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. Mobile and sensor networks.

. Social networks (co-athorship, contact traces).
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Temporal graphs

Definition : a graph that changes with time.

Examples :
« Mobile and sensor networks.
. Social networks (co-athorship, contact traces).
. Transportation networks (buses, road).

Formal treatment still in its infancy :
. natural notions (connectivity),
. femporal generalization of classical notions? (Menger)
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Temporal graphs (basic example)
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Also known as :

2

. time-dependent networks [Cooke, Halsey 19661,

. edge scheduled networks [Berman 19961, dynamic graphs
[Harary, Gupta 19971, temporal networks [Kempe, Kleinberg,
Kumar 2002], evolving graphs [Bhadra, Ferreira 2003],

. time-varying graphs [Casteigts, Flocchini, Quattrociocchi,

Santoro 2012],

. link streams [Latapy, Viard, Magnien 2018],...
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Temporal path/walk
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Strict femporal walk : a walk with increasing time labels.
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Temporal path/walk
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Strict temporal walk : a walk with increasing time labels.

Non-strict temp. walk : a walk with non-decreasing time
labels.
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Temporal path/walk
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Strict femporal walk : a walk with increasing time labels.
Non-strict temp. walk : a walk with non-decreasing time
labels.

A path is walk visiting at most once a vertex.
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Strict femporal walk : a walk with increasing time labels.
Non-strict temp. walk : a walk with non-decreasing time
labels.

A path is walk visiting at most once a vertex.

Usually waiting is allowed.
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Temporal path/walk
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Strict femporal walk : a walk with increasing time labels.
Non-strict temp. walk : a walk with non-decreasing time
labels.

A path is walk visiting at most once a vertex.

Usually waiting is allowed.

Above, we have :e — b.b — h,-a — f,—-a — h
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Various natural “shortest” uv-walks

Earliest arrival (or foremost) : starting at = from u,
minimize arrival fime in v.

b

1T/\T
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Various natural “shortest” uv-walks

Earliest arrival (or foremost) : starting at 7 from u,
minimize arrival time in v.

Fewest hops (or shortest) : minimize the number k of edges.

b
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Various natural “shortest” uv-walks

Earliest arrival (or foremost) : starting at = from u,
minimize arrival fime in v.

Fewest hops (or shortest) : minimize the number k of edges.

: minimize arrival time -
departure time.
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Various natural “shortest” uv-walks

Earliest arrival (or foremost) : starting at = from u,
minimize arrival fime in v.

Fewest hops (or shortest) : minimize the number k of edges.

: minimize arrival time -
departure time.

Min. waiting time : minimize the sum of waiting times at
intermediate nodes.
3 b 7 e
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Undirected temporal graphs still have time
orientation!

Path between A and B?

Path between A and C? between C and A?

PRI 1/16/37



Main models

network : a graph where edge delay
depends on time. [Cooke, Halsey 1966]
G = ((V,E),0) with 6 : E — RE (5(e)(7) is the delay of e € E
at time 7).
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Main models

Time-dependent network : a graph where edge delay
depends on time. [Cooke, Halsey 1966]

G = ((V,E),0) with 6 : E — RE (5(e)(7) is the delay of e € E
at time 7).

Pice-wise constant-delay : each d(e) is picewise constant.
[Bui-Xuan, Ferreira, Jarry 2003], [Dehne, Omran, Sack 2012],
(link-stream [Latapy, Viard, Magnien 2018] with delay 0)
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Main models

Time-dependent network : a graph where edge delay
depends on time. [Cooke, Halsey 1966]

G = ((V,E),0) with 6 : E — RE (5(e)(7) is the delay of e € E
at time 7).

Pice-wise constant-delay : each d(e) is picewise constant.
[Bui-Xuan, Ferreira, Jarry 2003], [Dehne, Omran, Sack 2012],
(link-stream [Latapy, Viard, Magnien 2018] with delay 0)
Evolving graph : sequence of (static) graphs with same
vertices.

G = (V,E4,...,Ey) [Bhadra, Ferreira 2003] or equivalently

G = ((E,V),\) with X : E — 2" [Michail 2016]. (Delay of edges
is 1/0 for strict/non-strict temporal paths.)
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Main models

Time-dependent network : a graph where edge delay
depends on time. [Cooke, Halsey 1966]
G = ((V,E),0) with 6 : E — RE (5(e)(7) is the delay of e € E
at time 7).
Pice-wise constant-delay : each d(e) is picewise constant.
[Bui-Xuan, Ferreira, Jarry 2003], [Dehne, Omran, Sack 2012],
(link-stream [Latapy, Viard, Magnien 2018] with delay 0)
Evolving graph : sequence of (static) graphs with same
vertices.
G = (V,E4,...,Ey) [Bhadra, Ferreira 2003] or equivalently
G = ((E,V),\) with X : E — 2" [Michail 2016]. (Delay of edges
is 1/0 for strict/non-strict temporal paths.)
Simple : G = ((E, V), \) with XA : E — N [Kempe, Kleinberg,
Kumar 2002].
Proper : edges incident to a node have pairwise disjoint
labels (strict and non-strict then coincide) [Casteigts, Corsini,
Sarkar 2022].

