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Temporal graphs

Definition : a graph that changes with time.

Examples :
• Mobile and sensor networks.
• Social networks (co-athorship, contact traces).
• Transportation networks (buses, road).

Formal treatment still in its infancy :
• natural notions (connectivity),
• temporal generalization of classical notions? (Menger)

⇐ ? ⇒ 1 / 3 2 / 37



Temporal graphs

Definition : a graph that changes with time.

Examples :
• Mobile and sensor networks.
• Social networks (co-athorship, contact traces).
• Transportation networks (buses, road).

Formal treatment still in its infancy :
• natural notions (connectivity),
• temporal generalization of classical notions? (Menger)

⇐ ? ⇒ 2 / 3 2 / 37



Temporal graphs

Definition : a graph that changes with time.

Examples :
• Mobile and sensor networks.
• Social networks (co-athorship, contact traces).
• Transportation networks (buses, road).

Formal treatment still in its infancy :
• natural notions (connectivity),
• temporal generalization of classical notions? (Menger)

⇐ ? ⇒ 3 / 3 2 / 37



Temporal graphs (basic example)
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Also known as :
• time-dependent networks [Cooke, Halsey 1966],
• edge scheduled networks [Berman 1996], dynamic graphs

[Harary, Gupta 1997], temporal networks [Kempe, Kleinberg,
Kumar 2002], evolving graphs [Bhadra, Ferreira 2003],

• time-varying graphs [Casteigts, Flocchini, Quattrociocchi,
Santoro 2012],

• link streams [Latapy, Viard, Magnien 2018],...
⇐ ? ⇒ 1 / 2 3 / 37



Temporal graphs (basic example)

=

d
a

b
c

g
f

e
h

d
a

b
c

g
f

e
h

d
a

b
c

g
f

e
h

d
a

b
c

g
f

e
h

time

1 2 3 4

=

da

b c

gf

e h

1 3

1 4

2

1

3
4

2

Also known as :
• time-dependent networks [Cooke, Halsey 1966],
• edge scheduled networks [Berman 1996], dynamic graphs

[Harary, Gupta 1997], temporal networks [Kempe, Kleinberg,
Kumar 2002], evolving graphs [Bhadra, Ferreira 2003],

• time-varying graphs [Casteigts, Flocchini, Quattrociocchi,
Santoro 2012],

• link streams [Latapy, Viard, Magnien 2018],...
⇐ ? ⇒ 2 / 2 3 / 37



Temporal path/walk
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Strict temporal walk : a walk with increasing time labels.
Non-strict temp. walk : a walk with non-decreasing time
labels.
A path is walk visiting at most once a vertex.
Usually waiting is allowed.
Above, we have : e −→ b,b −→ h,¬a −→ f,¬a −→ h
.⇐ ? ⇒ 1 / 5 4 / 37
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Various natural “shortest” uv-walks

Earliest arrival (or foremost) : starting at τ from u,
minimize arrival time in v.

Fewest hops (or shortest) : minimize the number k of edges.

Shortest duration (or fastest) : minimize arrival time -
departure time.

Min. waiting time : minimize the sum of waiting times at
intermediate nodes.
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Undirected temporal graphs still have time
orientation !

Path between A and B?

Path between A and C? between C and A?

⇐ ? ⇒ 1 / 1 6 / 37



Main models
Time-dependent network : a graph where edge delay
depends on time. [Cooke, Halsey 1966]
G = ((V,E), δ) with δ : E → RR (δ(e)(τ) is the delay of e ∈ E
at time τ ).
Pice-wise constant-delay : each δ(e) is picewise constant.
[Bui-Xuan, Ferreira, Jarry 2003], [Dehne, Omran, Sack 2012],
(link-stream [Latapy, Viard, Magnien 2018] with delay 0)
Evolving graph : sequence of (static) graphs with same
vertices.
G = (V,E1, . . . ,Eℓ) [Bhadra, Ferreira 2003] or equivalently
G = ((E,V), λ) with λ : E → 2N [Michail 2016]. (Delay of edges
is 1/0 for strict/non-strict temporal paths.)
Simple : G = ((E,V), λ) with λ : E → N [Kempe, Kleinberg,
Kumar 2002].
Proper : edges incident to a node have pairwise disjoint
labels (strict and non-strict then coincide) [Casteigts, Corsini,
Sarkar 2022].
Globally proper : edge schedule.⇐ ? ⇒ 1 / 4 7 / 37
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What is time?

Time domain : N or R or T?

Discrete :
• time is discrete,
• and/or edges are available at some given points in time,
• and/or traversal takes time 1 (or 0).

Continous :
• time is continuous,
• and/or edges are available during given intervals of time,
• and/or traversal takes constant time.

⇐ ? ⇒ 1 / 4 8 / 37
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Data structures

Adjacency lists : each u has for each neighbor v a
representation of δ(uv), typically a sorted list of availability
times with associated delays.

(Sorted) list of temporal edges.

Time-expanded graph.

Time tables (public transit networks) : for all edges on a line,
the sequence of departure and arrival times, plus footpaths.

⇐ ? ⇒ 1 / 4 9 / 37
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Data structure : temporal edges

Temporal edge (u, v, τ) : arc (u, v) at time τ (delay 1 or 0),

(with delay δ) (u, v, τ, δ) : taking arc (u, v) at time τ from u
leads to v at time τ + δ,

(with availability interval [τ1, τ2]) (u, v, τ1, τ2, δ) : arc (u, v) is
available for any τ ∈ [τ1, τ2] with constant-delay δ,

(with affine delay) (u, v, τ1, τ2, γ, β) : taking arc (u, v) at
τ ∈ [τ1, τ2] leads to v at τ + δ(τ) where δ(τ) = γτ + β,

(with arbitrary delay function δ) (u, v, δ) : taking arc (u, v) at
τ leads to v at τ + δ(τ).
Example : speed profile in road networks (20k profiles of
100 speeds/day for 10m edges).

⇐ ? ⇒ 1 / 5 10 / 37
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Data structure : time-expanded graph (point
availability)

4:8 Temporal Reachability under Waiting-Time Constraints in Linear Time
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Figure 2 Space-time representation of the temporal graph of Figure 1. Plain arcs cor-
respond to temporal edges while dotted arcs correspond to waiting at a node. The tem-
poral walk (s, a, 1, 1), (a, b, 2, 1), (b, c, 4, 1), (c, a, 5, 1), (a, d, 7, 1) corresponds to the directed path
s1, a2, b3, b4, c5, a6, a7, d8. Note that the directed path s1, a2, b3, b4, b5, d6 does not corresponds to a
valid temporal walk, since waiting at node b from time 3 to time 5 violates the constraint — = 1.

