
Theory of practical algorithms: exercises

Laurent Viennot

1 Skeleton dimension

A graph is γ-doubling if any ball of radius r is covered by γ balls of radius r/2.
More precisely, for any node u and radius r > 0, there exist nodes u1, . . . , uk
with k ≤ γ such that B(u, r) is included in ∪ki=1B(ui, r/2). Show that a graph
with skeleton dimension k is 2k + 1-doubling.

2 Hopsets

Given a connected weighted undirected graph G, we define the h-hop distance
dhG(u, v) between u and v as the minimum weight of a path from u to v with
h edges at most. (Each edge of a path is called a “hop”, it thus corresponds
to the distance using at most h hops.) The usual distance from u to v is thus
dG(u, v) = dn−1G (u, v). We define a h-hopset of G as a set H of edges such that
dhG∪H(u, v) = dG(u, v) where each edge uv of H is considered to have weight
dG(u, v).

a) What notion seen in course is tightly related to the notion of 2-hopset ?
b) Suppose that G is a path of length n, propose a 2-hopset of G with as

few edges as you can (we do not care about multiplicative constants).
c) Same question for a 3-hopset.
d) Same question for a 4-hopset.

3 Hierarchical hub labeling from contraction hi-
erarchies

Given an unweighted undirected graph G and a contraction order π = u1 ≺
· · · ≺ un of the nodes of G, we consider the contraction hierarchies E+ = E+

n of
directed edges where E+

0 := {vw ∈ E(G) | v ≺ w} and E+
i := E+

i−1∪{vw | ui ≺
v ≺ w and uiv ∈ E+

i−1 and uiw ∈ E+
i−1}. We define the hub-set Hu of u as the

set of nodes visited by a BFS from u in the directed graph G↑= (V (G), E+).
a) Give the main argument for proving that (Hu)u∈V (G) has the following

covering property: for all pair u, v ∈ V (G) and for any shortest path P between
u and v, we have Hu ∩Hv ∩ P 6= ∅.

1

b) Recall how the distance between u and v can be computed from Hu and
Hv if appropriate information is associated to elements of Hu and Hv.

c) Give the main argument for proving that (Hu)u∈V (G) is hierarchical, i.e.
the relation “is hub of is transitive: for all triple u, v, w ∈ V (G), if v ∈ Hu and
w ∈ Hv, then w ∈ Hu.

Solution :

a) The node ui ∈ P with i maximal is visited by both BFS.
b) Associate d(u, a) to a ∈ Hu; d(u, v) can be obtained as mina∈Hu∩Hv

d(u, a)+
d(v, a) according to a) and triangle inequality.

c) If v is visited by the BFS from u, then all edges considered in a BFS from
v will be (or where already) considered in the BFS from u, implying Hv ⊆ Hu.

4 Connection Scan Algorithm Revisited

We consider a bus network given by an array C of connections. More precisely,
each connection c ∈ C represents the elementary travel of a bus departing
from a stop c.from at time c.dep and arriving at the next stop c.to at time
c.arr > c.dep. C is sorted by increasing departure time. For simplicity, we
assume that all departure times are distinct (c.dep 6= c′.dep for c 6= c′). A
sequence c1, . . . , ck of connections is a feasible journey if ci.to = ci+1.from and
ci.arr ≤ ci+1.dep for all i = 1 . . . k− 1 (no walk is considered). When a traveler
starts at a given stop src, we store at every stop u an estimation τ(u) of arrival
time at u. (Initially, τ(src) stores the starting time at src and τ(u) = ∞ for
u 6= src.)

a) Earliest arrival: Propose a linear time algorithm for computing the
earliest arrival time at a given stop dst.

b) Last departure: Propose a linear time algorithm for computing the last
departure time from src such that dst can be reached at a given time τarr.

c) Profile: Propose an algorithm for computing all interesting departure
times from src to dst where a departure time τdep is interesting if there is a
journey reaching dst at some time τarr such that no other journey with departure
time τ > τdep arrives at τarr or before.

We now consider a connected symmetric footpath graph G whose vertex
set V contains all stops. We let dG(u, v) = dG(v, u) denote the walking time
from u to v. A traveler can now walk from a stop to any other (unrestricted
walking). We still assume that a traveler arriving at stop u at time τ can catch
any connection c such that c.from = u and τ ≤ c.dep. For representing these
walking transfers, we assume that a hub labeling is given: each vertex u ∈ V is
associated to a set H(u) ⊆ V of hubs. Each hub x ∈ H(u) is associated with its
walking time dG(u, x) from u. The hub sets have the following covering property:
for any pair u, v of vertices there exists a common hub x ∈ H(u) ∩H(v) lying

2

on a shortest waling path from u to v: dG(u, v) = dG(u, x) + dG(x, v). We let
∆ = maxu∈V |H(u)| denote the maximum size of a hub set.

a’) Unrestricted walking: Propose a modification of the algorithm pro-
posed in a) so that journeys can include walking transfer from a stop to any
other. How does the complexity of your algorithm increase with ∆?

Solution :

a) Use Connection Scan without transfers: for each connection c ∈ C (in
increasing order of departure time), if τ(c.from) ≤ c.dep then set τ(c.to) :=
min(τ(c.to), c.arr). This requires constant time per connection, yielding linear
complexity. All the connections of the best trip to dst must be visited in or-
der and τ(dst) is the correct arrival time after all these connections have been
scanned.

b) Same algorithm but reversed: Initialize τ(dst) = τarr and τ(u) = −∞
for u 6= dst. For each connection c ∈ C in reverse order of departure time, if
c.arr ≤ τ(c.to) then set τ(c.dep) := max(τ(c.dep), c.dep).

c) We proceed similarly as in b) but storing interesting departures at each
stop with associated arrival times. For each connection c ∈ C in reverse order
of departure time, let τdep be the first interesting departure time after c.arr at
c.to and let τarr be the associated arrival time at dst (if there is one). Store
c.dep at c.from with associated arrival time τarr if it is interesting, i.e. no pair
τ ′dep, τ

′
arr stored at c.from satisfies τ ′dep > c.dep and τ ′arr ≤ τarr. Dichotomic

search can be used if pairs are stored by decreasing departure. The complexity
is then within a logarithmic factor from linear.

a’) For x ∈ H(src), τ(x) := min(τ(x), τ(src) + dG(src, x)).
For each connection c ∈ C in increasing order of departure:

• for each x ∈ H(c.from), set τ(c.from) := min(τ(c.from), τ(x)+dG(x, c.from)),

• if τ(c.from) ≤ c.dep then set τ(c.to) := min(τ(c.to), c.arr),

• for each x ∈ H(c.to), set τ(x) := min(τ(x), τ(c.to) + dG(c.to, x)).

For x ∈ H(dst), τ(dst) := min(τ(dst), τ(x) + dG(x, dst)).
The covering property ensures correctness. The complexity is linear in ∆.

3

