Lookup Arguments and Symmetric Crypto

Dmitry Khovratovich (Ethereum Foundation)

Ethereum Foundation

- Non-profit organization doing research on Ethereum-related topics
- Cryptography, consensus, network security
- EF Crypto Group: 10 cryptographers https://crypto.ethereum.org/team
- Zero-knowledge, VDFs, data availability, PQ designs, hash functions, secret leader election, MPC, lattice-based crypto...
- In symmetric crypto:
- Design
- Cryptanalysis
- Bounties
- Collaboration with other divisions and research groups outside ETH
- Interns are welcome

Zero knowledge...

and verifiable computation

Zero-knowledge proofs and verifiable computation

You know that something specific has occurred...

Zero-knowledge proofs and verifiable computation

You know that something specific has occurred...
...even if you don't know what exactly.

Verifiable computation

Native computation

$$
y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Prove that you compute:

- Variables $y, x_{1}, x_{2}, \ldots, x_{n}$
- Polynomial equations $F_{i}\left(y, x_{1}, x_{2}, \ldots, x_{n}\right)$
which altogether imply $\quad y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Verifiable computation

Native	Equation
$y=x^{2}$	$x^{2}-y=0$
$y=\sqrt{x} ;$	$y^{2}-x=0$
$y \leftarrow x^{(4 p-3) / 5} \bmod p$	$y^{5}=x$

Verifiable computation

Progress in ZKSnarks. Computation of length N

- 1990: PCP theorem: every NP statement can be checked in logarithmic time
- 2000s: proof for computation of length N can be composed in subquadratic time

Verifiable computation

Progress in ZKSnarks. Computation of length N

- Pinocchio (2012): Prover O(N), const size proof
- with trusted setup
- Verification needs a few pairings
- Zcash (2014) and SHA-256
- Private cryptocurrency
- To spend one proves a path in the SHA-256 Merkle tree
- Proof for 32 SHA- 256 calls took 42 seconds!
- Groth16 (2016): even smaller proof and faster prover

ZCash Story

How ZCash works:

- All my coins are in a Merkle tree, with leafs being commitment to a secret.
- To spend a coin anonymously I have to prove there is a leaf whose secret I know.
- Original tree was built on SHA-256.

ZCash Story

How ZCash works:

- All my coins are in a Merkle tree, with leafs being commitment to a secret.
- To spend a coin anonymously I have to prove there is a leaf whose secret I know.
- Original tree was built on SHA-256.
- A proof took >40 seconds to generate.

Verifiable computation

Progress in ZKSnarks. Computation of length N

- Pinocchio (2012): Prover O(N), const size proof
- Zcash (2014) and SHA-256
- Groth16 (2016): even smaller proof and faster prover
- Bulletproofs (2016): $\mathrm{O}(\mathrm{N})$ prover and verifier, no trusted setup needed
- STARKs (2018): polyLog-time verifier, no trusted setup
- Plonk (2019): setup once and for all
- Recursive schemes:
- Aurora
- Nova
- Halo $1 / 2$

Arithmetic circuits

From $x 86$ to finite field arithmetic

- All arithmetic operations done modulo p
- Bitwise operations are nonexistent

Inputs

Possible fields:

- Scalar field (size of prime order group) of elliptic curves BN254, BLS12-381; all about 2^{254} in size.

Supported operations:

- Addition
- Multiplication by variable or by constant
- Iterative computations are better than vonNeumann architecture

Onedoes inotsimuly

Problem

Mate it asiand secure

Modern zero-knowledge proof systems

How Plonk works

- Consider a deterministic arithmetic algorithm

$$
\begin{aligned}
& x_{j} \leftarrow a_{j} x_{i_{j, 1}} x_{i_{j, 2}}+b_{j} x_{i j, 3}+c_{j} x_{i_{j, 4}}
\end{aligned}
$$

How Plonk works

- Consider a deterministic arithmetic aldorithm
- Step j:
$x_{j} \leftarrow a_{j} x_{i_{j, 1}} x_{i_{j, 2}}+b_{j} x_{i_{j, 3}}+c_{j} x_{i_{j, 4}}$
- Encode as a table
- Reinterpret in polynomials

