
Lookup Arguments and
Symmetric Crypto

Dmitry Khovratovich (Ethereum Foundation)

STAP’23 (22 April 2023, Lyon)

Ethereum Foundation

● Non-profit organization doing research on Ethereum-related topics
● Cryptography, consensus, network security
● EF Crypto Group: 10 cryptographers https://crypto.ethereum.org/team

○ Zero-knowledge, VDFs, data availability, PQ designs, hash functions, secret leader election,
MPC, lattice-based crypto…

○ In symmetric crypto:
■ Design
■ Cryptanalysis
■ Bounties
■ Collaboration with other divisions and research groups outside ETH
■ Interns are welcome

https://crypto.ethereum.org/team

Zero knowledge…

and verifiable computation

Zero-knowledge proofs and verifiable computation

You know that something specific has occurred…

Zero-knowledge proofs and verifiable computation

You know that something specific has occurred…

…even if you don’t know what exactly.

Verifiable computation

Native computation

Prove that you compute:

● Variables
● Polynomial equations

which altogether imply

Verifiable computation

Native Equation

Verifiable computation

Progress in ZKSnarks. Computation of length N

● 1990: PCP theorem: every NP statement can be checked in logarithmic time
● 2000s: proof for computation of length N can be composed in subquadratic

time

Verifiable computation

Progress in ZKSnarks. Computation of length N

● Pinocchio (2012): Prover O(N), const size proof
○ with trusted setup
○ Verification needs a few pairings

● Zcash (2014) and SHA-256
○ Private cryptocurrency
○ To spend one proves a path in the SHA-256 Merkle tree
○ Proof for 32 SHA-256 calls took 42 seconds!

● Groth16 (2016): even smaller proof and faster prover

ZCash Story

How ZCash works:

● All my coins are in a Merkle tree, with leafs

being commitment to a secret.

● To spend a coin anonymously I have to

prove there is a leaf whose secret I know.

● Original tree was built on SHA-256.

value

secret H

H

H

H

H

ZCash Story

How ZCash works:

● All my coins are in a Merkle tree, with leafs

being commitment to a secret.

● To spend a coin anonymously I have to

prove there is a leaf whose secret I know.

● Original tree was built on SHA-256.

● A proof took >40 seconds to generate.

Verifiable computation

Progress in ZKSnarks. Computation of length N

● Pinocchio (2012): Prover O(N), const size proof
● Zcash (2014) and SHA-256
● Groth16 (2016): even smaller proof and faster prover
● Bulletproofs (2016): O(N) prover and verifier, no trusted setup needed
● STARKs (2018): polyLog-time verifier, no trusted setup
● Plonk (2019): setup once and for all
● Recursive schemes:

○ Aurora
○ Nova
○ Halo 1/2

Arithmetic circuits

From x86 to finite field arithmetic

● All arithmetic operations done modulo p
● Bitwise operations are nonexistent

Possible fields:

● Scalar field (size of prime order group) of elliptic curves BN254, BLS12-381; all
about 2254 in size.

Supported operations:

● Addition
● Multiplication by variable or by constant
● Iterative computations are better than vonNeumann architecture

Problem

Hash ZK time x86 time Cryptanalysis
invested

BLAKE2 100 1 10

Poseidon 1 100 1

Rescue 1 1000 1

Pedersen 4 500 50

Modern zero-knowledge proof systems

How Plonk works

● Consider a deterministic arithmetic algorithm
○ Step j:

How Plonk works

● Consider a deterministic arithmetic algorithm
○ Step j:

● Encode as a table
● Reinterpret in polynomials

How Plonk works

● Consider a deterministic arithmetic algorithm
○ Step j:

● Encode as a table
● Reinterpret in polynomials

● Algorithm is correct iff

● Such equations are easy to check. Costs to create a proof are ~9N group
operations

How Plonk works
● Consider a deterministic arithmetic algorithm

● Encode as a table

● Reinterpret in polynomials

● Algorithm is correct iff

● Such equations are easy to check.
○ Commit to all polynomials
○ Open all at random point
○ Check equation at this point.

Lookup Argument

Lookup Argument

● Original table T
● Witness
● Claim

Cached quotients lookup [EFG23]

● Rational function equation (1)

● Example

Cached quotients lookup [EFG23]

● Rational function equation (1)

● Example

● Poly equation is derived from (1)
● Costs 8|S| group operations (assuming |T| log |T| preprocessing)

Cost summary

● Arithmetic operations
○ If all gates are the same then N gates cost 9N

● Custom gates of degree D of E variables cost ~D*E per gate

● Lookups
○ K lookups from table of size W cost 8K (assuming W log W preprocessing)

Symmetric design

SHA-256 (per 512 bits)

● As arithmetic circuit: 26000 constraints
● With lookups: 1700 gates (lookups of size 210 and polys of degree 6)

AES-128:

● With lookups: 2000 gates per 128 bits

Poseidon:

● 280 gates per 512 bits
● 1/100 of SHA-256 speed on x86

Reinforced Concrete:

● 300 gates with lookups per 512 bits
● 1/10 of SHA-256 speed on x86

Primitives for verifiable computation

Features

● Small arithmetic circuits
● Reasonably fast on x86
● Scalability
● Security

What security means

● Only real attacks: collision/preimage/key
recovery

● Resistance to statistical attacks
● Resistance to algebraic attacks: high overall

degree, many high-degree equations.
● Getting high-degree:

○ Exponentiation to high degree (Rescue)
○ Many rounds (Poseidon)
○ Both is expensive

Advantages of lookups

What Sboxes/lookups provide

● High algebraic degree
● So fewer rounds
● So faster

Reinforced Concrete

● Few rounds with simple and fast algebraic functions
● One lookup layer (BARS)

Field mismatch

The problem:

● Lookup is done on the smaller domain
● Field is not a product of subdomains
● What happens at the last step?

Field mismatch

The problem:

● Lookup on small domain
● Field is bigger

Example overflow:

Small fields

Goldilocks

Multiplication mod p is fast on x86: regular multiplication and a few shifts

Field elements from 0 to p-1=0xFFFFFFFF00000000

Small fields

Goldilocks

Multiplication mod p is fast on x86: regular multiplication and a few shifts

Field elements from 0 to p-1

Small fields

Goldilocks

Multiplication mod p is fast on x86: regular multiplication and a few shifts

Field elements from 0 to p-1

Exercise: if S has fixed points 0 and 0xFFFF, overflow does not happen, i.e.

Designs: Tip5, RC64 (tomorrow at permutation-based crypto).

Sboxes in a less nice field

Solution

Native Circuit

p=769 p = 30x25+19

Input x Input x

Decomposition Variables

Equations

Sbox (left) Lookups

Composition Variables

Equations

General rule

Embed

How to guarantee no overflow?

General rule

Embed

How to guarantee no overflow?

We have y<p if where

Native and circuits

2 parts:

● Native computation
○ Decompose
○ Apply sboxes
○ Compose

● Circuit proof
○ Proof of decomposition
○ Proof of sboxes
○ Proof of composition

Native Circuit

p=769 p = 30x25+19

Input x Input x

Decomposition Variables

Equations

Sbox Lookups

Composition Variables

Equations

Sbox design

2 parts:

● Native computation
● Circuit proof

Circuit proof vs native:

● Completeness: every valid computation should be represented by circuit
witness

● Soundness: every valid witness implies a valid computation

Soundness and completeness

Inversion: if x!=0 then y=1/x

 else y=0

In circuit

Sound?

Complete?

Questions?