The nodes in W are labeled nodes v
·

, where v œ V refers to a node of G and · is a time272

label. More precisely, v
·

œ W if and only if there exists a temporal edge in E with tail v273

and departure time · or a temporal edge with head v and arrival time · . We will also274

refer to such nodes as copies of v. Let us denote with Predw(v
·

) the copy of v in W with275

maximum time label less than · , if it exists.276

We distinguish two types of arcs F c and F w called connection arcs and waiting arcs277

respectively. The set F c contains an arc (u
·

, v
·+⁄

) for each temporal edge e = (u, v, ·, ⁄) œ278

E. These arcs represent a temporal connection between nodes in V and are called279

connection arcs. Note that each arc (v
·

, w
‹

) in F c satisfies · < ‹, since travel times are280

positive. The set F w is defined to contain an arc (Predw(v
·

), v
·

) for each v œ V and for281

each copy v
·

of v such that Predw(v
·

) is defined. These arcs represent the possibility to282

wait at a node in v œ V during a walk in G and are called waiting arcs. Note that each283

arc (v
·

, v
‹

) in F w satisfies · < ‹.284

The main property of this representation is that any temporal walk Q corresponds to a285

directed path in the representation using arcs in F c corresponding to temporal edges of Q plus286

waiting arcs in F w each time the walk waits at a node (see Figure 2 for an example). Note287

that the converse is also true in the unrestricted waiting setting but not with waiting-time288

constraints.289

We will now show that Algorithm 1 runs correctly when Earr and Edep satisfy weaker290

requirements and how to compute such lists from a space-time representation.291

Let us introduce some orderings of temporal edges with respect to certain temporal292

criteria. We say that an ordering Eord of the edges of a temporal graph G is walk-respecting293

when the edges of any walk Q in G appear in order in Eord. Equivalently, Eord is walk-294

4:2 Temporal Reachability under Waiting-Time Constraints in Linear Time

s

a

b

c

d1

2

4

1

5

5

4

7

Figure 1 A temporal graph with waiting constraints. Each temporal edge in the picture is labeled
with its departure time and has travel time one, each node has minimum waiting-time – = 0 and
maximum waiting-time — = 1. The only temporal edge entering d and reachable from s is (a, d, 7, 1)
through the temporal walk (s, a, 1, 1), (a, b, 2, 1), (b, c, 4, 1), (c, a, 5, 1), (a, d, 7, 1). Indeed, following
any of the two other edges (b, d, 5, 1) and (c, d, 4, 1) would require to wait 2 > — units of time either
at b (after edge (a, b, 2, 1)) or c (after edge (s, c, 1, 1)).

temporal edge e = (u, v, ·, ⁄). It represents the possibility to traverse the edge from u at43

time exactly · with arrival in v at time · + ⁄. We refer to · and · + ⁄ as the departure44

time and arrival time of e respectively, while ⁄ > 0 is called the travel time of e. Notice45

that we consider travel time to be strictly positive, which is a natural assumption when46

it comes down to application like, for example, transport networks. A temporal walk can47

then be defined as a sequence of temporal edges such that each temporal edge arrives at the48

departing node of the next one, and the arrival time of each temporal edge is less or equal to49

the departure time of the next one. The inequality means that it is possible to wait at the50

node in-between two consecutive temporal edges. In particular, the time elapsed between51

the arrival time of an edge and the departure of the next one represents the amount of time52

spent waiting at the node. We distinguish such a walk from a temporal path, which is a53

temporal walk visiting at most once any node.54

Without waiting constraints, that is when waiting at a node is unrestricted, numerous55

works have investigated single-source temporal path computation with a primary focus on56

earliest arrival. After several works inspired by Dijkstra algorithm (see e.g. [2, 3, 16, 18]), a57

simple and elegant linear-time algorithm for earliest arrival time was first claimed in [20] with58

a similar algorithm as [10] through a single scan of temporal edges ordered by non-decreasing59

departure time. Assuming strictly positive travel times is important here as it ensures that60

the temporal edges of any temporal path appear in order during this scan. These algorithms61

indeed focus their target on temporal paths rather than walks, since unrestricted waiting62

allows to transform any walk into a path by waiting at nodes instead of performing any loops.63

In this setting they allow to determine which nodes or edges are reachable. However, we64

consider the following more general model.65

Waiting constraints.66

We consider temporal graphs subject to waiting constraints. In such graphs, during a temporal67

walk, it is not possible to wait at a node less than – time or more than — time, before moving68

to another node. Such constraints can be used to model, for example, preferences of a user69

in a public transport network, or to take into account incubation time and recovery time of70

a disease in a temporal network of contacts.71

⇐ ? ⇒ 1 / 1 11 / 37



Data structure : time tables (point availability)

Notes à consulter 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1

Nom du train GOTA NORA GOTA NORA GATA GOTA NORA GATA NORA GATA GOTA NORA GATA NORA GATA GOTA NORA GATA NORA GATA GOTA NORA GATA NORA GATA GOTA NORA NORA GOTA NORA GOTA NORA GOTA NORA GOTA NORA GOTA NORA GOTA NORA GOTA NORA GOTA NORA GOTA NORA GOTA NORA GOTA

Bibliothèque François Mitterrand 5:31 5:45 6:01 6:15 6:23 6:30 6:32 6:38 6:46 6:53 7:01 7:02 7:08 7:16 7:24 7:31 7:32 7:39 7:46 7:54 8:01 8:02 8:09 8:16 8:24 8:31 8:32 8:46 9:01 9:16 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00 13:15 13:30 13:45 14:00

Paris Austerlitz 5:34 5:48 6:04 6:18 6:26 6:33 6:35 6:41 6:50 6:56 7:04 7:05 7:11 7:20 7:28 7:34 7:35 7:43 7:50 7:58 8:05 8:05 8:13 8:20 8:28 8:35 8:35 8:50 9:05 9:20 9:33 9:48 10:03 10:18 10:33 10:48 11:03 11:18 11:33 11:48 12:05 12:18 12:33 12:48 13:03 13:18 13:33 13:48 14:03

Saint-Michel Notre Dame 5:38 5:52 6:08 6:22 6:30 6:38 6:39 6:45 6:54 7:00 7:09 7:09 7:15 7:24 7:32 7:39 7:39 7:47 7:54 8:02 8:09 8:09 8:17 8:24 8:32 8:39 8:39 8:54 9:09 9:24 9:37 9:52 10:07 10:22 10:37 10:52 11:07 11:22 11:37 11:52 12:09 12:22 12:37 12:52 13:07 13:22 13:37 13:52 14:07

Musée d'Orsay 5:42 5:56 6:12 6:26 6:34 6:41 6:43 6:48 6:58 7:03 7:12 7:13 7:18 7:28 7:35 7:42 7:43 7:50 7:58 8:05 8:12 8:13 8:20 8:28 8:35 8:42 8:43 8:58 9:12 9:28 9:41 9:56 10:11 10:26 10:41 10:56 11:11 11:26 11:41 11:56 12:12 12:26 12:41 12:56 13:11 13:26 13:41 13:56 14:11

Invalides 5:44 5:59 6:14 6:29 6:37 6:44 6:45 6:51 7:00 7:06 7:15 7:15 7:21 7:30 7:38 7:45 7:45 7:53 8:00 8:08 8:15 8:15 8:23 8:30 8:38 8:45 8:45 9:00 9:15 9:30 9:44 9:59 10:14 10:29 10:44 10:59 11:14 11:29 11:44 11:59 12:15 12:29 12:44 12:59 13:14 13:29 13:44 13:59 14:14

Pont de l'Alma 5:46 6:01 6:16 6:31 6:39 6:46 6:48 6:53 7:02 7:08 7:17 7:18 7:23 7:33 7:40 7:47 7:48 7:55 8:03 8:10 8:17 8:18 8:25 8:33 8:40 8:47 8:48 9:03 9:17 9:33 9:47 10:01 10:17 10:31 10:47 11:01 11:17 11:31 11:47 12:01 12:17 12:31 12:47 13:01 13:17 13:31 13:47 14:01 14:17

Champ de Mars Tour Eiffel 5:49 6:03 6:19 6:33 6:42 6:49 6:50 6:56 7:04 7:11 7:19 7:20 7:26 7:35 7:42 7:49 7:50 7:57 8:05 8:12 8:19 8:20 8:27 8:35 8:42 8:49 8:50 9:05 9:19 9:35 9:49 10:03 10:19 10:33 10:49 11:03 11:19 11:33 11:49 12:03 12:20 12:33 12:49 13:03 13:19 13:33 13:49 14:03 14:19

