was done in
the uniprocessor case [31]. The uniprocessor proof is also true for multiprocessor
platforms since it does not depend on the number of processors, nor on the kind of
platforms but on the availability of the processors.

Theorem 5 ( [31]). Let Xi be inductively defined by Xn = Sn, Xi = Oi+bXi+1�O
i

T
i

cTi

(i 2 {n�1, n�2, . . . , 1}; thus ⌧ is A-schedulable if and only if all deadlines are met
in [X

1

, Sn + P ) and if ✓(Sn) = ✓(Sn + P ).

26



Asynchronous arbitrary deadline systems and task-level fixed-priority
policies

Now we have the material to define an exact schedulability test for asynchronous
arbitrary deadline periodic systems.

Corollary 7. For any preemptive task-level fixed-priority algorithm A and for any
asynchronous arbitrary deadline system ⌧ on m unrelated processors, ⌧ is A-schedulable
if and only if all deadlines are met in [0, bSn + P ) and ✓(bSn) = ✓(bSn + P ), where bSi

are defined inductively in Theorem 4.

Proof. Corollary 7 is a direct consequence of Theorem 4 and Theorem 6, since task-
level fixed-priority algorithms are job-level fixed-priority schedulers.

Note that the length of our (schedulability) interval is proportional to P (the
least common multiple of the periods) which is unfortunately also the case of most
schedulability intervals for the simpler uniprocessor scheduling problem (and for
identical platforms or simpler task models). In practice, the periods are often har-
monics, which limits the term P .

The particular case of synchronous arbitrary deadline periodic systems

In this section we present exact schedulability tests in the particular case of syn-
chronous arbitrary deadline periodic systems.

Corollary 8. For any preemptive task-level fixed-priority algorithm A and any syn-
chronous arbitrary deadline system ⌧ , ⌧ is A-schedulable on m unrelated processors
if and only if all deadlines are met in the interval [0, P ) and ✓(0) = ✓(P ).
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Chapter 2

Probabilistic real-time systems

This chapter concerns probabilistic and statistical approaches for real-time systems.
The first results on probabilistic real-time systems published have been published
in the early 90’s. In our opinion the limitations of these first results came from the
reasoning on average that cannot provide real-time guarantees (see Section 2.1.1).
The current breakthrough of the probabilistic approaches within the real-time com-
munity have been done following three steps:

• Detection of misunderstanding within probabilistic real-time models. The in-
dependence between tasks is a property of real-time systems that is often
used for its basic results. Any complex model takes into account di↵erent
dependences caused by sharing resources other than the processor. On an-
other hand, the probabilistic operations require, generally, the (probabilistic)
independence between the random variables describing some parameters of a
probabilistic real-time system. The main (original) criticism to probabilistic
is based on this hypothesis of independence judged too restrictive to model
real-time systems. In reality the two notions of independence are di↵erent.
Providing arguments to underline this confusion was the main topic of the
following invited talks:

– L. Cucu-Grosjean, ”Probabilistic real-time systems”, Keynote of the 21st
International Conference on Real-time Networks and Systems (RTNS),
October 2013

– L. Cucu-Grosjean, ”Probabilistic real-time scheduling, Ecole Temps Réel
(ETR2013), August 2013

– L. Cucu-Grosjean, ”Independence - a misunderstood property of and for
(probabilistic) real-time systems, the 60th Anniversary of A. Burns, York,
March 2013

• Probabilistic worst-case reasoning. Guaranteeing real-time constraints require
worst-case reasoning in order to provide safe solutions. We have proposed
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such reasoning in di↵erent contexts (optimal scheduling algorithms, response
time analysis, estimation of worst-case execution times). These results have
built the bases of certifiable probabilistic solutions for real-time systems.

J6 L. Santinelli and L. Cucu-Grosjean, A Probabilistic Calculus for Proba-
bilistic Real-Time Systems, ACM Transactions on Embedded Computing
Systems, to appear in 2014

J5 D. Maxim and L. Cucu-Grosjean, ”Towards an analysis framework for
tasks with probabilistic execution times and probabilistic inter-arrival times”,
Special issue related to the Work in Progress of the 24th Euromicro Inlt
Conference on Real-Time Systems (ECRTS 2012), ACM SIGBED Re-
view 9(4):33-36, 2012

J4 L. Santinelli and L. Cucu-Grosjean, ”Towards Probabilistic Real-Time
Calculus”, Special issue related to the 3rd Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems(CRTS 2010),
ACM SIGBED Review 8(1), March 2011

C11 D. Maxim and L. Cucu-Grosjean, ”Response Time Analysis for Fixed-
Priority Tasks with Multiple Probabilistic Parameters”, IEEE Real-Time
Systems Symposium (RTSS), Vancouver, December 2013

C10 R. Davis, L. Santinelli, S. Altmeyer, C. Maiza and L. Cucu-Grosjean,
”Analysis of Probabilistic Cache Related Pre-emption Delays”, the 25th
Euromicro Conference on Real-time Systems (ECRTS), Paris, July 2013

C9 Y. Lu, T. Nolte, I. Bate et L. Cucu-Grosjean, ”A statistical response-
time analysis of real-time embedded systems”, the 33rd IEEE Real-time
Systems Symposium (RTSS), San Juan, December 2012

C8 D. Maxim, M. Houston, L. Santinelli, G. Bernat, R. Davis and L. Cucu-
Grosjean, ”Re-Sampling for Statistical Timing Analysis of Real-Time
Systems”, the 20th International Conference on Real-Time and Network
Systems, ACM Digital Library, Pont à Mousson, Novembre 2012

C7 D. Maxim, O. Bu↵et, L. Santinelli, L. Cucu-Grosjean and R. Davis, Op-
timal Priority Assignment for Probabilistic Real-Time Systems, the 19th
International Conference on Real-Time and Network Systems (RTNS),
Nantes, September 2011

C6 L. Santinelli, P. Meumeu Yomsi, D. Maxim and L. Cucu-Grosjean, A
Component-Based Framework for Modeling and Analyzing Probabilistic
Real-Time Systems, the 16th IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), Toulouse, September
2011

We have studied the probabilistic response time analysis of systems with mul-
tiple probabilistic parameters either by using bounds based on real-time cal-
culus (J6, J4), extreme value theory (C9), direct calculation (J5, C11) or in
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a context of component-based systems (C6). The probabilistic methods have,
generally, high complexity and by upper-bounding the input probability dis-
tributions we provide safe and faster results (C8). Worst-case reasoning is also
provided to estimate statically the probabilistic worst-case execution time of
a task (C10).

• Proposition of methods for obtaining probability distributions of the parame-
ters of real-time systems. Obtaining these distributions is, generally, based
on statistical methods. We have proposed and validated for the first time
a statistical method for the estimation of probabilistic worst-case execution
times of a program (task). This method is currently under patent submission
and its details are confidential. Its exploitation plan concerns four di↵erent
embedded industries (avionics, aerospace, automotive and rail) and related
methods are also available:

J8 F. J. Cazorla, E. Quinones, T. Vardanega, L. Cucu-Grosjean, B. Triquet,
G. Bernat, E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli, L.
Kosmidis, C. Lo and D. Maxim, ”PROARTIS: Probabilistically Analyz-
able Real-Time System”, ACM Transactions on Embedded Computing
Systems, 12(2s):94, 2013

J7 L. Yue, I. Bate, T. Nolte and L. Cucu-Grosjean, ”A New Way about
using Statistical Analysis of Worst-Case Execution Times”, Special issue
related to the WIP session of the 23rd Euromicro Conference on Real-
Time Systems (ECRTS), ACM SIGBED Review, 8(3), September 2011

C13 F. Wartel, L. Kosmidis, C. Lo, B. Triquet, E. Quinones, J. Abella, A.
Gogonel, A. Baldovin, E. Mezzetti, L. Cucu, T. Vardanega and F. Ca-
zorla, ”Measurement-Based Probabilistic Timing Analysis: Lessons from
an Integrated-Modular Avionics Case Study”, the 8th IEEE International
Symposium on Industrial Embedded Systems (SIES), Porto, June 2013

C12 L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L.
Kosmidis, J. Abella, E. Mezzeti, E. Quinones and F. Cazorla, ”Measurement-
Based Probabilistic Timing Analysis for Multi-path Programs”, the 24th
Euromicro Conference on Real-Time Systems (ECRTS), Pissa, July 2012

We introduce the first static probabilistic timing analysis for randomized ar-
chitectures in J8 and the corresponding measurement-based approach in C12.
The hypotheses of the mathematical basis of a measurement-based method
(as proposed in C12) may be fulfilled also by statistical treatment (J7). A
case study of a measurement-based approach is provided for avionics in C13.

Organization of the chapter This chapter has three parts. The first part
(Section 2.1) introduces the definitions and assumptions as well as the context of
the results we present in Sections 2.3 and 2.2. In Section 2.2 we provide the response
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time analysis published in C11. In Section 2.3 we provide the main details of
the measurement-based probabilistic timing analysis published in C12. For both
results we underline the di↵erences between the independence between tasks and
the independence as required by the probabilistic or the statistical method.

