Plonk arithmetisation

Marc Beunardeau — Nomadic Labs — Tezos

April 22, 2023

2

Table of Contents

Introduction

Plonk and SNARKSs

Plonk is a Succinct Non-interactive Argument of Knowledge
> R(x,w) is an NP relation described in a certain language
» a prover can convince a verifier that he knows w such that
R(x, w)
» the verifier runs in time independent of |w| and |R(,-)]
Examples:

» R encodes the Sudoku rules, x the starting positions and w
the solution

» R(x|y,w) encodes a function f with f(x) =y and w being
intermediates variables

SNARKSs breakdown

Asymmetric cryptography works on some algebraic structure

1. We want R in a 'normal’ language
2. Reduce the satisfactions of R to some algebraic equations

3. Do some crypto to get succinctness

This talk : 1 to 2 in Plonk's case

Table of Contents

Plonk
Algeraic Intermediate Representation
Selectors

Permutation argument
Plonk

What does the crypto do ?

> F

> uvel”

> P(U,V) e Fs[U, V]

» show succinctly Vi, P(u[i], v[i]) =0

Intuition:u[i] is a register at time i of a program

Let's add a few more

» We can fix a succinct number values (eg. for initialisation) :
ul0] =1

» The verifier can choose some values (to choose x)

» We can link i and i+ 1 : P(u[i],v[i],u[i +1],v[i+1]) =0

Cost: The cost will depend on the degree and complexity (nb of
multiplication) of the polynomials, the number and length (not for
the verifier) of vectors

Let's do Fibonacci

We need two vectors u, v

» u[0], v[0] are chosen by the verifier
> P(U, VU, V)=U+V-U

> AU,V U, V)=U+V -V
» v[n] is chosen by the verifier

Prove the identities and send v[n]
= | delegated the computation of Fibonacci(2n + 1)

Multiple operations

What if | want to compute g(x) and f(y) in the same relation?

Pre-processed relations

» The verifier runs in constant time with regard to |R(-,)|
» However he needs to read it once

> We will create pre-processed vectors g which are agreed upon
during setup

We can set a linear number of values in these vectors !

Selectors

» (/,1) partition of {0--- n}
> | want to apply P;(X) to / and PT()_() to]
> Qfil=1ificl, Q] =0 otherwise (same for Q)

> P(X, Qi Q) = Q * P (X) + @+ P(X)

Note: Selectors are less expensive thanks to pre-processing

Limitation

| want some long term memory
We will show u[i] = v[j] for some pre-determined i, j

Copy constraint

Assume we can show u = o(v) for o € &,

Show v[3] = v[7] = v[20]
» Create o such that ¢(3) =7 and ¢(7) = 20 (and ¢(20) = 3)
» v =o0(v) = v[3] = v[7] = v[20]
» Generalize to show v[i] = v[j] for all i,/ in a set

» Apply the technique to u|v to copy from one vector to another

Showing product

[T, uli] = [vl =TT oli]/vli =1

Ask the prover for a new vector z
> Z[I + 1] _ Z[I] % U[H-].]

v[i+1]
> 2[0] = u[o]/v[0]
» z[n] =1

Permutation 1

> u=o(v) = [T, uli] = IT, vI]
» Maybe u[i] =2 * v[o(i)] and u[j] = v[o(j)]/2

We will need something more

Randomisation

| can add a randomised term in my polynomials : for all /,
P(uli], v[i],«) = 0 for a random « chosen after u and v

<= for a non negligible number of different «, Vi
P(uli], v[i],) = 0

Permutation 2

1

u=o(v) = H(u[i] +a) =[]+)

1

Jo st u=o(v) <= H(u[i] +a) =[]+ e)

Maybe u = o'(v)

= let's add some dependency to o

Permutation 3

Create the vector s, defined by s,[i/] = o(i) and s;q for the identity
permutation

LIl + Bsialil +) = T[(vIi] + Bssigmali] + @)

i i

[Tl + 8% i+ a)=T](ulo()] + 8% o(i) +a)

i i

Example: 0 = (1,3,2), u=(2,5,7) v = (2,7,5)

H:(2+B*1+a)*(5+ﬁ*2—|—a)*(7+6*3—|—a)

u

H:(2+,8>x<1+a)*(7+ﬁ*3+a)*(5+ﬁ*2+a)

v

Vanilla Plonk

ql q~ qoO gm qc o b <

1 010 o110 3
1 OIO 0|0 1«
— *-1“
A
0

11-1101]0

og-1j11}]0

-1001|O

g*xa+q-*xb+qgm*xaxb+qgo*c+ qgest =0

alb|c = o(albl|c)

Vanilla Plonk example

9\ ql qf qo aqm c
111 I o] k3
olo]-]2 35
2ab+3
35

gxa+qrxb+qgm*axb+qgo*c+gest =0

Why Plonk ?

Table of Contents

Constraint systems particularities

Field

256-bits prime field
work with it when possible !

If then else

If athen belse c <= axb+(1—a)xchax(l—a)=0

Notes:
» both branch are paid
» booleans are wasteful

» don’t forget the boolean constraint !

If then else explosion

let x =R o then b else cin i a then GR b then ¢ else d)
R dGD then 0 else PO else GR e then £ else 5{)

. =
RN

Non determinism

a#0 < dbst. axb=1

Note: b is not used anywhere else
= we can exclude it from the permutation argument

f~lvsf

y =f(x) <= f(y) =x

High degree trick: a = b'/®> <= a®> =b

Table of Contents

Anemoi Example

o=

a=Bxys+
b=xy—a
d=cxc
"= xc
cxc' =

Yyi=»$—=¢
d=Bxy? +6
x1=b+d

Let's use custom constraints

x0

y0

Mo—n)>=x—B*yg—~

_ 5 2

s LS _5 x1=(yo—y1)>+B*yi +6
d

(2 P -

> yl

Two rounds

Mo—yn)=x—B*yd—~
x1=(o—y1)’+ By +4
(i —y2)> =x1—=Bxyf +7
xo=(1—y)° +B*y3+6

x1 (yo—y1)> +B*y2+6

» Inline linear terms
» Maybe quadratic or cubic
» Don't inline higher degrees

When to use custom constraints

custom constraints are paid for everywhere = use them depending
on the application

Table of Contents

Conclusion

Design space

The design space is huge !
Field

custom constraints

number of wires

number of wires in the permutation
accessto i +1, i + 2 etc...

maximum degree of identities

vVVvVvvyVvYVvyyypy

lookup

Parametric (not only in the field) primitives are helpful !
Comparisons are hard !

Poseidon example

» Does partial rounds and full rounds

» Can minimize the number of rounds or the number of full
rounds

» Initially for R1CS

» Change the parametrisation for Plonk

open question

Is this parametrisation detrimental to security ?

Sources

» Plonk paper: https://eprint.iacr.org/2019/953

» Plonk blogpost: https://hackmd.io/@aztec-network/
plonk-arithmetiization-air

» Anemoi paper: https://eprint.iacr.org/2022/840

» Poseidon paper: https://eprint.iacr.org/2019/458

https://eprint.iacr.org/2019/953
https://hackmd.io/@aztec-network/plonk-arithmetiization-air
https://hackmd.io/@aztec-network/plonk-arithmetiization-air
https://eprint.iacr.org/2022/840
https://eprint.iacr.org/2019/458

Thank you !

	Introduction
	Plonk
	Algeraic Intermediate Representation
	Selectors
	Permutation argument
	Plonk

	Constraint systems particularities
	Anemoi Example
	Conclusion

