
1/38

Plonk arithmetisation

Marc Beunardeau – Nomadic Labs – Tezos

April 22, 2023

2/38

Table of Contents

Introduction

Plonk
Algeraic Intermediate Representation
Selectors
Permutation argument
Plonk

Constraint systems particularities

Anemoi Example

Conclusion

3/38

Plonk and SNARKs

Plonk is a Succinct Non-interactive Argument of Knowledge

▶ R(x ,w) is an NP relation described in a certain language

▶ a prover can convince a verifier that he knows w such that
R(x ,w)

▶ the verifier runs in time independent of |w | and |R(·, ·)|
Examples:

▶ R encodes the Sudoku rules, x the starting positions and w
the solution

▶ R(x |y ,w) encodes a function f with f (x) = y and w being
intermediates variables

4/38

SNARKs breakdown

Asymmetric cryptography works on some algebraic structure

1. We want R in a ’normal’ language

2. Reduce the satisfactions of R to some algebraic equations

3. Do some crypto to get succinctness

This talk : 1 to 2 in Plonk’s case

5/38

Table of Contents

Introduction

Plonk
Algeraic Intermediate Representation
Selectors
Permutation argument
Plonk

Constraint systems particularities

Anemoi Example

Conclusion

6/38

What does the crypto do ?

▶ F
▶ u, v ∈ Fn

▶ P(U,V) ∈ F6[U,V]

▶ show succinctly ∀i , P(u[i], v [i]) = 0

Intuition:u[i] is a register at time i of a program

7/38

Let’s add a few more

▶ We can fix a succinct number values (eg. for initialisation) :
u[0] = 1

▶ The verifier can choose some values (to choose x)

▶ We can link i and i + 1 : P(u[i], v [i], u[i + 1], v [i + 1]) = 0

Cost:The cost will depend on the degree and complexity (nb of
multiplication) of the polynomials, the number and length (not for
the verifier) of vectors

8/38

Let’s do Fibonacci

We need two vectors u, v

▶ u[0], v [0] are chosen by the verifier

▶ P1(U,V ,U ′,V ′) = U + V − U ′

▶ P2(U,V ,U ′,V ′) = U ′ + V − V ′

▶ v [n] is chosen by the verifier

Prove the identities and send v [n]
⇒ I delegated the computation of Fibonacci(2n + 1)

9/38

Multiple operations

What if I want to compute g(x) and f (y) in the same relation?

10/38

Pre-processed relations

▶ The verifier runs in constant time with regard to |R(·, ·)|
▶ However he needs to read it once

▶ We will create pre-processed vectors q which are agreed upon
during setup

We can set a linear number of values in these vectors !

11/38

Selectors

▶ (I , I) partition of {0 · · · n}
▶ I want to apply PI (X⃗) to I and PI (X⃗) to I

▶ QI [i] = 1 if i ∈ I , QI [i] = 0 otherwise (same for QI)

▶ P(X⃗ ,QI ,QI) = QI ∗ PI (X⃗) + QI ∗ PI (X⃗)

Note: Selectors are less expensive thanks to pre-processing

12/38

Limitation

I want some long term memory
We will show u[i] = v [j] for some pre-determined i , j

13/38

Copy constraint

Assume we can show u = σ(v) for σ ∈ Sn

Show v [3] = v [7] = v [20]

▶ Create σ such that σ(3) = 7 and σ(7) = 20 (and σ(20) = 3)

▶ v = σ(v) ⇒ v [3] = v [7] = v [20]

▶ Generalize to show v [i] = v [j] for all i , j in a set

▶ Apply the technique to u|v to copy from one vector to another

14/38

Showing product

∏
i u[i] =

∏
i v [i] ⇐⇒

∏
i u[i]/v [i] = 1

Ask the prover for a new vector z

▶ z [i + 1] = z [i] ∗ u[i+1]
v [i+1]

▶ z [0] = u[0]/v [0]

▶ z [n] = 1

15/38

Permutation 1

▶ u = σ(v) ⇒
∏

i u[i] =
∏

i v [i]

▶ Maybe u[i] = 2 ∗ v [σ(i)] and u[j] = v [σ(j)]/2

We will need something more

16/38

Randomisation

I can add a randomised term in my polynomials : for all i ,
P(u[i], v [i], α) = 0 for a random α chosen after u and v

⇐⇒ for a non negligible number of different α, ∀i
P(u[i], v [i], α) = 0

17/38

Permutation 2

u = σ(v) ⇒
∏
i

(u[i] + α) =
∏
i

(v [i] + α)

∃σ s.t. u = σ(v) ⇐⇒
∏
i

(u[i] + α) =
∏
i

(v [i] + α)

Maybe u = σ′(v)

