STARK-friendly
crypto primitives
wish-list

April 2023

< STARKWARE

N\ f’

Wishlist for crypto primitives

% STARKWARE

AIR Parameters: t, w, F, d, s, e

e Execution trace size: t rows, w columns
o Fib(n): t=n, w=2
o Rescue: t= #rounds, w = |state|

% STARKWARE

AIR Parameters: t, w, F, d, s, e

e Execution trace size: t rows, w columns
o Fib(n): t=n, w=2
o Rescue: t= #rounds, w = |state|

e Trace entries in field F. Which field?
o Any field! [BCKL22] (FFT-friendly better)

e Constraints

o Maximal degree: d
o # constraints: s
o Enforcement domain complexity: e

% STARKWARE

AIR Parameters: t, w, F, d, s, e

e Execution trace size: t rows, w columns
o Fib(n): t=n, w=2
o Rescue: t= #rounds, w = |state|

e Trace entries in field F. Which field?
o Any field! [BCKL22] (FFT-friendly better)

e Constraints

o Maximal degree: d
o # constraints: s
o Enforcement domain complexity: e

% STARKWARE

AIR Parameters: t, w, F, d, s, e

e Execution trace size: t rows, w columns Wish-list for Primitive P:
o Fib(n): t=n, w=2 1. Minimizet x w, |F|, d (also s, e)

o Rescuc?: t= #roqnds, W = |staFe| - 2. Minimize CPU time of computing P
e Trace entries in field F. Which field- 3. Make it field agnostic, and safe!

o Any field! [BCKL22] (FFT-friendly better)
e Constraints

o Maximal degree: d
o # constraints: s
o Enforcement domain complexity: e

% STARKWARE

AIR Parameters: t, w, F, d, s, e

e Execution trace size: t rows, w columns Wish-list for Primitive P:
o Fib(n): t=n, w=2 1. Minimizet x w, |F|, d (also s, e)

o Rescuc?: t= #roqnds, W = |staFe| - 2. Minimize CPU time of computing P
e Trace entries in field F. Which field- 3. Make it field agnostic, and safe!

o Any field! [BCKL22] (FFT-friendly better)

° Constralhts ethSTARK (Rescue):
o Maximal c!egr.ee. d 1.txw =120, [og |F| ~ 62, d=3
o # constraints: s . .
o Enforcement domain complexity: e 2.CPU time large’ sepin large F (cube root!)

3. Relatively safe, AES-like (say the experts)

Poseidon in Starknet/Ex:

1.txw =226, log |F|~252, d=2

2. CPU time better than Rescue (100 microsec)
3. Relatively safe (though less than Rescue)

% STARKWARE

AIR Parameters: t, w, F, d, s, e

Keccak: Wish-list for Primitive P:

1.txw=70,000-90,000, log |F| ~ 252, d=2 1. Minimizet x w, |F|, d (also s, e)

2. CPU time amazing (1 microsecond) 2. Minimize CPU time of computing P

3. Very safe 3. Make it field agnostic, and safe!
ethSTARK (Rescue):

1.txw=120, log |F| ~ 62, d=3
2. CPU time large, esp in large F (cube root!)
3. Relatively safe, AES-like (say the experts)

Poseidon in Starknet/Ex:

1.txw =226, log |F|~252, d=2

2. CPU time better than Rescue (100 microsec)
3. Relatively safe (though less than Rescue)

% STARKWARE

Overview

e STARKSs - Integrity Through Math
e Arithmetization
e Wish list for crypto primitives

% STARKWARE

Integrity Through Math

Integrity* via Math

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

% STARKWARE

Integrity Through Math

Claim
total=$89.50

SALES RECEIPT

Date: Mﬂgczzﬁ’ 2017

) Description B Price | Amount

Stiach Salad g8.50 4350

4 Lanb Tagiue 3 4900 | $47.00

4y | side picl £ 400 | gt60

L2 | Coke $2.50 | § rc0

. 2 | Peer $14.00 | $ 72300

Party producing proof
(Grocer) | e
[. { X -

Integrity* via Math]

Sale Made with :

VERIFIER /Y Goait Card
. [] Check, No.
Party checking proof |] Other

(Customer)

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

% STARKWARE

Privacy (Zero Knowledge, ZK)

