Temporal graphs

Laurent Viennot

MPRI - Theory of practical graph algorithms

Temporal graphs

Definition : a graph that changes with time.

Examples :

- Mobile and sensor networks.
- Social networks (co-athorship, contact traces).
- Transportation networks (buses, road).

Formal treatment still in its infancy :

- natural notions (connectivity),
- temporal generalization of classical notions? (Menger)

Temporal graphs

Definition : a graph that changes with time.

Examples :

- Mobile and sensor networks.
- Social networks (co-athorship, contact traces).
- Transportation networks (buses, road).

Formal treatment still in its infancy :

- natural notions (connectivity),
- temporal generalization of classical notions? (Menger)

Definition : a graph that changes with time.

Examples :

- Mobile and sensor networks.
- Social networks (co-athorship, contact traces).
- Transportation networks (buses, road).

Formal treatment still in its infancy :

- natural notions (connectivity),
- temporal generalization of classical notions? (Menger)

Temporal graphs (basic example)

Also known as :

 $\Leftarrow ? \Rightarrow$

- time-dependent networks [Cooke, Halsey 1966],
- edge scheduled networks [Berman 1996], dynamic graphs [Harary, Gupta 1997], temporal networks [Kempe, Kleinberg, Kumar 2002], evolving graphs [Bhadra, Ferreira 2003],

• time-varying graphs [Casteigts, Flocchini, Quattrociocchi, Santoro 2012],

Iink streams [Latapy, Viard, Magnien 2018],...

Temporal graphs (basic example)

Also known as :

 $\Leftarrow ? \Rightarrow$

• time-dependent networks [Cooke, Halsey 1966],

• edge scheduled networks [Berman 1996], dynamic graphs [Harary, Gupta 1997], temporal networks [Kempe, Kleinberg, Kumar 2002], evolving graphs [Bhadra, Ferreira 2003],

• time-varying graphs [Casteigts, Flocchini, Quattrociocchi, Santoro 2012],

link streams [Latapy, Viard, Magnien 2018],...

Strict temporal walk : a walk with increasing time labels. Non-strict temp. walk : a walk with non-decreasing time labels.

A path is walk visiting at most once a vertex.

Usually waiting is allowed.

Above, we have : $e \longrightarrow b, b \longrightarrow h, \neg a \longrightarrow f, \neg a \longrightarrow h$

Strict temporal walk : a walk with increasing time labels. Non-strict temp. walk : a walk with non-decreasing time labels.

A path is walk visiting at most once a vertex. Usually waiting is allowed.

Above, we have : $e \longrightarrow b, b \longrightarrow h, \neg a \longrightarrow f, \neg a \longrightarrow h$

Strict temporal walk : a walk with increasing time labels. Non-strict temp. walk : a walk with non-decreasing time labels.

A path is walk visiting at most once a vertex.

Usually waiting is allowed. Above, we have : $e \rightarrow b, b \rightarrow h, \neg a \rightarrow f, \neg a \rightarrow h$

Strict temporal walk : a walk with increasing time labels. Non-strict temp. walk : a walk with non-decreasing time labels.

A path is walk visiting at most once a vertex. Usually waiting is allowed.

Above, we have : $e \longrightarrow b, b \longrightarrow h, \neg a \longrightarrow f, \neg a \longrightarrow h$

Strict temporal walk : a walk with increasing time labels. Non-strict temp. walk : a walk with non-decreasing time labels.

A path is walk visiting at most once a vertex.

Usually waiting is allowed.

Above, we have : $e \longrightarrow b, b \longrightarrow h, \neg a \longrightarrow f, \neg a \longrightarrow h$

Earliest arrival (or foremost) : starting at τ from u, minimize arrival time in v.

Fewest hops (or shortest) : minimize the number k of edges.

Shortest duration (or fastest) : minimize arrival time - departure time.

Earliest arrival (or foremost) : starting at τ from u, minimize arrival time in v.

Fewest hops (or shortest) : minimize the number k of edges.

Shortest duration (or fastest) : minimize arrival time - departure time.

Earliest arrival (or foremost) : starting at τ from u, minimize arrival time in v.

Fewest hops (or shortest) : minimize the number k of edges.

Shortest duration (or fastest) : minimize arrival time - departure time.

Earliest arrival (or foremost) : starting at τ from u, minimize arrival time in v.

Fewest hops (or shortest) : minimize the number k of edges.

Shortest duration (or fastest) : minimize arrival time - departure time.

Undirected temporal graphs still have time orientation!

Path between A and B?

Path between A and C? between C and A?

Time-dependent network : a graph where edge delay depends on time. [Cooke, Halsey 1966] $\mathcal{G} = ((V, E), \delta) \text{ with } \delta : E \to \mathbb{R}^{\mathbb{R}} (\delta(e)(\tau) \text{ is the delay of } e \in E \text{ at time } \tau).$

Pice-wise constant-delay : each $\delta(e)$ is picewise constant. [Bui-Xuan, Ferreira, Jarry 2003], [Dehne, Omran, Sack 2012], (link-stream [Latapy, Viard, Magnien 2018] with delay 0) Evolving graph : sequence of (static) graphs with same vertices.

$$\begin{split} \mathcal{G} &= (\mathsf{V},\mathsf{E}_1,\ldots,\mathsf{E}_\ell) \ [\mathsf{Bhadra}, \mathsf{Ferreira} \ 2003] \ \text{or equivalently} \\ \mathcal{G} &= ((\mathsf{E},\mathsf{V}),\lambda) \ \text{with} \ \lambda:\mathsf{E} \to 2^\mathbb{N} \ [\mathsf{Michail} \ 2016]. \ \textbf{(Delay of edges} \\ \text{is 1/0 for strict/non-strict temporal paths.)} \\ \mathbf{Simple}: \mathcal{G} &= ((\mathsf{E},\mathsf{V}),\lambda) \ \text{with} \ \lambda:\mathsf{E} \to \mathbb{N} \ [\mathsf{Kempe}, \ \mathsf{Kleinberg}, \\ \mathsf{Kumar} \ 2002] \end{split}$$

Proper : edges incident to a node have pairwise disjoint labels (strict and non-strict then coincide) [Casteigts, Corsini, Sarkar 2022].

← ? → Globally proper : edge schedule.

Time-dependent network : a graph where edge delay depends on time. [Cooke, Halsey 1966] $\mathcal{G} = ((V, E), \delta) \text{ with } \delta : E \to \mathbb{R}^{\mathbb{R}} (\delta(e)(\tau) \text{ is the delay of } e \in E \text{ at time } \tau).$

Pice-wise constant-delay : each $\delta(e)$ is picewise constant. [Bui-Xuan, Ferreira, Jarry 2003], [Dehne, Omran, Sack 2012], (link-stream [Latapy, Viard, Magnien 2018] with delay 0) Evolving graph : sequence of (static) graphs with same vertices.