⇒ let’s add some dependency to σ

18/38

Permutation 3

Create the vector sσ defined by sσ[i] = σ(i) and sid for the identity
permutation

∏
i

(u[i] + βsid [i] + α) =
∏
i

(v [i] + βssigma[i] + α)∏
i

(u[i] + β ∗ i + α) =
∏
i

(u[σ(i)] + β ∗ σ(i) + α)

Example: σ = (1, 3, 2), u = (2, 5, 7) v = (2, 7, 5)∏
u

= (2 + β ∗ 1 + α) ∗ (5 + β ∗ 2 + α) ∗ (7 + β ∗ 3 + α)∏
v

= (2 + β ∗ 1 + α) ∗ (7 + β ∗ 3 + α) ∗ (5 + β ∗ 2 + α)

19/38

Vanilla Plonk

ql ∗ a+ qr ∗ b + qm ∗ a ∗ b + qo ∗ c + qcst = 0

a|b|c = σ(a|b|c)

20/38

Vanilla Plonk example

ql ∗ a+ qr ∗ b + qm ∗ a ∗ b + qo ∗ c + qcst = 0

21/38

Why Plonk ?

22/38

Table of Contents

Introduction

Plonk
Algeraic Intermediate Representation
Selectors
Permutation argument
Plonk

Constraint systems particularities

Anemoi Example

Conclusion

23/38

Field

256-bits prime field
work with it when possible !

24/38

If then else

If a then b else c ⇐⇒ a ∗ b + (1− a) ∗ c ∧ a ∗ (1− a) = 0

Notes:

▶ both branch are paid

▶ booleans are wasteful

▶ don’t forget the boolean constraint !

25/38

If then else explosion

26/38

Non determinism

a ̸= 0 ⇐⇒ ∃b st. a ∗ b = 1

Note: b is not used anywhere else
⇒ we can exclude it from the permutation argument

27/38

f −1 vs f

y = f (x) ⇐⇒ f −1(y) = x

High degree trick: a = b1/5 ⇐⇒ a5 = b

28/38

Table of Contents

Introduction

Plonk
Algeraic Intermediate Representation
Selectors
Permutation argument
Plonk

Constraint systems particularities

Anemoi Example

Conclusion

29/38

a = β ∗ y20 + γ

b = x0 − a

c ′ = c ∗ c
c ′′ = c ′ ∗ c ′

c ∗ c ′′ = b

y1 = y0 − c

d = β ∗ y21 + δ

x1 = b + d

30/38

Let’s use custom constraints

(y0 − y1)
5 = x0 − β ∗ y20 − γ

x1 = (y0 − y1)
5 + β ∗ y21 + δ

31/38

Two rounds

(y0 − y1)
5 = x0 − β ∗ y20 − γ

x1 = (y0 − y1)
5 + β ∗ y21 + δ

(y1 − y2)
5 = x1− β ∗ y21 + γ

x2 = (y1 − y2)
5 + β ∗ y22 + δ

x1 7→ (y0 − y1)
5 + β ∗ y21 + δ

▶ Inline linear terms

▶ Maybe quadratic or cubic

▶ Don’t inline higher degrees

32/38

When to use custom constraints

custom constraints are paid for everywhere ⇒ use them depending
on the application

33/38

Table of Contents

Introduction

Plonk
Algeraic Intermediate Representation
Selectors
Permutation argument
Plonk

Constraint systems particularities

Anemoi Example

Conclusion

34/38

Design space

The design space is huge !

▶ Field

▶ custom constraints

▶ number of wires

▶ number of wires in the permutation

▶ access to i + 1, i + 2 etc...

▶ maximum degree of identities

▶ lookup

Parametric (not only in the field) primitives are helpful !
Comparisons are hard !

35/38

Poseidon example

▶ Does partial rounds and full rounds

▶ Can minimize the number of rounds or the number of full
rounds

▶ Initially for R1CS

▶ Change the parametrisation for Plonk

36/38

open question

Is this parametrisation detrimental to security ?

37/38

Sources

▶ Plonk paper: https://eprint.iacr.org/2019/953

▶ Plonk blogpost: https://hackmd.io/@aztec-network/
plonk-arithmetiization-air

▶ Anemoi paper: https://eprint.iacr.org/2022/840

▶ Poseidon paper: https://eprint.iacr.org/2019/458

https://eprint.iacr.org/2019/953
https://hackmd.io/@aztec-network/plonk-arithmetiization-air
https://hackmd.io/@aztec-network/plonk-arithmetiization-air
https://eprint.iacr.org/2022/840
https://eprint.iacr.org/2019/458

38/38

Thank you !

	Introduction
	Plonk
	Algeraic Intermediate Representation
	Selectors
	Permutation argument
	Plonk

	Constraint systems particularities
	Anemoi Example
	Conclusion

