
Algebraic
cryptanalysis

Magali Bardet

Introduction

Algebraic Modeling

Monomial
Ordering
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Algebraic Cryptanalysis can be devastating

Famous practical cryptanalyses in ' 2 days:

I attacking first HFE Challenge (80 bits) (J.-C. Faugère and Joux 2003)

I attacking finalist Rainbow (128 bits) (Beullens 2022)

Many other examples in the literature.
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Algebraic Modeling

Principle: write a Polynomial System
f1(x1, . . . ,xn)
...

fm(x1, . . . ,xn)

, deg(fi ) = di , fi ∈K[x1, . . . ,xn].

such that finding the set of solutions

V (f1, . . . , fm) =
{

(x1, . . . ,xn) ∈Kn : fi (x1, . . . ,xn) = 0,∀i ∈ {1..m}
}

gives (part of) the secret.

Ideally: any solution is related to the secret!

I Otherwise, we have to deal with spurious solutions.

I Solutions in Fq: algebraic constraint! add the field equations xqi −xi .
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Algebraic Modeling

Solving the algebraic system using Gröbner bases (object)

I A particular basis of the ideal

I (f1, . . . , fm) = 〈f1, . . . , fm〉

that solves the ideal-membership problem.

I Depends on the choice of a monomial ordering.

A hard problem

I Ideal Membership testing is EXPSPACE-complete,

I Existence of solutions to a system of polynomial equations over a finite field
is NP-complete (Fraenkel and Yesha 1979),
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Gröbner basis algorithms

General algorithms, for any input system:

I Buchberger (Buchberger 1965),

I F4 (J.-C. Faugère 1999),

I F5 (J.-C. Faugère 2002).

The algorithms will always terminate and give the Gröbner basis.
But the time is hard to predict for any instance.

Specific algorithms, for a particular class of systems:

The algorithms will terminate in a predictable time.
The result is not always a Gröbner basis of the system.
For random instances in the specific class, the result is a Gröbner basis.
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Gröbner basis
complexity

Example 1

References

Properties of monomial orderings

Different monomial orderings have different properties

I the lex order (Lexicographical): in Shape Position, for a zero-dimension
ideal, the lex basis is 

x1−g1(xn),
...

xn−1−gn−1(xn),
gn(xn),

with deg(gn) = D the number of solutions to the system.

I the grevlex order (Graded Reverse Lexicographical): usually the best one
w.r.t. the complexity.

I the elim order (Elimination): two blocks of variables x> y.
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Monomial ordering examples

Lexicographical ordering x1 > · · ·> xn

xα1
1 . . .xαn

n > x
β1

1 . . .xβn
n iff

{
αj = βj ∀j < i ,

αi > βi .

Graded Reverse Lexicographical ordering x1 > · · ·> xn

xα1
1 . . .xαn

n > x
β1

1 . . .xβn
n iff

{
αj = βj ∀j > i ,

αi < βi .

Elimination Ordering x> y

xαyβ > xα ′yβ ′ iff

{
α >1 α ′

or α = α ′ and β >2 β ′.
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Family of random zero-dimensional systems

Hypotheses for cryptanalysis

I the variety is zero-dimensional (otherwise, change the modeling!).

I the instances are “random” (not the system).
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Change of ordering FGLM for zero-dimensional systems

I The FGLM (J.-C. Faugère, Gianni, Lazard, and Mora 1993) Algorithm
performs a change of ordering in complexity

O(nD3),

n number of variables, n→ ∞, D degree of the ideal (number of solutions).

I Complexity for grevlex to lex (Shape position) (J.-C. Faugère, Gaudry,
Huot, and Renault 2014):

O(log2(D)(Dω +n log2(D)D)).

I Sparse versions for generic systems grevlex to lex (J.-C. Faugère and Mou
2017) in

O

(√
6

nπ
D2+ n−1

n

)
.
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Gröbner basis
complexity

Example 1

References

Change of ordering FGLM for zero-dimensional systems

I The FGLM (J.-C. Faugère, Gianni, Lazard, and Mora 1993) Algorithm
performs a change of ordering in complexity

O(nD3),

n number of variables, n→ ∞, D degree of the ideal (number of solutions).

I Complexity for grevlex to lex (Shape position) (J.-C. Faugère, Gaudry,
Huot, and Renault 2014):

O(log2(D)(Dω +n log2(D)D)).