 $\mathcal{G} = (V, E_1, \dots, E_\ell)$ [Bhadra, Ferreira 2003] or equivalently $\mathcal{G} = ((E, V), \lambda)$ with $\lambda : E \to 2^{\mathbb{N}}$ [Michail 2016]. (Delay of edges is 1/0 for strict/non-strict temporal paths.) Simple : $\mathcal{G} = ((E, V), \lambda)$ with $\lambda : E \to \mathbb{N}$ [Kempe, Kleinberg, Kumar 2002].

Proper : edges incident to a node have pairwise disjoint labels (strict and non-strict then coincide) [Casteigts, Corsini, Sarkar 2022].

← ? → Globally proper : edge schedule.

Time-dependent network : a graph where edge delay depends on time. [Cooke, Halsey 1966] $\mathcal{G} = ((V, E), \delta) \text{ with } \delta : E \to \mathbb{R}^{\mathbb{R}} (\delta(e)(\tau) \text{ is the delay of } e \in E \text{ at time } \tau).$

Pice-wise constant-delay : each $\delta(e)$ is picewise constant. [Bui-Xuan, Ferreira, Jarry 2003], [Dehne, Omran, Sack 2012], (link-stream [Latapy, Viard, Magnien 2018] with delay 0) Evolving graph : sequence of (static) graphs with same vertices.

 $\mathcal{G} = (V, E_1, \dots, E_\ell)$ [Bhadra, Ferreira 2003] or equivalently $\mathcal{G} = ((E, V), \lambda)$ with $\lambda : E \to 2^{\mathbb{N}}$ [Michail 2016]. (Delay of edges is 1/0 for strict/non-strict temporal paths.)

Simple : $\mathcal{G} = ((\mathsf{E}, \mathsf{V}), \lambda)$ with $\lambda : \mathsf{E} \to \mathbb{N}$ [Kempe, Kleinberg, Kumar 2002].

Proper : edges incident to a node have pairwise disjoint labels (strict and non-strict then coincide) [Casteigts, Corsini, Sarkar 2022].

← ? → Globally proper : edge schedule.

Time-dependent network : a graph where edge delay depends on time. [Cooke, Halsey 1966] $\mathcal{G} = ((V, E), \delta) \text{ with } \delta : E \to \mathbb{R}^{\mathbb{R}} (\delta(e)(\tau) \text{ is the delay of } e \in E \text{ at time } \tau).$

Pice-wise constant-delay : each $\delta(e)$ is picewise constant. [Bui-Xuan, Ferreira, Jarry 2003], [Dehne, Omran, Sack 2012], (link-stream [Latapy, Viard, Magnien 2018] with delay 0) Evolving graph : sequence of (static) graphs with same vertices.

 $\begin{array}{l} \mathcal{G} = (\mathsf{V},\mathsf{E}_1,\ldots,\mathsf{E}_\ell) \ [\mathsf{Bhadra, Ferreira\ 2003}] \ \text{or\ equivalently} \\ \mathcal{G} = ((\mathsf{E},\mathsf{V}),\lambda) \ \text{with} \ \lambda:\mathsf{E} \to 2^\mathbb{N} \ [\mathsf{Michail\ 2016}]. \ (\mathsf{Delay\ of\ edges} \ is\ 1/0 \ \text{for\ strict/non-strict\ temporal\ paths.}) \\ \textbf{Simple}: \mathcal{G} = ((\mathsf{E},\mathsf{V}),\lambda) \ \text{with} \ \lambda:\mathsf{E} \to \mathbb{N} \ [\mathsf{Kempe,\ Kleinberg,} \ \mathsf{Kumar\ 2002}]. \end{array}$

Proper : edges incident to a node have pairwise disjoint labels (strict and non-strict then coincide) [Casteigts, Corsini, Sarkar 2022].

 $_{\neq 7} \Rightarrow$ Globally proper : edge schedule.

Time domain : \mathbb{N} or \mathbb{R} or \mathbb{T} ?

Discrete :

time is discrete,

- and/or edges are available at some given points in time,
- and/or traversal takes time 1 (or 0).

- time is continuous,
- and/or edges are available during given intervals of time,
- and/or traversal takes constant time.

Time domain : \mathbb{N} or \mathbb{R} or \mathbb{T} ?

Discrete :

- time is discrete,
- and/or edges are available at some given points in time,
- and/or traversal takes time 1 (or 0).

- time is continuous,
- and/or edges are available during given intervals of time,
- and/or traversal takes constant time.

Time domain : \mathbb{N} or \mathbb{R} or \mathbb{T} ?

Discrete :

- time is discrete,
- and/or edges are available at some given points in time,
- and/or traversal takes time 1 (or 0).

- time is continuous,
- and/or edges are available during given intervals of time,
- and/or traversal takes constant time.

Time domain : \mathbb{N} or \mathbb{R} or \mathbb{T} ?

Discrete :

- time is discrete,
- and/or edges are available at some given points in time,
- and/or traversal takes time 1 (or 0).

- time is continuous,
- and/or edges are available during given intervals of time,
- and/or traversal takes constant time.

(Sorted) list of temporal edges.

Time-expanded graph.

Temporal edge (u, v, τ) : arc (u, v) at time τ (delay 1 or 0),

(with delay δ) (u, v, τ , δ) : taking arc (u, v) at time τ from u leads to v at time $\tau + \delta$,

(with availability interval $[\tau_1, \tau_2]$) $(u, v, \tau_1, \tau_2, \delta)$: arc (u, v) is available for any $\tau \in [\tau_1, \tau_2]$ with constant-delay δ ,

(with affine delay) $(u, v, \tau_1, \tau_2, \gamma, \beta)$: taking arc (u, v) at $\tau \in [\tau_1, \tau_2]$ leads to v at $\tau + \delta(\tau)$ where $\delta(\tau) = \gamma \tau + \beta$,

Temporal edge (u, v, τ) : arc (u, v) at time τ (delay 1 or 0),

(with delay δ) (u, v, τ, δ) : taking arc (u, v) at time τ from u leads to v at time $\tau + \delta$,

(with availability interval $[\tau_1, \tau_2]$) $(u, v, \tau_1, \tau_2, \delta)$: arc (u, v) is available for any $\tau \in [\tau_1, \tau_2]$ with constant-delay δ ,

(with affine delay) $(u, v, \tau_1, \tau_2, \gamma, \beta)$: taking arc (u, v) at $\tau \in [\tau_1, \tau_2]$ leads to v at $\tau + \delta(\tau)$ where $\delta(\tau) = \gamma \tau + \beta$,

Temporal edge (u, v, τ) : arc (u, v) at time τ (delay 1 or 0),

(with delay δ) (u, v, τ , δ) : taking arc (u, v) at time τ from u leads to v at time $\tau + \delta$,

(with availability interval $[\tau_1, \tau_2]$) $(u, v, \tau_1, \tau_2, \delta)$: arc (u, v) is available for any $\tau \in [\tau_1, \tau_2]$ with constant-delay δ ,