2.1 Definitions and assumptions. Context of the prob-
abilistic real-time systems

A random variable X 1 has associated a probability function (PF) fX (.) with fX (x) =
P (X = x). The possible valuesX0, X1, · · · , Xk of X belong to the interval [xmin, xmax],
where k is the number of possible values of X . We associate the probabilities to the
possible values of a random variable X by using the following notation

X =

✓
X0 = Xmin X1 · · · Xk = Xmax

fX (Xmin) fX (X1) · · · fX (Xmax)

◆
, (2.1)

where
Pk

i

j=0

fX (Xj) = 1. A random variable may be also specified using its cumu-
lative distribution function (CDF) FX (x) =

Px
z=xmin

fX (z).

Definition 8. The probabilistic execution time (pET) of the job of a task describes
the probability that the execution time of the job is equal to a given value.

For instance the jth job of a task ⌧i may have a pET

Cj
i =

✓
2 3 5 6 105
0.7 0.2 0.05 0.04 0.01

◆
(2.2)

If fCj

i

(2) = 0.7, then the execution time of the jth job of ⌧i has a probability of

0.7 to be equal to 2.
The definition of the probabilistic worst-case execution (pWCET) of a task is

based on the relation ⌫ provided in Definition 9.

Definition 9. [49] Let X and Y be two random variables. We say that X is worse
than Y if FX (x)  FX (x), 8x, and denote it by X ⌫ Y.

For example, in Figure 2.1 FX1(x) never goes below FX2(x), meaning that X
2

⌫
X
1

. Note that X
2

and X
3

are not comparable.

Definition 10. The probabilistic worst-case execution time (pWCET) Ci of a task
⌧i is an upper bound on the pETs Cj

i of all jobs of ⌧i 8j and it may be described by

the relation ⌫ as Ci ⌫ Cj
i , 8j.

Graphically this means that the CDF of Ci stays under the CDF of Cj
i , 8j.

Following the same reasoning we define for a task ⌧i the probabilistic minimal
inter-arrival time (pMIT) denoted by Ti.

1
We use a calligraphic typeface to denote random variables, e.g., X , C, etc.
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Figure 2.1: Possible relations between the CDFs of various random variables

Definition 12. The probabilistic inter-arrival time (pIT) of a job of a task describes
the probability that the job’s arrival time occurs at a given value.

Definition 13. The probabilistic minimal inter-arrival time (pMIT) Ti of a task ⌧i
is a bound on the minimal inter-arrival times T j

i , 8j of all jobs of that task and it

may be described by the relation ⌫ as T j
i ⌫ Ti, 8j.

Graphically this means that the CDF of Ti stays below the CDF of T j
i , 8j.

Definition 14. Two random variables X and Y are (probabilistically) indepen-
dent if they describe two events such that the outcome of one event does not have
any impact on the outcome of the other.

Definition 15. The sum Z of two (probabilistically) independent random vari-
ables X and Y is the convolution X ⌦ Y where P{Z = z} =

Pk=+1
k=�1 P{X =

k}P{Y = z � k}.

✓
3 7
0.1 0.9

◆
⌦
✓

0 4
0.9 0.1

◆
=

✓
3 7 11

0.09 0.82 0.09

◆
A complementary operator to the convolution is the operator  , defined by

X  Y = X ⌦ (�Y).

Definition 16. The coalescion of two partial random variables, denoted by the
operator � represents the combination of the two partial random variables into a
single (partial) random variable so that values that appear multiple times are kept
only once gathering the summed probability mass of the respective values.

✓
5 8

0.18 0.02

◆
�
✓

5 6
0.72 0.08

◆
=

✓
5 6 8
0.9 0.08 0.02

◆
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Classification of existing results on probabilistic real-time

The first papers in the real-time community with bearing on our work used the
terms stochastic analysis [25], probabilistic analysis [55, 63], statistical analysis [3]
and real-time queuing theory [45] interchangeably. Since the publication of [20],
the notion of stochastic analysis of real-time systems has been used regularly by
the community, regardless of the approach. We use the terms probabilistic analysis
or statistical analysis depending on the approach on which our solution is based.
While the former provides the probability or chance of occurrence of future event,
the latter searches for a model or some properties when studying some (often large)
mass of data of observed past events. The term of stochastic analysis is appropriate
in our context for models that are time-evolving.

The results on probabilistic real-time systems may be classified following four
main types:

Schedulability analysis The seminal paper of Lehoczky [46] proposes the first
schedulability analysis of task systems with probabilistic execution times. This re-
sult and several improvements [67], [41] consider a specific case of PFs for the pETs.
Tia et al. [64] and Gardner [26] propose probabilistic analyses for specific schedulers.
Abeni et al. [4] proposes probabilistic analyses for tasks executed in isolation and a
recent work consider time-evolving models [59]. The most general analysis for prob-
abilistic systems with (worst-case) execution times of tasks described by random
variables is proposed in [20]. The most general analysis for probabilistic systems
with (worst-case) execution times and inter-arrival times of tasks described by ran-
dom variables is proposed in [56]. A time-evolving model of pETs is introduced
in [51] and an associated schedulability analysis on multiprocessors is presented.

This class of problems is the most studied among probabilistic methods. The
next step to complete the existing results is to provide statistical methods for such
problems as it has been done in [50]. The statistical methods have the advantage to
be able to study more complex models or architectures. Comparisons between the
two methods should close this class of problems.

Re-sampling with respect to probabilistic worst-case parameters Schedu-
lability analyses may have an important complexity directly related to the number of
possible values of the random variables describing the parameters. This complexity
may be decreased by using re-sampling techniques that ensure the safeness (the new
response time PF upper bounds the result obtained without re-sampling) [57, 62].
For instance the response time analysis of [56] becomes interesting for large systems
of tasks by using the re-sampling at the level of pWCETs and pMITs. As indicated
in [57] there is no optimal re-sampling technique and, thus, any new schedulability
analyses should be provided with its own e�cient re-sampling technique.

The estimation of the probabilistic parameters Since the seminal paper
of Edgar and Burns [21], di↵erent papers [17, 34, 40, 42, 66] have proposed solutions
for the problem of estimating pWCETs. To our best knowledge one paper proposes
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a pET estimation [18]. Estimating pMIT is an open problem and one short paper
provides hints for this estimation [53].

Optimal scheduling algorithms To our best knowledge there is one paper
presenting optimal fixed-priority uniprocessor scheduling algorithms for tasks with
pWCETs [55]. For time-evolving pETs of tasks an optimal fixed-priority algorithm
is proposed for several processors [52].

2.1.1 Comparing probabilistic real-time average reasoning and prob-
abilistic real-time worst-case reasoning

We underline the di↵erences between probabilistic real-time average reasoning and
probabilistic real-time worst-case reasoning by comparing two existing probabilistic
real-time models. For this discussion only the parameters related to the arrival of
the tasks are relevant.

Real-time systems with probabilistic MIT

This model has been introduced in papers like [4, 46].
Within this model, for a task ⌧i the pMIT Ti is defined by a distribution as

follows:

Ti =
✓

T 0 = Tmin T 1 · · · T k = Tmax

fT
i

(Tmin) fT
i

(T 1) · · · fT
i

(Tmax)

◆
For instance, ⌧

1

has a pMIT T
1

=

✓
5 10
0.3 0.7

◆
indicating that the MIT of ⌧

1

is equal to 5 with a probability of 0.3 and to 10 with a probability of 0.7 .

Real-time systems with probabilistic number of arrivals

This model has been used in papers like [8, 44].
Within this model, for a task ⌧⇤i the number of possible arrivals Ni within a time

interval of length t
�

is defined by a distribution as follows:

Ni =

✓
N0 = Nmin N1 · · · Nk = Nmax

fN
i

(Nmin) fN
i

(N1) · · · fN
i

(Nmax)

◆
For instance if N

1

=

✓
1 2 4
0.4 0.3 0.3

◆
for t

�

= 12, then the task ⌧⇤
1

has at

most 4 arrivals from t = 0 to t = 12.
The first model provides information to a schedulability analysis, in-

formation that the second model does not provide

• Probabilistic MIT: The task ⌧
1

has at most two arrivals before t = 7 (with
a probability 0.3).
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• Probabilistic number of arrivals: It is not possible to estimate how many
times ⌧⇤

1

was released from t = 0 to t = 7. Di↵erent situations are possible
like those described in Figure 2.2.

Figure 2.2: The arrivals defined using the number of arrivals may correspond to
these situations

The first model can also provide the information that the second
model provides to a schedulability analysis

• Probabilistic MIT: From t = 0 to t = 12 there are three scenarios of arrivals
for task ⌧

1

:

– 3 arrivals at t = 0, t = 5 and t = 10 with a probability of 0.21;

– 2 arrivals at t = 0 and t = 5 with a probability of 0.09;

– 2 arrivals at t = 0 and t = 10 with a probability of 0.7.

Thus, from t = 0 to t = 12 the possible number of arrivals of ⌧
1

is described

by

✓
2 3

0.79 0.21

◆
.

• Probabilistic number of arrivals: from t = 0 to t = 12 the number of

arrivals of ⌧⇤
1

is N
1

=

✓
1 2 4
0.4 0.3 0.3

◆
and it is provided by the model.

