Lookup Arguments and Symmetric Crypto

Dmitry Khovratovich (Ethereum Foundation) STAP'23 (22 April 2023, Lyon)

Ethereum Foundation

- Non-profit organization doing research on Ethereum-related topics
- Cryptography, consensus, network security
- EF Crypto Group: 10 cryptographers <u>https://crypto.ethereum.org/team</u>
 - Zero-knowledge, VDFs, data availability, PQ designs, hash functions, secret leader election, MPC, lattice-based crypto...
 - In symmetric crypto:
 - Design
 - Cryptanalysis
 - Bounties
 - Collaboration with other divisions and research groups outside ETH
 - Interns are welcome

Zero knowledge...

and verifiable computation

Zero-knowledge proofs and verifiable computation

You know that something specific has occurred...

Zero-knowledge proofs and verifiable computation

You know that something specific has occurred...

...even if you don't know what exactly.

Native computation

 $y=f(x_1,x_2,\ldots,x_n)$

Prove that you compute:

- Variables y, x_1, x_2, \ldots, x_n
- Polynomial equations $F_i(y, x_1, x_2, ..., x_n)$

which altogether imply $y = f(x_1, x_2, \dots, x_n)$

Native	Equation
$y=x^2$	$x^2 - y = 0$
$y=\sqrt{x};$	$y^2-x=0$
$y \leftarrow x^{(4p-3)/5} mod p$	$y^5=x$

Progress in ZKSnarks. Computation of length N

- 1990: PCP theorem: every NP statement can be checked in logarithmic time
- 2000s: proof for computation of length N can be composed in subquadratic time

Progress in ZKSnarks. Computation of length N

- Pinocchio (2012): Prover O(N), const size proof
 - with trusted setup
 - Verification needs a few pairings
- Zcash (2014) and SHA-256
 - Private cryptocurrency
 - \circ $\,$ To spend one proves a path in the SHA-256 Merkle tree $\,$
 - Proof for 32 SHA-256 calls took 42 seconds!
- Groth16 (2016): even smaller proof and faster prover

ZCash Story

How ZCash works:

- All my coins are in a Merkle tree, with leafs being commitment to a secret.
- To spend a coin anonymously I have to prove there is a leaf whose secret I know.
- Original tree was built on SHA-256.

ZCash Story

How ZCash works:

- All my coins are in a Merkle tree, with leafs being commitment to a secret.
- To spend a coin anonymously I have to prove there is a leaf whose secret I know.
- Original tree was built on SHA-256.
- A proof took >40 seconds to generate.

Progress in ZKSnarks. Computation of length N

- Pinocchio (2012): Prover O(N), const size proof
- Zcash (2014) and SHA-256
- Groth16 (2016): even smaller proof and faster prover
- Bulletproofs (2016): O(N) prover and verifier, no trusted setup needed
- STARKs (2018): polyLog-time verifier, no trusted setup
- Plonk (2019): setup once and for all
- Recursive schemes:
 - Aurora
 - Nova
 - Halo 1/2

Arithmetic circuits

From x86 to finite field arithmetic

- All arithmetic operations done modulo p
- Bitwise operations are nonexistent

Possible fields:

 Scalar field (size of prime order group) of elliptic curves BN254, BLS12-381; all about 2²⁵⁴ in size.

Supported operations:

- Addition
- Multiplication by variable or by constant
- Iterative computations are better than vonNeumann architecture

Problem

x86 speed vs. proof time (R1CS)

Hash	ZK time	x86 time	Cryptanalysis invested
BLAKE2	100	1	10
Poseidon	1	100	1
Rescue	1	1000	1
Pedersen	4	500	50

Modern zero-knowledge proof systems

Consider a deterministic arithmetic algorithm
 Step j:

$$x_j \leftarrow a_j x_{i_{j,1}} x_{i_{j,2}} + b_j x_{i_{j,3}} + c_j x_{i_{j,4}}$$