(with affine delay) $(u, v, \tau_1, \tau_2, \gamma, \beta)$: taking arc (u, v) at $\tau \in [\tau_1, \tau_2]$ leads to v at $\tau + \delta(\tau)$ where $\delta(\tau) = \gamma \tau + \beta$,

Temporal edge (u, v, τ) : arc (u, v) at time τ (delay 1 or 0),

(with delay δ) (u, v, τ , δ) : taking arc (u, v) at time τ from u leads to v at time $\tau + \delta$,

(with availability interval $[\tau_1, \tau_2]$) $(u, v, \tau_1, \tau_2, \delta)$: arc (u, v) is available for any $\tau \in [\tau_1, \tau_2]$ with constant-delay δ ,

(with affine delay) $(u, v, \tau_1, \tau_2, \gamma, \beta)$: taking arc (u, v) at $\tau \in [\tau_1, \tau_2]$ leads to v at $\tau + \delta(\tau)$ where $\delta(\tau) = \gamma \tau + \beta$,

Temporal edge (u, v, τ) : arc (u, v) at time τ (delay 1 or 0),

(with delay δ) (u, v, τ , δ) : taking arc (u, v) at time τ from u leads to v at time $\tau + \delta$,

(with availability interval $[\tau_1, \tau_2]$) $(u, v, \tau_1, \tau_2, \delta)$: arc (u, v) is available for any $\tau \in [\tau_1, \tau_2]$ with constant-delay δ ,

(with affine delay) $(u, v, \tau_1, \tau_2, \gamma, \beta)$: taking arc (u, v) at $\tau \in [\tau_1, \tau_2]$ leads to v at $\tau + \delta(\tau)$ where $\delta(\tau) = \gamma \tau + \beta$,

Data structure : time-expanded graph (point availability)

Data structure : time tables (point availability)

Nom du train	GOTA	NORA	GOTA	NORA	GATA	GOTA	NORA	GATA	NORA	GATA	GOTA	NORA	GATA	NORA	GATA
Bibliothèque François Mitterrand	5:31	5:45	6:01	6:15	6:23	6:30	6:32	6:38	6:46	6:53	7:01	7:02	7:08	7:16	7:24
Paris Austerlitz	5:34	5:48	6:04	6:18	6:26	6:33	6:35	6:41	6:50	6:56	7:04	7:05	7:11	7:20	7:28
Saint-Michel Notre Dame	5:38	5:52	6:08	6:22	6:30	6:38	6:39	6:45	6:54	7:00	7:09	7:09	7:15	7:24	7:32
Musée d'Orsay	5:42	5:56	6:12	6:26	6:34	6:41	6:43	6:48	6:58	7:03	7:12	7:13	7:18	7:28	7:35
Invalides	5:44	5:59	6:14	6:29	6:37	6:44	6:45	6:51	7:00	7:06	7:15	7:15	7:21	7:30	7:38
Pont de l'Alma	5:46	6:01	6:16	6:31	6:39	6:46	6:48	6:53	7:02	7:08	7:17	7:18	7:23	7:33	7:40
Champ de Mars Tour Eiffel	5:49	6:03	6:19	6:33	6:42	6:49	6:50	6:56	7:04	7:11	7:19	7:20	7:26	7:35	7:42
Avenue du Président Kennedy	5:51	6:06	6:21	6:36	6:44	6:51	6:52	6:58	7:07	7:13	7:22	7:22	7:28	7:37	7:45
Boulainvilliers	5:53	6:08	6:23	6:38	6:46	6:53	6:54	7:00	7:09	7:15	7:24	7:24	7:30	7:39	7:47
Avenue Henri Martin	5:56	6:10	6:26	6:40	6:48	6:55	6:57	7:02	7:11	7:17	7:26	7:27	7:32	7:41	7:49
Avenue Foch	5:58	6:12	6:28	6:42	6:50	6:57	6:58	7:04	7:13	7:19	7:28	7:28	7:34	7:43	7:51
Neuilly Porte Maillot	6:00	6:15	6:30	6:45	6:53	7:00	7:01	7:07	7:16	7:22	7:31	7:31	7:37	7:46	7:54
Péreire Levallois	6:03	6:18	6:33	6:48	6:56	7:02	7:04	7:10	7:18	7:25	7:33	7:34	7:40	7:49	7:56
Porte de Clichy	6:06	6:21	6:36	6:51	6:59	7:06	7:07	7:13	7:21	7:28	7:36	7:37	7:43	7:52	8:00

Temporal graph parameters

Number n of nodes.

Number m of edges.

Number μ of availability points/intervals.

We assume $n \leq m \leq \mu$.

 $\mu \leq \mathbf{m} \Delta_{\mathbf{e}}$ where $\Delta_{\mathbf{e}}$ is the maximum number of time events at an edge.

 $\mu \leq n \Delta_n$ where Δ_n is the maximum number of time events at a node.
Number n of nodes.

Number m of edges.

Number μ of availability points/intervals.

We assume $n \leq m \leq \mu$.

 $\mu \leq \mathbf{m} \Delta_{\mathbf{e}}$ where $\Delta_{\mathbf{e}}$ is the maximum number of time events at an edge.

Number n of nodes.

Number m of edges.

Number μ of availability points/intervals.

We assume $n \leq m \leq \mu$.

 $\mu \leq \mathbf{m} \Delta_{\mathbf{e}}$ where $\Delta_{\mathbf{e}}$ is the maximum number of time events at an edge.

Number n of nodes.

Number m of edges.

Number μ of availability points/intervals.

We assume $n \leq m \leq \mu$.

 $\mu \leq \mathbf{m} \Delta_{\mathbf{e}}$ where $\Delta_{\mathbf{e}}$ is the maximum number of time events at an edge.

Number n of nodes.

Number m of edges.

Number μ of availability points/intervals.

We assume $n \leq m \leq \mu$.

 $\mu \leq \mathbf{m} \Delta_{\mathbf{e}}$ where $\Delta_{\mathbf{e}}$ is the maximum number of time events at an edge.

Number n of nodes.

Number m of edges.

Number μ of availability points/intervals.

We assume $n \leq m \leq \mu$.

 $\mu \leq \mathbf{m} \Delta_{\mathbf{e}}$ where $\Delta_{\mathbf{e}}$ is the maximum number of time events at an edge.

Definition : a timed edge is a triple $(\tau, \mathbf{u}, \mathbf{v})$ such that edge uv is available at time τ (Arr_{uv} $(\tau) < \infty$).