Avenue du Président Kennedy 5:51 6:06 6:21 6:36 6:44 6:51 6:52 6:58 7:07 7:13 7:22 7:22 7:28 7:37 7:45 7:52 7:52 8:00 8:07 8:15 8:22 8:22 8:30 8:37 8:45 8:52 8:52 9:07 9:22 9:37 9:52 10:06 10:22 10:36 10:52 11:06 11:22 11:36 11:52 12:06 12:22 12:36 12:52 13:06 13:22 13:36 13:52 14:06 14:22

Boulainvilliers 5:53 6:08 6:23 6:38 6:46 6:53 6:54 7:00 7:09 7:15 7:24 7:24 7:30 7:39 7:47 7:54 7:54 8:02 8:09 8:17 8:24 8:24 8:32 8:39 8:47 8:54 8:54 9:09 9:24 9:39 9:54 10:08 10:24 10:38 10:54 11:08 11:24 11:38 11:54 12:08 12:24 12:38 12:54 13:08 13:24 13:38 13:54 14:08 14:24

Avenue Henri Martin 5:56 6:10 6:26 6:40 6:48 6:55 6:57 7:02 7:11 7:17 7:26 7:27 7:32 7:41 7:49 7:56 7:57 8:04 8:11 8:19 8:26 8:27 8:34 8:41 8:49 8:56 8:57 9:11 9:26 9:41 9:56 10:10 10:26 10:40 10:56 11:10 11:26 11:40 11:56 12:10 12:26 12:40 12:56 13:10 13:26 13:40 13:56 14:10 14:26

Avenue Foch 5:58 6:12 6:28 6:42 6:50 6:57 6:58 7:04 7:13 7:19 7:28 7:28 7:34 7:43 7:51 7:58 7:58 8:06 8:13 8:21 8:28 8:28 8:36 8:43 8:51 8:58 8:58 9:13 9:28 9:43 9:58 10:12 10:28 10:42 10:58 11:12 11:28 11:42 11:58 12:12 12:28 12:42 12:58 13:12 13:28 13:42 13:58 14:12 14:28

Neuilly Porte Maillot 6:00 6:15 6:30 6:45 6:53 7:00 7:01 7:07 7:16 7:22 7:31 7:31 7:37 7:46 7:54 8:01 8:01 8:09 8:16 8:24 8:31 8:31 8:39 8:46 8:54 9:01 9:01 9:16 9:31 9:46 10:01 10:15 10:31 10:45 11:01 11:15 11:31 11:45 12:01 12:15 12:31 12:45 13:01 13:15 13:31 13:45 14:01 14:15 14:31

Péreire Levallois 6:03 6:18 6:33 6:48 6:56 7:02 7:04 7:10 7:18 7:25 7:33 7:34 7:40 7:49 7:56 8:03 8:04 8:11 8:19 8:26 8:33 8:34 8:41 8:49 8:56 9:03 9:04 9:19 9:33 9:49 10:04 10:18 10:34 10:48 11:04 11:18 11:34 11:48 12:04 12:18 12:34 12:48 13:04 13:18 13:34 13:48 14:04 14:18 14:34

Porte de Clichy 6:06 6:21 6:36 6:51 6:59 7:06 7:07 7:13 7:21 7:28 7:36 7:37 7:43 7:52 8:00 8:06 8:07 8:15 8:22 8:30 8:37 8:37 8:45 8:52 9:00 9:07 9:07 9:22 9:37 9:52 10:07 10:21 10:37 10:51 11:07 11:21 11:37 11:51 12:07 12:21 12:37 12:51 13:07 13:21 13:37 13:51 14:07 14:21 14:37

Saint-Ouen 6:09 6:25 6:39 6:55 7:02 7:09 7:10 7:16 7:24 7:31 7:39 7:40 7:46 7:55 8:02 8:09 8:10 8:17 8:25 8:32 8:39 8:40 8:47 8:55 9:02 9:09 9:10 9:25 9:39 9:55 10:10 10:25 10:40 10:55 11:10 11:25 11:40 11:55 12:10 12:25 12:40 12:55 13:10 13:25 13:40 13:55 14:10 14:25 14:40

Les Grésillons 6:12 6:28 6:42 6:58 7:05 7:12 7:13 7:19 7:28 7:34 7:43 7:43 7:49 7:58 8:06 8:13 8:13 8:21 8:28 8:36 8:43 8:43 8:51 8:58 9:06 9:13 9:13 9:28 9:43 9:58 10:13 10:28 10:43 10:58 11:13 11:28 11:43 11:58 12:13 12:28 12:43 12:58 13:13 13:28 13:43 13:58 14:13 14:28 14:43

Gennevilliers 6:14 6:30 6:44 7:00 7:07 7:15 7:16 7:21 7:30 7:36 7:45 7:46 7:51 8:01 8:08 8:15 8:16 8:23 8:31 8:38 8:46 8:46 8:53 9:01 9:08 9:16 9:16 9:31 9:46 10:01 10:16 10:30 10:46 11:00 11:16 11:30 11:46 12:00 12:16 12:30 12:46 13:00 13:16 13:30 13:46 14:00 14:16 14:30 14:46

Épinay sur Seine 6:18 6:34 6:48 7:04 7:10 7:18 7:19 7:25 7:34 7:40 7:49 7:49 7:55 8:04 8:11 8:19 8:19 8:26 8:34 8:41 8:49 8:49 8:56 9:04 9:11 9:19 9:19 9:34 9:49 10:04 10:19 10:34 10:49 11:04 11:19 11:34 11:49 12:04 12:19 12:34 12:49 13:04 13:19 13:34 13:49 14:04 14:19 14:34 14:49

Saint-Gratien 6:21 6:36 6:51 7:06 7:13 7:21 7:22 7:27 7:36 7:42 7:52 7:52 7:57 8:07 8:14 8:22 8:22 8:29 8:37 8:44 8:52 8:52 8:59 9:07 9:14 9:22 9:22 9:37 9:52 10:07 10:22 10:36 10:52 11:06 11:22 11:36 11:52 12:06 12:22 12:36 12:52 13:06 13:22 13:36 13:52 14:06 14:22 14:36 14:52

Ermont Eaubonne 6:25 6:40 6:55 7:10 7:19 7:25 7:26 7:34 7:40 7:49 7:56 7:56 8:04 8:10 8:20 8:26 8:26 8:35 8:40 8:50 8:56 8:56 9:05 9:10 9:20 9:26 9:26 9:40 9:56 10:10 10:26 10:40 10:56 11:10 11:26 11:40 11:56 12:10 12:26 12:40 12:56 13:10 13:26 13:40 13:56 14:10 14:26 14:40 14:56

Cernay 6:27 6:43 6:57 7:13 7:22 7:28 7:29 7:37 7:43 7:52 7:58 7:59 8:07 8:13 8:23 8:28 8:29 8:38 8:43 8:53 8:58 8:59 9:08 9:13 9:23 9:28 9:29 9:43 9:59 10:13 10:29 10:43 10:59 11:13 11:28 11:43 11:59 12:13 12:29 12:43 12:59 13:13 13:29 13:43 13:59 14:13 14:29 14:43 14:59

Franconville Le Plessis Bouchard 6:30 6:46 7:00 7:16 7:25 7:31 7:31 7:39 7:46 7:54 8:01 8:01 8:09 8:16 8:26 8:31 8:31 8:41 8:46 8:56 9:01 9:01 9:11 9:16 9:26 9:31 9:31 9:46 10:02 10:16 10:31 10:46 11:02 11:16 11:31 11:46 12:01 12:16 12:31 12:46 13:01 13:16 13:31 13:46 14:01 14:16 14:31 14:46 15:01

