Lookup Arguments and
Symmetric Crypto

Dmitry Khovratovich (Ethereum Foundation)

STAP’23 (22 April 2023, Lyon)

Ethereum Foundation

e Non-profit organization doing research on Ethereum-related topics
e Cryptography, consensus, network security

e EF Crypto Group: 10 cryptographers https://crypto.ethereum.org/team
o Zero-knowledge, VDFs, data availability, PQ designs, hash functions, secret leader election,
MPC, lattice-based crypto...
o In symmetric crypto:
Design
Cryptanalysis
Bounties
Collaboration with other divisions and research groups outside ETH
Interns are welcome

https://crypto.ethereum.org/team

Zero knowledge...

and verifiable computation

Zero-knowledge proofs and verifiable computation

You know that something specific has occurred...

Zero-knowledge proofs and verifiable computation

You know that something specific has occurred...

...even if you don’t know what exactly.

Verifiable computation

Native computation
Y = f($17$2a°"7wn)
Prove that you compute:

e Variables Us By XZyoe s 5 Tn

e Polynomial equations F;(y, z, o, .

555)

which altogether imply y = f(z1,22,...,2,)

Verifiable computation

Native Equation
Y= 3 22 —y=0
3=/ v -z =0
y — z*3/5 mod p y =z

Verifiable computation

Progress in ZKSnarks. Computation of length N

e 1990: PCP theorem: every NP statement can be checked in logarithmic time
e 2000s: proof for computation of length N can be composed in subquadratic
time

Verifiable computation

Progress in ZKSnarks. Computation of length N

e Pinocchio (2012): Prover O(N), const size proof
o with trusted setup
o \Verification needs a few pairings

e Zcash (2014) and SHA-256

o Private cryptocurrency
o To spend one proves a path in the SHA-256 Merkle tree
o Proof for 32 SHA-256 calls took 42 seconds!

e Groth16 (2016): even smaller proof and faster prover

ZCash Story

How ZCash works:

e All my coins are in a Merkle tree, with leafs

being commitment to a secret.

e To spend a coin anonymously | have to

prove there is a leaf whose secret | know.

e COiriginal tree was built on SHA-256.

vvvvv

ssssss

ZCash Story

How ZCash works:

All my coins are in a Merkle tree, with leafs

being commitment to a secret.

To spend a coin anonymously | have to

prove there is a leaf whose secret | know.
Original tree was built on SHA-256.

A proof took >40 seconds to generate.

Verifiable computation

Progress in ZKSnarks. Computation of length N

Pinocchio (2012): Prover O(N), const size proof

Zcash (2014) and SHA-256

Groth16 (2016): even smaller proof and faster prover

Bulletproofs (2016): O(N) prover and verifier, no trusted setup needed
STARKSs (2018): polyLog-time verifier, no trusted setup

Plonk (2019): setup once and for all

Recursive schemes:
o Aurora

o Nova
o Halo1/2

Arithmetic circuits Inputs

G G G (¢4

From x86 to finite field arithmetic

C
e All arithmetic operations done modulo p i

e Bitwise operations are nonexistent om;fjt

Possible fields:

e Scalar field (size of prime order group) of elliptic curves BN254, BLS12-381; all
about 22°4 in size.

Supported operations:

e Addition
e Multiplication by variable or by constant
e lterative computations are better than vonNeumann architecture

e

One does not simply.”
Problem > L
‘ -

A -
v\
[~

— - N
Make it fast and secure

x86 speed vs. proof time (R1CS)

1000

Rescue: -Prime
[]
Hash ZK time x86 time Cryptanalysis A”e.”e‘ﬁ‘mn
invested 100 L Pedersen
F-MIMC
Poseidon i
BLAKE2 100 1 10)
8 10
Poseidon 1 100 1)
Rescue 1 1000 1 ;
SHA-256
Pedersen 4 500 50 B‘aiezsa
0.1
10 100 1000 10000

R1CS

Modern zero-knowledge proof systems

How Plonk works

e Consider a deterministic arithmetic algorithm
o Stepj: 1

Tj{— QjT;. Ti., + b]-ar:ij’3 + ¢jz;,,

3

\

 «——— ax.X.+bx.+cXx
Xj alx”x]2 b]x’3 clx]4

How Plonk works

Consider a deterministic arithmetic algorithm

(@)

