Probabilities – a key solution for tomorrow real-time compositional frameworks

L. Cucu-Grosjean and co-authors

Outline

- Design of a physical system with time constraints
 - Verification of time constraints
- □ Probabilities: how do we compose?
- □ Measurement-based approaches
 - The (missunderstood) independence
 - The impact of the measurement protocol
- □ Analytical vs. measurement-based
- □ Back to models to solve the representativity
- Conclusion

Design of a a physical system with time constraints

- Real-time systems
- Cyber-physical systems

Design of a physical system with time constraints (2)

L. Cucu-Grosjean - Probabilities, a key solution

CRTS - 05.12.2017

TOSA@TRT

Verification of time constraints

One processor, fixed-priority solution

Probabilities: how do we compose?

1-CDF

Static analyses (probabilistic approaches) Hybrid methods

pET: probabilistic Execution Time; pWCET: probabilistic Worst Case ET

L. Cucu-Grosjean - Probabilities, a key solution

How do we deal with probabilities?

For a program and a processor the execution time extremes are bounded by a Extreme Value Theory Distribution [Edgar et Burns at RTSS2001]

- Independence hypothesis
- Identically distributed hypothesis

Classes of independence

- (Functional) Independence between programs
- Statistical independence
- Probabilistic independence

Functional independence between programs

 $C_A = C_A$ and $C_B = C_B$

L. Cucu-Grosjean - Probabilities, a key solution

Statistical dependence

Two programs with (functional) dependences

L. Cucu-Grosjean - Probabilities, a key solution

Statistical independence

{ 68, 59, 84, 94, 100, 57 }

if y odd then
 { x = 2*y
 wait(y)
 }
else { x = y + 3
 wait(x)
 }

{39, 27, 39, 36, 34, 41}

```
for i= 1 to x
wait (1)
```

{69, 63, 85, 95, 101, 61}

{39, 27, 39, 36, 34, 41}

The two sets of execution times are independent

Two programs that have (functional) dependences

Multi-path programs

 The execution times are obtained per path and studied in different buckets

 All execution times are in one single bucket

Multi-paths and dependences

Dependences

- Decreasing the number of dependences is good, hoping to make them disappear is not realistic
- In presence of dependences, the order of execution times becomes important
 - A WCET measurement-based estimator should come with its own measurement protocol
- Manipulating the input execution times has a direct impact on the estimated pWCET
 - Monotonic property
 - Shuffling the input execution times

What dependences ?

Index

Multi-paths and identically distributed

- ✓ Both railway and avionics: Within bucket
 - When identically distributed test is succesful, it is succesful for all paths
 - When it fails, it fails only for some buckets

Composing probabilities - a representativity concern?

A proof of representativity requires elements from the other design levels

Representativity requires convergence

The statistical methods estimating extremes are not monotonic

The measurement protocol and the representativeness

 A_i is representative with respect to A if pWCET (A) is close to pWCET(A_i)

The reproducibility of the measurement protocol

Any two different (and complete) utilizations of the measurement protocol from the same set of execution conditions should provide the same pWCET estimate

The reproducibility of the pWCET estimation method

Any two different applications of the same set of execution conditions should provide the same pWCET estimate

Validation of a statistical test

Arguments complaint DO178B and IEC-61508

Avionics case study

- FP7 STREP PROARTIS Case study
 - IMA application performing maintance of the flight control computers
 - Randomized cache remplacement policies

Avionics case study (2)

Less than 5 minutes to provide a pWCET estimation

Outline

- Design of a physical system with time constraints
 O Verification of time constraints
- ✓ Probabilities: how do we compose?
- Measurement-based approaches
 - The (missunderstood) independence
 - The impact of the measurement protocol
- □ Analytical vs. measurement-based
- □ Back to models to solve the representativity
- Conclusion

Average versus worst case

What is the impact on an analysis?

• Average number of arrivals within a time interval

$$\tau_1 = \begin{pmatrix} 1 & 2 & 4 \\ 0.4 & 0.3 & 0.3 \end{pmatrix}$$
, for $t_{\Delta} = 12$

Minimal inter-arrival times between two consecutive arrivals

$$\tau_1^* = \left(\begin{array}{cc} 5 & 10 \\ 0.3 & 0.7 \end{array} \right)$$

Optimal fixed-priority scheduler

• Rate Monotic is not optimal

Optimal (task) fixed-priority scheduler (2)

• A feasible task fixed-priority assignement

Optimal (task) fixed-priority scheduler (3)

• Theorem (Maxim, 2011)

The order of higher priority tasks does not have any impact on the probability of missing the deadline of a task

• Audsley reasoning may be proposed

Analytical verification of time constraints

The first response time calculation for systems with multiple probabilistic parameters (DC13)

Probabilistic independence required between the probabilistic parameters

[DC13] D. Maxim et L. Cucu-Grosjean, *Response Time Analysis for Fixed-Priority Tasks with Multiple Probabilistic Parameters*", IEEE Real-Time Systems Symposium (RTSS 2013), Vancouver, December 3-6, 2013

Analytical versus simulation

Probability of not meeting the deadline : 9.24819 x 10⁻¹⁴

Outline

- Design of a physical system with time constraints
 O Verification of time constraints
- ✓ Probabilities: how do we compose?
- Measurement-based approaches
 - The (missunderstood) independence
 - The impact of the measurement protocol
- ✓ Analytical vs. measurement-based
- Back to models to solve the representativity
- Conclusion

Design of a physical system with time constraints

TOSA@TRT

Possibles steps (and open problems)

- Worst case probabilistic models
 - Understanding the relations between different design levels
 - Choice of properties to be probabilistically described
 - Proposition of new models
- Time constraints analyses

- Validation and certification of the framework
 - Proposition of a complementary transformation

CONCLUSIONS

- Time critical embedded systems are everywhere
- There is an important bareer while building tomorrow time critical embedded systems
- Proving correct such framework requires an important effort from different communities

Je vous remercie pour votre attention

liliana.cucu@inria.fr

L. Cucu-Grosjean - Probabilities, a key solution