Definition : a temporal walk \mathcal{P} from u at τ_{dep} to v at τ_{arr} is a sequence of timed edges $(\tau_1, \mathbf{u}_1, \mathbf{v}_1), \dots, (\tau_k, \mathbf{u}_k, \mathbf{v}_k)$ such that :

•
$$\mathbf{u}_1 = \mathbf{u}, \tau_1 \tau_{dep}$$
,
• for $\mathbf{i} = 1, \dots, \mathbf{k} - 1$, $\mathbf{v}_i = \mathbf{u}_{i+1}$ and $\tau_i + \delta_{\mathbf{u}_i \mathbf{v}_i}(\tau_i) \tau_{i+1}$,

•
$$\mathbf{v}_{\mathbf{k}} = \mathbf{v}$$
, $\mathbf{Arr}_{\mathbf{u}_{\mathbf{k}}\mathbf{v}_{\mathbf{k}}}(\tau_{\mathbf{k}})\tau_{\mathbf{arr}}$.

Strict : **for** $i = 1, ..., k - 1, \tau_i < \tau_{i+1}$.

Temporal path : a temporal walk visiting a node at most once ($|\{u_1, v_1, \dots, v_k\}| = k + 1$).

Definition : a timed edge is a triple $(\tau, \mathbf{u}, \mathbf{v})$ such that edge uv is available at time τ (Arr_{uv} $(\tau) < \infty$).

Definition : a temporal walk \mathcal{P} from u at τ_{dep} to v at τ_{arr} is a sequence of timed edges $(\tau_1, \mathbf{u}_1, \mathbf{v}_1), \dots, (\tau_k, \mathbf{u}_k, \mathbf{v}_k)$ such that :

• $u_1 = u, \tau_1 \ge \tau_{dep}$, • for i = 1, ..., k - 1, $v_i = u_{i+1}$ and $\tau_i + \delta_{u_i v_i}(\tau_i) \le \tau_{i+1}$,

•
$$\mathbf{v_k} = \mathbf{v}$$
, $\mathbf{Arr}_{\mathbf{u_kv_k}}(\tau_{\mathbf{k}}) \leq \tau_{\mathbf{arr}}$.

Strict : for $i = 1, ..., k - 1, \tau_i < \tau_{i+1}$.

Temporal path : a temporal walk visiting a node at most once ($| \{u_1, v_1, \dots, v_k\} | = k + 1$).

Definition : a timed edge is a triple $(\tau, \mathbf{u}, \mathbf{v})$ such that edge uv is available at time τ (Arr_{uv} $(\tau) < \infty$).

Definition : a non-waiting temporal walk \mathcal{P} from u at τ_{dep} to v at τ_{arr} is a sequence of timed edges $(\tau_1, \mathbf{u}_1, \mathbf{v}_1), \ldots, (\tau_k, \mathbf{u}_k, \mathbf{v}_k)$ such that :

•
$$u_1 = u, \tau_1 = \tau_{dep},$$

• for
$$i = 1, \dots, k-1$$
, $v_i = u_{i+1}$ and $\tau_i + \delta_{u_i v_i}(\tau_i) = \tau_{i+1}$

•
$$\mathbf{v_k} = \mathbf{v}$$
, $\mathbf{Arr}_{\mathbf{u_k}\mathbf{v_k}}(\tau_{\mathbf{k}}) = \tau_{\mathrm{arr}}$.

Strict : for i = 1, ..., k - 1, $\tau_i < \tau_{i+1}$.

Temporal path : a temporal walk visiting a node at most once (| $\{u_1, v_1, \ldots, v_k\}$ | = k + 1).

Definition : a timed edge is a triple $(\tau, \mathbf{u}, \mathbf{v})$ such that edge uv is available at time τ (Arr_{uv} $(\tau) < \infty$).

Definition : a temporal walk \mathcal{P} from u at τ_{dep} to v at τ_{arr} is a sequence of timed edges $(\tau_1, \mathbf{u}_1, \mathbf{v}_1), \dots, (\tau_k, \mathbf{u}_k, \mathbf{v}_k)$ such that :

• $\mathbf{u}_1 = \mathbf{u}, \tau_1 \ge \tau_{dep}$, • for $\mathbf{i} = 1, \dots, \mathbf{k} - 1$, $\mathbf{v}_i = \mathbf{u}_{i+1}$ and $\tau_i + \delta_{\mathbf{u}_i \mathbf{v}_i}(\tau_i) \le \tau_{i+1}$, • $\mathbf{v}_{\mathbf{k}} = \mathbf{v}, \operatorname{Arr}_{\mathbf{u}_i, \mathbf{v}_k}(\tau_{\mathbf{k}}) \le \tau_{arr}$.

Strict : for $i = 1, ..., k - 1, \tau_i < \tau_{i+1}$.

Temporal path : a temporal walk visiting a node at most once ($| \{u_1, v_1, \dots, v_k\} | = k + 1$).

Definition : a timed edge is a triple $(\tau, \mathbf{u}, \mathbf{v})$ such that edge uv is available at time τ (Arr_{uv} $(\tau) < \infty$).

Definition : a temporal walk \mathcal{P} from u at τ_{dep} to v at τ_{arr} is a sequence of timed edges $(\tau_1, \mathbf{u}_1, \mathbf{v}_1), \dots, (\tau_k, \mathbf{u}_k, \mathbf{v}_k)$ such that :

• $\mathbf{u}_1 = \mathbf{u}, \tau_1 \ge \tau_{dep}$, • for $\mathbf{i} = 1, \dots, \mathbf{k} - 1$, $\mathbf{v}_i = \mathbf{u}_{i+1}$ and $\tau_i + \delta_{\mathbf{u}_i \mathbf{v}_i}(\tau_i) \le \tau_{i+1}$, • $\mathbf{v}_{\mathbf{k}} = \mathbf{v}, \operatorname{Arr}_{\mathbf{u}_i, \mathbf{v}_k}(\tau_{\mathbf{k}}) \le \tau_{arr}$.

Strict : for $i = 1, ..., k - 1, \tau_i < \tau_{i+1}$.

Temporal path : a temporal walk visiting a node at most once ($|\{u_1, v_1, \dots, v_k\}| = k + 1$).

 $\text{Definition}: \mathsf{EAT}_{\mathsf{uv}}(\tau) := \min_{\mathcal{P}} \operatorname{dep. at} \tau \ \tau_{\mathsf{arr}}(\mathcal{P}).$

A path \mathcal{P} arriving at EAT_{uv} (τ) is a foremost path.

EAT Problem : given u, v, τ , compute EAT_{uv}(τ).

Natural solution : temporal Dijkstra [Berman 1996] in $O(n \log n + m \log \Delta_e)$ (adjacency lists) (also $O(n \log n + \mu)$ with a sorted list of temporal edges).

 $\text{Definition}: \mathsf{EAT}_{\mathsf{uv}}(\tau) := \min_{\mathcal{P}} \operatorname{dep. at} \tau \ \tau_{\mathsf{arr}}(\mathcal{P}).$

A path \mathcal{P} arriving at EAT_{uv} (τ) is a foremost path.

EAT Problem : given u, v, τ , compute EAT_{uv}(τ).

Natural solution : temporal Dijkstra [Berman 1996] in $O(n \log n + m \log \Delta_e)$ (adjacency lists) (also $O(n \log n + \mu)$ with a sorted list of temporal edges).

