Theory of practical algorithms: exercises

Laurent Viennot

1 Skeleton dimension

A graph is γ -doubling if any ball of radius r is covered by γ balls of radius r/2. More precisely, for any node u and radius r > 0, there exist nodes u_1, \ldots, u_k with $k \leq \gamma$ such that B(u, r) is included in $\cup_{i=1}^k B(u_i, r/2)$. Show that a graph with skeleton dimension k is 2k + 1-doubling.

2 Hopsets

Given a connected weighted undirected graph G, we define the *h*-hop distance $d_G^h(u, v)$ between u and v as the minimum weight of a path from u to v with h edges at most. (Each edge of a path is called a "hop", it thus corresponds to the distance using at most h hops.) The usual distance from u to v is thus $d_G(u, v) = d_G^{n-1}(u, v)$. We define a *h*-hopset of G as a set H of edges such that $d_{G\cup H}^h(u, v) = d_G(u, v)$ where each edge uv of H is considered to have weight $d_G(u, v)$.

a) What notion seen in course is tightly related to the notion of 2-hopset?

b) Suppose that G is a path of length n, propose a 2-hopset of G with as few edges as you can (we do not care about multiplicative constants).

c) Same question for a 3-hopset.

d) Same question for a 4-hopset.

3 Hierarchical hub labeling from contraction hierarchies

Given an unweighted undirected graph G and a contraction order $\pi = u_1 \prec \cdots \prec u_n$ of the nodes of G, we consider the contraction hierarchies $E^+ = E_n^+$ of directed edges where $E_0^+ := \{vw \in E(G) \mid v \prec w\}$ and $E_i^+ := E_{i-1}^+ \cup \{vw \mid u_i \prec v \prec w \text{ and } u_iv \in E_{i-1}^+$ and $u_iw \in E_{i-1}^+\}$. We define the hub-set H_u of u as the set of nodes visited by a BFS from u in the directed graph $G\uparrow = (V(G), E^+)$.

a) Give the main argument for proving that $(H_u)_{u \in V(G)}$ has the following covering property: for all pair $u, v \in V(G)$ and for any shortest path P between u and v, we have $H_u \cap H_v \cap P \neq \emptyset$.

b) Recall how the distance between u and v can be computed from H_u and H_v if appropriate information is associated to elements of H_u and H_v .

c) Give the main argument for proving that $(H_u)_{u \in V(G)}$ is hierarchical, i.e. the relation "is hub of is transitive: for all triple $u, v, w \in V(G)$, if $v \in H_u$ and $w \in H_v$, then $w \in H_u$.

Solution :

a) The node $u_i \in P$ with *i* maximal is visited by both BFS.

b) Associate d(u, a) to $a \in H_u$; d(u, v) can be obtained as $\min_{a \in H_u \cap H_v} d(u, a) + d(v, a)$ according to a) and triangle inequality.

c) If v is visited by the BFS from u, then all edges considered in a BFS from v will be (or where already) considered in the BFS from u, implying $H_v \subseteq H_u$.

4 Connection Scan Algorithm Revisited

We consider a bus network given by an array C of connections. More precisely, each connection $c \in C$ represents the elementary travel of a bus departing from a stop c.from at time c.dep and arriving at the next stop c.to at time c.arr > c.dep. C is sorted by increasing departure time. For simplicity, we assume that all departure times are distinct $(c.dep \neq c'.dep$ for $c \neq c')$. A sequence c_1, \ldots, c_k of connections is a feasible journey if $c_i.to = c_{i+1}.from$ and $c_i.arr \leq c_{i+1}.dep$ for all $i = 1 \ldots k - 1$ (no walk is considered). When a traveler starts at a given stop src, we store at every stop u an estimation $\tau(u)$ of arrival time at u. (Initially, $\tau(src)$ stores the starting time at src and $\tau(u) = \infty$ for $u \neq src$.)

a) **Earliest arrival:** Propose a linear time algorithm for computing the earliest arrival time at a given stop dst.

b) **Last departure:** Propose a linear time algorithm for computing the last departure time from *src* such that *dst* can be reached at a given time τ_{arr} .

c) **Profile:** Propose an algorithm for computing all interesting departure times from *src* to *dst* where a departure time τ_{dep} is interesting if there is a journey reaching *dst* at some time τ_{arr} such that no other journey with departure time $\tau > \tau_{dep}$ arrives at τ_{arr} or before.

We now consider a connected symmetric footpath graph G whose vertex set V contains all stops. We let $d_G(u, v) = d_G(v, u)$ denote the walking time from u to v. A traveler can now walk from a stop to any other (unrestricted walking). We still assume that a traveler arriving at stop u at time τ can catch any connection c such that c.from = u and $\tau \leq c.dep$. For representing these walking transfers, we assume that a hub labeling is given: each vertex $u \in V$ is associated to a set $H(u) \subseteq V$ of hubs. Each hub $x \in H(u)$ is associated with its walking time $d_G(u, x)$ from u. The hub sets have the following covering property: for any pair u, v of vertices there exists a common hub $x \in H(u) \cap H(v)$ lying on a shortest waling path from u to v: $d_G(u, v) = d_G(u, x) + d_G(x, v)$. We let $\Delta = \max_{u \in V} |H(u)|$ denote the maximum size of a hub set.

a') **Unrestricted walking:** Propose a modification of the algorithm proposed in a) so that journeys can include walking transfer from a stop to any other. How does the complexity of your algorithm increase with Δ ?

Solution :

a) Use Connection Scan without transfers: for each connection $c \in C$ (in increasing order of departure time), if $\tau(c.from) \leq c.dep$ then set $\tau(c.to) := \min(\tau(c.to), c.arr)$. This requires constant time per connection, yielding linear complexity. All the connections of the best trip to dst must be visited in order and $\tau(dst)$ is the correct arrival time after all these connections have been scanned.

b) Same algorithm but reversed: Initialize $\tau(dst) = \tau_{arr}$ and $\tau(u) = -\infty$ for $u \neq dst$. For each connection $c \in C$ in reverse order of departure time, if $c.arr \leq \tau(c.to)$ then set $\tau(c.dep) := \max(\tau(c.dep), c.dep)$.

c) We proceed similarly as in b) but storing interesting departures at each stop with associated arrival times. For each connection $c \in C$ in reverse order of departure time, let τ_{dep} be the first interesting departure time after *c.arr* at *c.to* and let τ_{arr} be the associated arrival time at *dst* (if there is one). Store *c.dep* at *c.from* with associated arrival time τ_{arr} if it is interesting, i.e. no pair τ'_{dep}, τ'_{arr} stored at *c.from* satisfies $\tau'_{dep} > c.dep$ and $\tau'_{arr} \leq \tau_{arr}$. Dichotomic search can be used if pairs are stored by decreasing departure. The complexity is then within a logarithmic factor from linear.

a') For $x \in H(src)$, $\tau(x) := \min(\tau(x), \tau(src) + d_G(src, x))$. For each connection $c \in C$ in increasing order of departure:

- for each $x \in H(c.from)$, set $\tau(c.from) := \min(\tau(c.from), \tau(x) + d_G(x, c.from))$,
- if $\tau(c.from) \leq c.dep$ then set $\tau(c.to) := \min(\tau(c.to), c.arr),$
- for each $x \in H(c.to)$, set $\tau(x) := \min(\tau(x), \tau(c.to) + d_G(c.to, x))$.

For $x \in H(dst)$, $\tau(dst) := \min(\tau(dst), \tau(x) + d_G(x, dst))$. The covering property ensures correctness. The complexity is linear in Δ .