		SteplColumn	- 1	2	3	4	5	6	7	8	9
	1		x_{1}	$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{2,4}$	a_{1}	b_{1}	${ }_{1}$	d_{1}
	2										
	j		x_{j}	$x_{j, 1}$	$x_{j 2}$	$x_{j, 3}$	$x_{j, 4}$	a_{j}	b_{j}	c_{j}	d_{j}
	${ }^{N}$										
Index)Pooly	$f(x)$	$f_{1}(x)$	$f_{2}(x)$	$f_{3}(x)$	$f_{4}(x)$		(x)	$f_{6}(x)$		$f_{f(x)}$	$f_{d}(x)$
ω	x_{1}	$x_{1,1}$	$x_{1,2}$	${ }_{1,3}$	${ }_{x_{2,4}}$	a_{1}		b_{1}	${ }_{1}$	a_{1}	d_{1}
ω^{2}											
ω^{j}	x_{j}	$x_{j, 1}$	$x_{j, 2}$	${ }_{\text {j }}^{j, 3}$	${ }^{\text {aja }}$	a_{j}		b_{j}	c_{j}	${ }_{j}$	${ }^{d_{j}}$
ω^{N}											

How Plonk works

- Consider a deterministic arithmetic algorithm
- Step j:
$x_{j} \leftarrow a_{j} x_{i_{j, 1}} x_{i_{j, 2}}+b_{j} x_{i, 3}+c_{j} x_{i_{j, 4}}$
- Encode as a table
- Reinterpret in polynomials

Index \backslash Poly	$f(x)$	$f_{1}(x)$	$f_{2}(x)$	$f_{3}(x)$	$f_{4}(x)$	$f_{a}(x)$	$f_{b}(x)$	$f_{c}(x)$	$f_{d}(x)$
ω	x_{1}	$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{2,4}$	a_{1}	b_{1}	c_{1}	d_{1}
ω^{2}									
ω^{j}	x_{j}	$x_{j, 1}$	$x_{j, 2}$	$x_{j, 3}$	$x_{j, 4}$	a_{j}	b_{j}	c_{j}	d_{j}

- Algorithm is correct iff

$$
f(x) \equiv f_{a}(x) f_{1}(x) f_{2}(x)+f_{b}(x) f_{3}(x)+f_{c}(x) f_{4}(x)
$$

- Such equations are easy to check. Costs to create a proof are $\sim 9 \mathrm{~N}$ group operations

How Plonk works

- Consider a deterministic arithmetic algorithm

$$
x_{j} \leftarrow a_{j} x_{i_{j, 1}} x_{i_{j, 2}}+b_{j} x_{i_{j, 3}}+c_{j} x_{i_{j, 4}}
$$

- Encode as a table
- Reinterpret in polynomials

mexpropy	$f\left({ }^{(x)}\right.$	$f(x)$	$f_{2}(x)$	$f_{\text {f }}($ ()	$f(0)$			(a)	$f_{\text {f }}($ ()	$f_{\text {d }}\left(\frac{1}{}\right.$
${ }^{*}$	x_{1}	${ }_{4,1}$	${ }_{1}{ }_{12}$	${ }_{x}^{1,3}$	${ }_{23}$	${ }^{\text {a }}$			a	${ }_{1}$
$\omega^{\text {a }}$										
ω	x_{j}	x_{4}	$x, 2$	${ }_{x, \beta}$	$x_{3,4}$	as		b	9	${ }_{j}$

- Algorithm is correct iff

$$
f(x) \equiv f_{a}(x) f_{1}(x) f_{2}(x)+f_{b}(x) f_{3}(x)+f_{c}(x) f_{4}(x)
$$

- Such equations are easy to check.
- Commit to all polynomials
- Open all at random point
- Check equation at this point.

$$
\begin{array}{r}
C, C_{1}, C_{2}, C_{3}, C_{4} \leftarrow \operatorname{Commit}\left(f, f_{1}, f_{2}, f_{3}, f_{4}\right) \\
\lambda \leftarrow H\left(C, C_{1}, C_{2}, C_{3}, C_{4}\right) \\
\pi \leftarrow \operatorname{Proof}\left(y, y_{1}, y_{2}, y_{3}, y_{4}: \text { values of } f, f_{1}, f_{2}, f_{3}, f_{4} \text { at } \lambda\right)
\end{array}
$$

Lookup Argument

Lookup Argument

- Original table T
- Witness
- Claim $\forall x f_{1}(x) \in T$

Cached quotients lookup [EFG23]

- Rational function equation (1)

$$
\forall x \in S: f(x) \in T \text { iff } \exists\left\{m_{t}\right\}: \sum_{t \in T} \frac{m_{t}}{X+t} \equiv \sum_{x \in S} \frac{1}{X+f(x)}
$$