 $\text{Definition}: \mathsf{EAT}_{\mathsf{uv}}(\tau) := \min_{\mathcal{P}} \operatorname{dep. at} \tau \ \tau_{\mathsf{arr}}(\mathcal{P}).$

A path \mathcal{P} arriving at EAT_{uv} (τ) is a foremost path.

EAT Problem : given u, v, τ , compute EAT_{uv}(τ).

Natural solution : temporal Dijkstra [Berman 1996] in $O(n \log n + m \log \Delta_e)$ (adjacency lists) (also $O(n \log n + \mu)$ with a sorted list of temporal edges).

 $\text{Definition}: \mathsf{EAT}_{\mathsf{uv}}(\tau) := \min_{\mathcal{P}} \operatorname{dep. at} \tau \ \tau_{\mathsf{arr}}(\mathcal{P}).$

A path \mathcal{P} arriving at EAT_{uv} (τ) is a foremost path.

EAT Problem : given u, v, τ , compute EAT_{uv} (τ) .

Natural solution : temporal Dijkstra [Berman 1996] in $O(n \log n + m \log \Delta_e)$ (adjacency lists) (also $O(n \log n + \mu)$ with a sorted list of temporal edges).

 $\text{Definition}: \mathsf{EAT}_{\mathsf{uv}}(\tau) := \min_{\mathcal{P}} \operatorname{dep. at} \tau \ \tau_{\mathsf{arr}}(\mathcal{P}).$

A path \mathcal{P} arriving at EAT_{uv} (τ) is a foremost path.

EAT Problem : given u, v, τ , compute EAT_{uv} (τ) .

Natural solution : temporal Dijkstra [Berman 1996] in $O(n \log n + m \log \Delta_e)$ (adjacency lists) (also $O(n \log n + \mu)$ with a sorted list of temporal edges).

The power of waiting

Assumption : FIFO property : for all edge uv \in E and $\tau < \tau'$, Arr_{uv}(τ) \leq Arr_{uv}(τ') (where Arr_{uv}(τ) = $\tau + \delta_{uv}(\tau)$).

Consequence :

loops are useless,

• any foremost path is concatenated : it can be obtained by extending a foremost path.

Lemma : waiting implies FIFO.

The power of waiting

Assumption : FIFO property : for all edge $uv \in E$ and $\tau < \tau'$, $Arr_{uv}(\tau) \leq Arr_{uv}(\tau')$ (where $Arr_{uv}(\tau) = \tau + \delta_{uv}(\tau)$).

Consequence :

· loops are useless,

• any foremost path is concatenated : it can be obtained by extending a foremost path.

Lemma : waiting implies FIFO.

The power of waiting

Assumption : FIFO property : for all edge $uv \in E$ and $\tau < \tau'$, $Arr_{uv}(\tau) \leq Arr_{uv}(\tau')$ (where $Arr_{uv}(\tau) = \tau + \delta_{uv}(\tau)$).

Consequence :

loops are useless,

• any foremost path is concatenated : it can be obtained by extending a foremost path.

Lemma : waiting implies FIFO.

A temporal graph can have foremost temporal walks with infinitely many edges. [Orda, Rom 1991]

Exercise what if waiting is allowed?

Theorem [Orda, Rom 1991] : finding a non-waiting temporal walk is NP-hard.

A temporal graph can have foremost temporal walks with infinitely many edges. [Orda, Rom 1991]

Exercise what if waiting is allowed?

Theorem [Orda, Rom 1991] : finding a non-waiting temporal walk is NP-hard.

A temporal graph can have foremost temporal walks with infinitely many edges. [Orda, Rom 1991]

Exercise what if waiting is allowed?

Theorem [Orda, Rom 1991] : finding a non-waiting temporal walk is NP-hard.

A temporal graph can have foremost temporal walks with infinitely many edges. [Orda, Rom 1991]

Exercise what if waiting is allowed?

Theorem [Orda, Rom 1991] : finding a non-waiting temporal walk is NP-hard.

Profile problem : given u, v, compute $EAT_{uv}(.)$ assuming FIFO.

model	profile size π	profile complexity
niecewise linear-delay	$\pi=\mu {\sf n}^{{\sf O}(\log {\sf n})}$	${oldsymbol O}({\sf nm}\pi)$
piecewise inteal -delay		

Rq1 : for a walk $P = e_1, \dots, e_k$, $Arr_P(\tau) = Arr_{e_k} \circ \dots \circ Arr_{e_1}(\tau)$

Rq2:EAT_{uv}(.) = min_{uv-walk P} Arr_P(.)

Profile problem : given u, v, compute $EAT_{uv}(.)$ assuming FIFO.

model	profile size π	profile complexity
niecewise linean-delay	$\pi=\mu \mathbf{n}^{\mathbf{O}(\log \mathbf{n})}$	$O(nm\pi)$
piecewise intent-delay	[Foschini et al 14]	[Orda, Rom 90]
piecewise constant-delay		$O((m + n \log n)\mu)$ [Dehne et al 12]
point-availability	$\pi = {oldsymbol O}(\mu)$	
unit-delay point-availability		$O(\mu)$ [Kossinets et al 08]

Rq1 : for a walk $P = e_1, \dots, e_k$, $Arr_P(\tau) = Arr_{e_k} \circ \dots \circ Arr_{e_1}(\tau)$

Rq2:EAT_{uv}(.) = min_{uv-walk P} Arr_P(.)

Profile problem : given u, v, compute $EAT_{uv}(.)$ assuming FIFO.

model	profile size π	profile complexity
niecewise linean-delay	$\pi=\mu {\sf n}^{{\sf O}(\log {\sf n})}$	$O(nm\pi)$
piecewise intent-delay	[Foschini et al 14]	[Orda, Rom 90]
piecewise constant-delay		$O((m + n \log n)\mu)$ [Dehne et al 12]
point-availability	$\pi = {old O}(\mu)$	
unit-delay point-availability		$oldsymbol{O}(\mu)$ [Kossinets et al 08]

Rq1 : for a walk $P = e_1, \dots, e_k$, $Arr_P(\tau) = Arr_{e_k} \circ \dots \circ Arr_{e_1}(\tau)$

Rq2:EAT_{uv}(.) = min_{uv-walk P} Arr_P(.)

Profile problem : given u, v, compute $EAT_{uv}(.)$ assuming FIFO.

model	profile size π	profile complexity
ningguize lingen delev	$\pi=\mu \mathbf{n}^{\mathbf{O}(\log \mathbf{n})}$	${oldsymbol O}({\sf nm}\pi)$
piecewise intedi-delay	[Foschini et al 14]	[Orda, Rom 90]
piecewise constant-delay point-availability		$O((m + n \log n)\mu)$
	$\pi = \mathbf{O}(u)$	[Dehne et al 12]
		$oldsymbol{O}(\mu oldsymbol{\log} \mu)$
	$\pi = \mathbf{O}(\mu)$	[Dibbelt et al 13,]
unit-delay point-availability		

Rq1 : for a walk $P = e_1, \dots, e_k$, $Arr_P(\tau) = Arr_{e_k} \circ \dots \circ Arr_{e_1}(\tau)$

Rq2:EAT_{uv}(.) = min_{uv-walk p} Arr_P(.)