- Consider a deterministic arithmetic algorithm
 - \circ Step j: $x_j \leftarrow a_j x_{i_{j,1}} x_{i_{j,2}} + b_j x_{i_{j,3}} + c_j x_{i_{j,4}}$
- Encode as a table
- Reinterpret in polynomials

Step\Column	1	2	3	4	5	6	7	8	9
1	x_1	$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{2,4}$	a_1	b_1	c_1	d_1
2									
j	x_{j}	$x_{j,1}$	$x_{j,2}$	$x_{j,3}$	$x_{j,4}$	a_j	b_j	c_{j}	d_{j}
Ν									

Index\Poly	f(x)	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_a(x)$	$f_b(x)$	$f_c(x)$	$f_d(x)$
ω	x_1	$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{2,4}$	a_1	b_1	c_1	d_1
ω^2									
ω^j	x_{j}	$x_{j,1}$	$x_{j,2}$	$x_{j,3}$	$x_{j,4}$	a_j	b_j	c_j	d_{j}
ω^N									

- Consider a deterministic arithmetic algorithm
 - \circ Step j: $x_j \leftarrow a_j x_{i_{j,1}} x_{i_{j,2}} + b_j x_{i_{j,3}} + c_j x_{i_{j,4}}$
- Encode as a table
- Reinterpret in polynomials

Index\Poly	f(x)	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_a(x)$	$f_b(x)$	$f_c(x)$	$f_d(x)$
ω	x_1	$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{2,4}$	a_1	b_1	c_1	d_1
ω^2									
ω^j	x_{j}	$x_{j,1}$	$x_{j,2}$	$x_{j,3}$	$x_{j,4}$	a_j	b_j	c_j	d_{j}
ω^N									

• Algorithm is correct iff

 $f(x) \equiv f_a(x) f_1(x) f_2(x) + f_b(x) f_3(x) + f_c(x) f_4(x)$

Such equations are easy to check. Costs to create a proof are ~9N group operations

• Consider a deterministic arithmetic algorithm

- Encode as a table
- Reinterpret in polynomials

 $x_j \leftarrow a_j x_{i_{j,1}} x_{i_{j,2}} + b_j x_{i_{j,3}} + c_j x_{i_{j,4}}$

Index\Poly	f(x)	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_a(x)$	$f_b(x)$	$f_c(x)$	$f_d(x)$
ω	x_1	$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{2,4}$	a_1	b_1	c_1	d_1
ω^2									
ω^j	x_{j}	$x_{j,1}$	$x_{j,2}$	$x_{j,3}$	$x_{j,4}$	a_j	b_j	c_j	d_{j}
ω^N									

• Algorithm is correct iff

 $f(x) \equiv f_a(x) f_1(x) f_2(x) + f_b(x) f_3(x) + f_c(x) f_4(x)$

- Such equations are easy to check.
 - Commit to all polynomials
 - Open all at random point
 - Check equation at this point.

 $egin{aligned} C,C_1,C_2,C_3,C_4\leftarrow Commit(f,f_1,f_2,f_3,f_4)\ \lambda\leftarrow H(C,C_1,C_2,C_3,C_4)\ \pi\leftarrow Proof(y,y_1,y_2,y_3,y_4: ext{ values of }f,f_1,f_2,f_3,f_4 ext{ at }\lambda) \end{aligned}$

Lookup Argument

Lookup Argument

- Original table T
- Witness
- Claim $\forall x \ f_1(x) \in T$

Table T	
a_1	
<i>a</i> ₂	
a_k	

Index\Poly	f(x)	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_a(x)$	$f_b(x)$	$f_c(x)$	$f_d(x)$
ω	x_1	$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{2,4}$	a_1	b_1	c_1	d_1
ω^2									
ω^j	x_{j}	$x_{j,1}$	$x_{j,2}$	$x_{j,3}$	$x_{j,4}$	a_j	b_j	c_j	d_{j}
ω^N									

Cached quotients lookup [EFG23]

• Rational function equation (1)

$$orall x \in S: \; f(x) \in T \; ext{ iff } \; \exists \{m_t\}: \sum_{t \in T} rac{m_t}{X+t} \equiv \sum_{x \in S} rac{1}{X+f(x)}$$