_.,_Globally proper : edge schedule.

4/47/37



What is time?

Time domain: Nor R or T?
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What is time?

Time domain: Nor Ror T?

Discrete :
. time is discrete,
. and/or edges are available at some given points in time,
. and/or traversal takes time 1 (or 0).
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What is time?

Time domain: Nor Ror T?

Discrete :
. time is discrete,
. and/or edges are available at some given points in time,
. and/or traversal takes time 1 (or 0).

Continous :
. fime is continuous,
. and/or edges are available during given intervals of time,
. and/or traversal takes constant time.
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What is time?

Time domain: Nor Ror T?

Discrete :

. and/or edges are available at some given points in time,

Continous :

. and/or edges are available during given intervals of time,
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Data structures

Adjacency lists : each u has for each neighbor v a
representation of d(uv), typically a sorted list of availability
times with associated delays.
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Data structures

Adjacency lists : each u has for each neighbor v a
representation of d(uv), typically a sorted list of availability
times with associated delays.

(Sorted) list of temporal edges.
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Data structures

Adjacency lists : each u has for each neighbor v a
representation of d(uv), typically a sorted list of availability
times with associated delays.

(Sorted) list of temporal edges.

Time-expanded graph.
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Data structures

Adjacency lists : each u has for each neighbor v a
representation of d(uv), typically a sorted list of availability
times with associated delays.

(Sorted) list of temporal edges.
Time-expanded graph.

(public transit networks) : for all edges ona line,
the sequence of departure and arrival times, plus footpaths.

=7= 4/49/37



Data structure : temporal edges

Temporal edge (u,v,7) : arc (u,v) at time 7 (delay 1 or 0),
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Data structure : temporal edges

Temporal edge (u,v,7) : arc (u,v) at time 7 (delay 1 or 0),

(with delay 6) (u,v,7,d) : taking arc (u,v) at time 7 from u
leads to v at time 7 + 4,
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Data structure : temporal edges

Temporal edge (u,v,7) : arc (u,v) at time 7 (delay 1 or 0),

(with delay 6) (u,v,7,d) : taking arc (u,v) at time 7 from u
leads to v at time 7 + 4,

(with availability interval [r1, 72]) (u, v, 71,72,d) : arc (u,v) is
available for any 7 € [y, 73] with constant-delay §,
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Data structure : temporal edges

Temporal edge (u,v,7) : arc (u,v) at time 7 (delay 1 or 0),

(with delay 6) (u,v,7,d) : taking arc (u,v) at time 7 from u
leads to v at time 7 + 4,

(with availability interval [r1, 72]) (u, v, 71,72,d) : arc (u,v) is
available for any 7 € [y, 73] with constant-delay §,

(with affine delay) (u,v, 71, 72,7, 8) : taking arc (u,v) at
7 € [11,72] leads to v at 7 + &(7) where (1) = y7 + 8,
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Data structure : temporal edges

Temporal edge (u,v,7) : arc (u,v) at time 7 (delay 1 or 0),

(with delay 6) (u,v,7,d) : taking arc (u,v) at time 7 from u
leads to v at time 7 + 4,

(with availability interval [r1, 72]) (u, v, 71,72,d) : arc (u,v) is
available for any 7 € [y, 73] with constant-delay §,

(with affine delay) (u,v, 71, 72,7, 8) : taking arc (u,v) at
7 € [11,72] leads to v at 7 + &(7) where (1) = y7 + 8,

(with arbitrary delay function §) (u,v,d) : taking arc (u,v) at
7 leads to v at 7+ 4(7).

Example : speed profile in road networks (20k profiles of
100 speeds/day for 10m edges).
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nodes

Data structure : time-expanded graph (point
availability)
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Data structure : tfime tables (point availability)