Profile problem : given u, v, compute $EAT_{uv}(.)$ assuming FIFO.

model	profile size π	profile complexity
niagowiga lingan dalay	$\pi=\mu {\sf n}^{{\sf O}(\log{\sf n})}$	$O(nm\pi)$
piecewise intedi-delay	[Foschini et al 14]	[Orda, Rom 90]
piecewise constant-delay	$\pi = \mathbf{O}(\mu)$	$O((m + n \log n)\mu)$
		[Dehne et al 12]
point-availability		$oldsymbol{O}(\mu oldsymbol{\log} \mu)$
	$\pi = \mathbf{O}(\mu)$	[Dibbelt et al 13,]
unit-delay point-availability		$oldsymbol{O}(\mu)$
		[Kossinets et al 08]

Rq1 : for a walk $P = e_1, \dots, e_k$, $Arr_P(\tau) = Arr_{e_k} \circ \dots \circ Arr_{e_1}(\tau)$

 $\textbf{Rq2}: \textbf{EAT}_{uv}(.) = \textbf{min}_{uv} \textbf{-walk} \ \textbf{P} \ \textbf{Arr}_{P}(.)$

Profile problem : given u, v, compute $EAT_{uv}(.)$ assuming FIFO.

model	profile size π	profile complexity
niccowigo lincon dolov	$\pi = \mu \mathbf{n}^{\mathbf{O}(\log \mathbf{n})}$	$O(nm\pi)$
piecewise inteal -delay	[Foschini et al 14]	[Orda, Rom 90]
piecewise constant-delay	$\pi = \mathbf{O}(\mu)$	$O((m + n \log n)\mu)$
		[Dehne et al 12]
point-availability		$oldsymbol{O}(\mu)$
	$\pi = \mathbf{O}(\mu)$	[Brunelli et al 23]
unit-delay point-availability		$oldsymbol{O}(\mu)$
		[Kossinets et al 08]

Rq1 : for a walk $P = e_1, \dots, e_k$, $Arr_P(\tau) = Arr_{e_k} \circ \dots \circ Arr_{e_1}(\tau)$

 $Rq2:EAT_{uv}(.) = min_{uv} - walk_{P} Arr_{P}(.)$

Profile problem : given u, v, compute $EAT_{uv}(.)$ assuming FIFO.

model	profile size π	profile complexity
niccowigo lincon dolov	$\pi = \mu \mathbf{n}^{\mathbf{O}(\log \mathbf{n})}$	$O(nm\pi)$
piecewise inteal -delay	[Foschini et al 14]	[Orda, Rom 90]
piecewise constant-delay	$\pi = \mathbf{O}(\mu)$	$O((m + n \log n)\mu)$
		[Dehne et al 12]
point-availability		$oldsymbol{O}(\mu)$
	$\pi = \mathbf{O}(\mu)$	[Brunelli et al 23]
unit-delay point-availability		$oldsymbol{O}(\mu)$
		[Kossinets et al 08]

Rq1 : for a walk $P = e_1, \dots, e_k$, $Arr_P(\tau) = Arr_{e_k} \circ \dots \circ Arr_{e_1}(\tau)$

 $Rq2:EAT_{uv}(.) = min_{uv} - walk_{P} Arr_{P}(.)$

Profile problem : given u, v, compute $EAT_{uv}(.)$ assuming FIFO.

model	profile size π	profile complexity
niccowigo lincon dolov	$\pi = \mu \mathbf{n}^{\mathbf{O}(\log \mathbf{n})}$	$O(nm\pi)$
piecewise inteal -delay	[Foschini et al 14]	[Orda, Rom 90]
piecewise constant-delay	$\pi = \mathbf{O}(\mu)$	$O((m + n \log n)\mu)$
		[Dehne et al 12]
point-availability		$oldsymbol{O}(\mu)$
	$\pi = \mathbf{O}(\mu)$	[Brunelli et al 23]
unit-delay point-availability		$oldsymbol{O}(\mu)$
		[Kossinets et al 08]

Rq1 : for a walk $P = e_1, \dots, e_k$, $Arr_P(\tau) = Arr_{e_k} \circ \dots \circ Arr_{e_1}(\tau)$

$$Rq2:EAT_{uv}(.) = min_{uv} - walk_{P} Arr_{P}(.)$$

Profile problem : given u, v, compute $EAT_{uv}(.)$ assuming FIFO.

model	profile size π	profile complexity
niccowigo lincon dolov	$\pi = \mu \mathbf{n}^{\mathbf{O}(\log \mathbf{n})}$	$O(nm\pi)$
piecewise inteal -delay	[Foschini et al 14]	[Orda, Rom 90]
piecewise constant-delay	$\pi = \mathbf{O}(u)$	$O((m + n \log n)\mu)$
		[Dehne et al 12]
point-availability		$oldsymbol{O}(\mu)$
	$\pi = \mathbf{O}(\mu)$	[Brunelli et al 23]
unit-delay point-availability		$O(\mu)$
		[Kossinets et al 08]

Rq1: for a walk $P = e_1, \dots, e_k$, $Arr_P(\tau) = Arr_{e_k} \circ \dots \circ Arr_{e_1}(\tau)$

$$Rq2:EAT_{uv}(.) = min_{uv} - walk_{P} Arr_{P}(.)$$

Point-availability : non-waiting temporal paths are hard

Theorem [Casteigts, Himmel, Molter, Zschoche 2021] Testing if a β -waiting temporal path connects a given pair of nodes is NP-hard (even W[1]-hard parametrized by pathwidth).

Point-availability : non-waiting temporal paths are hard

Theorem [Casteigts, Himmel, Molter, Zschoche 2021] Testing if a β -waiting temporal path connects a given pair of nodes is NP-hard (even W[1]-hard parametrized by pathwidth).

β -waiting temp. walks in lin. time [Brunelli et al. 2023]

Various natural "shortest" uv-walks

Earliest arrival (or foremost) : starting at τ from u, minimize arrival time in v (concatenated).

Concatenated : any optimal walk can be obtained by concatenating an edge to an optimal walk.

Fewest hops (or shortest) : minimize the number k of edges (not concat.).

Shortest duration (or fastest) : minimize arrival time -

departure time (not concatenated).

Shortest delay : minimize $\sum_{i=1}^{k} Arr_{u_iv_i}(\tau_i) - \tau_i$ (not concat.) over walks $\mathcal{P} = u_1v_1, \dots, u_kv_k$.

Min. waiting time : minimize $\sum_{i=1}^{k-1}\tau_{i+1} - \text{Arr}_{u_iv_i}(\tau_i)$ (not

Various natural "shortest" uv-walks

Earliest arrival (or foremost) : starting at τ from u, minimize arrival time in v (concatenated).

