
Probabilities – a key solution for
tomorrow real-time compositional

frameworks

L. Cucu-Grosjean and co-authors

Outline

q Design of a physical system with time constraints
o Verification of time constraints

q Probabilities: how do we compose?
q Measurement-based approaches

o The (missunderstood) independence
o The impact of the measurement protocol

q Analytical vs. measurement-based
q Back to models to solve the representativity
q Conclusion

2/35CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

Design of a a physical system with time

constraints

• Real-time systems

• Cyber-physical systems

3/35CRTS – 05.12.2017
L. Cucu-Grosjean - Probabilities, a key solution

Design of a physical system with time constraints (2)

2/14

Functionanal
Specifications

Im
plem

entation

Models

Processeur

Time Verification

Control Theory

Controller

dx/dt =f(t)
r(t) y(t)

x_solution

3 /3 /

WARUNA Meeting - 15 March 2016

TCS: Software defined radio

TAS: Satellite on-board software

TOSA: Image Processing application

TSA: Threats tracking application

! Tool: MelodyCCM – MyCCM C/C++

! Architecture: distributed

! Application: complex communication schemes

! Timing constraints: soft and hard

! Tool: MelodyCCM Spatial – MyCCM Ada

! Architecture: mono-processor

! Application: component implementation in UML

! Timing constraints: hard

! Tool: MelodyAdvance

! Architecture: distributed and heterogeneous

! Application: data-flow (functional chains)

! Timing constraints: soft

! Tool: SoftArc – XML Description

! Architecture: mono-processor

! Application: call graph

! Timing constraints: hard

Thales Divisions: Different Approaches, Environments & Requirements

Budgets/programs

1.6. Problem Statements 29

often based on the usage of multiple levels of cache and pipe-lines, lowering the determin-
ism of the processors and increasing the difficulty of searching for the program’s WCET,
which are in fact approached by increasingly conservative upper bounds [Souyris 2005].

Indeed the execution times distribution plot (as shown in Figure 1.15 for a dedicated
embedded processor [Hansen 2009]) is expected to spread out, so that approaching the
worst case execution time is foreseen to become a rare event.

Figure 1.15: Typical execution time distribution

Therefore the amount of wasted computing power is expected to increase, leading to
the over-sizing of embedded computers, power supplies and cooling systems, among other
issues.

Nowadays, even if many attempts are proposed to give an upper bound of the WCET
(e.g: [Rochange 2007]), both the traditional and current approaches are difficult to apply to
modern processor generations and produce values which are more and more pessimistic.

Lately, a new approach to improve the robustness of the task scheduling has been pro-
posed in [Midonnet 2010]) where on a temporal fault occurrence, the slack time (the dif-
ference between the allocated time and the real execution time) can be dynamically deter-
mined and assigned to the faulty task in order to complete its treatment. As the authors
mean " deadline miss" when they talk about "faults", this approach implies that the com-
puting resource has enough spare resource to add more time slack. This approach has two
drawbacks in practice. First, the dynamic addition of the time slack will cause indetermi-
nacy and worsen the predictability of the system. Second, from a control system point of
view, it is known that delays decrease the control performance and moreover, as the time
slack is dynamically added, it will result into a control system with time-varying and non
bounded delay, leading to more difficulties in the analysis. On the other hand, the method
proposed in this thesis allows for the enhancement of predictability and determinism of the
system while enhancing control performance. This is achieved by " weakening real-time
constraints".

WCETs

TOSA@TRTCRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

Verification of time constraints

τ1

τ 2

τ 3

Response time

(0, 1, 3, 3)

(3, 2, 6, 6)

(2, 1, 6, 6)

Execution time

One processor, fixed-priority solution

2 4
0.2 0.8

!

"
#

$

%
&

5/35CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

Probabilities: how do we compose?

Measurements (statistical approaches)
Static analyses (probabilistic approaches)
Hybrid methods

1-CDF

Time
parameter

Pr
ob

ab
ili

ty

pET

pWCET

pET: probabilistic Execution Time; pWCET: probabilistic Worst Case ET

CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

How do we deal with probabilities?

For a program and a processor the execution time extremes are bounded by a Extreme

Value Theory Distribution [Edgar et Burns at RTSS2001]

Fréchet

Weibull

Gumbel

0 2-2

0
.0

1
.0

1.6. Problem Statements 29

often based on the usage of multiple levels of cache and pipe-lines, lowering the determin-
ism of the processors and increasing the difficulty of searching for the program’s WCET,
which are in fact approached by increasingly conservative upper bounds [Souyris 2005].