• Example

$$\{1,0,1\} \subseteq \{0,1,2,3\} \ \Leftrightarrow \ \frac{1}{X} + \frac{2}{X+1} + \frac{0}{X+2} + \frac{0}{X+3} \equiv \frac{1}{X+1} + \frac{1}{X} + \frac{1}{X+1}$$

Cached quotients lookup [EFG23]

• Rational function equation (1)

$$orall x\in S: \; f(x)\in T \; ext{iff} \; \exists \{m_t\}: \sum_{t\in T} rac{m_t}{X+t}\equiv \sum_{x\in S} rac{1}{X+f(x)}$$

• Example

$$\{1,0,1\} \subseteq \{0,1,2,3\} \iff rac{1}{X} + rac{2}{X+1} + rac{0}{X+2} + rac{0}{X+3} \equiv rac{1}{X+1} + rac{1}{X} + rac{1}{X+1}$$

- Poly equation is derived from (1)
- Costs 8|S| group operations (assuming |T| log |T| preprocessing)

	Index\Poly	f(x)	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_a(x)$	$f_b(x)$	$f_c(x)$	$f_d(x)$
Table T	ω	x_1	$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{2,4}$	a_1	b_1	c_1	d_1
<i>a</i> ₁	ω^2									
<i>a</i> ₂	ω^{j}	x_{j}	$x_{j,1}$	$x_{j,2}$	$x_{j,3}$	$x_{j,4}$	a_j	b_j	c_j	d_j
a_k	ω^N									

Cost summary

- Arithmetic operations
 - If all gates are the same $x_j \leftarrow a_j x_{i_{j,1}} x_{i_{j,2}} + b_j x_{i_{j,4}}$ then N gates cost 9N

• Custom gates of degree D of E variables cost ~D*E per gate

- Lookups
 - K lookups from table of size W cost 8K (assuming W log W preprocessing)

Symmetric design

SHA-256 (per 512 bits)

- As arithmetic circuit: 26000 constraints
- With lookups: 1700 gates (lookups of size 2¹⁰ and polys of degree 6)

AES-128:

• With lookups: 2000 gates per 128 bits

Poseidon:

- 280 gates per 512 bits
- 1/100 of SHA-256 speed on x86

Reinforced Concrete:

- 300 gates with lookups per 512 bits
- 1/10 of SHA-256 speed on x86

Primitives for verifiable computation

Features

- Small arithmetic circuits
- Reasonably fast on x86
- Scalability
- Security

What security means

- Only real attacks: collision/preimage/key recovery
- Resistance to statistical attacks
- Resistance to algebraic attacks: high overall degree, many high-degree equations.
- Getting high-degree:
 - Exponentiation to high degree (Rescue)
 - Many rounds (Poseidon)
 - Both is expensive

Advantages of lookups

What Sboxes/lookups provide

- High algebraic degree
- So fewer rounds
- So faster

Reinforced Concrete

- Few rounds with simple and fast algebraic functions
- One lookup layer (BARS)

Field mismatch

The problem:

- Lookup is done on the smaller domain
- Field is not a product of subdomains
- What happens at the last step?

Field mismatch

The problem:

- Lookup on small domain
- Field is bigger

Example overflow:

Small fields

Goldilocks $p = 2^{64} - 2^{32} + 1$

Multiplication mod p is fast on x86: regular multiplication and a few shifts

Field elements from 0 to p-1=0xFFFFFFF00000000

Small fields

Goldilocks $p = 2^{64} - 2^{32} + 1$

Multiplication mod p is fast on x86: regular multiplication and a few shifts

Field elements from 0 to p-1

p-1	0xFFFF	0xFFFF	0x0000	0x0000
Decomposition	a_1	a_2	a_3	a_4
S-box	$S(a_1)$	$S(a_2)$	$S(a_3)$	$S(a_4)$

Small fields

Goldilocks $p = 2^{64} - 2^{32} + 1$

Multiplication mod p is fast on x86: regular multiplication and a few shifts

Field elements from 0 to p-1

p-1	0xFFFF	0xFFFF	0x0000	0x0000
Decomposition	a_1	a_2	a_3	a_4
S-box	$S(a_1)$	$S(a_2)$	$S(a_3)$	$S(a_4)$

Exercise: if S has fixed points 0 and 0xFFFF, overflow does not happen, i.e.