Prover’s private inputs are shielded

Scalability
Exponentially small verifier running time*
Nearly linear prover running time*

6{ Universality |
Integrity* Via Math Applicability to general computation

+| Transparency
*) No toxic waste (i.e. no trusted setup)

Lean & Battle-Hardened Cryptography

e.g. post-quantum secure

=

*With respect to size of computation

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Integrity Through Math

Integrity* via Math

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Checking Computations in Polylogarithmic Time

Lance Fortno Leonid A. Levin?®
Dept. Comp. Sci. Dept. Comp. Sci.
Univ. of Chicago ® Boston University *

Mario Szegedy®
Dept. Comp. Sci.
Univ. of Chicago

Abstract. Motivated by Manuel Blum'’s concept of instance checking, we consider new, very fast and generic
mechanisms of checking computations. Our results exploit recent advances in interactive proof protocols
[LFKN92], [Sha92], and especially the MIP = N EXP protocol from [BFL91].

We show that every nondeterministic computational task S(,y). defined as a polynomial time relation
between the instance x, representing the input and output combined, and the witne. can be modified to a
task S’ such that: (i) the same instances remain accepted; (ii) each instance/witness pair becomes checkable
in polylogarithmic Monte Carlo time; and (iii) a witness satisfying S’ can be computed in polynomial time
from a witness satisfying S.

Here the instance and the description of S have to be provided in error-correcting code (since the checker
will not notice slight changes). A modification of the MIP proof was required to achieve polynomial time
in (iii); the earlier technique yields N OU°g1o8 N) {ime only.

This result becomes significant if software and hardware reliabulity are regarded as a considerable cost
factor. The polylogarithmic checker is the only part of the system that needs to be trusted; it can be hard
wired. (We use just one Checker for all problems!) The checker is tiny and so presumably can be optimized
and _checked off-line at_a_modest cost,

In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with
possibly extremely powerful but unreliable software and untested hardware.

T O UTOr TCCTPICCATION, We SHOW UHat 11 POIY HOTHIAT (G, CVery TOTHa At e atical Proor Cait be
transformed into a {ransparent proof, i.e. a proof verifiable in polylogarithmic Monte Carlo time, assuming
the “theorem-candidate” is given in error-correcting code. In fact, for any ¢ > 0, we can transform any
proof P in time ||P||'*¢ into a transparent proof, verifiable in Monte Carlo time (log || P[|)©(1/<)

As a by-product, we obtain a binary error correcting code with very efficient error-correction. The
code transforms messages of length N into codewords of length < N1+¢; and for strings within 10% of a
valid codeword, it allows to recover any bit of the unique codeword within that distance in polylogarithmic
((log N)°1/9)) time

Integrity Through Math

Integrity* via Math

“..a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Checking Computations in Polylogarithmic Time

6 Babai' Lance Fortnow? Leonid A. Levin?®
(‘hicago ® and Dept. Comp. Sci. Dept. Comp. Sci.
iv., Budapest Univ. of Chicago ® Boston University *

Mario Szegedy®
Dept. Comp. Sci.
Univ. of Chicago

Abstract. Motivated by Manuel Blum'’s concept of instance checking, we consider new, very fast and generic
mechanisms of checking computations. Our results exploit recent advances in interactive proof protocols
[LFKN92], [Sha92], and especially the MIP = N EXP protocol from [BFL91].

We show that every nondeterministic computational task S(x,y). defined as a polynomial time relation
between the ¢nstance x, representing the input and output combined, and the witness y can be modified to a
task S’ such that: (i) the same instances remain accepted; (ii) each instance/witness pair becomes checkable
in polylogarithmic Monte Carlo time; and (iii) a witness satisfying S’ can be computed in polynomial time
from a witness satisfying :

Here the instance and the description of S have to be provided in error-correcting code (since the checker
will not notice slight changes). A modification of the M TP proof was required to achieve polynomial time
in (iii); the earlier technique yields N OU°g1o8 N) {ime only.

This result becomes significant if software and hardware reliabulity are regarded as a considerable cost
factor. The polylogarithmic checker is the only part of the system that needs to be trusted; it can be hard
wired. (We use just one Checker for all problems!) The checker is tiny and so presumably can be optimized
and checked off-line at_a_mod.