Indeed the execution times distribution plot (as shown in Figure 1.15 for a dedicated
embedded processor [Hansen 2009]) is expected to spread out, so that approaching the
worst case execution time is foreseen to become a rare event.

Figure 1.15: Typical execution time distribution

Therefore the amount of wasted computing power is expected to increase, leading to
the over-sizing of embedded computers, power supplies and cooling systems, among other
issues.

Nowadays, even if many attempts are proposed to give an upper bound of the WCET
(e.g: [Rochange 2007]), both the traditional and current approaches are difficult to apply to
modern processor generations and produce values which are more and more pessimistic.

Lately, a new approach to improve the robustness of the task scheduling has been pro-
posed in [Midonnet 2010]) where on a temporal fault occurrence, the slack time (the dif-
ference between the allocated time and the real execution time) can be dynamically deter-
mined and assigned to the faulty task in order to complete its treatment. As the authors
mean " deadline miss" when they talk about "faults", this approach implies that the com-
puting resource has enough spare resource to add more time slack. This approach has two
drawbacks in practice. First, the dynamic addition of the time slack will cause indetermi-
nacy and worsen the predictability of the system. Second, from a control system point of
view, it is known that delays decrease the control performance and moreover, as the time
slack is dynamically added, it will result into a control system with time-varying and non
bounded delay, leading to more difficulties in the analysis. On the other hand, the method
proposed in this thesis allows for the enhancement of predictability and determinism of the
system while enhancing control performance. This is achieved by " weakening real-time
constraints".

7/35

• Independence hypothesis

• Identically distributed hypothesis

Classes of independence

• (Functional) Independence between programs

• Statistical independence

• Probabilistic independence

8/35CRTS – 05.12.2017
L. Cucu-Grosjean - Probabilities, a key solution

Functional independence between
programs

Input(A)
Input(B)

B AA B
Input(A)
Input(B)

CA and CB= CA = CB

9/35CRTS – 05.12.2017
L. Cucu-Grosjean - Probabilities, a key solution

Statistical dependence

if y odd then

{ x = 2*y

wait(y)

}

else {x =y + 3

wait(x)

}

for i= 1 to x

wait (1)
x

{ 5, 18, 21, 27, 28, 30}

{ }9 312519 3129

{ }10 21 42 54 31 33

{ }10 21 42 54 31 33

The two sets of execution times are dependent

Two programs with (functional) dependences

10/35CRTS – 05.12.2017
L. Cucu-Grosjean - Probabilities, a key solution

Statistical independence

if y odd then
{ x = 2*y
wait(y)

}
else {x =y + 3

wait(x)
}

for i= 1 to x

wait (1)

{ 68, 59, 84, 94, 100, 57}

{69, 63, 85, 95, 101, 61}

The two sets of execution times are independent

{39, 27, 39, 36, 34, 41}

{39, 27, 39, 36, 34, 41}

Two programs that have (functional) dependences

Multi-path programs

• The execution times
are obtained per
path and studied in
different buckets

• All execution
times are in
one single bucket

11/35CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

Multi-paths and dependences

p1

…

p2 pn

p1 p2
pn

p1
p2 pn

ü Railway case:
Inter- and intra- bucket

ü Avionics case :
Intra - bucket

12/35CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

Dependences

• Decreasing the number of dependences is good,
hoping to make them disappear is not realistic

• In presence of dependences, the order of
execution times becomes important
– A WCET measurement-based estimator should come

with its own measurement protocol

• Manipulating the input execution times has a
direct impact on the estimated pWCET
– Monotonic property

– Shuffling the input execution times

13/35CRTS – 05.12.2017
L. Cucu-Grosjean - Probabilities, a key solution

What dependences ?

Cluster 1

Cluster 2

Cluster 3

14/35CRTS – 05.12.2017
L. Cucu-Grosjean - Probabilities, a key solution

Multi-paths and identically distributed

p1

…

p2 pn

p1 p2
pn

p1
p2 pn

ü Both railway and avionics: Within bucket
o When identically distributed test is succesful, it is succesful for all paths
o When it fails, it fails only for some buckets

The paths falling the id tests are not sufficiently
visited

Composing probabilities - a representativity

concern?