Nom du train
Bibliotheque Francois Mitterrand
Paris Austerlitz

Saint-Michel Notre Dame
Musée d'Orsay

Invalides

Pontde I'Alma

Champ de Mars Tour Eiffel
Avenue du Président Kennedy
Boulainvilliers

Avenue Henri Martin

Avenue Foch

Neuilly Porte Maillot

Péreire Levallois

Porte de Clichy

GOTA
531
5:34
538
542
5:44
5:46
549
551
553
5:56
5:58
6:00
6:03
6:06

NORA
545
5:48
5:52
5:5
5:59
601
6:03
6:06
6:08
610

6:15
618
o

GOTA
6:01
6:04
6:08
6:12
6:14
6:16
6:19
6:21
6:23
6:26
6:28
6:30
6:33
6:36

NORA
615
6:18
622
6:26
6:29
6:31
633
6:36
6:38
6:40
6:42
6:45
6:48
6:51

GATA
623
6:26
630
6:34
631
6:39
6:42
6:44
6:46
6:48
6:50
6:53
6:56
6:59

GOTA
6:30
6:33
6:38
6:41
6:44
6:46
6:49
6:51
6:53
6:55
6:57
7:00
7:02
7.06

NORA
6:32
6:35
639
6:43
6:45
6:48
6:50
6:52
6:54
6:57
6:58
7:01
7.04
7:07

GATA
6:38
6:41
6:45
6:48
6:51
6:53
6:56
6:58
7:00
7:02
7:04
7.07
710
713

NORA
6:46
6:50
6:54
6:58
7:00
7:.02
7:.04
707
7:09
mn
713
716
718
20

GOTA
7.01
7:04
7:09
712
7:15
717
719
722
T:24
7:26
7:28
731
7:33
7:36

NORA
702
7:.05
7:.09
713
715
718
720
722
724
727
728
731
734
731

GATA
7:08
m
715
718
il
723
7:26
728
7:30
732
7:34
731
7:40
743

NORA
716
720
T:24
7:28
7:30
733
7:35
731
7:39
4
743
T:46
749
752

GATA
724
7:28
732
7:35
738
7:40
T4
745
747
7:49
751
7:54
7:56
8:00
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Temporal graph parameters

Number n of nodes.
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Temporal graph parameters

Number n of nodes.

Number m of edges.
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Temporal graph parameters

Number n of nodes.
Number m of edges.

Number 1. of availability points/intervals.
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Temporal graph parameters

Number n of nodes.

Number m of edges.

Number 1. of availability points/intervals.

We assume h < m < p.
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Temporal graph parameters

Number n of nodes.

Number m of edges.

Number 1. of availability points/intervals.
We assume h < m < p.

1 < mA. where A, is the maximum number of time events
at an edge.
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Temporal graph parameters

Number n of nodes.

Number m of edges.

Number 1. of availability points/intervals.
We assume h < m < p.

1 < mA. where A, is the maximum number of time events
at an edge.

1 < nA, where A, is the maximum number of time events at
a hode.

= 7= 6/6 13/ 37



Connectivity : temporal paths

Definition : a timed edge is a triple (7,u,v) such that edge
uv is available at time 7 (Arry (1) < o0).

= 7= 1/5 14/ 37



Connectivity : femporal paths

Definition : a timed edge is a triple (7,u,v) such that edge
uv is available at time 7 (Arry (1) < o0).

Definition : a temporal walk P from u at 74, to v at 7qrr is a
sequence of timed edges (71,u1,v1), ..., (7, Ug, Vi) Such that :
Ui =U, 1 > Tdep:
sfori=1,....k—1,v, = Uit and 7; +6Uivi(7—i) < Tit1,
e Vk =V, Arryy, (k) < Tarr.
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Connectivity : femporal paths

Definition : a timed edge is a triple (7,u,v) such that edge
uv is available at time 7 (Arry, (1) < o0).

Definition : a non-waiting temporal walk P from u at 74e, to v

at 7qrr iS a sequence of timed edges (71, u1, V1), ..., (T, Uk, Vk)
such that :

eU =U, 71 = Tdep.

. fori= 1,..., k-1, Vi = Uj1 and Ti +5UiVi(Ti) = Tit+1,

e VK =1V, Ar‘r‘ukvk(Tk) = Tarr.
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Connectivity : femporal paths

Definition : a timed edge is a triple (7,u,v) such that edge
uv is available at time 7 (Arry (1) < o0).

Definition : a temporal walk P from u at Tdep TO vV at 7qrr i @

sequence of timed edges (71,u1,v1), ..., (7, Ug, Vi) Such that :
Ui =U, 1 > Tdep:
. for‘ i= 1, ey k - 1, Vi = LI,'+1 Clnd Ti +6uivi(7_i) S Tit1,

o VK =1V, Ar‘r'ukvk(Tk) S Tarr-

Strict i fori=1,...,k—1,7 < 7i,.
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Co

nnectivity : femporal paths

Definition : a timed edge is a triple (7,u,v) such that edge
uv is available at time 7 (Arry (1) < o0).

Definition : a temporal walk P from u at Tdep TO vV at 7qrr i @

sequence of timed edges (71,u1,v1), ..., (7, Ug, Vi) Such that :
Ui =U, 1 > Tdep:
. for‘ i= 1, ey k - 1, Vi = LI,'+1 Clnd Ti +5uivi(7_i) S Tit1,

o VK =1V, Ar‘r'ukvk(Tk) < Tarr-
Strict i fori=1,...,k—1,7 < 7i,.

Temporal path : a temporal walk visiting a node at most once
(| {U1,V1,...,Vk} ’ =k+1).
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A natural problem : earliest arrival time

Definition : EATuw(7) := min, gop gt . 7arr(P).
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A natural problem : earliest arrival fime

Definition : EATuw(7) := min, gop gt . 7arr(P).

A path P arriving at EATy(7) is a foremost path.
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A natural problem : earliest arrival fime

Definition : EATuw(7) := min, gop gt . 7arr(P).

A path P arriving at EATy(7) is a foremost path.

: given u,v, 7, compute EAT, (7).
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A natural problem : earliest arrival fime

Definition : EATuv(T) = min'p dep' at - Tar‘r‘(P)-
A path P arriving at EATy(7) is a foremost path.
: given u,v, 7, compute EAT, (7).