Encode as a table
Reinterpret in polynomials

Step |:

ZB]' <— aja:ij’la:ijg + bja:,-j_’:; + CjwijA

Step\Column 1 2

Index\Poly f(z)

w I

w?

w’ Zj
N

1 T T1,1
2

J Tj i
N

fi(z) fo(z) fa(=)

11 1,2 1,3

3

4 5 6 7 8

T12 T13 T4 a1 by

faz) fu(z) fo(z) fe(2)

Tay ay by c

9

d;

fa()
dy

How Plonk works

e Consider a deterministic arithmetic algorithm
o Stepj: Tj <= Q5T Tij, + b + ¢y,

e Encode as a table

e Reinterpret in polynomials

Index\Poly f(z) fi(z) fa(x) fa(x) fu(z) (=) fo(z) fe(z) fa(@)

z T11 T19 z13 To4 ay by c dy

E

e Algorithm is correct iff
f(@) = fa(z) f1(z) fo(z) + fo(2) f3(2) + felz) fa(z)

e Such equations are easy to check. Costs to create a proof are ~9N group
operations

How Plonk works

e Consider a deterministic arithmetic algorithm

e Encode as a table

e Reinterpret in polynomials

e Algorithm is correct iff

117] <— aja:,-jvla:iﬁ + bjxm + ijij,‘;

Index\Poly f(z) fi(z) fa(x) fs(z) fulz) fu(@) fo(z) fe(z) fa(@)
w z1 Z11 T12 T13 T24 a; by c d

w?

o z; Tl Ty T3 Tjg @ b ¢ d;

f(z) = fo(2) f1(2) fa(2) + f3(2) f3(2) + fe() fa(2)

e Such equations are easy to check.

o Commit to all polynomials
o Open all at random point
o Check equation at this point.

C, C1, Cq, C3,Cy < Commit(f, f1, fo, f3, f4)
A = H(C7 C17027C3)C4)

T < P”'OOf(y,yl,yz,yg,ZM : values 0ff7 f1,f2af37f4 at /\)

Lookup Argument

Lookup Argument

e Original table T
e Witness

e Claim Vz fi(z) €T

Index\Poly f(z) | fi(z) | fo(z) fa(z) fa(z) fa(@) folz) fe() fa(@)
Table T & o T11 Z1 z13 T4 a; by c1 dy

Wl z; Tj1 Tj2 Tj3 Tj4 a; b; Cj d;
25

UJN

ag

Cached quotients lookup [EFG23]

e Rational function equation (1)

1
Ve € S: f(x) €T iff I{m;}:
x 1 m ;X-i—t E;Xqu(:zz)

e Example

{101}C{0123}@i+ 2 + L 9 .1 L :
PRI = N X " X+1 T X+2 X33 X+1 X T X+1

Cached quotients lookup [EFG23]

Rational function equation (1)

VeeS: f(x) eT iff I{m,}: Zx+t >

Example

{1,0,1} € {0,1,2,3} &

teT

=
X

1
24X+ f(a)
9 0 0 1
X111 X+2 " X13- X+1

Poly equation is derived from (1)

Costs 8|S| group operations (assuming |T| log |T| preprocessing)

Table T

Index\Poly f(z)

w

w?

w

wN

fi(z)

Z 11

<) L4,

fo(=) fa(=)

T12 1,3

fa(@)

ay

1

7—{-

fe(z)

C1

X+1

fa(z)

1

Cost summary

e Arithmetic operations
o If all gates are the same zj a;@i;, @i, + by, + oz, then N gates cost 9N

e Custom gates of degree D of E variables cost ~D*E per gate

e Lookups
o K lookups from table of size W cost 8K (assuming W log W preprocessing)

Symmetric design

SHA-256 (per 512 bits)

e As arithmetic circuit: 26000 constraints
e With lookups: 1700 gates (lookups of size 2'° and polys of degree 6)