Concatenated : any optimal walk can be obtained by concatenating an edge to an optimal walk.

Fewest hops (or shortest) : minimize the number k of edges (not concat.).

Shortest duration (or fastest) : minimize arrival time -

departure time (not concatenated).

Shortest delay : minimize $\sum_{i=1}^{k} Arr_{u_iv_i}(\tau_i) - \tau_i$ (not concat.) over walks $\mathcal{P} = u_1v_1, \dots, u_kv_k$.

Min. waiting time : minimize $\sum_{i=1}^{k-1}\tau_{i+1} - \text{Arr}_{u_iv_i}(\tau_i)$ (not

Various natural "shortest" uv-walks

- Earliest arrival (or foremost) : starting at τ from u, minimize arrival time in v (concatenated).
- Concatenated : any optimal walk can be obtained by concatenating an edge to an optimal walk.
- Fewest hops (or shortest) : minimize the number k of edges (not concat.).
- Shortest duration (or fastest) : minimize arrival time departure time (not concatenated).
- Shortest delay : minimize $\sum_{i=1}^{k} Arr_{u_iv_i}(\tau_i) \tau_i$ (not concat.) over walks $\mathcal{P} = u_1v_1, \dots, u_kv_k$.
- Min. waiting time : minimize $\sum_{i=1}^{k-1}\tau_{i+1} \text{Arr}_{u_iv_i}(\tau_i)$ (not

Various natural "shortest" uv-walks

Earliest arrival (or foremost) : starting at τ from u, minimize arrival time in v (concatenated).

Concatenated : any optimal walk can be obtained by concatenating an edge to an optimal walk.

Fewest hops (or shortest) : minimize the number k of edges (not concat.).

Shortest duration (or fastest) : minimize arrival time - departure time (not concatenated).

Shortest delay : minimize $\sum_{i=1}^{k} Arr_{u_iv_i}(\tau_i) - \tau_i$ (not concat.) over walks $\mathcal{P} = u_1v_1, \dots, u_kv_k$.

Min. waiting time : minimize $\sum_{i=1}^{k-1}\tau_{i+1} - \text{Arr}_{u_iv_i}(\tau_i)$ (not

Various natural "shortest" uv-walks

Earliest arrival (or foremost) : starting at τ from u, minimize arrival time in v (concatenated).

Concatenated : any optimal walk can be obtained by concatenating an edge to an optimal walk.

Fewest hops (or shortest) : minimize the number k of edges (not concat.).

Shortest duration (or fastest) : minimize arrival time - departure time (not concatenated).

Shortest delay : minimize $\sum_{i=1}^{k} Arr_{u_iv_i}(\tau_i) - \tau_i$ (not concat.) over walks $\mathcal{P} = u_1v_1, \dots, u_kv_k$.

Min. waiting time : minimize $\sum_{i=1}^{k-1} \tau_{i+1} - \operatorname{Arr}_{u_iv_i}(\tau_i)$ (not concat.).

$\textbf{Temporal path cost}: \textbf{cost}(\mathcal{P},(\tau,\textbf{u},\textbf{v}))) = \textbf{cost}(\mathcal{P}) \oplus \textbf{cost}_{\textbf{uv}}(\tau)$

Theorem [Brunelli et al. 2023] Given the time-expanded representation and a fixed node s, minimum-cost strict se-walks can be computed for all temporal edges e in linear time when costs are isotone ($c_1 \oplus c \le c_2 \oplus c$ when $c_1 \le c_2$).

Lemma : Minimum-cost walks are concatenated.

Idea : Use the β -waiting algorithm plus intervals at each node for grouping node copies with same optimal cost.

Min-cost :

- edge cost of 1 : shortest (fewest hops),
- edge cost of -1 : longest (most hops),
- cost of $- au_{dep}$: profile and fastest (shortest duration).

 $\textbf{Temporal path cost}: \textbf{cost}(\mathcal{P},(\tau,\textbf{u},\textbf{v}))) = \textbf{cost}(\mathcal{P}) \oplus \textbf{cost}_{\textbf{uv}}(\tau)$

Theorem [Brunelli et al. 2023] Given the time-expanded representation and a fixed node s, minimum-cost strict se-walks can be computed for all temporal edges e in linear time when costs are isotone ($c_1 \oplus c \le c_2 \oplus c$ when $c_1 \le c_2$).

Lemma : Minimum-cost walks are concatenated.

Idea : Use the β -waiting algorithm plus intervals at each node for grouping node copies with same optimal cost.

Min-cost :

- edge cost of 1 : shortest (fewest hops),
- edge cost of -1 : longest (most hops),
- cost of $- au_{dep}$: profile and fastest (shortest duration).

 $\textbf{Temporal path cost}: \textbf{cost}(\mathcal{P},(\tau,\textbf{u},\textbf{v}))) = \textbf{cost}(\mathcal{P}) \oplus \textbf{cost}_{\textbf{uv}}(\tau)$

Theorem [Brunelli et al. 2023] Given the time-expanded representation and a fixed node s, minimum-cost strict se-walks can be computed for all temporal edges e in linear time when costs are isotone ($c_1 \oplus c \le c_2 \oplus c$ when $c_1 \le c_2$).

Lemma : Minimum-cost walks are concatenated.

Idea : Use the β -waiting algorithm plus intervals at each node for grouping node copies with same optimal cost.

Min-cost :

- edge cost of 1 : shortest (fewest hops),
- edge cost of -1 : longest (most hops),
- cost of $- au_{dep}$: profile and fastest (shortest duration).

 $\textbf{Temporal path cost}: \textbf{cost}(\mathcal{P},(\tau,\textbf{u},\textbf{v}))) = \textbf{cost}(\mathcal{P}) \oplus \textbf{cost}_{\textbf{uv}}(\tau)$

Theorem [Brunelli et al. 2023] Given the time-expanded representation and a fixed node s, minimum-cost strict se-walks can be computed for all temporal edges e in linear time when costs are isotone ($c_1 \oplus c \le c_2 \oplus c$ when $c_1 \le c_2$).

Lemma : Minimum-cost walks are concatenated.

Idea : Use the β -waiting algorithm plus intervals at each node for grouping node copies with same optimal cost.

Min-cost :

- edge cost of 1 : shortest (fewest hops),
- edge cost of -1 : longest (most hops),
- cost of $-\tau_{dep}$: profile and fastest (shortest duration).

 $\textbf{Temporal path cost}: \textbf{cost}(\mathcal{P},(\tau,\textbf{u},\textbf{v}))) = \textbf{cost}(\mathcal{P}) \oplus \textbf{cost}_{\textbf{uv}}(\tau)$

Theorem [Brunelli et al. 2023] Given the time-expanded representation and a fixed node s, minimum-cost strict se-walks can be computed for all temporal edges e in linear time when costs are isotone ($c_1 \oplus c \le c_2 \oplus c$ when $c_1 \le c_2$).