In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with
possibly extremely powerful but unreliable software and untested hardware.

st_cost

T oter
transformed into a {ransparent proof, i.e. a proof verifiable in polylogarithmic Monte Carlo time, assuming
the “theorem-candidate” is given in error-correcting code. In fact, for any ¢ > 0, we can transform any
proof P in time || P||!*¢ into a transparent proof, verifiable in Monte Carlo time (log|| P||)©(1/¢)

As a by-product, we obtain a binary error correcting code with very efficient error-correction. The
code transforms messages of length N into codewords of length < N'+¢; and for strings within 10% of a
valid codeword, it allows to recover any bit of the unique codeword within that distance in polylogarithmic
((log N)°1/9)) time

TP TatIoH, W S HOW AT T P oIy HOT AT Ui, SV oA T A tie atieal proor tan be

% STARKWARE

Integrity Through Math

Claim: Starting @ state hash x, after 1,000,000
txs processed by program P, reached state hash y

“..a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

% STARKWARE

Integrity Through Math

A sudoku-like set of constraints is implied by the
statement proved, by and

Claim: Starting @ state hash x, after 1,000,000 P CP

txs processed by program P, reached state hash y

“..a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

% STARKWARE

Integrity Through Math

A sudoku-like set of constraints is implied by the
statement proved, by and

Claim: Starting @ state hash x, after 1,000,000 P CP

txs processed by program P, reached state hash y

“..asingle reliable PC can monitor the operation pyqoyer submits solution
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

% STARKWARE

Integrity Through Math

A sudoku-like set of constraints is implied by the
statement proved, by and

Claim: Starting @ state hash x, after 1,000,000 P CP

txs processed by program P, reached state hash y

“..asingle reliable PC can monitor the operation pyqoyer submits solution
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

% STARKWARE

Integrity Through Math

A sudoku-like set of constraints is implied by the
statement proved, by and

Claim: Starting @ state hash x, after 1,000,000

PCP

txs processed by program P, reached state hash y

Magic (aka Math)

- Sampling constraints takes exponentially small time!

- Good proofs satisfy ALL constraints!

- A “proof” of a false claim satisfies < 1% of constraints!

“..asingle reliable PC can monitor the operation pyqoyer submits solution
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

% STARKWARE

Integrity Through Math

A sudoku-like set of constraints is implied by the
statement proved, by and

Claim: Starting @ state hash x, after 1,000,000

txs processed by program P, reached state hash y

Magic (aka Math)

- Sampling constraints takes exponentially small time!

- Good proofs satisfy ALL constraints!

- A “proof” of a false claim satisfies < 1% of constraints!

“..asingle reliable PC can monitor the operation pyqoyer submits solution
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

% STARKWARE

Integrity Through Math

A sudoku-like set of constraints is implied by the
statement proved, by and

Claim: Starting @ state hash x, after 1,000,000

txs processed by program P, reached state hash y

Magic (aka Math)

- Sampling constraints takes exponentially small time!

- Good proofs satisfy ALL constraints!

- A “proof” of a false claim satisfies < 1% of constraints!

“..asingle reliable PC can monitor the operation pyqoyer submits solution
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

% STARKWARE

Integrity Through Math

A sudoku-like set of constraints is implied by the
statement proved, by and

Claim: Starting @ state hash x, after 1,000,000

txs processed by program P, reached state hash y

Magic (aka Math)

- Sampling constraints takes exponentially small time!

- Good proofs satisfy ALL constraints!

- A “proof” of a false claim satisfies < 1% of constraints!

“..asingle reliable PC can monitor the operation pyqoyer submits solution
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

% STARKWARE

Integrity Through Math

A sudoku-like set of constraints is implied by the
statement proved, by and

OEEEn STARK
B L e

Claim: Starting @ state hash x, after 1,000,000

txs processed by program P, reached state hash y

Magic (aka Math)

- Sampling constraints takes exponentially small time!

- Good proofs satisfy ALL constraints!

- A “proof” of a false claim satisfies < 1% of constraints!

“..asingle reliable PC can monitor the operation pyqoyer submits solution
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

% STARKWARE

Integrity Through Math

A sudoku-like set of constraints is implied by the
statement proved, by and

Claim: Starting @ state hash x, after 1,000,000

txs processed by program P, reached state hash y

Magic (aka Math)

- Sampling constraints takes exponentially small time!