I Sparse versions for generic systems grevlex to lex (J.-C. Faugère and Mou
2017) in

O

(√
6

nπ
D2+ n−1

n

)
.

10 / 24



Algebraic
cryptanalysis

Magali Bardet

Introduction

Algebraic Modeling

Monomial
Ordering
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Systems with 0 or 1 solution

The grevlex and lex bases are the same:

I If the system has 1 solution: 
x1−a1,

...

xn−an,

where (a1, . . . ,an) ∈ Fn
q is the solution.

I If the system has no solution:
〈1〉.
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Adding the field equations

Should I add the field equations to the system?

I Does the ideal have solutions in the algebraic closure of Fq? How many?

I Is the maximal degree D reached during the computation smaller than q?

I Are there solutions in Fq that I’m not interested in?

When should I add the field equations?

I from the beginning,

I to the lex basis (gcd).

12 / 24
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Complexity of computing a Gröbner basis

I worst case: doubly exponential! polynomials of degree d2n in the basis, any
monomial ordering (Mayr and Meyer 1982).

I zero-dimensional, grevlex: simply exponential (Lazard 1983; Giusti 1984).

I relation to linear algebra for the computation: Macaulay matrices.
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Tools from computer algebra toward complexity analysis

System


f1(x1, . . . ,xn)
...

fm(x1, . . . ,xn)

, deg(fi ) = di , fi ∈K[x1, . . . ,xn].

I Macaulay Matrices (Macaulay 1902):

Md({f1, . . . , fm}) =


t ′

...
(t, i) coeff(tfi , t

′)
...



I Describes the vector space 〈tfi : deg(tfi ) = d〉K.

I Linear algebra on the Macaulay matrices up to degree D computes a
Gröbner basis (Lazard 1983,Giusti 1984).

14 / 24
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Complexity bounds

Linear algebra on the Macaulay matrix of degree D

A Gröbner basis of a system (f1, . . . , fm) ∈K[x1, . . . ,xn] up to degree D for a
graded monomial ordering can be computed in, at most,

O

(
mD

(
n+D−1

D

)ω)
n,m→ ∞.

operations.

Main challenges

I Estimate D.

I Identify unnecessary computations to reduce the complexity, e.g. to

O
((n+D

D

)ω
)
.

I If there are fall degree at degree < D, construct a better strategy
(algorithm) to take that into account, and estimate its complexity.
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Generic Complexity analysis

Known classes of particular systems (not exhaustive)

I regular systems (Macaulay 1916), # eq 6 # vars,

I determinantal systems (Conca and Herzog 1994),

I semi-regular systems (Bardet, J.-C. Faugère, and Salvy 2004), # eq > #
vars,

I solutions in F2: boolean semi-regular systems (Bardet, J.-C. Faugère,
Salvy, and Yang 2005),

I bi-regular bilinear systems (J.-C. Faugère, Safey El Din, and
P.-J. Spaenlehauer 2011).
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Difference between classes

O

(
mD

(
n+D−1

D

)ω)
n,m→ ∞.

Examples of quadratic equations:

I m = n regular system: : D 6 n+ 1,

I m = n+ 1 semi-regular system: D 6 dn+2
2 e,

I m = n regular bilinear system with bn2c variables x and dn2e variables y :
D 6 dn2e.

I m = n regular over F2: D ' n
11 , O(

(n
D

)ω
)
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Gröbner basis
complexity

Example 1

References

Algebraic attack

For each class we know
I relations between rows in the Macaulay matrices,

I the rank of the Macaulay matrices for generic systems,

I the maximal degree D→ complexity estimates,

I a specific Gb algorithm that is more efficient.

If the system is not in a known class

I Identify a generic behavior,

I Identify a specific algorithm to compute the Gb,

I Create a new class!
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Gröbner basis
complexity

Example 1

References

Algebraic attack

For each class we know
I relations between rows in the Macaulay matrices,

I the rank of the Macaulay matrices for generic systems,

I the maximal degree D→ complexity estimates,

I a specific Gb algorithm that is more efficient.

If the system is not in a known class

I Identify a generic behavior,

I Identify a specific algorithm to compute the Gb,

I Create a new class!

18 / 24



Algebraic
cryptanalysis

Magali Bardet

Introduction

Algebraic Modeling

Monomial
Ordering
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Homogeneous vs Affine

I All bounds are given for homogeneous polynomials.

I For affine systems: the same complexity if no fall degree before degree D,
the complexity is then the cost of reducing several matrices at degree D
(sometimes D + 1, at most 2D−1).