30/35

Learning stage

Set of

benchmarks

a1C1+
a2C2+
a3C3

Utilization stage

Program

Measurements

protocol

A proof of representativity requires elements from the other design levels

CRTS – 05.12.2017

L. Cucu-Grosjean - Probabilities, a key solution

A= A1 + n*α

A1 +α . .
.

A1

Representativity requires convergence

The statistical methods estimating extremes are not monotonic

Execution
Conditions (1) A1

Execution
Conditions (2)

A2

An
Execution

Conditions (n)

. . .

A pWCET (A)

The measurement protocol and the
representativeness

Ai is representative with respect to A if pWCET (A) is close to pWCET(Ai)

Am

An

mth (complete) utilization
of the measurement

protocol

pWCET (Am) ≈
pWCET (An)

nth (complete) utilization
of the measurement

protocol

WCET
estimation

method

The reproducibility of the measurement
protocol

Any two different (and complete) utilizations of the measurement protocol from the same
set of execution conditions should provide the same pWCET estimate

A0

A0

ith utilization
of the estimation

method

pWCET i (A0) ≈
pWCET j (A0)

jth utilization
of the estimation

method

Any two different applications of the same set of execution conditions should provide
the same pWCET estimate

The reproducibility of the pWCET
estimation method

Program

B

E

A

C

F

D

G

MBPTA

  Uses a combination of two different methods
  Generalized Extreme Value (GEV)

-  Uses Block Maxima where an optimum block size is derived

  General Pareto Distribution (GPD)

-  Uses Peaks Over a Threshold (POT) where the optimum threshold is
derived

6 Paris, France 26/02/2015

Threshold

Block Size

ET

MBPTA

  Uses a combination of two different methods
  Generalized Extreme Value (GEV)

-  Uses Block Maxima where an optimum block size is derived

  General Pareto Distribution (GPD)

-  Uses Peaks Over a Threshold (POT) where the optimum threshold is
derived

6 Paris, France 26/02/2015

Threshold

Block Size

E
T

Estimation

Validation of a statistical test

§ Arguments complaint DO178B and IEC-61508

22/35

GEV
GPD

CRTS – 05.12.2017
L. Cucu-Grosjean - Probabilities, a key solution

1. Dependent
?

2. GEV
dependent

3. GPD
dependent 4. GPD

independent

pWCET
estimation

YES NO

5. GEV
independent

6. Sufficient
variability?

7. Min(GEV, GPD) 8. Max(GEV, GPD)

NO YES

INRIA confidential

Reproducibility of
the pWCET method

Reproducibility of
the measurement

Representativity of
the measurement

Execution
Conditions (1) A1

Execution
Conditions (2)

A2

An
Execution

Conditions (n)

. . .

A

pWCET (A1) ≈
pWCET (A2) ≈

. . .
pWCET(An) ≈
pWCET (A)

+

Avionics case study
• FP7 STREP PROARTIS Case study
– IMA application performing maintance of the flight control

computers
– Randomized cache remplacement policies

•  IMA Application that performs data concentration and
maintance of the flight control computers!

•  Functions exercise with different data input sets!

•  ARINC653 compliant-based! Pseudo-random placement!
and replacement policies!

Avionics Case Study!

F. Wartel et al., Measurement-Based Probabilistic Timing Analysis: Lessons from
an Integrated-Modular Avionics Case Study, SIES 2013!

•  IMA Application that performs data concentration and
maintance of the flight control computers!

•  Functions exercise with different data input sets!

•  ARINC653 compliant-based! Pseudo-random placement!
and replacement policies!

Avionics Case Study!

F. Wartel et al., Measurement-Based Probabilistic Timing Analysis: Lessons from
an Integrated-Modular Avionics Case Study, SIES 2013! 25/35

Avionics case study (2)

• Less than 5 minutes to provide a pWCET
estimation

•  Collect 50 execution times observations per iteration
and function (all i.i.d. tests were passed)!

•  Less than 5 minutes to collect all observations and
compute the pWCET estimate!

•  2 seconds to derive pWCET from a collection of 1000 runs!

Function! FUNC
1!

FUNC
2!

FUNC
3!

Collected Values! 600! 250! 300!

Iterations! 12! 5! 6!

Minimum Collected Observations!

F. Wartel et al., Measurement-Based Probabilistic Timing Analysis:
Lessons from an Integrated-Modular Avionics Case Study, SIES 2013!