- Good proofs satisfy ALL constraints!

- A “proof” of a false claim satisfies < 1% of constraints!

“..asingle reliable PC can monitor the operation pyqoyer submits solution
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Integrity Through Math

PCP

Integrity* via Math
(impractical)

“..a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Checking Computations in Polylogarithmic Time

Lance Fortnow? Leonid A. Levin?®
% and Dept. Comp. Sci. Dept. Comp. Sci.
iv., Budapest Univ. of Chicago ® Boston University *

Mario Szegedy®

Dept. Comp. Sci.
Univ. of Chicago

Abstract. Motivated by Manuel Blum'’s concept of instance checking, we consider new, very fast and generic
mechanisms of checking computations. Our results exploit recent advances in interactive proof protocols
[LFKN92], [Sha92], and especially the MIP = P protocol from [BFLY1].

We show that every nondeterministic computational task S(x,y). defined as a polynomial time tion
between the instance x, representing the input and output combined, and the wilness y can be modified to a
task S’ such that: (i) the same instances remain accepted; (ii) each instance/witness pair becomes checkable
in polylogarithmic Monte Carlo time; and (iii) a witness satisfying S’ can be computed in polynomial time
from a witness satisfying S

Here the instance and the description of S have to be provided in error-correcting code (since the checker
will not notice slight changes). A modification of the M TP proof was required to achieve polynomial time
in (iii); the earlier technique yields N OUeglog M) time only.

This result becomes significant if software and hardware reliability are regarded as a considerable cost
factor. The polylogarithmic checker is the only part of the system that needs to be trusted; it can be hard
wired. (We use just one Checker for all problems!) The checker is tiny and so presumably can be optimized
od_off-line aft_a_mod.

In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with

/ possibly extremely powerful but unreliable software and untested hardware.

T anoer
transformed into a fransparent proof, i.c. a proof verifiable in polylogarithmic Monte Carlo time, assuming
the “theorem-candidate” is given in error-correcting code. In fact, for any ¢ > 0, we can transform any
proof P in time ||P||'*¢ into a transparent proof, verifiable in Monte Carlo time (log || P[|)©(1/<)

As a by-product, we obtain a binary error correcting code with very efficient error-correction. The
code transforms messages of length N into codewords of length < N1+¢; and for strings within 10% of a
valid codeword, it allows to recover any bit of the unique codeword within that distance in polylogarithmic
((log N)O(/)y time.

and che st_cost

TP TatIoH, W S HOW AT T P oIy HOT AT Ui, SV oA T A tie atieal proor tan be

Integrity Through Mat

Integrity* via Math
(mpractical)

“..a single reliable PC can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Checking Computations in Polylogarithmic Time

Lance Fortnow? Leonid A. Levin?®
Dept. Comp. Sci. Dept. Comp. Sci.
Univ. of Chicago ® Boston University *

Mario Szegedy®
Dept. Comp.

Univ. of Chicago

SIAM J P

.Con (© 2008 Society for Industrial and
Vol. 38, No. 2, pp. 551-607

T

Fast Reed-Solomon Interactive Oracle Proofs of Proximity

Eli Ben-Sasson* Iddo Bentovt Yinon Horesh* Michael Riabzev*

January 12, 2018

Scalable, transparent, and post-quantum secure com

integrity
Th
linear Eli Ben-Sasson® Iddo Bentov’ Yinon Horesh* Michael Riabzev* vith per-
fect zef March 6, 2018 mplexity
requirg ying such
PCP/]]
To Abstract [OPP) for
RS coc Human dignity demands that personal information. like medical and forensic data, be hidden fromthe st Fourier
~ "] public. But veils of secrecy designed to preserve privacy may also be abused to cover up lies and deceit
Transf] by institutions entrusted with Data, unjustly harming citizens and eroding trust in central institutions. wd that of
the ve Zero knowledge (ZK) proof systems are an ingenious cryptographic solution to this tension between ljin o bt
the ideals of personal privacy and institutional integrity. enforcing the latter in a way that does not ‘
not st compromise the former. Public trust demands transparency from ZK systems, meaning they be set up por.liup;\r
I with no reliance on any trusted party, and have no trapdoors that could be exploited by powerful parties to
provin, itness. For ZK systems to be used with Big Data, it is imperative that the public verification
3 g pe P
ly in data size. Transparent ZK proofs that can be verified exy y faster
st described in the 1990s but early constructions were impractical, and no ZK
system realized thus far in code (including that used by crypto-currencies like Zcash™) has achieved
both y and i ion speedup, for general
Here we report the first realization of a transparent ZK system (ZK-STARK) in which ve
scales exponentially faster than database size, and morcover, this exponential speedup in
is observed ly for gful and next. Our system uses
several recent advances on interactive oracle proofs (IOP), such as a “fast” (linear time) IOP system for
error correcting codes.