2.2 Response Time Analysis for Fixed-Priority Tasks
with Multiple Probabilistic Parameters

The results presented in this section were published in [56].
They were obtained during the PhD thesis of Dorin Maxim [54].
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In this section we consider a system of n synchronous tasks {⌧
1

, ⌧
2

, . . . , ⌧n} to
be scheduled on one processor according to a preemptive fixed-priority task-level
scheduling policy. Without loss of generality, we consider that ⌧i has a higher
priority than ⌧j for i < j. We denote by hp(i) the set of tasks’ indexes with higher
priority than ⌧i. By synchronous tasks we understand that all tasks are released
simultaneously the first time at t = 0.

Each task ⌧i generates an infinite number of successive jobs ⌧i,j , with j =
1, . . . ,1. All jobs are assumed to be independent of other jobs of the same task
and those of other tasks.

A task ⌧i is represented by a tuple (Ci, Ti), where Ci is its probabilistic worst-case
execution time and Ti its probabilistic minimal inter-arrival time. A job of a task
must finish its execution before the arrival of the next job of the same task, i.e., the
arrival of a new job represents the deadline of the current job2. Thus, the deadline
of a task may also be represented by a random variable Di which has the same
distribution as its pMIT, Ti. Alternatively, we can consider the deadline described
by a distribution di↵erent from the distribution of its pMIT if the system under
consideration calls for such model [4,60], or the simpler case when the deadline of a
task is given as one value. The latter case is probably the most frequent in practice,
nevertheless we prefer to propose an analysis as general as possible and we consider
tasks with implicit deadlines, i.e., having the same distribution as the pMIT.

Definition 17 (Job deadline miss probability). For a job ⌧i,j the deadline miss
probability dmpi,j is the probability that the jth job of task ⌧i misses its deadline and
it is equal to:

dmpi,j = P (Ri,j > Di). (2.3)

where Ri,j is the response time distribution of the jth job of task ⌧i.

We show in Theorem 6 that the case when tasks are simultaneously released
yields the greatest response time distribution for each task respectively. Here, great-
est is defined with respect to the relation ⌫ and it indicates that the response time
distribution of the first job upper bounds the response time distribution of any
other job of that task. Since we are considering synchronous tasks, calculating the
response time distribution of the first job of a task provides the worst-case response
time distribution of the task and, implicitly, its worst-case DMP.

In this section we address the problem of computing the response time distribu-
tions and, implicitly, Deadline Miss Probabilities of tasks with pMITs and pWCETs.
The response time of a job is the elapsed time between its release and its completion.
Since we consider jobs with probabilistic parameters, the response time of a job is
also described by a random variable. The solution that we describe is exponential
in the number of tasks and the size of the random variables representing the task
parameters. We describe techniques to decrease the analysis duration and to make
it tractable.

2
In the analysis of generalized multi-frame tasks this is known as the frame separation constraint.
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2.2.1 Response time analysis

We present an analysis computing the response time distribution of a given task.
Since the system under consideration is a task-level fixed-priority preemptive one,
then a given task is not influenced by tasks of lower priority but only by those of
higher priority. Thus, we consider without loss of generality, the task of interest to
be the lowest priority task ⌧n in a set of n tasks.

We remind first the response time analysis for tasks that have only the (WC)ETs
described by a random variable [20]. The response time Ri,j of a job ⌧i,j that is
released at time instant �i,j is computed using the following equation:

Ri,j = Bi(�i,j)⌦ Ci ⌦ Ii(�i,j), (2.4)

where Bi(�i,j) is the accumulated backlog of higher priority tasks released before �i,j

and still active (not completed yet) at time instant �i,j . Ii(�i,j) is the sum of the
execution times of higher priority tasks arriving after �i,j and that could preempt
the job under analysis, ⌧i,j . In the case of synchronous tasks the backlog is equal to
Bn =

N
i2hp(n)

Ci.

Equation (2.4) is solved iteratively, integrating new possible preemptions by
modifying the tail of the response time distribution Ri,j at each iteration. Iterations
stop either when there are no more preemptions to be integrated or when all new
values of the tail of the response time distribution are larger than the deadline of
the task.

Hypothesis of (probabilistic) independence: Equation (2.4) is based on
the operation of convolution ⌦ that requires probabilistic independence between
Ci, 8i.

• Case of pETs. If the random variables Ci describe pETs of the task, then the
random variables are not independent and Equation (2.4) cannot be applied
with the current knowledge of the literature.

• Case of pWCETs. If the random variable Ci describes the pWCET of the
task ⌧i, then the random variables are independent as they are obtained as
upper bounds for pETs of all jobs. Thus Equation (2.4) can be applied.

Intuition of our analysis: In the case when the MIT is described by a random
variable, we modify Equation (2.4) to take into account the fact that a preemption
can occur at di↵erent time instants with di↵erent probabilities. This is done by
making a copy of Ri,j for each value in the pMIT distribution of the preempting
task and scaling each copy with its probability. We then modify the tail of each
copy in order to integrate, as in Equation (2.4), the execution requirement of the
preempting task. Distributions are then coalesced and the process is repeated until
either there are no more preemptions to be integrated or the newly obtained values
in the tails of each copy of the response time distribution are larger than the tasks’
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deadline. Note that if the MIT of the preempting task is deterministic, then the
analysis is the same as Equation (2.4). Furthermore, our analysis can handle any
combination of probabilistic and deterministic parameters, and in the case that all
parameters are deterministic, the returned result is the same as the one provided
by the worst-case response time analysis in [43].

We present now a numerical example of the analysis and we then introduce it
formally.

Example 11. We introduce the response time computation for the lowest priority
task of a task system. To ease the presentation, we start with a deterministic task
set and move forward a probabilistic version.

Let ⌧ be a task system {⌧
1

, ⌧
2

} scheduled under task-level fixed-priority scheduling
policy with ⌧

1

at higher priority and ⌧
2

at lower priority. The tasks are described by
the following worst-case values: ⌧

1

by (C
1

= 2, T
1

= 5) and ⌧
2

by (C
2

= 4, T
2

= 7),
with Di = Ti, 8i. A deterministic analysis of this task system would conclude that it
is unschedulable, since the response time of ⌧

2,1 (the first job of ⌧
2

) is greater than
its deadline.

First generalization (pMIT): We add more information to the analysis,
namely we use the fact that not all jobs of ⌧

1

arrive after 5 units of time, but

the pMIT of ⌧
1

is described by T
1

=

✓
5 6
0.2 0.8

◆
meaning that an instance of ⌧

1

has a 20% probability of arriving 5 units of time after the previous instance, and
a 80% probability of arriving 6 time units after the previous instance. All other
parameters of the system have their original worst-case values.

In this case, ⌧
2,1 has an 80% probability of finishing execution before its deadline,

i.e., the cases when ⌧
1,2 arrives at t = 6.

Second generalization (pWCET): We add more information to the deter-

ministic analysis by assuming that ⌧
2

has a pWCET described by C
2

=

✓
3 4
0.9 0.1

◆
meaning that only 10% of the jobs generated by ⌧

2

have an execution requirement of
4 time units and the other 90% require only 3 time units. All other parameters of
the system are considered with their worst-case values.

In this case ⌧
2,1 has a high probability, 90%, of finishing its execution before its

deadline, namely the cases when it requires 3 units of execution time.
Combining the two cases: If we combine both cases presented above by taking

into consideration the pMIT of T
1

and the pWCET of ⌧
2

, we note that ⌧
2,1 misses

its deadline only when the two worst-case scenarios happen at the same time, i.e.,
⌧
1,2 arrives at t = 5 and ⌧

2,1 executes for 4 units of time. The probability of the two
combined scenarios corresponds to ⌧

2,1 having a probability of DMP
2

= 0.2⇥ 0.1 =
0.02 of missing its deadline.

For this example we have found the deadline miss probability of ⌧
2,1 by (manually)

exploring all possible combinations of minimal inter-arrival times and worst-case
execution times of the two tasks. This is not always possible, considering that a
system may have an important number of tasks and each parameter distribution
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may have tens, hundreds or even thousands of values, leading to a large number of
possible combinations.

The analysis that we introduce below computes the worst-case response time dis-
tribution of a task by means of convolution of random variables, ensuring in this
way that all scenarios have been taken into account without needing to explicitly
investigate all of them.

The analytical response time computation: The probabilistic representa-

tion of the system under analysis is ⌧ = {⌧
1

(C
1

=

✓
2
1

◆
, T

1

=

✓
5 6
0.2 0.8

◆
), ⌧

2

(C
2

=✓
3 4
0.9 0.1

◆
, T

2

=

✓
7
1

◆
)} and we are interested in finding the response time dis-

tribution R
2,1 of ⌧

2,1.
The computation starts by initialising the response time distribution R

2,1 with
the combined execution time requirements of higher priority tasks, in this case C

1

,
and adding it to the execution requirement of the task under analysis:

R
2,1 = C

1

⌦ C
2

=

✓
2
1

◆
⌦
✓

3 4
0.9 0.1

◆
=

✓
5 6
0.9 0.1

◆
.