Montigny Beauchamp 6:34 6:50 7:04 7:20 7:29 7:34 7:35 7:43 7:50 7:58 8:04 8:05 8:13 8:20 8:30 8:34 8:35 8:45 8:50 9:00 9:05 9:05 9:15 9:20 9:30 9:35 9:35 9:50 10:05 10:20 10:35 10:50 11:05 11:20 11:34 11:50 12:05 12:20 12:35 12:50 13:05 13:20 13:35 13:50 14:05 14:20 14:35 14:50 15:05

Pierrelaye 6:53 7:23 7:39 7:53 8:09 8:23 8:39 8:53 9:09 9:23 9:39 9:53 10:23 10:53 11:23 11:53 12:23 12:53 13:23 13:53 14:23 14:53

Saint-Ouen l'Aumône Liesse 6:56 7:26 7:42 7:56 8:12 8:26 8:42 8:56 9:12 9:26 9:42 9:56 10:26 10:56 11:26 11:56 12:26 12:56 13:26 13:56 14:26 14:56

Saint-Ouen l'Aumône 6:59 7:29 7:45 7:59 8:15 8:29 8:45 8:59 9:15 9:29 9:45 9:59 10:29 10:59 11:29 11:59 12:29 12:59 13:29 13:59 14:29 14:59

Pontoise 7:01 7:31 7:47 8:02 8:17 8:32 8:47 9:02 9:17 9:32 9:47 10:02 10:32 11:01 11:31 12:01 12:31 13:01 13:31 14:01 14:31 15:01

Notes à consulter 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1

Nom du train NORA GOTA NORA GOTA NORA GOTA NORA GOTA NORA GATA NORA GATA GOTA NORA GATA NORA GATA GOTA NORA GATA NORA GATA GOTA NORA GATA NORA GATA GOTA NORA GATA NORA GOTA NORA GOTA NORA GOTA NORA GOTA NORA GOTA NORA GOTA NORA GOTA GOTA GOTA GOTA GOTA GOTA

Bibliothèque François Mitterrand 14:15 14:30 14:45 15:00 15:15 15:31 15:45 16:00 16:00 16:08 16:15 16:23 16:31 16:31 16:38 16:46 16:53 17:01 17:01 17:08 17:16 17:23 17:31 17:31 17:38 17:45 17:53 18:01 18:01 18:08 18:15 18:30 18:45 19:00 19:15 19:30 19:45 20:00 20:15 20:30 20:45 21:00 21:15 21:30 22:00 22:30 23:00 23:31 0:01

Paris Austerlitz 14:18 14:33 14:48 15:03 15:18 15:34 15:48 16:04 16:04 16:12 16:18 16:26 16:34 16:34 16:41 16:49 16:57 17:04 17:04 17:11 17:20 17:27 17:34 17:34 17:41 17:48 17:56 18:04 18:04 18:12 18:18 18:33 18:48 19:03 19:18 19:33 19:48 20:03 20:18 20:33 20:48 21:03 21:18 21:33 22:03 22:33 23:03 23:35 0:05

Saint-Michel Notre Dame 14:22 14:37 14:52 15:07 15:22 15:38 15:52 16:08 16:08 16:15 16:22 16:30 16:38 16:38 16:45 16:53 17:00 17:08 17:08 17:15 17:24 17:30 17:38 17:38 17:45 17:52 18:00 18:08 18:08 18:15 18:22 18:37 18:52 19:07 19:22 19:37 19:52 20:07 20:22 20:37 20:52 21:07 21:22 21:37 22:07 22:37 23:07 23:38 0:08

Musée d'Orsay 14:26 14:41 14:56 15:11 15:26 15:41 15:56 16:12 16:12 16:19 16:26 16:34 16:42 16:42 16:49 16:57 17:04 17:12 17:12 17:19 17:27 17:34 17:42 17:42 17:49 17:56 18:04 18:12 18:12 18:19 18:26 18:41 18:56 19:11 19:26 19:41 19:56 20:11 20:26 20:41 20:56 21:11 21:26 21:41 22:11 22:41 23:11 23:42 0:12

Invalides 14:29 14:44 14:59 15:14 15:29 15:44 15:59 16:14 16:14 16:22 16:29 16:36 16:44 16:44 16:51 16:59 17:07 17:14 17:14 17:21 17:30 17:37 17:44 17:44 17:51 17:59 18:06 18:14 18:14 18:22 18:29 18:44 18:59 19:14 19:29 19:44 19:59 20:14 20:29 20:44 20:59 21:14 21:29 21:44 22:14 22:44 23:14 23:45 0:15

Pont de l'Alma 14:31 14:47 15:01 15:17 15:31 15:47 16:01 16:17 16:17 16:24 16:31 16:39 16:47 16:47 16:54 17:02 17:09 17:17 17:17 17:24 17:32 17:39 17:47 17:47 17:54 18:01 18:09 18:17 18:17 18:24 18:31 18:47 19:01 19:17 19:31 19:47 20:01 20:17 20:31 20:47 21:01 21:17 21:31 21:47 22:17 22:47 23:17 23:47 0:17

Champ de Mars Tour Eiffel 14:33 14:49 15:03 15:19 15:33 15:49 16:03 16:19 16:19 16:26 16:33 16:41 16:49 16:49 16:56 17:04 17:11 17:19 17:19 17:26 17:34 17:41 17:49 17:49 17:56 18:03 18:11 18:19 18:19 18:26 18:33 18:49 19:03 19:19 19:33 19:49 20:03 20:19 20:33 20:49 21:03 21:19 21:33 21:49 22:19 22:49 23:19 23:49 0:19

Avenue du Président Kennedy 14:36 14:52 15:06 15:22 15:36 15:52 16:06 16:21 16:21 16:29 16:36 16:44 16:51 16:51 16:59 17:06 17:14 17:21 17:21 17:29 17:37 17:44 17:51 17:51 17:59 18:06 18:14 18:21 18:21 18:29 18:36 18:52 19:06 19:22 19:36 19:52 20:06 20:22 20:36 20:52 21:06 21:22 21:36 21:52 22:22 22:52 23:22 23:52 0:22

Boulainvilliers 14:38 14:54 15:08 15:24 15:38 15:54 16:08 16:23 16:23 16:31 16:38 16:46 16:53 16:53 17:01 17:08 17:16 17:23 17:23 17:31 17:39 17:46 17:53 17:53 18:01 18:08 18:16 18:23 18:23 18:31 18:38 18:54 19:08 19:24 19:38 19:54 20:08 20:24 20:38 20:54 21:08 21:24 21:38 21:54 22:24 22:54 23:24 23:54 0:24

Avenue Henri Martin 14:40 14:56 15:10 15:26 15:40 15:56 16:10 16:25 16:25 16:33 16:40 16:48 16:55 16:55 17:03 17:10 17:18 17:25 17:25 17:33 17:41 17:48 17:55 17:55 18:03 18:10 18:18 18:25 18:25 18:33 18:40 18:56 19:10 19:26 19:40 19:56 20:10 20:26 20:40 20:56 21:10 21:26 21:40 21:56 22:26 22:56 23:26 23:56 0:26

Avenue Foch 14:42 14:58 15:12 15:28 15:42 15:58 16:12 16:27 16:27 16:35 16:42 16:50 16:57 16:57 17:05 17:12 17:20 17:27 17:27 17:35 17:43 17:50 17:57 17:57 18:05 18:12 18:20 18:27 18:27 18:35 18:42 18:58 19:12 19:28 19:42 19:58 20:12 20:28 20:42 20:58 21:12 21:28 21:42 21:58 22:28 22:58 23:28 23:58 0:28