AES-128:
e \With lookups: 2000 gates per 128 bits
Poseidon:

e 280 gates per 512 bits
e 1/100 of SHA-256 speed on x86

Reinforced Concrete:

e 300 gates with lookups per 512 bits
e 1/10 of SHA-256 speed on x86

Primitives for verifiable computation

Features

Small arithmetic circuits
Reasonably fast on x86
Scalability

Security

What security means

e Only real attacks: collision/preimage/key
recovery
e Resistance to statistical attacks
e Resistance to algebraic attacks: high overall
degree, many high-degree equations.
e Getting high-degree:
o Exponentiation to high degree (Rescue)

o Many rounds (Poseidon)
o Both is expensive

Advantages of lookups

What Sboxes/lookups provide

e High algebraic degree

e So fewer rounds
e So faster

it

Reinforced Concrete

Few rounds with simple and fast algebraic functions
One lookup layer (BARS)

SIMOOS-PUNOGOY]

-OTRIOS[Y

=
=
J
=y

2INDVS

Field mismatch

The problem:

e Lookup is done on the smaller domain

(S e
e Fieldis not a product of subdomains
e \What happens at the last step? C% C%D %) C% 8?

Field mismatch

The problem:

e Lookup on small domain
e Field is bigger

Example overflow:

Prime p = 0XABCD1

OX9AFFF

Small fields

Goldilocks p=2%-22+1

Multiplication mod p is fast on x86: regular multiplication and a few shifts

Field elements from O to p-1=0xFFFFFFFFO0000000

Small fields

Goldilocks p=2%-22+1

Multiplication mod p is fast on x86: regular multiplication and a few shifts

Field elements from O to p-1

p—1 OxFFFF OxFFFF 0x0000 0x0000
Decomposition aq as as a4

S-box S(al) S(G,Q) S(ag) S(a4)

Small fields

Goldilocks p=2%-22+1
Multiplication mod p is fast on x86: regular multiplication and a few shifts

Field elements from O to p-1

p—1 OxFFFF OxFFFF 0x0000 0x0000
Decomposition aq as as a4
S-box S(al) S(ag) S(ag) S(a4)

Exercise: if S has fixed points 0 and OxFFFF, overflow does not happen, i.e.

S(a1)2*® + S(a2)2% + S(a3)2"® + S(as) < p

Designs: Tip5, RC64 (tomorrow at permutation-based crypto).

Sboxes in a less nice field

p =769 = 0x301

Can't do:
X1,X0,X3 € Z16, Xi — F(X;).

Overflows for many cases and almost all f.

Cc1

18
19

24

25

26

29

Solution

c2
ap < 19

a; <19

ais < 19

19

24

25

26

29

Native Circuit
p=769 p = 30x25+19
Input x Input x
Decompositon ~_ ** “;‘2’;1/32 Variables 1,72
Equations Z = 25z + 9
Sbox (left) yi — S(z:) Lookups (z1,y1,%) €T

(:1!2, Y2, 0) eT

Composition y = 25y + Y2

Variables Y42

Equations ¥ = 29Y1 + Y2

General rule

p—1<s18y---8
Embed

xz € Fp — (z1,%2,. ..,%1)
T =1 -8983---8+ Ta(s384---81) +... 2151+ T

How to guarantee no overflow?

General rule

p—1<s18y---58
Embed

xz € Fp — (z1,%2,. ..,%1)

T =1 -85983---81+ Ta(8384---81) +... ;1181 + Xy
How to guarantee no overflow?
Y= S(a:l) - 8983 ---8] + S(:EQ)(3384 <. Sl) + ... S(lL‘l_l)Sl + S(:Bl)

We have y<p if @i<a) = S@)<a where

p—1=a;-s283---5+as(s3sq4---8)) +...q1_151 + q

Native and circuits

2 parts:

e Native computation
o Decompose
o Apply sboxes
o Compose

e Circuit proof

o Proof of decomposition

o Proof of sboxes
o Proof of composition

Native Circuit
p=769 p = 30x25+19
Input x Input x
Decomposition T Variables 1,22
T = 25z + @ Equations
- = S(e) RS e
Composition Variables Y, 2

Yy =251 + o

Equations

Sbox design

2 parts:

e Native computation
e Circuit proof

Circuit proof vs native:

e Completeness: every valid computation should be represented by circuit
witness
e Soundness: every valid witness implies a valid computation

Soundness and completeness

Inversion: if x!=0 then y=1/x

else y=0
In circuit
TY=2=2
z2(1—2)=0
(1-2)(z—y)=0
Sound?

Complete?

Questions?