The possible preemption that may occur from ⌧
1,2 may be either at t = 5 with

probability 0.2 or at t = 6 with probability 0.8. For each of these two cases we make
a copy of R

2,1 and proceed in the following way:

R1

2,1 =

✓
5
0.9

◆
�

✓✓
6
0.1

◆
⌦
✓

2
1

◆◆
⌦

✓
0
0.2

◆
=

✓
5
0.9

◆
�

✓
8
0.1

◆
⌦✓

0
0.2

◆
=

✓
5 8
0.9 0.1

◆
⌦

✓
0
0.2

◆
=

✓
5 8

0.18 0.02

◆
represents the case when

⌧
1,2 arrives at t = 5 preempting ⌧

2,1. In this case, ⌧
1,2 can only a↵ect the tail of the

distribution, i.e., ⌧
2,1 did not finish execution by t = 6. Two units of time are added

to the tail of the distribution, and the entire resulting distribution is updated with
the probability 0.2 of ⌧

1,2 arriving at t = 5.

R2

2,1 =

✓
5 6
0.9 0.1

◆
⌦
✓

0
0.8

◆
represents the case that ⌧

1,2 arrives at t = 6 and

it does not preempt ⌧
2,1. The tail of the distribution is not a↵ected and the entire

distribution is updated with the probability 0.8 of ⌧
1,2 arriving at t = 6.

The two copies of R
2,1 are coalesced and the final result is obtained:

R
2,1 = R1

2,1�R2

2,1 =

✓
5 8

0.18 0.02

◆
�
✓

5 6
0.72 0.08

◆
=

✓
5 6 8
0.9 0.08 0.02

◆
.

The value 8 of the response time distribution is not possible since ⌧
2,1 will not

be allowed to continue its execution past t = 7. Any value strictly greater that the
jobs deadline is replaced by ”DMP” and their summed probability mass represents

the Deadline Miss Probability of the job: R
2,1 =

✓
5 6 DMP
0.9 0.08 0.02

◆
.

Since the earliest arrival of ⌧
1,3 is at t = 10, then this task can not preempt ⌧

2,1

and the analysis stops. We have obtained the worst-case response time distribution
of ⌧

2

and its Deadline Miss Probability, 0.02, which is exactly the same as the one
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obtained earlier by enumerating all possible scenarios.
Third generalization (probabilistic deadline): In order to show the e↵ect

of a probabilistic deadline, we further generalize the task system by considering as
given the pMIT distribution and hence the deadline distribution of ⌧

2

is equal to

T
2

=

✓
7 8
0.3 0.7

◆
. In this case ⌧

2,1 will miss its deadline if and only if the following

worst-case scenario happens: ⌧
1,2 arrives at t = 5 (probability 0.2), ⌧

2,1 executes for
4 units of time (probability 0.1) and ⌧

2,2 arrives at t = 7 (probability 0.3). The
probability of this scenario happening is DMP

2

= 0.2⇥ 0.1⇥ 0.3 = 0.006.
This probability can be obtained directly by applying Equation (2.10):

B
2

= R
2,1  D

2

=

✓
5 6 8
0.9 0.08 0.02

◆
 
✓

7 8
0.3 0.7

◆
and

B
2

=

0@ �3 �2 �1 0 1
0.63 0.83 0.24 0.014 0.006

1A.

The values that are less or equal to zero are discarded, since they represent the
cases when the job finishes execution before or at the deadline. The strictly positive
values are kept and their added probabilities represent the tasks’ DMP. In this case
the probability of the value 1 is 0.006 as it is found by the descriptive method above.

We introduce now a formal description of our analysis.
Description of our analysis: The arrival time of the jth job of a task ⌧n is

computed for j � 1 as follows

Tn,j = Tn ⌦ ...⌦ Tn| {z }
j�1 times

(2.5)

and for j = 0 we have Tn,0 = 0.
The worst-case response time of task ⌧n is initialized as:

R0

n = Bn ⌦ Cn (2.6)

where the backlog at the arrival of ⌧n is equal to

Bn =
O

i2hp(n)

Ci (2.7)

After adding the execution time of the task under analysis to the backlog ac-
cumulated at its arrival, its response time is updated iteratively with the possible
preemptions as follows:

Ri
n =

kM
j=1

Ri,j
n (2.8)

where i is the current iteration, k is the number of values in the random vari-
able representing the pMIT distribution of the preempting task, j is the current
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value taken into consideration from the pMIT distribution of the preempting task.
Ri,j

n is the jth copy of the response time distribution and it integrates the possible
preemption in the following way:

Ri,j
n = (Ri�1,head

n � (Ri�1,tail
n ⌦ Cpr

m ))⌦ Ppr (2.9)

where:

• n is the index of the task under analysis;

• i is the current step of the iteration;

• j represents the index of the current value taken into consideration from the
pMIT distribution of the preempting task;

• Ri�1,head
n is the part of the distribution that is not a↵ected by the current

preemption under consideration;

• Ri�1,tail
n is the part of the distribution that may be a↵ected by the current

preemption under consideration;

• m is the index of the higher priority task that is currently taken into account
as a preempting task;

• Cpr
m is the execution time distribution of the currently preempting task;

• Ppr is a fake random variable used to scale the jth copy of the response time
with the probability of the current value i from the pMIT distribution of
the preempting task. This variable has one unique value equal to 0 and its
associated probability is equal to the ith probability in the pMIT distribution
of the preempting job.

For each value vjm,i in T
(m,j) for which there exists at least one value vn,i in Ri�1

n

so that vin > vjm,i, the distribution Ri�1

n is split in two parts:

• Ri�1,head
n which contains all values v�n,i of Ri�1

n that are less or equal than

vjm,i, i.e., v
�
n,i  vjm,i, and

• Ri�1,tail
n which contains all values v+n,i of Ri�1

n that are greater than vjm,i, i.e.,

v+n,i > vjm,i.

The iterations end when there are no more arrival values vjm,i of any job i of
any higher priority task ⌧m that is smaller than any value of the response time
distribution at the current step. A stopping condition may be explicitly placed in
order to stop the analysis after a desired response time accuracy has been reached.
For example, the analysis can be terminated once an accuracy of 10�9 has been
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reached for the response time. In our case, the analysis stops when new arrivals of
the preempting tasks are beyond the deadline of the task under analysis, i.e., the
type of analysis required for systems where jobs are aborted once they reach their
deadline.

Once the response time distribution of the jobs can be computed, then the
Deadline Miss Probability is obtained by comparing the response time distribution
with that of the deadline, as follows:

Bi = Ri  Di = Ri � (�Di), (2.10)

where the  operator indicates that the values of the distribution are negated.
We use the notation Bi even though the resulting distribution is not a backlog
distribution in the strict sense for the model we consider, but it is still the formula
for computing backlog for systems where jobs are allowed to execute past their
deadline.

The DMP of the job under analysis is given by the probability mass correspond-
ing to the values strictly greater than 0, i.e., the job would need more units of time
to finish its execution. The probability mass corresponding to the values less or
equal to 0 gives the probability that the job finishes execution before its deadline
and the next release.

2.2.2 Critical instant of a task with multiple probabilistic parame-
ters

Lemma 5. We consider a task system of n tasks with ⌧i described by deterministic
Ci and probabilistic Ti, 8i 2 {1, 2, · · · , n}. The set is ordered according to the priori-
ties of the tasks and the system is scheduled preemptively on a single processor. The
response time distribution Ri,1 of the first job of task ⌧i is greater than the response
time distribution Ri,j of any jth job of task ⌧i, 8i 2 {1, 2, · · · , n}.

Proof. The response time distributionRi,j of a job within a probabilistic system
may be obtained by composing response time values Rk

i,j of jobs within all corre-
sponding deterministic systems obtained by considering all values of the minimal
inter-arrival times and the probability associated with the respective scenario k and

we have

✓
Rk

i,j

pscenario
k

◆
. For each of these deterministic systems we know from [48]

that the critical instant of a task occurs whenever the task is released simultane-
ously with its higher priority tasks. Thus we have that Rk

i,1 � Rk
i,j , 8k, j > 1 and we

obtain Ri,1 ⌫ Ri,j as the associated probabilities of Rk
i,1 andRk

i,j , 8k are the same.
⇤
Theorem 6. We consider a task system of n tasks with ⌧i described by probabilistic
Ci and Ti, 8i 2 {1, 2, · · · , n}. The set is ordered according to the priorities of the
tasks and the system is scheduled preemptively on a single processor. The response
time distribution Ri,1 of the first job of task ⌧i is greater than the response time
distribution Ri,j of any jth job of task ⌧i, 8i 2 {1, 2, · · · , n}.
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Proof. The response time distributionRi,j of a job within a probabilistic system
is obtained by convolving response time distributions Rl

i,j of jobs within all corre-
sponding probabilistic systems obtained by considering tasks described by Ci, Ti, 8i.
Then within each scenario l we have from Lemma 5 that Rl

i,1 ⌫ Rl
i,j . We have then

Ri,1 = ⌦nb
of

scenarios
l=1

Rl
i,1 ⌫ ⌦

nb
of

scenarios
l=1

Rl
i,j = Ri,j . ⇤

2.2.3 Implementation and evaluation of the method

We implemented our response time analysis in MATLAB. The pseudo-code for the
associated steps is presented in Algorithms 1 and 2 and the complete scripts are
available3.

Before we proceed with the description of the simulations performed we recall
here the concept of re-sampling4.