Neuilly Porte Maillot 14:45 15:01 15:15 15:31 15:45 16:01 16:15 16:30 16:30 16:37 16:45 16:53 17:00 17:00 17:08 17:15 17:23 17:30 17:30 17:38 17:46 17:53 18:00 18:00 18:08 18:15 18:23 18:30 18:30 18:38 18:45 19:01 19:15 19:31 19:45 20:01 20:15 20:31 20:45 21:01 21:15 21:31 21:45 22:01 22:31 23:01 23:31 0:01 0:31

Péreire Levallois 14:48 15:04 15:18 15:34 15:48 16:04 16:18 16:33 16:33 16:40 16:48 16:56 17:03 17:03 17:11 17:18 17:26 17:33 17:33 17:41 17:48 17:56 18:03 18:03 18:11 18:18 18:26 18:33 18:33 18:41 18:48 19:04 19:18 19:34 19:48 20:04 20:18 20:34 20:48 21:04 21:18 21:34 21:48 22:04 22:34 23:04 23:34 0:04 0:34

Porte de Clichy 14:51 15:07 15:21 15:37 15:51 16:07 16:21 16:36 16:36 16:43 16:51 16:59 17:06 17:06 17:14 17:21 17:29 17:36 17:36 17:44 17:51 17:59 18:06 18:06 18:14 18:21 18:29 18:36 18:36 18:44 18:51 19:07 19:21 19:37 19:51 20:07 20:21 20:37 20:51 21:07 21:21 21:37 21:51 22:07 22:37 23:07 23:37 0:07 0:37

Saint-Ouen 14:55 15:10 15:25 15:40 15:55 16:10 16:25 16:39 16:39 16:46 16:55 17:02 17:09 17:09 17:17 17:24 17:32 17:39 17:39 17:47 17:54 18:02 18:09 18:09 18:17 18:25 18:32 18:39 18:39 18:47 18:55 19:10 19:25 19:40 19:55 20:10 20:25 20:40 20:55 21:10 21:25 21:40 21:55 22:10 22:40 23:10 23:40 0:09 0:39

Les Grésillons 14:58 15:13 15:28 15:43 15:58 16:13 16:28 16:42 16:42 16:50 16:58 17:05 17:12 17:12 17:20 17:27 17:35 17:42 17:42 17:50 17:58 18:05 18:12 18:12 18:20 18:28 18:35 18:42 18:42 18:50 18:58 19:13 19:28 19:43 19:58 20:13 20:28 20:43 20:58 21:13 21:28 21:43 21:58 22:13 22:43 23:13 23:43 0:13 0:43

Gennevilliers 15:00 15:16 15:30 15:46 16:00 16:16 16:30 16:45 16:45 16:52 17:00 17:08 17:15 17:15 17:23 17:30 17:38 17:45 17:45 17:53 18:00 18:08 18:15 18:15 18:23 18:30 18:38 18:45 18:45 18:53 19:00 19:16 19:30 19:46 20:00 20:16 20:30 20:46 21:00 21:16 21:30 21:46 22:00 22:16 22:46 23:16 23:46 0:15 0:45

Épinay sur Seine 15:04 15:19 15:34 15:49 16:04 16:19 16:34 16:48 16:48 16:56 17:04 17:11 17:18 17:18 17:26 17:33 17:41 17:48 17:48 17:56 18:04 18:11 18:18 18:18 18:26 18:34 18:41 18:48 18:48 18:56 19:04 19:19 19:34 19:49 20:04 20:19 20:34 20:49 21:04 21:19 21:34 21:49 22:04 22:19 22:49 23:19 23:49 0:18 0:48

Saint-Gratien 15:06 15:22 15:36 15:52 16:06 16:22 16:36 16:50 16:50 16:59 17:06 17:14 17:20 17:20 17:29 17:36 17:44 17:50 17:50 17:59 18:07 18:14 18:20 18:20 18:29 18:36 18:44 18:50 18:50 18:59 19:06 19:22 19:36 19:52 20:06 20:22 20:36 20:52 21:06 21:22 21:36 21:52 22:06 22:22 22:52 23:22 23:52 0:20 0:50

Ermont Eaubonne 15:10 15:26 15:40 15:56 16:10 16:26 16:40 16:55 16:55 17:05 17:10 17:20 17:25 17:25 17:35 17:40 17:50 17:55 17:55 18:05 18:10 18:20 18:25 18:25 18:35 18:40 18:50 18:55 18:55 19:05 19:10 19:26 19:40 19:56 20:10 20:26 20:40 20:56 21:10 21:26 21:40 21:56 22:10 22:26 22:56 23:26 23:56 0:25 0:55

Cernay 15:13 15:29 15:43 15:59 16:13 16:29 16:43 16:57 16:57 17:07 17:13 17:22 17:27 17:27 17:37 17:43 17:53 17:57 17:57 18:07 18:13 18:23 18:27 18:27 18:37 18:43 18:52 18:57 18:57 19:08 19:13 19:28 19:43 19:59 20:13 20:29 20:43 20:59 21:13 21:29 21:43 21:59 22:13 22:29 22:59 23:29 23:59 0:27 0:57

Franconville Le Plessis Bouchard 15:16 15:31 15:46 16:01 16:16 16:31 16:46 17:00 17:00 17:11 17:16 17:26 17:30 17:30 17:41 17:46 17:56 18:00 18:00 18:11 18:16 18:26 18:30 18:30 18:41 18:46 18:56 19:00 19:00 19:11 19:16 19:31 19:46 20:01 20:16 20:31 20:46 21:01 21:16 21:31 21:46 22:01 22:16 22:31 23:01 23:31 0:01 0:31 1:01

Montigny Beauchamp 15:20 15:35 15:50 16:05 16:20 16:35 16:50 17:04 17:05 17:15 17:20 17:30 17:34 17:35 17:45 17:50 18:00 18:04 18:05 18:15 18:20 18:30 18:34 18:35 18:45 18:50 19:00 19:04 19:05 19:15 19:20 19:34 19:50 20:05 20:20 20:35 20:50 21:05 21:20 21:35 21:50 22:05 22:20 22:35 23:05 23:35 0:05 0:34 1:04

Pierrelaye 15:23 15:53 16:23 16:53 17:08 17:23 17:38 17:53 18:08 18:23 18:38 18:53 19:08 19:23 19:53 20:23 20:53 21:23 21:53 22:23

Saint-Ouen l'Aumône Liesse 15:26 15:56 16:26 16:56 17:12 17:26 17:42 17:56 18:12 18:26 18:42 18:56 19:12 19:26 19:56 20:26 20:56 21:26 21:56 22:26

Saint-Ouen l'Aumône 15:29 15:59 16:29 16:59 17:15 17:29 17:45 17:59 18:15 18:29 18:45 18:59 19:15 19:29 19:59 20:29 20:59 21:29 21:59 22:29

Pontoise 15:31 16:01 16:31 17:01 17:17 17:31 17:47 18:02 18:17 18:32 18:47 19:01 19:17 19:31 20:01 20:31 21:01 21:31 22:01 22:31

BIBLIOTHÈQUE
FRANÇOIS MITTERRAND

ERMONT EAUBONNE

PONTOISE

1 =  circule du lundi au vendredi sauf les 
26, 27, 30 et 31 décembre. 2 =  circule les 26, 27, 30 et 31 décembre.
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Du lundi au vendredi

HORAIRES TRANSILIEN

DU 15 DECEMBRE 2013
AU 14 JUILLET 2014

⇐ ? ⇒ 1 / 1 12 / 37



Temporal graph parameters

Number n of nodes.