- Example

$$
\{1,0,1\} \subseteq\{0,1,2,3\} \Leftrightarrow \frac{1}{X}+\frac{2}{X+1}+\frac{0}{X+2}+\frac{0}{X+3} \equiv \frac{1}{X+1}+\frac{1}{X}+\frac{1}{X+1}
$$

Cached quotients lookup [EFG23]

- Rational function equation (1)

$$
\forall x \in S: f(x) \in T \text { iff } \exists\left\{m_{t}\right\}: \sum_{t \in T} \frac{m_{t}}{X+t} \equiv \sum_{x \in S} \frac{1}{X+f(x)}
$$

- Example

$$
\{1,0,1\} \subseteq\{0,1,2,3\} \Leftrightarrow \frac{1}{X}+\frac{2}{X+1}+\frac{0}{X+2}+\frac{0}{X+3} \equiv \frac{1}{X+1}+\frac{1}{X}+\frac{1}{X+1}
$$

- Poly equation is derived from (1)
- Costs $8|S|$ group operations (assuming |T| log |T| preprocessing)

Cost summary

- Arithmetic operations
- If all gates are the same $x_{j} \leftarrow a_{j} x_{i j, x} x_{i j 2}+b_{j} x_{i j, 3}+c_{j} x_{i j, 4}$ then N gates cost 9 N
- Custom gates of degree D of E variables cost ~D*E per gate
- Lookups
- K lookups from table of size W cost 8K (assuming W log W preprocessing)

Symmetric design

SHA-256 (per 512 bits)

- As arithmetic circuit: 26000 constraints
- With lookups: 1700 gates (lookups of size 2^{10} and polys of degree 6)

AES-128:

- With lookups: 2000 gates per 128 bits

Poseidon:

- 280 gates per 512 bits
- 1/100 of SHA-256 speed on x86

Reinforced Concrete:

- 300 gates with lookups per 512 bits
- $1 / 10$ of SHA-256 speed on x86

Primitives for verifiable computation

Features

- Small arithmetic circuits
- Reasonably fast on x86
- Scalability
- Security

What security means

- Only real attacks: collision/preimage/key recovery
- Resistance to statistical attacks
- Resistance to algebraic attacks: high overall degree, many high-degree equations.
- Getting high-degree:
- Exponentiation to high degree (Rescue)
- Many rounds (Poseidon)
- Both is expensive

Advantages of lookups

What Sboxes/lookups provide

- High algebraic degree
- So fewer rounds
- So faster

Reinforced Concrete

- Few rounds with simple and fast algebraic functions
- One lookup layer (BARS)

Field mismatch

The problem:

- Lookup is done on the smaller domain
- Field is not a product of subdomains
- What happens at the last step?

Field mismatch

The problem:

- Lookup on small domain
- Field is bigger

Example overflow:

Small fields

Goldilocks $\quad p=2^{64}-2^{32}+1$
Multiplication mod p is fast on $x 86$: regular multiplication and a few shifts
Field elements from 0 to $\mathrm{p}-1=0 x F F F F F F F F 00000000$

Small fields

Goldilocks $\quad p=2^{64}-2^{32}+1$
Multiplication mod p is fast on x86: regular multiplication and a few shifts
Field elements from 0 to $\mathrm{p}-1$

$p-1$	$\mathbf{0 x F F F F}$	$\mathbf{0 x F F F F}$	$\mathbf{0 x 0 0 0 0}$	$\mathbf{0 x 0 0 0 0}$
Decomposition	a_{1}	a_{2}	a_{3}	a_{4}
S-box	$S\left(a_{1}\right)$	$S\left(a_{2}\right)$	$S\left(a_{3}\right)$	$S\left(a_{4}\right)$

Small fields

Goldilocks $\quad p=2^{64}-2^{32}+1$
Multiplication mod p is fast on x86: regular multiplication and a few shifts
Field elements from 0 to $\mathrm{p}-1$

$p-1$	$\mathbf{0 x F F F F}$	$\mathbf{0 x F F F F}$	$\mathbf{0 x 0 0 0 0}$	$\mathbf{0 x 0 0 0 0}$
Decomposition	a_{1}	a_{2}	a_{3}	a_{4}
S-box	$S\left(a_{1}\right)$	$S\left(a_{2}\right)$	$S\left(a_{3}\right)$	$S\left(a_{4}\right)$

Exercise: if S has fixed points 0 and $0 x F F F F$, overflow does not happen, i.e.

$$
S\left(a_{1}\right) 2^{48}+S\left(a_{2}\right) 2^{32}+S\left(a_{3}\right) 2^{16}+S\left(a_{4}\right)<p
$$

Designs: Tip5, RC64 (tomorrow at permutation-based crypto).