Definition 18. [57] [Re-sampling] Let Xi be a distribution with n values de-
scribing a parameter of a task ⌧i. The process of re-sampling to k values or
k-re-sampling consists of reducing the initial distribution Xi from n values to a
distribution X ⇤

i with k values.

The re-sampling is safe with respect to the response time analysis as the response
time Ri of any task ⌧i of the initial system is greater than the response time R⇤

i of
the considered task within the re-sampled task system.

The re-sampling of a real-time distribution is performed in the following two
sequential steps: 1 ) selection of the k samples to be kept in the reduced distribution
and 2 ) redistribution of the probabilities from the values that are not kept.

Re-sampling for pWCET di↵ers from re-sampling for pMIT in the second step,
namely, as larger values of pWCET produce greater probabilistic response times as
well as smaller values of pMIT produce greater probabilistic response times.

2.2.4 Evaluation with respect to the complexity

Probabilistic operations like convolutions of random variables may have a high com-
plexity and we evaluated their impact on the complexity of our analysis.

In Figure 2.3, a 3D plot of the analysis duration is presented. On the z-axis the
analysis duration is given in seconds, on the x-axis is the variation of the number
of values per random variable, from 2 to 16 values, and on the y-axis is the num-
ber of tasks per task system, also from 2 to 16 tasks. Every point on the surface
corresponds to the average analysis duration of 100 task sets. The worst-case uti-
lization of each considered task is between 1.5 and 2 and the expected utilization is

3
The scripts are available at http://www.loria.fr/

~

maxim/probabilistic_anaysis_tool_-_

matlab_scripts/probabilisticWorstCaseResponseTime.m

4
Note that in statistics, re-sampling has a di↵erent meaning from that used in real-time systems.

For an example of re-sampling in real-time systems the reader may refer to [57]. In statistics, the

technique presented here is designed by terms like Bootstrap of Jackkife, the reader may refer

to [22].
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Algorithm 1 Worst-case response time distribution computation
Input: � a task set and target the index of the task we analyze
Output: Rtarget the worst-case response time distribution of ⌧target
Rtarget = Ctarget; //initialize the response time with the execution time of the task under analysis

for (i = 1; i < target; i++) do
Rtarget = Rtarget ⌦ Ci; //add the execution times of all higher priority tasks

end for
for (i = 1; i < target; i++) do
Ai = Ti; //initialize the arrivals of each higher priority task with their inter-arrival times distribution

end for
for (i = 1; i < max(Ttarget); i++) do
for (j = 1; j < target; j ++) do

if max(Rtarget) > min(Aj) and min(Aj) = i then
Rtarget = doPreemption(Rtarget,Aj , Cj); //update the response time with the cur-

rent possible preemption

Aj = Aj ⌦ Tj ; //the next arrival of ⌧
j

end if
end for

end for
Rtarget = sort(Rtarget)

Output: Rtarget

between 0.5 and 1. The pWCETs are decreasing distributions while the pMITs are
increasing distributions.

We note that the analysis duration of a task set with 16 tasks, each of its random
variables having 16 values, takes in average 140 seconds, i.e., the highest point on
the z-axis.

The analysis duration increases both with respect to the number of tasks per task
system and with respect to the number of values per random variable, indicating
the exponential complexity of the analysis. Nevertheless, solutions exist to make
such analysis a↵ordable even for large task systems with parameters described by
large random variables.

A solution to decreasing the probabilistic analysis duration is re-sampling, which
reduces the analysis duration while introducing minimal pessimism [57].

In Figure 2.4, the diagonal of the surface from Figure 2.3 is represented by a
solid line, having an exponential behaviour. The same analysis is performed with
re-sampling of the pWCET to 50 values and of the pMIT to 5 values both done
after each iteration. The improvement is shown in the same figure, represented
by the dotted line; this time the average analysis duration over 100 task sets each
having 16 task with 16 values per random variable is only 1.29 seconds, compared
to 140 seconds when no re-sampling was performed. We note the important gain
in speed when the analysis is performed with re-sampling, even for systems that
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Algorithm 2 doPreemption function
Input: R the current response time,
A the arrival distribution of the preempting job and
C the execution time distribution of the preempting job

Output: R the response time distribution updated with the current preemption
Rintermediary = empty ;
Afake = empty ;
for (i = 1; i < length(A); i++) do

//constructing the fake random variable giving the probability of the preemption occurring

Afake.value = 0; //the value of the fake random variable

Afake.probability = A(i).probability ; //the probability of the fake random variable

Split R into head and tail according to the preemption value;
if tail != empty then
tail = tail⌦ C;

end if
Rintermediary = head � tail ;
Rintermediary = Rintermediary ⌦Afake;
R = R + Rintermediary;
R = sort(R)

end for
R = sort(Rintermediary)

Output: R

have 32 tasks and each random variable has 32 values it takes 11 seconds to perform
the analysis, indicating that it is a↵ordable even for considerable larger systems.
We show in the next experiment that distributions with 5 values for pMIT bring
significant increased precision with respect to the worst-case response time analysis.

2.2.5 Evaluation with respect to existing analysis

The second set of experiments that we performed show the precision that is gained by
having tasks’ parameters given as random variables. In order to do so we randomly
generated probabilistic task systems to which we applied our analysis with di↵erent
levels of re-sampling applied either at pWCET level or at pMIT level.

Precision gained by having a more detailed pMIT distribution

To show the increased precision brought by a more detailed pMIT distribution, we
repeated three times the analysis on the generated task system, each time varying
the re-sampling level of the pMIT, using 10 values, 5 values and 1 value, respectively.
A pMIT distribution with only one value is in fact a worst-case MIT. The pWCET
distribution was not re-sampled.

Figure 2.5 shows the task Deadline Miss Probability averaged over 100 task
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Figure 2.3: Analysis duration of random task system

Figure 2.4: Analysis duration of random task systems , increasing both the number
of tasks per task system and the number of values per random variable in the same
time

systems of 10 tasks. We note that the deterministic reasoning that considers one
value for the MIT (and no re-sampling for pWCET) provides a DMP equal to 0.0167
(left bar in Figure 2.5) - this is the case of the existing analysis presented in [20]. By
considering a probabilistic reasoning with 10 values for the pMIT we decrease by a
factor of 3 the DMP. Then further increasing the number of values within the pMIT
only marginally decreases the DMP and this is shown by comparing the values of
DMP for 1, 5 and 10.
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Figure 2.5: The di↵erence in DMP when the tasks’ pMIT distribution has 1, 5 and
respectively 10 values. Here 1 value indicates that only the worst-case value of the
pMIT distribution is considered.

Nevertheless, having a 10-value pMIT does not bring much increased precision
over a 5-value pMIT, as can also be seen in Figure 2.5 where their respective DMPs
are almost equal. We note that it is not necessary to have a large pMIT distribution
to have a precise analysis, depending on the system under analysis just 5 values can
be su�cient.

This increased precision comes at a cost, namely an increase in the analysis
duration: for larger distributions the analysis needs more time to perform. In Figure
2.6 we show the analysis duration of the three cases described above. The duration
of the 10 values analysis is close to that of no-re-sampling, where the duration of
5 values analysis is decreased. In this case the 5 values analysis seems to be a
comfortable compromise between the duration and the gained DMP.

Precision gained by having a more detailed pWCET distribution

We performed a set of experiments to show the di↵erence in precision when the
tasks’ pWCET distribution has 1000 values, 100 values, 10 values or only 1 value.
A pWCET distribution with only one value is a deterministic WCET. The analysis
was performed on the randomly generated task systems on which there were applied,
in turn, di↵erent levels of re-sampling to the pWCET distribution. The pMIT
distribution was not re-sampled.

In Figure 2.7 the di↵erence in DMP between the four cases is depicted. Note
that having 1 or 10 values in the pWCET distribution returns a task DMP equal to
1 which means that the system would be deemed unfeasible. This is not necessarily
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Figure 2.6: The di↵erence in seconds of the analysis duration when the tasks’ pMIT
distribution has 10, 5 and respectively 1 value, i.e., only the worst-case value of the
pMIT distribution.

Figure 2.7: The di↵erence in DMP when the tasks’ pWCET distribution has 1000,
100, 10 and respectively 1 value, i.e., only the worst-case value of the pMIT distri-
bution.

true, as can be seen from the bar representing the case when the pWCET distri-
bution has 100 values. In this case the average DMP values of the analysed tasks
does not surpass 0.02 which means that the systems could be feasible if they can
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Figure 2.8: The di↵erence in seconds of the analysis duration when the tasks’
pWCET distribution has 1000, 100, 10 and respectively 1 value, i.e., only the worst-
case value of the pMIT distribution.

a↵ord a 0.02 Deadline Miss Probability for their lowest priority tasks. In conclusion
we decreased the DMP fifty times by analysing the system with 100 values for the
pWCET.

As in the case of re-sampling at pMIT level, the re-sampling at pWCET level
also comes with an increase in the analysis duration. Figure 2.8 depicts the analysis
duration of the four cases described above, with the 1000 values for the pWCET
having an exponential behavior but also being the distribution that has the most
important precision at DMP level. For pWCET re-sampling 100 is a compromise
level that allows to obtain a↵ordable duration and important increased DMP.