Number m of edges.

Number µ of availability points/intervals.

We assume n ≤ m ≤ µ.

µ ≤ m∆e where ∆e is the maximum number of time events
at an edge.

µ ≤ n∆n where ∆n is the maximum number of time events at
a node.

⇐ ? ⇒ 1 / 6 13 / 37



Temporal graph parameters

Number n of nodes.

Number m of edges.

Number µ of availability points/intervals.

We assume n ≤ m ≤ µ.

µ ≤ m∆e where ∆e is the maximum number of time events
at an edge.

µ ≤ n∆n where ∆n is the maximum number of time events at
a node.

⇐ ? ⇒ 2 / 6 13 / 37



Temporal graph parameters

Number n of nodes.

Number m of edges.

Number µ of availability points/intervals.

We assume n ≤ m ≤ µ.

µ ≤ m∆e where ∆e is the maximum number of time events
at an edge.

µ ≤ n∆n where ∆n is the maximum number of time events at
a node.

⇐ ? ⇒ 3 / 6 13 / 37



Temporal graph parameters

Number n of nodes.

Number m of edges.

Number µ of availability points/intervals.

We assume n ≤ m ≤ µ.

µ ≤ m∆e where ∆e is the maximum number of time events
at an edge.

µ ≤ n∆n where ∆n is the maximum number of time events at
a node.

⇐ ? ⇒ 4 / 6 13 / 37



Temporal graph parameters

Number n of nodes.

Number m of edges.

Number µ of availability points/intervals.

We assume n ≤ m ≤ µ.

µ ≤ m∆e where ∆e is the maximum number of time events
at an edge.

µ ≤ n∆n where ∆n is the maximum number of time events at
a node.

⇐ ? ⇒ 5 / 6 13 / 37



Temporal graph parameters

Number n of nodes.

Number m of edges.

Number µ of availability points/intervals.

We assume n ≤ m ≤ µ.

µ ≤ m∆e where ∆e is the maximum number of time events
at an edge.

µ ≤ n∆n where ∆n is the maximum number of time events at
a node.

⇐ ? ⇒ 6 / 6 13 / 37



Connectivity : temporal paths

Definition : a timed edge is a triple (τ, u, v) such that edge
uv is available at time τ (Arruv(τ) < ∞).

Definition : a temporal walk P from u at τdep to v at τarr is a
sequence of timed edges (τ1, u1, v1), . . . , (τk, uk, vk) such that :

• u1 = u, τ1τdep,
• for i = 1, . . . , k− 1, vi = ui+1 and τi + δuivi(τi)τi+1,
• vk = v, Arrukvk(τk)τarr.

Strict : for i = 1, . . . , k− 1, τi < τi+1.

Temporal path : a temporal walk visiting a node at most once
(| {u1, v1, . . . , vk} | = k+ 1).
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A natural problem : earliest arrival time

Definition : EATuv(τ) := minP dep. at τ
τarr(P).

A path P arriving at EATuv(τ) is a foremost path.

EAT Problem : given u, v, τ , compute EATuv(τ).

Natural solution : temporal Dijkstra [Berman 1996] in
O(n log n+m log∆e) (adjacency lists) (also O(n log n+ µ)
with a sorted list of temporal edges).

Question : what makes temporal Dijkstra correct?
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The power of waiting

Assumption :
FIFO property : for all edge uv ∈ E and τ < τ ′,
Arruv(τ) ≤ Arruv(τ ′) (where Arruv(τ) = τ + δuv(τ)).

Consequence :
• loops are useless,
• any foremost path is concatenated : it can be obtained

by extending a foremost path.

Lemma : waiting implies FIFO.
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Infinite shortest path (non-waiting)

A temporal graph can have foremost temporal walks with
infinitely many edges. [Orda, Rom 1991]

Exercise what if waiting is allowed?

Theorem [Orda, Rom 1991] : finding a non-waiting temporal
walk is NP-hard.

Remark Becomes polynomial in the point availability model...
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Temporal graph hierarchy

Profile problem : given u, v, compute EATuv(.) assuming FIFO.

model profile size π profile complexity

piecewise linear-delay π = µnO(log n)

[Foschini et al 14]
O(nmπ)

[Orda, Rom 90]

piecewise constant-delay O((m+ n log n)µ)
[Dehne et al 12]

point-availability π = O(µ)

unit-delay point-availability O(µ)
[Kossinets et al 08]

Rq1 : for a walk P = e1, . . . , ek, ArrP(τ) = Arrek ◦ · · · ◦Arre1(τ)

Rq2 : EATuv(.) = minuv-walk P ArrP(.)

Open pb : fine-grained complexity of profile (interval) or
even shortest duration.
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Point-availability : non-waiting temporal paths are
hard

Theorem [Casteigts, Himmel, Molter, Zschoche 2021] Testing if
a β-waiting temporal path connects a given pair of nodes is
NP-hard (even W[1]-hard parametrized by pathwidth). 2763

1 3

Algorithmica (2021) 83:2754–2802 

x̄
(2)
i

 , x̄(3)
i

 , x̄(4)
i

 , and si . Each variable xi is represented by a gadget consisting two dis-
joint path segments of four vertices each. One path segment is formed by x(1)

i
 , x(2)

i
 , 

x
(3)
i

 , and x(4)
i

 in that order and the second path segment is formed by x̄(1)
i

 , x̄(2)
i

 , x̄(3)
i

 , 
and  x̄(4)

i
 in that order. The connecting edges all appear exclusively at time step one, 

that is, {x(1)
i
, x

(2)
i
} , {x(2)

i
, x

(3)
i
} , and {x(3)

i
, x

(4)
i
} are added to E1 . Analogously for the 

edges connecting x̄(1)
i

 , x̄(2)
i

 , x̄(3)
i

 , and x̄(4)
i

 . Intuitively, if a !-restless temporal (s, z)-
path passes the first segment, then this corresponds to setting the variable xi to false. 
If it passes the second segment, then the variable is set to true. For all i ∈ [n − 1] we 
add the edges {x(4)

i
, si} , {x̄(4)i

, si} , {si, x̄(1)i+1
} , and {si, x̄(1)i+1

} to E1 and, additionally, we 
add {s, x(1)

1
} , {s, x̄(1)

1
} , {x(4)

n
, sn} , and {x̄(4)

n
, sn} to E1.

We can observe that there are exactly 2n different temporal (s, sn)-paths at time 
step  one. Intuitively, each path represents exactly one variable assignment for the 
formula !.

Clause Gadget. We add a vertex z to V. For each clause cj with j ∈ [m] we add a 
fresh vertex cj to V. We further add a vertex s′ to V and add the edge {sn, s′} to E2 . 
Let xi (or x̄i ) be a literal that appears in clause cj and let this be the kth appearance of 
variable xi in ! . Then, we add the edges {cj, x(k)i

}, {x(k)
i
, cj+1} (or {cj, x̄(k)i

}, {x̄(k)
i
, cj+1} ) 

to E3 (where cm+1 = z ). Finally, we add the edge {s′, c1} to E3.

Hence, there are exactly 3m different temporal (s′, z)-paths at time step three. Each 
path must visit the clause vertices c1,… , cm in the given order by construction.

Finally, we set ! = 1 . This finishes the construction, for a visualization see Fig. 3. 
It is easy to check that every edge in the constructed temporal graph has only one 
time step and that the temporal graph can be computed in polynomial time.

Correctness. Now we can show that ! is satisfiable if and only if G has a !-rest-
less temporal (s, z)-path.