Natural solution : femporal Dijkstra [Berman 1996] in
O(nlogn+mlogA.) (adjacency lists) (also O(nlogn + )
with a sorted list of femporal edges).
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A natural problem : earliest arrival fime

Definition : EATuv(T) = minp dep' at - Tar‘r‘(P)-
A path P arriving at EATy(7) is a foremost path.
: given u,v, 7, compute EAT, (7).

Natural solution : femporal Dijkstra [Berman 1996] in
O(nlogn+mlogA.) (adjacency lists) (also O(nlogn + )
with a sorted list of femporal edges).

: what makes temporal Dijkstra correct?
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The power of waiting

Assumption :
FIFO property : for all edge uv € Eand 7 < 7/,
Arry (1) < Arry(7') (Where Arryy (1) = 7 4 duv(7)).
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The power of waiting

Assumption :
FIFO property : for all edge uv € Eand 7 < 7/,
Arry (1) < Arry(7') (Where Arryy (1) = 7 4 duv(7)).

Consequence :

. loops are useless,

. any foremost path is concatenated : it can be obtained
by extending a foremost path.
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The power of waiting

Assumption :
FIFO property : for all edge uv € Eand 7 < 7/,
Arry (1) < Arry(7') (Where Arryy (1) = 7 4 duv(7)).

Consequence :

. loops are useless,

. any foremost path is concatenated : it can be obtained
by extending a foremost path.

Lemma : waiting implies FIFO.

= 7= 3/3 16 /37



Infinite shortest path (non-waiting)

A temporal graph can have foremost temporal walks with
infinitely many edges. [Orda, Rom 1991]
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Infinite shortest path (non-waiting)

A temporal graph can have foremost temporal walks with
infinitely many edges. [Orda, Rom 1991]

Exercise what if waiting is allowed?
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In

finite shortest path (non-waiting)

A temporal graph can have foremost temporal walks with
infinitely many edges. [Orda, Rom 1991]

Exercise what if waiting is allowed?

Theorem [Orda, Rom 1991] : finding a non-waiting temporal
walk is NP-hard.
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In

finite shortest path (non-waiting)

A temporal graph can have foremost temporal walks with
infinitely many edges. [Orda, Rom 1991]

Exercise what if waiting is allowed?

Theorem [Orda, Rom 1991] : finding a non-waiting temporal
walk is NP-hard.

Remark Becomes polynomial in the point availability model...

4,4 17/ 37



Temporal graph hierarchy

Profile problem : given u, v, compute EATy(.) assuming FIFO.
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Temporal graph hierarchy

Profile problem : given u, v, compute EATy(.) assuming FIFO.

model

profile size

profile complexity

piecewise linear-delay

mw = Mno(log n)
[Foschini et al 14]

O(nmm)
[Orda, Rom 90]
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Temporal graph hierarchy

Profile problem : given u, v, compute EATy(.) assuming FIFO.

model profile size 7 | profile complexity

7 = pnOUogn) O(nmn)

piecewise linear-delay [Foschini et al 14] | [Orda, Rom 90]

O((m+nlogn)pu)

piecewise constant-delay [Dehne et al 12]

= O(u)
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Temporal graph hierarchy

Profile problem : given u, v, compute EATy(.) assuming FIFO.

model profile size profile complexity
— ;;nOCogn) o)
. . ) T = pn (nmm)
piecewise linear-delay [Foschini et al 14] | [Orda, Rom 90]

O((m+nlogn)u)

piecewise constant-delay [Dehne et al 12]

O(ulog )

point-availability m=0(p) [Dibbelt et al 13, ..]
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Temporal graph hierarchy

Profile problem : given u, v, compute EATy(.) assuming FIFO.

model

profile size

profile complexity

piecewise linear-delay

= MnO(Iogn)
[Foschini et al 14]

O(nmm)
[Orda, Rom 90]

piecewise constant-delay

point-availability

unit-delay point-availability

™= 0(n)

O((m+nlogn)u)
[Dehne et al 12]

O(ulog )
[Dibbelt et al 13, ...]

O(n)
[Kossinets et al 08]
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Temporal graph hierarchy

Profile problem : given u, v, compute EATy(.) assuming FIFO.

model

profile size

profile complexity

piecewise linear-delay

= ,LmO(IOQn)
[Foschini et al 14]

O(nmm)
[Orda, Rom 90]

piecewise constant-delay

point-availability

unit-delay point-availability

m=0(n)

O((m+nlogn)u)
[Dehne et al 12]

O(n)
[Brunelli et al 23]
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Temporal graph hierarchy

Profile problem : given u, v, compute EATy(.) assuming FIFO.

model

profile size

profile complexity

piecewise linear-delay

= ,LmO(IOQn)
[Foschini et al 14]

O(nmm)
[Orda, Rom 90]

piecewise constant-delay

point-availability

unit-delay point-availability

m=0(n)

O((m+nlogn)u)
[Dehne et al 12]

O(n)
[Brunelli et al 23]

Rql: forawalkP =e,..