I In this case, D is the first fall degree, also the solving degree and the degree
of regularity and is related to the complexity.

I Otherwise, first fall degree is not related to complexity estimates!
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Gröbner basis
complexity

Example 1

References

Homogeneous vs Affine

I All bounds are given for homogeneous polynomials.

I For affine systems: the same complexity if no fall degree before degree D,
the complexity is then the cost of reducing several matrices at degree D
(sometimes D + 1, at most 2D−1).

I In this case, D is the first fall degree, also the solving degree and the degree
of regularity and is related to the complexity.

I Otherwise, first fall degree is not related to complexity estimates!

19 / 24



Algebraic
cryptanalysis

Magali Bardet

Introduction

Algebraic Modeling

Monomial
Ordering
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The MinRank Problem

I Input: integers r ,m,n ∈ N, and K matrices M1, . . . ,MK ∈ Fm×n
q

I Output: (x1, . . . ,xK ) ∈ Fq, not all zero, such that

Rank

(
K

∑
i=1

xiM i

)
6 r .

I NP-complete problem (Buss, Frandsen, Shallit 1999),

I used to cryptanalyse various multivariate and code-based cryptosystems.

I This is exactly the decoding problem for matrix codes,

I K < (m− r)(n− r): 0 or 1 solution in the algebraic closure of Fq.

I No need to add the field equations: already in the ideal!

I For very small q (e.g. q = 2): adding small degree equations can speed up
the computation.

20 / 24



Algebraic
cryptanalysis

Magali Bardet

Introduction

Algebraic Modeling

Monomial
Ordering
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Gröbner basis
complexity

Example 1

References

MinRank problem Rank
(
∑
K
i=1 xiM i

)
6 r

I Kipnis-Shamir modeling (Kipnis and Shamir 1999)(
K

∑
i=1

xiM i

)(
I n−r
−R

)
= 0m×(n−r), R ∈ Fr×(n−r)

q ,xi ∈ Fq (KS)

I Minors modeling (J. Faugère, Safey El Din, and P. Spaenlehauer 2010)

Minorsr+1

(
K

∑
i=1

xiM i

)
= 0 (Minors)

I Support Minors modeling, (Bardet, Bros, Cabarcas, Gaborit, et al. 2020)

Minorsr+1

(
(∑

K
i=1 xiM i )j ,∗
R I r

)
= 0 ∀j ∈ {1..m}. (SM)

I Same ideal ! (Bardet and Bertin 2022; Guo and Ding 2022)
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Specific systems

GeMSS signature scheme (Casanova, J. Faugère, Macario-Rat, Patarin,
et al. 2019)

I alternate candidate (3rd Round of the NIST process) that suffered a
MinRank attack (Tao, Petzoldt, and Ding 2021),

I the system has m solutions in an extension Fqm of Fq,

I specific analysis using the particular algebraic structure (Banea, Briaud,
Cabarcas, Perlner, et al. 2022).

Complexity estimate goes e.g. for GeMSS256 from 2272 to 2166 to 275!

Fqm-linear codes

I the equations are not linearly independent! + a lot of linear equations.

I Bardet, Briaud, Bros, Gaborit, and Tillich 2022: specific analysis of the
system.
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Gröbner bases in Magma

Computer algebra system magma

I default strategy: compute the grevlex basis, then change to the lex basis
using FGLM.

I lex by default, you can specify "grevlex" in the polynomial ring.

I grevlex basis computed using F4, with several heuristics
(SetVerbose("Faugere",2))

I an input parameter for HFE-like systems, to save memory and time.
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Conclusion

I A powerful tool to solve problems that have an algebraic modeling,

I A lot of parameters to choose,

I Design specific algorithms for specific class of systems to be efficient,

I Already a lot of applications on arithmetization-oriented symmetric-key
primitives.

A PhD position is available in Rouen, starting in fall, algebraic cryptanalysis.
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Gröbner basis
complexity

Example 1

References

Conclusion

I A powerful tool to solve problems that have an algebraic modeling,

I A lot of parameters to choose,

I Design specific algorithms for specific class of systems to be efficient,

I Already a lot of applications on arithmetization-oriented symmetric-key
primitives.

A PhD position is available in Rouen, starting in fall, algebraic cryptanalysis.

24 / 24



Algebraic
cryptanalysis

Magali Bardet

Introduction

Algebraic Modeling

Monomial
Ordering
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