Integrity Through Mat

Integrity* via Math
(mpractical)

“...a| single reliable PC|can monitor the operation
of a herd of supercomputers with powerful but
unreliable software and untested hardware ...”

* Integrity means doing the right thing, even when no one is watching [C.S. Lewis]

Checking Computations in Polylogarithmic Time

26 Babai' Lance Fortnow? Leonid A. Levin?®
(Chicago © and Dept. Comp. Sci. Dept. Comp. Sci.
Univ. of Chicago ® Boston University *

Mario Szegedy®
Dept. Comp.

Univ. of Chicago

SIAM J. P

" (© 2008 Society for Industrial and
Vol. 38, No. 2, pp. 551-607

Fast Reed-Solomon Interactive Oracle Proofs of Proximity

Eli Ben-Sasson* Iddo Bentovt Yinon Horesh* Michael Riabzev*

January 12, 2018

Scalable, transparent, and post-quantum secure com

Th integrity
linear Eli Ben-Sasson® Iddo Bentov’ Yinon Horesh* Michael Riabzev* vith per-
fect zef March 6, 2018 mplexity
requirg ying such
PCP/]

To Abstract [OPP) for
RS coc Human dignity demands that personal information. like medical and forensic data, be hidden fromthe st Fourier

public. But veils of secrecy designed to preserve privacy may also be abused to cover up lies and deceit

Transf] by institutions entrusted with Data, unjustly harming citizens and eroding trust in central institutions. wd that of

the e Zero knowledge (ZK) proof systems are an ingenious cryptographic solution to this tension between Ji o bt
the ideals of personal privacy and institutional integrify. enforcing the latter in a way that does not :

not st compromise the former. Public trust demands transparency from ZK systems, meaning they be set up pcr-lm(*;u'

provin, car f2 itness. For ZK systems to be used with Big Data, it is imperative that the public verification

T

system realized thus far in code (including that used by crypto-currencies like Zcash™) has achieved

both y and ion speedup, for general

Here we report the first realization of a transparent ZK system (ZK-STARK) in which ve
scales exponentially faster than database size, and morcover, this exponential speedup in
is observed ly for and next. Our system uses

several recent advances on interactive oracle proofs (IOP), such as a “fast” (linear time) IOP system for

error correcting codes.

% STARKWARE

Arithmetization

% STARKWARE

Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Claim: Starting @ state hash x, after 1,000,000
txs processed by program P, reached state hash y

% STARKWARE

Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Pre-arithmetization
claim

Starting @ state hash x,
after 1,000,000 txs

processed by program
P, reached state hash y

% STARKWARE

Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Pre-arithmetization Reduction
claim

A e I B Produces 2
after 1,000,000 txs polynomials:

processed by program o(X,Y,T,W), R(X) and
P, reached state hash y degree bound d

Arithmetization

% STARKWARE

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Pre-arithmetization Reduction
claim

A e I B Produces 2
after 1,000,000 txs polynomials:

processed by program o(X,Y,T,W), R(X) and
P, reached state hash y degree bound d

Post-arithmetization
claim

I know 4 polynomials
of degree d - A(x), B(x),
C(x), D(X) - such that:

QX, A(X), B(X+1),
C(2*X))=D(X) * R(X)

% STARKWARE

Arithmetization

Arithmetization Converts (“reduces”) Computational Integrity problems to
problems about local relations between a bunch of polynomials

Pre-arithmetization Reduction Post-arithmetization Theorem
claim claim
Starting @ state hash x, [ENEeelNo P I know 4 polynomials IfA, B, C, D do not
after 1,000,000 txs polynomials: of degree d - A(x), B(x), satisfy THIS,
processed by program O(X,Y,T,W), R(X) and C(x), D(X) - such that:
P, reached state hash y degree bound d l
O, A(X), B(X+1), then nearly all x