26/35CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

Outline

ü Design of a physical system with time constraints
o Verification of time constraints

ü Probabilities: how do we compose?
ü Measurement-based approaches

o The (missunderstood) independence
o The impact of the measurement protocol

q Analytical vs. measurement-based
q Back to models to solve the representativity
q Conclusion

27/35CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

Average versus worst case
What is the impact on an analysis?

• Average number of arrivals within a time
interval

• Minimal inter-arrival times between two
consecutive arrivals

28/35

Average versus worst-case!

•  What is the impact on a real-time analysis? !

  Average number of arrivals within a time interval!

!

  Minimal inter-arrival time between two consecutive

arrivals!

τ1 =
1 2 4

0.4 0.3 0.3

!

"
#

$

%
&, for tΔ =12

τ1
* = 5 10

0.3 0.7

!

"
#

$

%
&

D. Maxim and L. Cucu-Grosjean, Response Time Analysis for Fixed-
Priority Tasks with Multiple Probabilistic Parameters, RTSS 2013!

Average versus worst-case!

•  What is the impact on a real-time analysis? !

  Average number of arrivals within a time interval!

!

  Minimal inter-arrival time between two consecutive

arrivals!

τ1 =
1 2 4

0.4 0.3 0.3

!

"
#

$

%
&, for tΔ =12

τ1
* = 5 10

0.3 0.7

!

"
#

$

%
&

D. Maxim and L. Cucu-Grosjean, Response Time Analysis for Fixed-
Priority Tasks with Multiple Probabilistic Parameters, RTSS 2013!

CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

• Rate Monotic is not optimal

Optimal fixed-priority scheduler

€

τ1 =
1
1

$
%
&

'
(,2,2,40%

$
%

&

'
(

€

τ 2 =
3 4
0.5 0.5

$
%

&

'
(,6,6,30%

$
%

&

'
(

is a random task. We denote a task ⌧i by

(Ci,Ti,Di, pi).
For instance, let ⌧ = {⌧1, ⌧2} be the system

of two periodic tasks with variable execution

times. We have ⌧1 = (

1
1

!
, 2, 2, 50%) and

⌧2 = (

3 4
0.5 0.5

!
, 6, 6, 75%). According to

our definition ⌧1 is a periodic tasks and ⌧2 is a

random task. Possible schedules for this task

system using fixed-priority algorithms are pro-

vided in Section 3.

3. Non-optimality of Rate Mono-

tonic

We provide in this section a first result in-

dicating that Rate Monotonic is not optimal in

case of synchronous periodic tasks with exe-

cution times given by random variables.

Theorem 1. Let ⌧ = {⌧1, · · · , ⌧n} be a set of
n synchronous periodic tasks with execution
times given by independent random variables.
For such system Rate Monotonic (RM) is not
optimal in sense that if there is a priority as-
signment for ⌧ such that ⌧ satisfies its con-
straints, then RM does not always find it.

Proof. We prove that RM is not optimal in this

case by providing a counterexample. In this

example RM fails to provide a priority assign-

ment for a set of tasks such that the probability

of meeting each deadline is at least equal to

the associated probability.

We consider the example provided at the

end of Section 2. In this set of tasks, ⌧1 must

reach at least 50% of its deadlines and ⌧2 at

least 75% of its deadlines.

According to Rate Monotonic ⌧1 has the

highest priority and ⌧2 the lowest priority. In

this case, ⌧1 would indeed satisfy 100% of

its deadlines, thus its probability to meet the

deadline of 50% is also satisfied. Unfortu-

nately ⌧2 will not satisfy 75% of its deadlines,

but only 50% of them (see Figure 1).

If we consider ⌧2 to have the highest priority

and ⌧1 the lowest priority, then both tasks will

reach probabilities to meet their deadlines. In

this case ⌧2 satisfies its deadlines with a prob-

ability of 100% (more then the 75% required)

and ⌧1 will meet 50% of its deadlines (see Fig-

ure 2).

⇤

Figure 1. A schedule according to RM

Figure 2. A feasible priority assign-

ment

4. A first (dummy) priority assign-

ment

A first (dummy) way of finding an optimal

priority assignment would be to look at all pos-

sible priority assignment for the tasks. Thus

we propose a dummy algorithm (of n! com-

plexity for a system of n tasks) that consid-

ers all possible sequences of priority assign-

ment and tests the feasibility of the task sys-

tem. The feasibility issue is solved using ex-

isting feasibility tests given in [4]. Obviously

such algorithm is not applicable to large sets

of tasks. Nevertheless, such a tool is useful

when used to experiment and to validate other

algorithms.