(⇒) : Let us assume there is a satisfying assignment for formula ! . Then we con-
struct a !-restless temporal path from vertex s to z as follows. Starting from s, for 

Fig. 3  Illustration of the temporal graph constructed by the reduction in the proof of Theorem  1. An 
excerpt is shown with variable gadgets for x1 , x2 , and x3 and the clause gadget for ci = (x1 ∨ x2 ∨ ¬x3) , 
where x1 appears for the fourth time, x2 appears for the third time, and x3 also appears for the third time. 
Black edges appear at time step one, the blue (dotted) edge {sn, s′} appears at time step two, and the red 
(dashed) edges appear at time step three
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β-waiting temp. walks in lin. time [Brunelli et al. 2023]

4:8 Temporal Reachability under Waiting-Time Constraints in Linear Time
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Figure 2 Space-time representation of the temporal graph of Figure 1. Plain arcs cor-
respond to temporal edges while dotted arcs correspond to waiting at a node. The tem-
poral walk (s, a, 1, 1), (a, b, 2, 1), (b, c, 4, 1), (c, a, 5, 1), (a, d, 7, 1) corresponds to the directed path
s1, a2, b3, b4, c5, a6, a7, d8. Note that the directed path s1, a2, b3, b4, b5, d6 does not corresponds to a
valid temporal walk, since waiting at node b from time 3 to time 5 violates the constraint — = 1.

The nodes in W are labeled nodes v
·

, where v œ V refers to a node of G and · is a time272

label. More precisely, v
·

œ W if and only if there exists a temporal edge in E with tail v273

and departure time · or a temporal edge with head v and arrival time · . We will also274

refer to such nodes as copies of v. Let us denote with Predw(v
·

) the copy of v in W with275

maximum time label less than · , if it exists.276

We distinguish two types of arcs F c and F w called connection arcs and waiting arcs277

respectively. The set F c contains an arc (u
·

, v
·+⁄

) for each temporal edge e = (u, v, ·, ⁄) œ278

E. These arcs represent a temporal connection between nodes in V and are called279

connection arcs. Note that each arc (v
·

, w
‹

) in F c satisfies · < ‹, since travel times are280

positive. The set F w is defined to contain an arc (Predw(v
·

), v
·

) for each v œ V and for281

each copy v
·

of v such that Predw(v
·

) is defined. These arcs represent the possibility to282

wait at a node in v œ V during a walk in G and are called waiting arcs. Note that each283

arc (v
·

, v
‹

) in F w satisfies · < ‹.284

The main property of this representation is that any temporal walk Q corresponds to a285

directed path in the representation using arcs in F c corresponding to temporal edges of Q plus286

waiting arcs in F w each time the walk waits at a node (see Figure 2 for an example). Note287

that the converse is also true in the unrestricted waiting setting but not with waiting-time288

constraints.289

We will now show that Algorithm 1 runs correctly when Earr and Edep satisfy weaker290

requirements and how to compute such lists from a space-time representation.291

Let us introduce some orderings of temporal edges with respect to certain temporal292

criteria. We say that an ordering Eord of the edges of a temporal graph G is walk-respecting293

when the edges of any walk Q in G appear in order in Eord. Equivalently, Eord is walk-294

4:2 Temporal Reachability under Waiting-Time Constraints in Linear Time
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Figure 1 A temporal graph with waiting constraints. Each temporal edge in the picture is labeled
with its departure time and has travel time one, each node has minimum waiting-time – = 0 and
maximum waiting-time — = 1. The only temporal edge entering d and reachable from s is (a, d, 7, 1)
through the temporal walk (s, a, 1, 1), (a, b, 2, 1), (b, c, 4, 1), (c, a, 5, 1), (a, d, 7, 1). Indeed, following
any of the two other edges (b, d, 5, 1) and (c, d, 4, 1) would require to wait 2 > — units of time either
at b (after edge (a, b, 2, 1)) or c (after edge (s, c, 1, 1)).

temporal edge e = (u, v, ·, ⁄). It represents the possibility to traverse the edge from u at43

time exactly · with arrival in v at time · + ⁄. We refer to · and · + ⁄ as the departure44

time and arrival time of e respectively, while ⁄ > 0 is called the travel time of e. Notice45

that we consider travel time to be strictly positive, which is a natural assumption when46

it comes down to application like, for example, transport networks. A temporal walk can47

then be defined as a sequence of temporal edges such that each temporal edge arrives at the48

departing node of the next one, and the arrival time of each temporal edge is less or equal to49

the departure time of the next one. The inequality means that it is possible to wait at the50

node in-between two consecutive temporal edges. In particular, the time elapsed between51

the arrival time of an edge and the departure of the next one represents the amount of time52

spent waiting at the node. We distinguish such a walk from a temporal path, which is a53

temporal walk visiting at most once any node.54

Without waiting constraints, that is when waiting at a node is unrestricted, numerous55

works have investigated single-source temporal path computation with a primary focus on56

earliest arrival. After several works inspired by Dijkstra algorithm (see e.g. [2, 3, 16, 18]), a57

simple and elegant linear-time algorithm for earliest arrival time was first claimed in [20] with58

a similar algorithm as [10] through a single scan of temporal edges ordered by non-decreasing59

departure time. Assuming strictly positive travel times is important here as it ensures that60

the temporal edges of any temporal path appear in order during this scan. These algorithms61

indeed focus their target on temporal paths rather than walks, since unrestricted waiting62

allows to transform any walk into a path by waiting at nodes instead of performing any loops.63

In this setting they allow to determine which nodes or edges are reachable. However, we64

consider the following more general model.65

Waiting constraints.66

We consider temporal graphs subject to waiting constraints. In such graphs, during a temporal67

walk, it is not possible to wait at a node less than – time or more than — time, before moving68

to another node. Such constraints can be used to model, for example, preferences of a user69

in a public transport network, or to take into account incubation time and recovery time of70

a disease in a temporal network of contacts.71
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Various natural “shortest” uv-walks
Earliest arrival (or foremost) : starting at τ from u,
minimize arrival time in v (concatenated).
Concatenated : any optimal walk can be obtained by concatenating
an edge to an optimal walk.
Fewest hops (or shortest) : minimize the number k of edges
(not concat.).
Shortest duration (or fastest) : minimize arrival time -
departure time (not concatenated).
Shortest delay : minimize

∑k
i=1Arruivi(τi)− τi (not concat.)

over walks P = u1v1, . . . , ukvk.
Min. waiting time : minimize

∑k−1
i=1 τi+1 − Arruivi(τi) (not

concat.).
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Min-cost vs arrival time

Temporal path cost : cost(P, (τ, u, v))) = cost(P)⊕ costuv(τ)
Theorem [Brunelli et al. 2023] Given the time-expanded
representation and a fixed node s, minimum-cost strict
se-walks can be computed for all temporal edges e in linear
time when costs are isotone (c1 ⊕ c ≤ c2 ⊕ c when c1 ≤ c2).
Lemma : Minimum-cost walks are concatenated.
Idea : Use the β-waiting algorithm plus intervals at each
node for grouping node copies with same optimal cost.
Min-cost :

• edge cost of 1 : shortest (fewest hops),
• edge cost of -1 : longest (most hops),
• cost of −τdep : profile and fastest (shortest duration).

Exercise : define isotone costs allowing to compute
minimum-waiting walks.
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Generalizing static graph concepts
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Basic temporal graphs

Single-labeled temporal graphs :

each edge uv appears at a single time λ(uv) ∈ N.
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Strongly connected components

Definition 1 : U ⊆ V is (strongly) open-connected if for any
u, v ∈ U there exists a temporal path from u to v.