C(2*X))=D(X) * R(X) expose Bob’s lie

% STARKWARE

Arithmetization

Assuming Theorem, we get a scalable proof system for Bob’s original claim:

1. Apply reduction, ask Bob to provide access to A,B,C,D of degree-d
2. Sample random x and accept Bob’s claim iff equality holds for this x

New problem: Force Bob to Post-arithmetization Theorem
(1) commit to degree d polynomials, then claim
(2) answer queries to the precommitted polys

I know 4 polynomials IfA, B, C, D do not

of degree d - A(x), B(x), satisfy THIS,
C(x), D(X) - such that:

¥
OX, A(X), B(X+1), then nearly all x

C(2*X))=D(X) * R(X) expose Bob’s lie

% STARKWARE

Arithmetization

Assuming Theorem, we get a scalable proof system for Bob’s original claim:

1. Apply reduction, ask Bob to provide access to A,B,C,D of degree-d
2. Sample random x and accept Bob’s claim iff equality holds for this x

Post-arithmetization Theorem
claim
I know 4 polynomials IfA, B, C, D do not
of degree d - A(x), B(x), satisfy THIS,
New problem: Force Bob to C(x), D(X) - such that:
(1) commit to degree d polynomials, then y
(2) answer queries to the precommitted polys (X, A(X), B(X+1), then nearly all x

C(2*X))=D(X) * R(X) expose Bob’s lie

% STARKWARE

AIR (Algebraic Intermediate Representation)

Computation:

A set of rules for how to sequentially evolve a state, starting with an input and
ending up with an output.

% STARKWARE

AIR (Algebraic Intermediate Representation)

python:

range (n) :

a, b =a + b, a

return a

% STARKWARE

AIR (Algebraic Intermediate Representation)

python: trace:

a,=1 | b,=0
a,=1 b,=1
range (n) :
a, b =a + b, a a2=2 b2=1
return a
a b

AIR (Algebraic Intermediate Representation)

python: trace: constraints:

a=1 | b=0 ag = 1

a,=1 |b,=1 bp =0

range (n) :
a, b =a+ b, a a,=2 | b,=1 a”i—|—1:a’i—|—bi

return a ; : bz'_|_1 = ay

a b an, = fib(n)

% STARKWARE

for 1 in range (n):

a, b =a + b, a

return a

constraints:

% STARKWARE

domain:

First row
First row
0<i<n
0<i<n

Row n

Rescue hash function

“ — Perm

out

% STARKWARE

% STARKWARE

Rescue hash function

W, — L L, . out

Wy — Roundo = Round1 = = Round8 = Round9 =

Round r

% STARKWARE
State Inter State
r r r+1
So,o S1,0 Sz,o 33,0 S4,0 S5,0 Se,o
So.1 Si4 Sy4 S3 1 S41 S51 S6.1
;\’/X) M + K2r+1 X3) M + K2r+2
So.2 . Si2 . Sy . S32 . Sa2 . S5.2 . S6.2
So,11 Sy 11 .11 S3.11 S4.11 S5.11 S6,11

Step 1 Step 2

Rescue AIR

3
51, = 50,i

% STARKWARE

Round r
State Inter State
r r r+1
SO S:L S3 S5 S6
X M K., [X° M
Step 1 Step 2

Rescue AIR
st i = 50,

So,i = > Mijs1;

(82 :M-81>

% STARKWARE

Round r
State, Inter, State_,
S, S, =8 Se S¢
X M K (XM,

Step 1

Step 2

Rescue AIR
st i = 50,

So,i = > Mijs1;

Ss3 = 8o + Kopiq

(82 :M-81>

% STARKWARE

Round r
State Inter State
r r r+1
SO S:L S3 S5 Sé
IX M K... X3 M
Step 1 Step 2

Rescue AIR
S1q = S0,

So,i = > Mijs1;

Ss3 = 8o + Kopiq

(82 :M-81>

% STARKWARE

Round r
State Inter State
r r r+1
S0 S:L S3 S5 S6
Q/X M K2r+1 X3 M 2r+2
Step 1 Step 2