Theorem 2. If a synchronous periodic task
system ⌧ with execution times given by in-
dependent random variables is feasible under
fixed-priority scheduling, then our (dummy) al-
gorithm will find a feasible priority assignment.

29/35CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

• A feasible task fixed-priority assignement

Optimal (task) fixed-priority scheduler (2)

€

τ1 =
1
1

$
%
&

'
(,2,2,40%

$
%

&

'
(

€

τ 2 =
3 4
0.5 0.5

$
%

&

'
(,6,6,30%

$
%

&

'
(

is a random task. We denote a task ⌧i by

(Ci,Ti,Di, pi).
For instance, let ⌧ = {⌧1, ⌧2} be the system

of two periodic tasks with variable execution

times. We have ⌧1 = (

1
1

!
, 2, 2, 50%) and

⌧2 = (

3 4
0.5 0.5

!
, 6, 6, 75%). According to

our definition ⌧1 is a periodic tasks and ⌧2 is a

random task. Possible schedules for this task

system using fixed-priority algorithms are pro-

vided in Section 3.

3. Non-optimality of Rate Mono-

tonic

We provide in this section a first result in-

dicating that Rate Monotonic is not optimal in

case of synchronous periodic tasks with exe-

cution times given by random variables.

Theorem 1. Let ⌧ = {⌧1, · · · , ⌧n} be a set of
n synchronous periodic tasks with execution
times given by independent random variables.
For such system Rate Monotonic (RM) is not
optimal in sense that if there is a priority as-
signment for ⌧ such that ⌧ satisfies its con-
straints, then RM does not always find it.

Proof. We prove that RM is not optimal in this

case by providing a counterexample. In this

example RM fails to provide a priority assign-

ment for a set of tasks such that the probability

of meeting each deadline is at least equal to

the associated probability.

We consider the example provided at the

end of Section 2. In this set of tasks, ⌧1 must

reach at least 50% of its deadlines and ⌧2 at

least 75% of its deadlines.

According to Rate Monotonic ⌧1 has the

highest priority and ⌧2 the lowest priority. In

this case, ⌧1 would indeed satisfy 100% of

its deadlines, thus its probability to meet the

deadline of 50% is also satisfied. Unfortu-

nately ⌧2 will not satisfy 75% of its deadlines,

but only 50% of them (see Figure 1).

If we consider ⌧2 to have the highest priority

and ⌧1 the lowest priority, then both tasks will

reach probabilities to meet their deadlines. In

this case ⌧2 satisfies its deadlines with a prob-

ability of 100% (more then the 75% required)

and ⌧1 will meet 50% of its deadlines (see Fig-

ure 2).

⇤

Figure 1. A schedule according to RM

Figure 2. A feasible priority assign-

ment

4. A first (dummy) priority assign-

ment

A first (dummy) way of finding an optimal

priority assignment would be to look at all pos-

sible priority assignment for the tasks. Thus

we propose a dummy algorithm (of n! com-

plexity for a system of n tasks) that consid-

ers all possible sequences of priority assign-

ment and tests the feasibility of the task sys-

tem. The feasibility issue is solved using ex-

isting feasibility tests given in [4]. Obviously

such algorithm is not applicable to large sets

of tasks. Nevertheless, such a tool is useful

when used to experiment and to validate other

algorithms.

Theorem 2. If a synchronous periodic task
system ⌧ with execution times given by in-
dependent random variables is feasible under
fixed-priority scheduling, then our (dummy) al-
gorithm will find a feasible priority assignment.