. e, Arrp(T) = Arre, o--- 0 Arre, (T)
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Temporal graph hierarchy

Profile problem : given u, v, compute EATy(.) assuming FIFO.

model

profile size

profile complexity

piecewise linear-delay

= ,LmO(IOQn)
[Foschini et al 14]

O(nmm)
[Orda, Rom 90]

piecewise constant-delay

point-availability

unit-delay point-availability

m=0(n)

O((m+nlogn)u)
[Dehne et al 12]

O(n)
[Brunelli et al 23]

Rql: forawalkP =e,..

Rq2 : EATy(.) = min

uv-walk p

. e, Arrp(T) = Arre, o--- 0 Arre, (T)

Arrp(.)
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Temporal graph hierarchy

Profile problem : given u, v, compute EATy(.) assuming FIFO.

model

profile size

profile complexity

piecewise linear-delay

= ,LmO(IOQn)
[Foschini et al 14]

O(nmm)
[Orda, Rom 90]

piecewise constant-delay

point-availability

unit-delay point-availability

m=0(n)

O((m+nlogn)p)
[Dehne et al 12]

o)
[Brunelli et al 23]

Rql: forawalkP =e,..

Rq2 : EATy(.) = min

uv-walk p

. e, Arrp(T) = Arre, o--- 0 Arre, (T)

Arrp(.)

: fine-grained complexity of profile (interval) or

even shortest duration.

=7=

9/9 18/ 37




Point-availability : non-waiting temporal paths are
hard

Theorem [Casteigts, Himmel, Molter, Zschoche 2021] Testing if
a S-waiting temporal path connects a given pair of nodes is
NP-hard (even W(1]-hard parametrized by pathwidth).
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Point-availability : non-waiting temporal paths are
hard

Theorem [Casteigts, Himmel, Molter, Zschoche 2021] Testing if
a S-waiting temporal path connects a given pair of nodes is
NP-hard (even W(1]-hard parametrized by pathwidth).
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nodes

p-waiting temp. walks in lin. time [Brunelli et al. 2023]

1 2 3 4 5 6 7 8 time 1120/ 37



Various natural “shortest” uv-walks

Earliest arrival (or foremost) : starting at 7 from u,
minimize arrival time in v (concatenated).

Concatenated : any optimal walk can be obtained by concatenating
an edge to an optimal walk.

b

1T/\T




Various natural “shortest” uv-walks

Earliest arrival (or foremost) : starting at 7 from u,
minimize arrival time in v (concatenated).

Concatenated : any optimal walk can be obtained by concatenating
an edge to an optimal walk.

Fewest hops (or shortest) : minimize the number k of edges
(not concat.).

b

1T/\T
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Various natural “shortest” uv-walks

Earliest arrival (or foremost) : starting at 7 from u,
minimize arrival time in v (concatenated).
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Earliest arrival (or foremost) : starting at 7 from u,
minimize arrival time in v (concatenated).

Concatenated : any optimal walk can be obtained by concatenating
an edge to an optimal walk.

Fewest hops (or shortest) : minimize the number k of edges
(not concat.).

Shortest duration (or fastest) : minimize arrival time -
departure time (not concatenated).

Shortest delay : minimize K | Arryy. (1) — 7 (not concat.)
over walks P = uvy, ..., UgVk.

b
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Various natural “shortest” uv-walks

Earliest arrival (or foremost) : starting at 7 from u,
minimize arrival time in v (concatenated).

Concatenated : any optimal walk can be obtained by concatenating
an edge to an optimal walk.

Fewest hops (or shortest) : minimize the number k of edges
(not concat.).

Shortest duration (or fastest) : minimize arrival time -
departure time (not concatenated).

Shortest delay : minimize K | Arryy. (1) — 7 (not concat.)
over walks P = uvy, ..., UgVk.

Min. waiting time : minimize Z!‘;ll Tir1 — Arryy, (1) (not
concat.). s 3 b 7 e

OIS
\/
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Min-cost vs arrival time

Temporal path cost : cost(P, (1,u,v))) = cost(P) & costy(7)
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Min-cost vs arrival time

: cost(P, (1,u,v))) = cost(P) @ costy(T)

Theorem [Brunelli et al. 2023] Given the time-expanded
representation and a fixed node s, minimum-cost strict
se-walks can be computed for all temporal edges e in linear
time when costs are isotone (c; @ ¢ < ¢y & ¢ when ¢; < ¢»).
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Min-cost vs arrival time

: cost(P, (1,u,v))) = cost(P) @ costy(T)

Theorem [Brunelli et al. 2023] Given the time-expanded
representation and a fixed node s, minimum-cost strict
se-walks can be computed for all temporal edges e in linear
time when costs are isotone (c; @ ¢ < ¢y & ¢ when ¢; < ¢»).

Lemma : Minimum-cost walks are concatenated.

Idea : Use the S-waiting algorithm plus intervals at each
node for grouping node copies with same optimal cost.