Rescue AIR
S1q = S0,

So,i = > Mijs1;

s$3 = So + Kory1

(82 :M-81>

Stater

Roundr
Interr

% STARKWARE

X

K X3

Step 1

Step 2

Rescue AIR
S1q = S0,

So,i = > Mijs1;

s$3 = So + Kory1

I
S44 = 535
Sy — M - S4

S¢ = S5 + Koryo

(82 :M-81>

Stater

Roundr
Interr

% STARKWARE

X

X3

Step 1

Step 2

% STARKWARE

Rescue AIR

Round r Round r+1
State, Inter, State ., Inter ., State ,
SO Sl S2 S3 S4 S5 s6 S7 S8 S9 S:LO SiLl S12
XM Ky (X Ml K [3X] (M| K, X Ml K
Step 1 Step 2 Step 1 Step 2

(>2; Mijsg ;) + Korvoi = s65 = (3; (M~ 1)ij(s05 — Kortsj))’

Wishlist for crypto primitives

% STARKWARE

AIR Parameters: t, w, F, d, s, e

e Execution trace size: t rows, w columns
o Fib(n): t=n, w=2
o Rescue: t= #rounds, w = |state|

% STARKWARE

AIR Parameters: t, w, F, d, s, e

e Execution trace size: t rows, w columns
o Fib(n): t=n, w=2
o Rescue: t= #rounds, w = |state|

e Trace entries in field F. Which field?
o Any field! [BCKL22] (FFT-friendly better)

e Constraints

o Maximal degree: d
o # constraints: s
o Enforcement domain complexity: e

% STARKWARE

AIR Parameters: t, w, F, d, s, e

e Execution trace size: t rows, w columns
o Fib(n): t=n, w=2
o Rescue: t= #rounds, w = |state|

e Trace entries in field F. Which field?
o Any field! [BCKL22] (FFT-friendly better)

e Constraints

o Maximal degree: d
o # constraints: s
o Enforcement domain complexity: e

% STARKWARE

AIR Parameters: t, w, F, d, s, e

e Execution trace size: t rows, w columns Wish-list for Primitive P:
o Fib(n): t=n, w=2 1. Minimizet x w, |F|, d (also s, e)

o Rescuc?: t= #roqnds, W = |staFe| - 2. Minimize CPU time of computing P
e Trace entries in field F. Which field- 3. Make it field agnostic, and safe!

o Any field! [BCKL22] (FFT-friendly better)
e Constraints

o Maximal degree: d
o # constraints: s
o Enforcement domain complexity: e

% STARKWARE

AIR Parameters: t, w, F, d, s, e

e Execution trace size: t rows, w columns Wish-list for Primitive P:
o Fib(n): t=n, w=2 1. Minimizet x w, |F|, d (also s, e)

o Rescuc?: t= #roqnds, W = |staFe| - 2. Minimize CPU time of computing P
e Trace entries in field F. Which field- 3. Make it field agnostic, and safe!

o Any field! [BCKL22] (FFT-friendly better)

° Constralhts ethSTARK (Rescue):
o Maximal c!egr.ee. d 1.txw =120, [og |F| ~ 62, d=3
o # constraints: s . .
o Enforcement domain complexity: e 2.CPU time large’ sepin large F (cube root!)

3. Relatively safe, AES-like (say the experts)

Poseidon in Starknet/Ex:

1.txw =226, log |F|~252, d=2

2. CPU time better than Rescue (100 microsec)
3. Relatively safe (though less than Rescue)

% STARKWARE

AIR Parameters: t, w, F, d, s, e

Keccak: Wish-list for Primitive P:

1.txw=70,000-90,000, log |F| ~ 252, d=2 1. Minimizet x w, |F|, d (also s, e)

2. CPU time amazing (1 microsecond) 2. Minimize CPU time of computing P

3. Very safe 3. Make it field agnostic, and safe!
ethSTARK (Rescue):

1.txw=120, log |F| ~ 62, d=3
2. CPU time large, esp in large F (cube root!)
3. Relatively safe, AES-like (say the experts)

Poseidon in Starknet/Ex:

1.txw =226, log |F|~252, d=2

2. CPU time better than Rescue (100 microsec)
3. Relatively safe (though less than Rescue)

STARK-friendly
crypto primitives
wish-list

April 2023

< STARKWARE

/[\ >
O\ e
P