30/35CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

• Theorem (Maxim,2011)
The order of higher priority tasks does not have any
impact on the probability of missing the deadline of a task

• Audsley reasoning may be proposed

Optimal (task) fixed-priority scheduler (3)

31/35CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

Analytical verification of time constraints
The first response time calculation for systems with multiple probabilistic parameters (DC13)

§ Probabilistic independence required between the probabilistic parameters

[DC13] D. Maxim et L. Cucu-Grosjean, Response Time Analysis for Fixed-Priority Tasks with Multiple Probabilistic
Parameters", IEEE Real-Time Systems Symposium (RTSS 2013), Vancouver, December 3-6, 2013

1-CDF

Response
time

Pr
ob

ab
ili

ty

Probability of not meeting the deadline : 9.24819 x 10-14

Observed response time

Calculated response time

Deadline

Analytical versus simulation

33/35CRTS – 05.12.2017
L. Cucu-Grosjean - Probabilities, a key solution

Outline

ü Design of a physical system with time constraints
o Verification of time constraints

ü Probabilities: how do we compose?
ü Measurement-based approaches

o The (missunderstood) independence
o The impact of the measurement protocol

ü Analytical vs. measurement-based
q Back to models to solve the representativity
q Conclusion

34/35CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

Design of a physical system with time constraints

2/14

Models

Processeur

Time Verification

Control Theory

Controller

dx/dt =f(t)

r(t) y(t)

x_solution

3 /3 /

WARUNA Meeting - 15 March 2016

TCS: Software defined radio

TAS: Satellite on-board software

TOSA: Image Processing application

TSA: Threats tracking application

! Tool: MelodyCCM – MyCCM C/C++

! Architecture: distributed

! Application: complex communication schemes

! Timing constraints: soft and hard

! Tool: MelodyCCM Spatial – MyCCM Ada

! Architecture: mono-processor

! Application: component implementation in UML

! Timing constraints: hard

! Tool: MelodyAdvance

! Architecture: distributed and heterogeneous

! Application: data-flow (functional chains)

! Timing constraints: soft

! Tool: SoftArc – XML Description

! Architecture: mono-processor

! Application: call graph

! Timing constraints: hard

Thales Divisions: Different Approaches, Environments & Requirements

Programs/budgets
1.6. Problem Statements 29

often based on the usage of multiple levels of cache and pipe-lines, lowering the determin-
ism of the processors and increasing the difficulty of searching for the program’s WCET,
which are in fact approached by increasingly conservative upper bounds [Souyris 2005].

Indeed the execution times distribution plot (as shown in Figure 1.15 for a dedicated
embedded processor [Hansen 2009]) is expected to spread out, so that approaching the
worst case execution time is foreseen to become a rare event.

Figure 1.15: Typical execution time distribution

Therefore the amount of wasted computing power is expected to increase, leading to
the over-sizing of embedded computers, power supplies and cooling systems, among other
issues.

Nowadays, even if many attempts are proposed to give an upper bound of the WCET
(e.g: [Rochange 2007]), both the traditional and current approaches are difficult to apply to
modern processor generations and produce values which are more and more pessimistic.

Lately, a new approach to improve the robustness of the task scheduling has been pro-
posed in [Midonnet 2010]) where on a temporal fault occurrence, the slack time (the dif-
ference between the allocated time and the real execution time) can be dynamically deter-
mined and assigned to the faulty task in order to complete its treatment. As the authors
mean " deadline miss" when they talk about "faults", this approach implies that the com-
puting resource has enough spare resource to add more time slack. This approach has two
drawbacks in practice. First, the dynamic addition of the time slack will cause indetermi-
nacy and worsen the predictability of the system. Second, from a control system point of
view, it is known that delays decrease the control performance and moreover, as the time
slack is dynamically added, it will result into a control system with time-varying and non
bounded delay, leading to more difficulties in the analysis. On the other hand, the method
proposed in this thesis allows for the enhancement of predictability and determinism of the
system while enhancing control performance. This is achieved by " weakening real-time
constraints".

WCETs

TOSA@TRT

Classification

of programs

Probabilistic

descriptions

CRTS – 05.12.2017
L. Cucu-Grosjean - Probabilities, a key solution

Possibles steps (and open problems)
• Worst case probabilistic models

– Understanding the relations between different design levels
– Choice of properties to be probabilistically described
– Proposition of new models

• Time constraints analyses

• Validation and certification of the framework
– Proposition of a complementary transformation

Models'Valida+on'of'the'
implementa+on'

Control'
Theory'

Transforma+on'

36/35CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

CONCLUSIONS

• Time critical embedded systems are

everywhere

• There is an important bareer while building

tomorrow time critical embedded systems

• Proving correct such framework requires an

important effort from different communities

37/35CRTS – 05.12.2017
L. Cucu-Grosjean - Probabilities, a key solution

Je vous remercie pour votre attention

liliana.cucu@inria.fr

CRTS – 05.12.2017 L. Cucu-Grosjean - Probabilities, a key solution