Min-cost :
. edge cost of 1: shortest (fewest hops),

. edge cost of -1: longest (most hops),
. cost of —74,p ¢ profile and fastest (shortest duration).
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Min-cost vs arrival time

: cost(P, (1,u,v))) = cost(P) @ costy(T)

Theorem [Brunelli et al. 2023] Given the time-expanded
representation and a fixed node s, minimum-cost strict
se-walks can be computed for all temporal edges e in linear
time when costs are isotone (c; @ ¢ < ¢y & ¢ when ¢; < ¢»).

Lemma : Minimum-cost walks are concatenated.

Idea : Use the S-waiting algorithm plus intervals at each
node for grouping node copies with same optimal cost.

Min-cost :
. edge cost of 1: shortest (fewest hops),

. edge cost of -1: longest (most hops),
. cost of —74,p ¢ profile and fastest (shortest duration).

: define isotone costs allowing o compute
minimum-waiting walks.
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Generalizing static graph concepts
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Basic temporal graphs

Single-labeled temporal graphs :
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Basic temporal graphs

Single-labeled temporal graphs :

each edge uv appears at a single time A(uv) € N.
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Strongly connected components

Definition 1: U C Vis (strongly) open-connected if for any
u,v € U there exists a femporal path from u to v.
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Definition 2 : U C V is (strongly) closed-connected if for
any u,v € U there exists a temporal path from u to v

Theorem [Bhadra, Ferreira 03] : Deciding whether there
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/NP-hard (in parameter k).
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Strongly connected components

Definition1: U C Vis (strongly) -connected if for any
u,v € U there exists a femporal path from u to v.

Definition 2 : U C V is (strongly) closed-connected if for
any u,v € U there exists a temporal path from u to v

Theorem [Bhadra, Ferreira 03] : Deciding whether there
exists a strongly /closed-connected set of size k is
/NP-hard (in parameter k).

IDea : Reduction of k-Clique : for each edge uv withu < v:
createu—2— (u,v)—3—vandv—-2— (v,u) —3— u.

Show that finding a closed-connected set of size
k is W[1]-hard (for parameter k).
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Minimum spanner

Sparse spanner : keep a minimum number of edges
preserving connectivity.
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Sparse spanner : keep a minimum number of edges
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Spanner of a temporal graph [Kempe et al 02]?

: minimum spanner of the hypercube of dim. k with
Tempor'al edges by--- b,' s bk—i—> by--- bi s bk.
Theorem [Axiotis, Fotakis 16]: there exist connected
temporal graphs of size ©(n?) without any o(h?) spanner.

Theorem [Casteigts et al 19]: a femporal clique with pairwise
distinct time labels admits an O(nlogn) spanner.
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Minimum spanner

Sparse spanner : keep a minimum number of edges
preserving connectivity.

Spanner of a (connected) static graph?
Spanner of a temporal graph [Kempe et al 02]?

: minimum spanner of the hypercube of dim. k with
Tempor'al edges by--- b,' s bk—i—> by--- bi s bk.
Theorem [Axiotis, Fotakis 16]: there exist connected
temporal graphs of size ©(n?) without any o(h?) spanner.

Theorem [Casteigts et al 19]: a femporal clique with pairwise
distinct time labels admits an O(nlogn) spanner.

: is this tight ?
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Minimum spanner

Sparse spanner : keep a minimum number of edges
preserving connectivity.

Spanner of a (connected) static graph?
Spanner of a temporal graph [Kempe et al 02]?

: minimum spanner of the hypercube of dim. k with
Tempor'al edges by--- b,' s bk—i—> by--- bi s bk.
Theorem [Axiotis, Fotakis 16]: there exist connected
temporal graphs of size ©(n?) without any o(h?) spanner.

Theorem [Casteigts et al 19]: a femporal clique with pairwise
distinct time labels admits an O(nlogn) spanner.

: is this tight ?
Idea (dismountability) : if there exist u,v,w sucht that
A(uv) = miny A(uv') and A(vw) = max, A(V'w), then return
Spanner(G — v) U {uv, vw}.
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No natural node-version of Menger

W
O
>
13
S 6'(:
g 7 {
A 7
O O
w4 w

There exists femporal graphs where the number of
node-disjoint uv-temporal-paths is less than the minimum
number of node deletions disconnecting u and v [Kempe et al
02].
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No natural node-version of Menger

W
O
>
13
S 6'(:
g 7 {
A 7
O O
w4 w

There exists femporal graphs where the number of
node-disjoint uv-temporal-paths is less than the minimum
number of node deletions disconnecting u and v [Kempe et al
02].

Theorem [Kempe et al 02] : computing two node-disjoint
uv-temporal-paths is NP-hard.
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Other versions of Menger

The number of temporal-edge-disjoint uv-temporal-paths
always equals the minimum number of edge deletions
disconnecting u and v.

, / Z-j v
uLO @)
O -
2 3.3
2 —> 2
o

w O, B 7

W 35V
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Other versions of Menger

The number of temporal-edge-disjoint uv-temporal-paths
always equals the minimum number of edge deletions
disconnecting u and v.