Definition 2 : U ⊆ V is (strongly) closed-connected if for
any u, v ∈ U there exists a temporal path from u to v in GlU.

Theorem [Bhadra, Ferreira 03] : Deciding whether there
exists a strongly open/closed-connected set of size k is
W[1]/NP-hard (in parameter k).

IDea : Reduction of k-Clique : for each edge uv with u < v :
create u−2→ (u, v)−3→ v and v−2→ (v, u)−3→ u.

Open pb : Show that finding a closed-connected set of size
k is W[1]-hard (for parameter k).
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Minimum spanner

Sparse spanner : keep a minimum number of edges
preserving connectivity.
Spanner of a (connected) static graph?
Spanner of a temporal graph [Kempe et al 02]?
Exercise : minimum spanner of the hypercube of dim. k with
temporal edges b1 · · ·bi · · ·bk−i→ b1 · · ·bi · · ·bk.
Theorem [Axiotis, Fotakis 16] : there exist connected
temporal graphs of size Θ(n2) without any o(n2) spanner.
Theorem [Casteigts et al 19] : a temporal clique with pairwise
distinct time labels admits an O(n log n) spanner.
Open pb : is this tight?
Idea (dismountability) : if there exist u, v,w sucht that
λ(uv) = minv′ λ(uv′) and λ(vw) = maxv′ λ(v′w), then return
Spanner(G− v) ∪ {uv, vw}.
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No natural node-version of Menger

There exists temporal graphs where the number of
node-disjoint uv-temporal-paths is less than the minimum
number of node deletions disconnecting u and v [Kempe et al
02].

Theorem [Kempe et al 02] : computing two node-disjoint
uv-temporal-paths is NP-hard.
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Other versions of Menger

The number of temporal-edge-disjoint uv-temporal-paths
always equals the minimum number of edge deletions
disconnecting u and v.

The number of node-departure-disjoint uv-temporal-paths
always equals the minimum number of node-departure
deletions disconnecting u and v [Mertzios et al 13].

Other problems : see [Michail 16].

⇐ ? ⇒ 1 / 4 28 / 37



Other versions of Menger

The number of temporal-edge-disjoint uv-temporal-paths
always equals the minimum number of edge deletions
disconnecting u and v.

The number of node-departure-disjoint uv-temporal-paths
always equals the minimum number of node-departure
deletions disconnecting u and v [Mertzios et al 13].

Other problems : see [Michail 16].

⇐ ? ⇒ 2 / 4 28 / 37



Other versions of Menger

The number of temporal-edge-disjoint uv-temporal-paths
always equals the minimum number of edge deletions
disconnecting u and v.

The number of node-departure-disjoint uv-temporal-paths
always equals the minimum number of node-departure
deletions disconnecting u and v [Mertzios et al 13].

Other problems : see [Michail 16].

⇐ ? ⇒ 3 / 4 28 / 37



Other versions of Menger

The number of temporal-edge-disjoint uv-temporal-paths
always equals the minimum number of edge deletions
disconnecting u and v.

The number of node-departure-disjoint uv-temporal-paths
always equals the minimum number of node-departure
deletions disconnecting u and v [Mertzios et al 13].

Other problems : see [Michail 16].

⇐ ? ⇒ 4 / 4 28 / 37



Public transit networks
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Connection Scan Algorithm (CSA) [Dibbelt, Pajor,
Strasser, Wagner ‛13]

Observation : the time expanded graph is acyclic.

Sort connections by departure time.

For a (earliest arrival time) query from s to t at time τdep :
• EAT(s) := τdep (earliest arrival time at a stop) ;
• for each connection (u, v, τ, δ), if EAT(u) ≤ τ then :

• EAT(v) := min(EAT(v), τarr where τarr = τ + δ),
• for each footpath (v,w, δ′),

EAT(w) := min(EAT(z), τarr + δ′).

Quite fast (few ms) when few footpaths.

Exercise : propose simple optimization for reducing the
number of connections scanned.
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Round-Based Public Transit Routing (RAPTOR)
[Delling, Pajor, Werneck ‛12]

Idea : follow the trips.

For a (earliest arrival time) query from u to v at time t :
• for each line ℓ stopping at u,
• find the first trip of ℓ stopping at u after t,
• update earliest arrival time at following stops in the trip.

Repeat :
In k rounds, compute earliest arrival time with k− 1
transfers at most.

Quite fast (few ms) when few footpaths.

Bonus : it provides a Pareto set of solutions :
A solution arriving at t′ in v with k′ transfers is pareto
optimal if there is no solution t′′, k′′ with t′′ < t′ and k′′ < k′.

⇐ ? ⇒ 1 / 5 31 / 37
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Transfer Patterns [Bast, Carlsson, Eigenwillig,
Geisberger, Harrelson, Raychev, Viger ‛16]

Pre-compute for each station u :
• lines going through u and position on line,
• transfer pattern DAG : union of transfer paths

u → x → y → v for all v (and departure time τ ).
For a query from u to v :

• try direct connection (common line?),
• otherwise try all possible paths in the DAG of u.

Optimization : compute global transfer pattern DAG only
for a selected set of (common) “landmarks”.
Prune transfer pattern DAG of u at landmarks (local
computation).
For a query, use the union of transfer pattern DAGs of u
and v.
Experimental results (New York) : precomput. 800h, 1.5Go,
5-20 transf. pat. / station pair, query time 10ms.
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Public Transit Labeling [Delling, Dibbelt, Pajor,
Werneck ‛15]

HL on the time expanded graph :
• a node for each event at a station,
• waiting arcs between consecutive nodes of a station,
• connection arcs for each connection.

Query from u to v at τ :
• find (by dichotomy) the first event u′ at u after τ ,
• the first event v′ at v s.t. Hu′ ∩Hv′ ̸= ∅,
• expand the path through the best hub in Hu′ ∩Hv′ .

Experimental results (London, earliest arrival –
multicriteria) : precomput. 1-49h, 1.3-28Go, hub sets
70-700/event, query time 10-30µs.
Similar : direct approach [Wang, Lin, Yang, Xiao, Zhou ‛15] :
HHL + timetable rel. opt.
Open : what if paths are repeatedly the same?

⇐ ? ⇒ 1 / 5 33 / 37
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Further reading

[Holme 2015]
Modern temporal network theory : a colloquium.
The European Physical Journal B 2015
https://arxiv.org/abs/1508.01303

[Michail 2016]
An Introduction to Temporal Graphs : An Algorithmic
Perspective.
Internet Mathematics 2016
https://arxiv.org/abs/1503.00278
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Exercise 4

Show that WL and 2-OWL have the disciminative power
(see detailed exercise on the course page).
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Exercise 5 (optional)

Show that finding a closed-connected set of size k (for
non-strict temporal paths) is W[1]-hard for parameter k.

Suggestion : use a parameterized reduction of
k-multicolored-clique : given a graph G, an integer k, and a
partition V1, . . . ,Vk of V(G), decide if there exists a k-clique
containing exactly one vertex from each set Vi.
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Some open problems

Hardness in P :
• Certificate for approximated diameter?
• Other sub-quad./sub-cubic certificates?

Hub labeling :
• Best hub labeling for a grid?
• Lower bounds for hopset-based distance oracles?

Graph neural networks :
• GNNs for graphs with structural properties?
• Generative models ?

Temporal graphs :
• Interesting structural properties of temporal graphs

(ex : temporal planarity) ?
• Conditional lower-bound for shortest duration (with

interval availability) ?
• Distance/adjacency labeling?
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