 $S(a_1)2^{48} + S(a_2)2^{32} + S(a_3)2^{16} + S(a_4) < p$

Designs: Tip5, RC64 (tomorrow at permutation-based crypto).

Sboxes in a less nice field

$$p = 769 = 0 x301$$

Can't do:

$$x_1, x_2, x_3 \in Z_{16}; \quad x_i \to f(x_i).$$

Overflows for many cases and almost all f.

Solution

C1	C2	C3
0	$a_0 < 19$	0
1	$a_1 < 19$	0
•••		0
18	$a_{18}<19$	0
<u>19</u>	19	0
	••••	0
24	24	0
25	25	1
26	26	1
		1
29	29	1

Native	Circuit
p=769	p = 30x25+19
Input x	Input x
Decomposition $x_2 = x \mod 25$ $x_1 = (x - x_2)/25$	Variables x_1, x_2
	Equations $x=25x_1+x_2$
Sbox (left) $y_i \leftarrow S(x_i)$	$egin{array}{llllllllllllllllllllllllllllllllllll$
Composition $y = 25y_1 + y_2$	Variables y_1, y_2
	Equations $y = 25y_1 + y_2$

General rule

 $p-1 < s_1 s_2 \cdots s_l$

Embed

$$x\in \mathbb{F}_p o (x_1,x_2,\ldots,x_l)
onumber \ x=x_1\cdot s_2s_3\cdots s_l+x_2(s_3s_4\cdots s_l)+\ldots x_{l-1}s_l+x_l$$

How to guarantee no overflow?

General rule

 $p-1 < s_1 s_2 \cdots s_l$

Embed

$$x\in \mathbb{F}_p o (x_1,x_2,\ldots,x_l)
onumber \ x=x_1\cdot s_2s_3\cdots s_l+x_2(s_3s_4\cdots s_l)+\ldots x_{l-1}s_l+x_l$$

How to guarantee no overflow?

$$y=S(x_1)\cdot s_2s_3\cdots s_l+S(x_2)(s_3s_4\cdots s_l)+\ldots S(x_{l-1})s_l+S(x_l)$$

We have y (x_i \le a_i) \implies S(x_i) \le a_i where

$$p-1 = a_1 \cdot s_2 s_3 \cdots s_l + a_2 (s_3 s_4 \cdots s_l) + \ldots a_{l-1} s_l + a_l$$

Native and circuits

2 parts:

- Native computation
 - Decompose
 - Apply sboxes
 - Compose
- Circuit proof
 - Proof of decomposition
 - Proof of sboxes
 - Proof of composition

Native	Circuit
p=769	p = 30x25+19
Input x	Input x
Decomposition $\begin{array}{c} x_2 = x \ \mathrm{mod} \\ x_1 = (x - x_2) \end{array}$	$\sum_{\substack{{\rm od}\ 25\\{\rm ol}/25}}$ Variables x_1,x_2
$x = 25x_1 + x_2$	Equations
Sbox $y_i \leftarrow S(x_i)$	Lookups $(x_1,y_1,*)\in T$ $(x_2,y_2,0)\in T$
Composition	Variables <i>y</i> ₁ , <i>y</i> ₂
$y=25y_1+y_2$	Equations

Sbox design

2 parts:

- Native computation
- Circuit proof

Circuit proof vs native:

- *Completeness*: every valid computation should be represented by circuit witness
- Soundness: every valid witness implies a valid computation

Soundness and completeness

Inversion: if x!=0 then y=1/x

else y=0

In circuit

$$egin{aligned} &xy=z\ &z(1-z)=0\ &(1-z)(x-y)=0 \end{aligned}$$

Sound?

Complete?

Questions?