/ 3 .j U
2 3.3
2 —> 2
T O,
WX X

The number of node-departure-disjoint uv-temporal-paths
always equals the minimum number of node-departure
deletions disconnecting u and v [Mertzios et al 13].
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Other versions of Menger

The number of temporal-edge-disjoint uv-temporal-paths
always equals the minimum number of edge deletions
disconnecting u and v.

, / Z-j v
uLO @)
O -
2 3.3
2 —> 2
o

w O, B 7

W 35V

The number of node-departure-disjoint uv-temporal-paths
always equals the minimum number of node-departure
deletions disconnecting u and v [Mertzios et al 13].

: see [Michail 16].
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Public transit networks
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Connection Scan Algorithm (CSA) [Dibbelt, Pajor,
Strasser, Wagner '13]

Observation : the time expanded graph is acyclic.
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Connection Scan Algorithm (CSA) [Dibbelt, Pajor,
Strasser, Wagner '13]

Observation : the time expanded graph is acyclic.
Sort connections by departure time.

For a (earliest arrival time) query from s to t at time 7y :
« EAT(S) := 7q4ep (earliest arrival time at a stop);
. for each connection (u,v,7,d), if EAT(u) < 7 then:
« EAT(v) := min(EAT(V), Tarr Where rqor = 7+ 6),
. for each footpath (v,w,?’),
EAT(w) := min(EAT(2), 7arr + &').
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Connection Scan Algorithm (CSA) [Dibbelt, Pajor,
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Observation : the time expanded graph is acyclic.
Sort connections by departure time.

For a (earliest arrival time) query from s to t at time 7y :
« EAT(S) := 7q4ep (earliest arrival time at a stop);
. for each connection (u,v,7,d), if EAT(u) < 7 then:
« EAT(v) := min(EAT(V), Tarr Where rqor = 7+ 6),
. for each footpath (v,w,?’),
EAT(w) := min(EAT(2), 7arr + &').

Quite fast (few ms) when few footpaths.
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Connection Scan Algorithm (CSA) [Dibbelt, Pajor,
Strasser, Wagner '13]

Observation : the time expanded graph is acyclic.
Sort connections by departure time.

For a (earliest arrival time) query from s to t at time 7y :
« EAT(S) := 7q4ep (earliest arrival time at a stop);
. for each connection (u,v,7,d), if EAT(u) < 7 then:
. EAT(v) := min(EAT(V), Tarr Where mqm = 7 + 6),
. for each footpath (v,w,?’),
EAT(w) := min(EAT(2), 7arr + &').

Quite fast (few ms) when few footpaths.

Exercise : propose simple optimization for reducing the
number of connections scanned.
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Round-Based Public Transit Routing (RAPTOR)
[Delling, Pajor, Werneck '12]

Idea: follow the trips.
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Idea: follow the trips.

For a (earliest arrival time) query from u to v at time t:
. for each line ¢ stopping at u,
. find the first trip of ¢ stopping at u after t,
. update earliest arrival fime at following stops in the trip.
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For a (earliest arrival time) query from u to v at time t:
. for each line ¢ stopping at u,
. find the first trip of ¢ stopping at u after t,
. update earliest arrival fime at following stops in the trip.

Repeat :
In k rounds, compute earliest arrival time with k — 1
transfers at most.
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Round-Based Public Transit Routing (RAPTOR)
[Delling, Pajor, Werneck '12]

Idea: follow the trips.

For a (earliest arrival time) query from u to v at time t:
. for each line ¢ stopping at u,
. find the first trip of ¢ stopping at u after t,
. update earliest arrival fime at following stops in the trip.

Repeat :

In k rounds, compute earliest arrival time with k — 1
transfers at most.

Quite fast (few ms) when few footpaths.

it provides a Pareto set of solutions :
A solution arriving at t' in v with k' fransfers is pareto
optimal if there is no solution t”,k” with t” <t and k” < K'.
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Transfer Patterns [Bast, Carlsson, Eigenwillig,
Geisberger, Harrelson, Raychev, Viger '16]

Pre-compute for each station u :

. lines going through u and position on line,

. fransfer pattern DAG : union of transfer paths
u— x —y—vforallv(and departure time 7).
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Pre-compute for each station u :

. lines going through u and position on line,

. fransfer pattern DAG : union of transfer paths
u— x —y—vforallv(and departure time 7).

For a query fromu tov:
. try direct connection (common line?),
. otherwise try all possible paths in the DAG of u.
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Transfer Patterns [Bast, Carlsson, Eigenwillig,
Geisberger, Harrelson, Raychev, Viger '16]

Pre-compute for each station u :

. lines going through u and position on line,

. fransfer pattern DAG : union of transfer paths
u— x —y—vforallv(and departure time 7).

For a query fromu tov:

. try direct connection (common line?),

. otherwise try all possible paths in the DAG of u.
Optimization : compute global transfer pattern DAG only
for a selected set of (common) "landmarks".

Prune transfer pattern DAG of u at landmarks (local
computation).

For a query, use the union of transfer pattern DAGs of u
and v.
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Transfer Patterns [Bast, Carlsson, Eigenwillig,
Geisberger, Harrelson, Raychev, Viger '16]

Pre-compute for each station u :

. lines going through u and position on line,

. fransfer pattern DAG : union of transfer paths
u— x —y—vforallv(and departure time 7).