Sboxes in a less nice field

$$
p=769=0 \times 301
$$

Can't do:

$$
x_{1}, x_{2}, x_{3} \in Z_{16} ; \quad x_{i} \rightarrow f\left(x_{i}\right)
$$

Overflows for many cases and almost all f.

Solution

				Native	Circuit
C1	C2	С3		$\mathrm{p}=769$	$p=30 \times 25+19$
0	$a_{0}<19$	0			
1	$a_{1}<19$	0		Input x	Input x
...	...	0	Decomposition	$x_{2}=x \bmod 25$	Variables x_{1}, x_{2}
18	$a_{18}<19$	0			
19	19	0			Equations $\quad x=25 x_{1}+x_{2}$
...	...	0	Sbox (left)		Lookups $\left(x_{1}, y_{1}, *\right) \in T$
24	24	0		$y_{i} \leftarrow S\left(x_{i}\right)$	$\left(x_{2}, y_{2}, 0\right) \in T$
25	25	1			
26	26	1	Composition	$y=25 y_{1}+y_{2}$	Variables $\quad y_{1}, y_{2}$
\ldots	...	1			Equations $\quad y=25 y_{1}+y_{2}$
29	29	1			

General rule

$$
p-1<s_{1} s_{2} \cdots s_{l}
$$

Embed

$$
\begin{array}{r}
x \in \mathbb{F}_{p} \rightarrow\left(x_{1}, x_{2}, \ldots, x_{l}\right) \\
x=x_{1} \cdot s_{2} s_{3} \cdots s_{l}+x_{2}\left(s_{3} s_{4} \cdots s_{l}\right)+\ldots x_{l-1} s_{l}+x_{l}
\end{array}
$$

How to guarantee no overflow?

General rule

$$
p-1<s_{1} s_{2} \cdots s_{l}
$$

Embed

$$
\begin{array}{r}
x \in \mathbb{F}_{p} \rightarrow\left(x_{1}, x_{2}, \ldots, x_{l}\right) \\
x=x_{1} \cdot s_{2} s_{3} \cdots s_{l}+x_{2}\left(s_{3} s_{4} \cdots s_{l}\right)+\ldots x_{l-1} s_{l}+x_{l}
\end{array}
$$

How to guarantee no overflow?

$$
y=S\left(x_{1}\right) \cdot s_{2} s_{3} \cdots s_{l}+S\left(x_{2}\right)\left(s_{3} s_{4} \cdots s_{l}\right)+\ldots S\left(x_{l-1}\right) s_{l}+S\left(x_{l}\right)
$$

We have $\mathrm{y}<\mathrm{p}$ if $\quad\left(x_{i} \leq a_{i}\right) \Longrightarrow S\left(x_{i}\right) \leq a_{i}$ where

$$
p-1=a_{1} \cdot s_{2} s_{3} \cdots s_{l}+a_{2}\left(s_{3} s_{4} \cdots s_{l}\right)+\ldots a_{l-1} s_{l}+a_{l}
$$

Native and circuits

2 parts:

- Native computation
- Decompose
- Apply sboxes
- Compose
- Circuit proof
- Proof of decomposition
- Proof of sboxes
- Proof of composition

Native	Circuit
$\mathrm{p}=769$	$p=30 \times 25+19$
Input X	Input X
Decomposition $\quad \begin{array}{r}x_{2}=x \bmod 25 \\ x_{1}=\left(x-x_{2}\right) / 25\end{array}$	Variables x_{1}, x_{2}
$x=25 x_{1}+x_{2}$	Equations
Sbox $\quad y_{i} \leftarrow S\left(x_{i}\right)$	Lookups $\quad \begin{aligned} & \left(x_{1}, y_{1}, *\right) \in T \\ & \left(x_{2}, y_{2}, 0\right) \in T\end{aligned}$
Composition	Variables $\quad y_{1}, y_{2}$
$y=25 y_{1}+y_{2}$	Equations

Sbox design

2 parts:

- Native computation
- Circuit proof

Circuit proof vs native:

- Completeness: every valid computation should be represented by circuit witness
- Soundness: every valid witness implies a valid computation

Soundness and completeness

Inversion: if $x!=0$ then $y=1 / x$

$$
\text { else } y=0
$$

In circuit

$$
\begin{aligned}
x y & =z \\
z(1-z) & =0 \\
(1-z)(x-y) & =0
\end{aligned}
$$

Sound?

Complete?

Questions?