In [57] a study is performed on di↵erent re-sampling strategies and novel re-
sampling strategies are proposed that introduce very little pessimism. Also, by
combining pWCET re-sampling and pMIT re-sampling, the analysis duration can
be decreased considerably while retaining a high level of accuracy, regardless of the
system under analysis.

2.3 Measurement-Based Probabilistic Timing Analysis

The results presented in this section were published in [17].
They were obtained within the FP7 STREP PROARTIS project.

In this section we present a statistical method for estimating the probabilistic
worst-case execution time of a program (task) on a given platform. This statistical
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method is called Measurement-Based Probabilistic Timing Analysis and it is based
on a sound application of Extreme Value Theory.

2.3.1 Extreme Value Theory for Timing Analysis

One may use mathematical methods to predict, out of a small enough number of
samples, pWCET bounds for exceedance probabilities smaller than 10�n, where n is
a required level of confidence. We explore a mathematical method based on Extreme
Value Theory (EVT). This theory estimates the probability of occurrence of extreme
values, whether high or low, which are known to be rare events [21]. More precisely,
EVT predicts the distribution function for the maximal (or minimal) values of a set
of n observations, which are modelled with random variables. The EVT theory is
analogous to Central Limit Theory [24] but instead of estimating the average, EVT
estimates the extremes [28]. As in our work we are interested in the high values
that bound the pWCET, we consider the EVT prediction for maximal values of a
set of observations.

Theorem 7. [28] Let {X
1

,X
2

, . . . ,Xn} be a sequence of i.i.d. random variables
and let Mn = max{X

1

,X
2

, . . . ,Xn}. If F is a non degenerate distribution function
and there exists a sequence of pairs of real numbers (an, bn) such that an � 0 and
limn!1P (Mn

�b
n

a
n

 x) = F (x), then F belongs to either the Gumbel, the Frechet
or the Weibull family.

The main result of EVT is provided in Theorem 7, where F denotes the common
distribution function of n random variables. In our approach, random variables are
used to model the execution time of programs (tasks). In order to apply Theorem 7
two main hypotheses must be verified: that the n random variables are independent
and identically distributed and the existence of the sequence of real numbers (an, bn).

The Gumbel, Frechet and Weibull are particular cases of the Generalised Ex-
treme Value (GEV) distribution which has the following Cumulative Distribution
Function (CDF):

F⇠(x) =

8<: e�(1+⇠ x�µ

�

)

1
⇠

⇠ 6= 0

e�e�
x�µ

� ⇠ = 0

GEV is defined by three parameters: shape (⇠), scale (�) and location (µ). By
determining these three parameters, we prove the existence of the sequence of real
numbers (an, bn). If the shape parameter ⇠ = 0 then F⇠ is a Gumbel distribution,
which is the distribution we use in this analysis.

When EVT is applied, we must determine its three parameters [27] and hence
the appropriate CDF (Gumbel, Frechet or Weibull) is selected. To that end, a
goodness-of-fit test is needed. However, not all tests are appropriate for fitting
extreme values. For instance, in [40] the authors use the �2 test which is known to
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perform incorrectly for extreme values in any classical test [27]. One test that is
proven correct when fitting the Gumbel CDF is the exponential tail (ET) test [27].

EVT has previously been applied to the WCET estimation problem in [21, 40].
The main limitations of these two papers, which are shown in [34], are the following:
the assumption of independent and identically distributed random variables, and
fitting a continuous distribution to discrete values. We correct the application of
EVT to WCET estimation by proposing solutions to these limitations. Moreover,
we also provide an alternative to the �2 test in [40] for fitting the Gumbel CDF.

We detail now the hypotheses needed for a correct application of EVT.
Independence and identical distribution: The main hypothesis for The-

orem 7 is that the sequence of random variables is independent and identically
distributed. We provide here the definition of this notion. In following sections we
show how to achieve this property when applying EVT to obtain pWCET estimates.

Definition 19 (Identically distributed Random Variables). A sequence of random
variables is independent and identically distributed (i.i.d.) if all random variables
belong to the same probability distribution and they are mutually independent.

A sequence of (fair) die rolls where each roll is a random variable is i.i.d., since
the random variables describe the same event and the outcomes are obtained from
independent events (as the outcome of one roll is independent of the outcome of
another roll).

Statistical independence between random variables Theorem 7 (as many
statistical results) requires that the n random variables X

1

, X
2

, . . . ,Xn are (proba-
bilistically) independent. Here the variables X

1

, X
2

, . . . ,Xn describe observations of
the execution of task ⌧i. The independence hypothesis implies that Xi is obtained
from observed executions that are independent from those contained by Xj , 8i 6= j.
Nevertheless in reality the user of this theory runs the program (task) under study
several times and obtains a set of data. In this case in order to fulfill the hypothesis
of independence required by Theorem 7, the user checks the (statistical) indepen-
dence by applying di↵erent independence tests on those data [24]. For instance the
lag test results may indicate graphically if the data are independent (see Figure 2.9,
right graph) or not (see Figure 2.9, left graph).

Figure 2.9: Graphical results provided by lag test on two sets of observed execution
times

In conclusion EVT requires that the observed executions of a task are made
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independently and this does not imply any extra requirement on the independence
of di↵erent programs (or tasks), but on the process of producing and collecting the
data.

Selection of an EVT distribution: In order to apply Theorem 7, parameters
describing a valid EVT distribution (Gumbel, Frechet or Weibull) must be chosen.
This requires an appropriate statistical test. Previous applications of EVT toWCET
estimation [21, 40] indicate that the Gumbel distribution fits well the problem of
WCET estimation. We validate this hypothesis by checking whether a given CDF
fits the Gumbel CDF, for which we use the exponential tail (ET) test [27]. The ET
test assumes that the data set is modelled by n i.i.d. random variables X

1

, · · · ,Xn

described by the CDF F . The ET test compares this to the Gumbel CDF: H
0

: F =
F⇠. If the test rejects the hypothesis H

0

, then the hypothesis H
1

: F 6= F⇠ must be
true. The details for applying ET to our data are provided in Section 2.3.4.

2.3.2 Steps in the application of EVT

There are two main steps in the application of EVT.
Grouping: The objective of this step is to collect, from the original distribu-

tion, the values which fit the tail, and hence can be modelled with the Gumbel
distribution. The values used as input for EVT are grouped into blocks of equal
length m by applying the block maxima method. The maximum value observed in
each block constructs a new sample, the block maximum series.

The size of the blocks determines the portion of the original distribution that is
considered the tail. Larger is the block size, better data fit the tail; however, increas-
ing the block size results in fewer blocks and thus fewer values in the final sample.
In the extreme case, if a single block is used, we will have only one block maximum
value corresponding to the maximum of the original distribution. Conversely, if we
use as many blocks as elements in the original distribution, the distribution of the
block maximum values will gather the entirety of the original distribution, rather
than capturing the essence of the tail.

The theoretical basis of the block maxima method is built on the following
theorem which says that if some data fit the Gumbel CDF, then the maxima of
blocks of those data fit the same Gumbel CDF.

Theorem 8. [36] [Grouping] Let X be a random variable. If the n variables
X
1

,X
2

, . . . ,Xn obtained from X fit a GEV, then the maxima of any blocks obtained
from X fit the same GEV.

Distribution fitting: If the ET test shows that our observations follow a
Gumbel distribution, we next estimate the two remaining parameters, µ and �
using the block maxima series. Their practical estimation is obtained by applying
linear regression to the QQ-plot of our data [23]. A QQ-plot (quantile plot) is a
plot of the empirical quantile values of observed data against the quantiles of the
standard form of a target distribution. Given that the block maxima values follow
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a Gumbel distribution, then the points on the QQ-plot form a straight line [23].
The slope and the intercept of the best-fit line through these points can be used as
estimators for the Gumbel µ and � parameters, respectively.

2.3.3 Continuous vs. Discrete Functions

In [34] it is shown that using the Gumbel distribution function, or any continuous
function, to approximate a discrete function of the execution time values produced
by a program, could yield results that do not bound the execution time from above
at all points. In [34] there are proposed di↵erent solutions to this problem by
either the continuous function fitting the upper bound of the exceedance distribution
function and thus overestimating the discrete function, or by adding an o↵set to the
distribution which accounts for this e↵ect. For instance for the single path we
consider here, the maximum o↵set required is likely to be a small number of cycles.

In our paper we introduce an overestimation of the discrete function when apply-
ing EVT (Section 2.3.2) through the block maxima method before the distribution
fitting is applied. This produces a shift of the distribution, which makes the worst-
case estimate pessimistic when compared to the ‘real’ distribution of execution times
in our architecture. In order to obtain high confidence in such a distribution, we
require that the number of observations is su�cient to produce an accurate de-
scription of the program’s execution time. We call this the minimum number of
observations, and we define it as follows:

Definition 20. For a given sequential program P and an architecture A, n is the
minimum number of observations if there does not exist m 2 N where m > n such
that the Gumbel CDF obtained for n observations is an upper bound for the WCET
of P and also exceeds the CDF obtained for m observations.