For a query fromu tov:
. try direct connection (common line?),
. otherwise try all possible paths in the DAG of u.

Optimization : compute global transfer pattern DAG only
for a selected set of (common) "landmarks".

Prune transfer pattern DAG of u at landmarks (local
computation).

For a query, use the union of transfer pattern DAGs of u
and v.

Experimental results (New York) : precomput. 800h, 1.560,

5-20 transf. pat. / station pair, query time 10ms.
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Public Transit Labeling [Delling, Dibbelt, Pajor,
Werneck '15]

HL on the time expanded graph :
. a hode for each event at a station,
. waiting arcs between consecutive nodes of a station,
. connection arcs for each connection.
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Public Transit Labeling [Delling, Dibbelt, Pajor
Werneck '15]

HL on the time expanded graph :
. a hode for each event at a station,
. waiting arcs between consecutive nodes of a station,
. connection arcs for each connection.

Query fromu tovat 7:
. find (by dichotomy) the first event u’ at u after 7,
. the first event v at vs.t. Hy N Hy # 0,
. expand the path through the best hub in Hy N H,.
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HL on the time expanded graph :
. a hode for each event at a station,
. waiting arcs between consecutive nodes of a station,
. connection arcs for each connection.

Query fromu tovat 7:
. find (by dichotomy) the first event u’ at u after 7,
. the first event v at vs.t. Hy N Hy # 0,
. expand the path through the best hub in Hy N H,.

Experimental results (London, earliest arrival -
multicriteria) : precomput. 1-49h, 1.3-286o, hub sets
70-700/event, query time 10-30pus.
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Public Transit Labeling [Delling, Dibbelt, Pajor,
Werneck '15]

HL on the time expanded graph :
. a hode for each event at a station,
. waiting arcs between consecutive nodes of a station,
. connection arcs for each connection.

Query fromu tovat 7:
. find (by dichotomy) the first event u’ at u after 7,
. the first event v at vs.t. Hy N Hy # 0,
. expand the path through the best hub in Hy N H,.

Experimental results (London, earliest arrival -
multicriteria) : precomput. 1-49h, 1.3-286o, hub sets
70-700/event, query time 10-30pus.

: direct approach [Wang, Lin, Yang, Xiao, Zhou '15] :
HHL + timetable rel. opt.
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Public Transit Labeling [Delling, Dibbelt, Pajor,
Werneck '15]

HL on the time expanded graph :
. a hode for each event at a station,
. waiting arcs between consecutive nodes of a station,
. connection arcs for each connection.

Query fromu tovat 7:
. find (by dichotomy) the first event u’ at u after 7,
. the first event v at vs.t. Hy N Hy # 0,
. expand the path through the best hub in Hy N H,.

Experimental results (London, earliest arrival -
multicriteria) : precomput. 1-49h, 1.3-286o, hub sets
70-700/event, query time 10-30pus.

: direct approach [Wang, Lin, Yang, Xiao, Zhou '15] :
HHL + timetable rel. opt.

: what if paths are repeatedly the same?

= 7= 5/5 33/ 37



Further reading

[Holme 2015]

Modern temporal network theory : a colloquium.

The European Physical Journal B 2015
https://arxiv.org/abs/1508.01303
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Further reading

[Holme 2015]

Modern temporal network theory : a colloquium.
The European Physical Journal B 2015
https://arxiv.org/abs/1508.01303

[Michail 2016]

An Introduction to Temporal Graphs : An Algorithmic
Perspective.

Internet Mathematics 2016
https://arxiv.org/abs/1503.00278
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https://arxiv.org/abs/1503.00278

Exercise 4

Show that WL and 2-OWL have the disciminative power
(see detailed exercise on the course page).
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Exercise 5 (optional)

Show that finding a closed-connected set of size k (for
non-strict temporal paths) is W|[1]-hard for parameter k.

1/2 36 /37



Exercise 5 (optional)

Show that finding a closed-connected set of size k (for
non-strict temporal paths) is W|[1]-hard for parameter k.

Suggestion : use a parameterized reduction of
k-multicolored-clique : given a graph G, an integer k, and a
partition Vi,...,V\ of V(6), decide if there exists a k-clique
containing exactly one vertex from each set V.
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Some open problems

Hardness in P :
. Certificate for approximated diameter?
. Other sub-quad./sub-cubic certificates?
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« GNNs for graphs with structural properties?
. Generative models?
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Some open problems

Hardness in P :
. Certificate for approximated diameter?
« Other sub-quad./sub-cubic certificates?

Hub labeling :
. Best hub labeling for a grid?
. Lower bounds for hopset-based distance oracles?

« 6NN for graphs with structural properties?
. Generative models?

Temporal graphs :

. Interesting structural properties of temporal graphs
(ex : temporal planarity)?

. Conditional lower-bound for shortest duration (with
interval availability)?

. Distance/adjacency labeling?

= 7= 4,4 37 /37
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