We obtain the minimum number of observations by comparing the variation in
the EVT tail projection as we consider an increasing number of runs. We follow an
iterative process:

1. We start by running Ncurrent +Ndelta times the program under study on the
target platform.

2. We then make two tail projections with EVT, one using Ncurrent runs and the
other using Ncurrent +Ndelta.

3. If the di↵erence between the two EVT distributions is below a given di↵erence
threshold we stop the process. If it is over the threshold, we consider all
previous runs as Ncurrent, or in other words we make Ncurrent = Ncurrent +
Ndelta, and we make Ndelta more runs, consider the part of the sample and
repeat the process from step 2.

As we keep adding more runs to Ncurrent the proportional e↵ect that Ndelta new
runs has on the EVT reduces, so a convergence of the algorithm is ensured. On
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the other hand, there is no guarantee that there is a strict convergence so we can
have some local minima. In order to take into account this non strict convergence,
we change the algorithm so that instead of stopping the process as soon as the
di↵erence between the two EVT distributions is below a given di↵erence threshold,
we stop the process when this is the case in several consecutive iterations. For
the benchmarks used in this paper, considering 5 consecutive iterations below the
threshold is su�cient to deal with the hysteresis introduced by local minima.

The metric we use to compare the two EVT distributions (functions) is called
the continuous rank probability score defined as CRPS =

P
+1
i=0

[fX (i)� fY(i)]2 [7].
This test is defined for any two distribution functions fX and fY as long as they
operate on the same value domain. In this paper we set as di↵erence the threshold
10�1. This threshold has to be interpreted as the significance level ↵ in hypothesis
tests. The lower its value the larger is the confidence on the result. It is up to the
user of our technique to set a proper value to this di↵erence threshold. However,
note that the lower the threshold the higher the required number of observations.

2.3.4 Experimental Evaluation

In this section we first present the experimental environment we used to evaluate
our analysis technique. Next, we introduce SPTA as a reference probabilistic tim-
ing analysis method for single-path programs. Finally, we present the results that
we obtained, in terms of pWCET estimates, for both single-path and multi-path
programs.

Experimental Set-up

We run all experiments on a modified version of SoCLib [1], an open platform for
virtual prototyping of multi-processors system on chip (MP-SoC). We modelled a
pipelined processor featuring data and instruction caches. We used 4Kilobyte, 1024-
way, 4-byte line, fully-associative data and instruction caches deploying a random-
replacement policy. The latency of each instruction is fixed, except for the first stage
(fetch) in which the instruction cache is accessed. The latency of the fetch stage
depends on whether the access hits or misses in the instruction cache: a hit has
1-cycle latency and a miss has 100-cycle latency. After the decode stage, memory
operations access the data cache so they can last 1 or 100 cycles depending on
whether they miss or not. Overall, the possible latencies of a non-memory operation
are (N+1, N+100) depending whether it hits or not in the instruction cache, where
N if the number of cycles it takes executing the instruction (e.g. integer additions
take 1 cycle). Memory operations have 3 possible latencies: 2 cycles (1+1) when it
hits both instruction and data caches; 200 (100+100) when it misses in both caches;
101 (1+100) when it hits only one of both caches.

Benchmarks. We used eight benchmarks of the EEMBC Autobench suite [61]
as reference for the analysis of single-path programs. EEMBC Autobench is a
well-known benchmark suite that reflects the current real-world demand of some
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embedded systems. We used: a2time (AT), aifirf (AI), cacheb (CA), canrdr (CN),
puwmod (PU), rspeed (RS), tblook (TB) and ttsprk (TT).

For multi-path program analysis we used several Mälardarlen benchmarks [37],
which are commonly used in the community to evaluate and compare di↵erent types
of WCET analysis tools and methods. In particular we used: bs (BS), cnt (CNT),
compress (COM), crc (CRC), insertsort (INS), qsort (QSO) and select (SEL). For
each of these programs we developed several input sets that exercise di↵erent paths.

We also designed a multi-path synthetic benchmark to better understand how
the multi-path program time analysis works. In the synthetic benchmark we know
(1) the di↵erent paths of the program, (2) the di↵erent input set that exercise
each path and (3) the longest path. Thus we may compare the pWCET estimate
we obtain with our single-path time analysis when applied to the worst-case path
against the pWCET estimate we obtain with our multiple-path time analysis when
applied to a set of paths which includes the worst-case path.

SPTA

Static probabilistic time analysis, which was first introduced in [10], is used as a
term of reference for our approach since SPTA provides a tight pWCET estimate
to the actual distribution of execution times of the program. However, it does so at
the cost of being extremely more onerous to execute since it operates at the level of
individual processor instructions and also requires exact knowledge of the hardware
model, much like classic static timing analysis.

SPTA in fact uses as input the possible latencies that every instruction may take
and the probability associated with them. More details on the description of this
method may be found in [10].

2.3.5 Results for Single-Path Programs

Data fits the Gumbel distribution. We start with the hypothesis that our
execution time observations fit the Gumbel distribution: H

0

: F = F⇠. To that end
we use the ET test [27].

When applying the ET test, we check a relation that is proved equivalent to
the hypothesis H

0

in [27]. This relation verifies that a certain parameter q̂ET,n

calculable for any set of data belongs to an imposed interval. This interval is also
proved calculable for any set of data. For all our data we observed that q̂ET,n belongs
to the expected interval.

Independent and identically distributed observations. We start by check-
ing that the data are identically distributed. We apply the two-sample Kolmogorov-
Smirnov [24] test in which any two sample sets are compared. The Kolmogorov-
Smirnov (KS) statistic quantifies a distance between the empirical distribution func-
tions of two samples. The null hypothesis H

0

is that the both samples are identically
distributed and the alternative hypothesis H

1

is that the samples are not identically
distributed. For our experiments we use a significance level ↵ = 0.05, which is a
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Table 2.1: p-value for the identical distribution test for di↵erent values of m for a
sample of N=10,000 observations. P-value for the independence test

AT AI CA CN PU RS TB TT

m Identical distribution test (p-value)
100 0.34 0.11 0.13 0.41 0.99 0.67 0.77 0.89
500 0.36 0.81 0.24 0.62 0.55 0.84 0.21 0.57
1000 0.16 0.75 0.91 0.88 0.71 0.16 0.92 0.36

N Independence test (p-value)
10000 0. 66 0.81 0.92 0.84 0.69 0.73 0.76 0.81

common choice in this type of test. The outcome of the test is called the p-value.
If the p-value is higher than ↵ the null hypothesis cannot be rejected, which means
that both samples are identically distributed.

Table 2.1 shows the p-value obtained by applying the KS test to the execution
times obtained for a sample of 10,000 observations. From this original sample we
create two smaller samples of m elements. For this experiment we use three values
for m: 100, 500 and 1000. We populate the smaller samples by randomly taking
elements from the original sample, which ensures that the smaller samples maintain
the same statistical properties as the original [24]. In our case, the property of
interest is the distribution. Then we apply the two-sample KS test to the two
smaller samples. In Table 2.1 we observe that in all cases the p-value is higher than
0.05 which indicates that data are identically distributed.

In order to prove that samples are independent we use the runs test for random-
ness [7]. This test is used to check whether a series of binary events can be considered
to be randomly distributed, and hence independent. In this test, the null hypoth-
esis is that the data are randomly distributed (independent) and the alternative
hypothesis is that the data are not randomly distributed (not independent).

A run is defined as a sequence of identical events, preceded or succeeded by
di↵erent events or no events. The runs test used here applies to binomial distribu-
tions only. For example, in a sequence 0110111, we have 4 runs (0, 11, 0, 111). Our
data are continuous, a cut-point must be chosen by the user so that the data are
transformed into a binary sample. The average is chosen as our cut-point. If the
execution time is lower than the average, we obtain 0 and in the opposite case 1.

The expectation of the number of runs R is given by: E(R) = 2mn/N , where
m is the number of events of type 1, and n the number of events of type 2, and
N is the total sample size. The variance of the number of runs R is given by
V (R) = 2mn⇥(2mn�N)

N2⇥(N�1)

.

Let r be the number of runs measured in the sample. It is known that when m or
n tend to infinity then Z = r�E(R)p

V (R)

! N(0, 1), where N(0, 1) is the standard normal

distribution [7]. This means that the test statistic, Z, is asymptotically normally
distributed. From the value of Z, we compute the p-value with a significance level
↵ = 5%. If the p-value is higher than alpha the null hypothesis cannot be rejected,
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which means that data are randomly distributed.
The last row in Table 2.1 shows the p-value computed for each EEMBC bench-

mark with 10,000 runs. We observe that for all the benchmarks under consideration
the runs we collect from them are independent.

Minimum Number of Observations Figure 2.10 shows the variation of CRPS
as we add more runs using Ndelta = 50. In order to obtain the minimum number of

Table 2.2: Minimum number of observations per EEMBC Autobench benchmark

AT AI CA CN PU RS TB TT
300 650 400 450 500 300 500 300

Figure 2.10: Benchmark CRPS variation as we increase the number of runs. Ndelta =
50 and threshold= 0.1

observations we use the algorithm presented in Section 2.3.3, which focuses on the
convergence of the EVT tail projection as more runs are considered, taking CRPS
as the convergence metric. We set the threshold to 0.1 and Ndelta to 50. We observe
that although CRPS decreases, it is not monotonically decreasing. For this reason
our convergence algorithm takes into account small variations. Table 2.2 shows
the minimum number of runs required for each EEMBC benchmark. On average
we need 425 runs per benchmark. The average time required to run an EEMBC
benchmark on our simulation infrastructure is about 1 minute, so the total time
required was 425 ⇥ 1 ⇥ 8/60 = 57 hours. This is equivalent to less than one hour
of simulations on a 64-node cluster, which is a fairly common asset in industrial
production systems. It is worth noting that for building Figure 2.10 we used 700
runs, which provides satisfactory convergence for a threshold of 10�1. However, to
achieve convergence at lower CRPS values, e.g. 10�3 we would need to increase the
number of observations.

pWCET estimates. Figure 2.11 shows the pWCET estimates provided by
MBPTA for two EEMBC benchmarks, rspeed and aifirf (due to space constraints we
cannot show pWCET estimates graphically for all benchmarks). In Figure 2.11 the
x-axis shows the pWCET estimate and the y-axis shows the associated probabilities.
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Figure 2.11: Single-path pWCET estimate for two benchmarks

For this experiment we use a processor setup with instruction cache only. The
reason for this choice is that the application of SPTA requires the computation of
execution time profiles that are hard to obtain for the setup with instruction and
data caches.

SPTA and MBPTA can be projected to arbitrarily low probabilities. For the
sake of illustration, we set our range of probabilities of interest to lie in the inter-
val [10�13, 10�16]. This is based on the observation that for commercial airborne
systems at the highest integrity level, DAL-A, the maximum allowed failure rate
in a system component is 10�9 per hour of operation [2]. The highest frequency
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Table 2.3: MBPTA pWCET estimates for EEMBC benchmarks w.r.t. SPTA

probability AI AT CA CN PU RS TB TT
10�13 9% 5% 6% 5% 5% 2% 2% 6%
10�16 15% 7% 8% 7% 7% 3% 3% 9%

at which a task can be released is current systems can be assumed to be at 10
milliseconds (102 activations per second). Hence, to translate the cited failure rate
requirement into the equivalent of at least 109 hours of continuous operation (i.e.,
102⇥60⇥60⇥109 = 3.6⇥1013), the pWCET of that task should have an exceedance
probability in the region of 10�13, which falls in the lower end of our probability
range.

We present pWCET estimates for our single-path (sp) MBPTA technique when
using the calculated minimum number of runs (mnr), 2000 and 10000 runs. For com-
parison purposes we show the exact execution time estimate we obtain with SPTA.
We observe that, for every WCET value, we can compute its exceedance probabil-
ity. The probabilistic WCET function is smooth, that is, it does not present abrupt
changes. Moreover the MBPTA curve is an upper-bound to the SPTA curve. The
pessimism introduced increases as the probability decreases: for probability 10�13 it
is 2% and 9% respectively for aifir and rspeed, increasing to 3% and 15% respectively
for a 10�16 probability. We also observe that the pWCET estimates provided by
MBPTA have little variation for numbers of runs higher than the minimum number
of runs: observed variations are smaller than 3% for all benchmarks for 10�13.

Table 2.3 shows the pWCET estimates provided by our MBPTA technique with
respect to the estimates provided by SPTA for the selected EEMBC Autobench
benchmarks. We observe that for the 10�13 confidence level, the overestimation is
less than 9% and for 10�16 it is less than 15% for all benchmarks, which is quite
acceptable.

2.3.6 Results for Multi-Path Programs

pWCET estimates for the synthetic benchmark.
We use for the case of multi-path programs the synthetic benchmark presented in

Section 2.3.4. This is a multi-path program for which we know the worst-case path,
which is significantly longer than any other path. As a reference for a comparison
we take the pWCET estimate that we obtain with our single-path technique when
applied to the worst-case path. We compare it with the pWCET estimates that we
obtain when we apply the multi-path technique to di↵erent sets of paths in which
we include the worst-case path.

Figure 2.12 shows the pWCET estimate when varying the number of runs for the
worst path and for the non-worst paths. We label each estimate as xxx-yyy where
xxx is the number of runs we consider of non worst paths and yyy the number
of runs from the worst case path. For every path we make at least the minimum
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Figure 2.12: pWCET estimates for the synthetic benchmark

Table 2.4: MBPTA pWCET estimates for the Malardalen benchmarks

probability BS CNT COM CRC INS QSO SEL
10�13 7% 2% 4% 1% 9% 7% 5%
10�16 8% 2% 5% 1% 11% 8% 6%

number of observations.
We compare all estimates with the result we obtain with SPTA for the worst-

case path (SPTA wc). First, and most importantly, we observe that all multi-path
estimates that consider the worst path are an upper bound for the SPTA. In the
particular case of the 10000-0 estimate, we consider no runs from the worst path in
MBPTA. This case illustrates that pWCET estimates for untested paths cannot be
made. The other pWCET estimates that consider the worst path are all an upper
bound for the SPTA and have a small variation between them, which indicates that
the frequency at which the worst-case path is exercised with the given input data
set does not a↵ect the provided WCET estimate.

pWCET estimates for real benchmarks. As in the previous experiments,
the data passed all Gumbel fitting and i.i.d tests. We compare the pWCET estimate
when we consider 10,000 runs from the worst-case path (wc) against the case in
which we consider 10,000 runs from all paths including the worst-case path (all).
Figure 2.13 shows the results for the select benchmark. Again we observe that as
soon as the worst-case path is considered as part of the data set, MBPTA provides
results comparable to considering only the worst-case path. Table 2.4 shows the
pessimism of the latter over the former, which is always less than 11%.
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Figure 2.13: pWCET estimates for the select benchmark
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Chapter 3

Perspectives

The arrival of complex architectures (e.g., use of caches, many-cores) increases the
timing variability of the programs and thus the worst-case values are larger. For
instance the utilization of many-cores implies significant increase in complexity and
non-uniform memory model means huge di↵erence between average cases and worst-
cases. In this context deterministic worst-case approaches propose solutions based
on over-dimensioned architectures that not all real-time systems may a↵ord. Ex-
isting results indicate that worst-case values have a low probability of appearance
(10�45) if compared to certification standards (10�9 for the highest level of safety
in avionics). Any solution taking into account this information will decrease impor-
tantly the over-dimensioning of the architectures. Probabilistic approaches provide
such solutions by associating to the possible values of a parameter its probability of
appearance.

These solutions are, generally, accepted as possible for soft real-time systems,
e.g., media processing or wireless networks. Proposing probabilistic approaches
for hard real-time systems is feasible by proving that the probabilistic real-time
approaches are as safe as deterministic real-time approaches. In our opinion
this proof should be done by solving the following challenges:

• [C1] the definition of the ”good” statistical properties for a real-time system.
The challenge [C1] is the most important as [C2] and [C3] can not be solved
without a solution to [C1]. This challenge is also the most di�cult as it is
at the border between Computer Science and Mathematics. Nevertheless it is
not impossible as several research fields have faced this challenge previously
and solutions were provided (cryptography, biology, medicine).

For real-time systems ”attacking” this challenge should be done in two parts.
First a definition for the relevant sample should be provided. For instance,
for the estimation of the pWCET of a program we need to provide the defini-
tion of relevant sample with respect to the input data for the program when
measurement-based approaches are proposed. This relevant sample would al-
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low to estimate the probability distribution of the worst-case execution time
of the program.

By providing a method for obtaining a relevant sample, then we may move
to the second part of this challenge that is the definition of random real-
time. Currently our community uses (pseudo-)random generators from other
research fields (especially from cryptography) in order to generate testing data.

• [C2] proposition of a complete methodology for many-core platforms. Current
results indicate that multiprocessor platforms have no future for real-time
systems because of energy restrictions [19] and the same considerations seem to
push to use rapidly many-cores [6]. This challenge requires the most important
e↵ort among the three challenges. Nevertheless it is the one taking less risks
as the current results need to be extended to these platforms. Based on
di↵erent requirements from di↵erent industries we may expect to have di↵erent
solutions for each industry.

• [C3] certification of probabilistic real-time methods. This challenge needs a
realistic strategy of collaboration with the industry. Leading such activities
is at the border between research and transfer and it is better to be led by
industrial partners. Nevertheless the research needs to provide the arguments
to convince the community and the certification authorities.

Besides the safety aspects, the proof of safeness for probabilistic approaches
has to o↵er means to respond to the increasing complexity of systems that often
integrate components for which the real-time designer does not have the intellectual
property. Statistical methods by their property of black boxes allow to provide
solutions for this context.

The results synthesised in this thesis provide the basis for all three challenges
enumerated earlier. For instance, defining the relevant sample with respect to the
pWCET will use the pWCET estimation as measure on the universe of possible
input data. Two sets of input data may be compared with respect to the pWCET
estimates that they provide.

When moving to many-cores platforms any pWCET estimation needs to take
into account an appropriate definition of what is a WCET. Issues like predictability
should be studied before advancing on this problem.

The certification of probabilistic methods should pass by the validation of these
methods. For instance for the same set of execution times a MBPTA approach must
provide as result the same (or acceptable close) probability distribution for repeated
applications of the MBPTA.
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