Lemma : Minimum-cost walks are concatenated.

Idea : Use the β -waiting algorithm plus intervals at each node for grouping node copies with same optimal cost.

Min-cost :

- edge cost of 1 : shortest (fewest hops),
- edge cost of -1 : longest (most hops),
- cost of $-\tau_{dep}$: profile and fastest (shortest duration).

 $\textbf{Temporal path cost}: \textbf{cost}(\mathcal{P},(\tau,\textbf{u},\textbf{v}))) = \textbf{cost}(\mathcal{P}) \oplus \textbf{cost}_{\textbf{uv}}(\tau)$

Theorem [Brunelli et al. 2023] Given the time-expanded representation and a fixed node s, minimum-cost strict se-walks can be computed for all temporal edges e in linear time when costs are isotone ($c_1 \oplus c \le c_2 \oplus c$ when $c_1 \le c_2$).

Lemma : Minimum-cost walks are concatenated.

Idea : Use the β -waiting algorithm plus intervals at each node for grouping node copies with same optimal cost.

Min-cost :

- edge cost of 1 : shortest (fewest hops),
- edge cost of -1 : longest (most hops),
- cost of $-\tau_{dep}$: profile and fastest (shortest duration).

Generalizing static graph concepts

Basic temporal graphs

Single-labeled temporal graphs :

each edge uv appears at a single time $\lambda(uv) \in \mathbb{N}$.

Basic temporal graphs

Single-labeled temporal graphs :

each edge uv appears at a single time $\lambda(uv) \in \mathbb{N}$.

Definition 1 : $U \subseteq V$ is (strongly) open-connected if for any $u, v \in U$ there exists a temporal path from u to v.

Definition 2 : $U \subseteq V$ is (strongly) closed-connected if for any $u, v \in U$ there exists a temporal path from u to v in G_{IU} .

Theorem [Bhadra, Ferreira 03]: Deciding whether there exists a strongly open/closed-connected set of size k is W[1]/NP-hard (in parameter k).

 $\label{eq:IDea:Reduction of k-Clique:for each edge uv with u < v: create u -2 \rightarrow (u,v) -3 \rightarrow v \mbox{ and } v -2 \rightarrow (v,u) -3 \rightarrow u.$

Definition 1 : $U \subseteq V$ is (strongly) open-connected if for any $u, v \in U$ there exists a temporal path from u to v.

Definition 2 : $U \subseteq V$ is (strongly) closed-connected if for any $u, v \in U$ there exists a temporal path from u to v in G_{IU} .

Theorem [Bhadra, Ferreira 03]: Deciding whether there exists a strongly open/closed-connected set of size k is W[1]/NP-hard (in parameter k).

 $\label{eq:IDea:Reduction of k-Clique:for each edge uv with u < v: create u -2 \rightarrow (u,v) -3 \rightarrow v \mbox{ and } v -2 \rightarrow (v,u) -3 \rightarrow u.$

Definition 1 : $U \subseteq V$ is (strongly) open-connected if for any $u, v \in U$ there exists a temporal path from u to v.

Definition 2 : $U \subseteq V$ is (strongly) closed-connected if for any $u, v \in U$ there exists a temporal path from u to v in G_{IU} .

Theorem [Bhadra, Ferreira 03]: Deciding whether there exists a strongly open/closed-connected set of size k is W[1]/NP-hard (in parameter k).

 $\label{eq:IDea:Reduction of k-Clique:for each edge uv with u < v: create u -2 \rightarrow (u,v) -3 \rightarrow v \mbox{ and } v -2 \rightarrow (v,u) -3 \rightarrow u.$

Definition 1 : $U \subseteq V$ is (strongly) open-connected if for any $u, v \in U$ there exists a temporal path from u to v.

Definition 2 : $U \subseteq V$ is (strongly) closed-connected if for any $u, v \in U$ there exists a temporal path from u to v in G_{IU} .

Theorem [Bhadra, Ferreira 03]: Deciding whether there exists a strongly open/closed-connected set of size k is W[1]/NP-hard (in parameter k).

 $\label{eq:IDea:Reduction of k-Clique : for each edge uv with u < v : create u -2 \rightarrow (u,v) -3 \rightarrow v \mbox{ and } v -2 \rightarrow (v,u) -3 \rightarrow u.$

Definition 1 : $U \subseteq V$ is (strongly) open-connected if for any $u, v \in U$ there exists a temporal path from u to v.

Definition 2 : $U \subseteq V$ is (strongly) closed-connected if for any $u, v \in U$ there exists a temporal path from u to v in G_{IU} .

Theorem [Bhadra, Ferreira 03]: Deciding whether there exists a strongly open/closed-connected set of size k is W[1]/NP-hard (in parameter k).

 $\label{eq:IDea:Reduction of k-Clique : for each edge uv with u < v : create u -2 \rightarrow (u,v) -3 \rightarrow v \mbox{ and } v -2 \rightarrow (v,u) -3 \rightarrow u.$

Sparse spanner : keep a minimum number of edges preserving connectivity.

- Spanner of a (connected) static graph?
- Spanner of a temporal graph [Kempe et al 02]?
- $\begin{array}{l} \mbox{Exercise}: \mbox{minimum spanner of the hypercube of dim. k with} \\ \mbox{temporal edges } b_1 \cdots b_i \cdots b_k i \rightarrow b_1 \cdots \overline{b_i} \cdots b_k. \end{array}$
- Theorem [Axiotis, Fotakis 16]: there exist connected temporal graphs of size $\Theta(n^2)$ without any $o(n^2)$ spanner.
- Theorem [Casteigts et al 19] : a temporal clique with pairwise distinct time labels admits an $O(n \log n)$ spanner.
- Open pb : is this tight?

Sparse spanner : keep a minimum number of edges preserving connectivity.

Spanner of a (connected) static graph?

Spanner of a temporal graph [Kempe et al 02]?

 $\begin{array}{l} \mbox{Exercise}: \mbox{minimum spanner of the hypercube of dim. k with} \\ \mbox{temporal edges } b_1 \cdots b_i \cdots b_k - i \rightarrow b_1 \cdots \overline{b_i} \cdots b_k. \end{array}$

Theorem [Axiotis, Fotakis 16]: there exist connected temporal graphs of size $\Theta(n^2)$ without any $o(n^2)$ spanner.

Theorem [Casteigts et al 19] : a temporal clique with pairwise distinct time labels admits an $O(n \log n)$ spanner.

Open pb : is this tight?

Sparse spanner : keep a minimum number of edges preserving connectivity.

Spanner of a (connected) static graph?

Spanner of a temporal graph [Kempe et al 02]?

 $\begin{array}{l} \mbox{Exercise}: \mbox{minimum spanner of the hypercube of dim. k with} \\ \mbox{temporal edges } b_1 \cdots b_i \cdots b_k - i \rightarrow b_1 \cdots \overline{b_i} \cdots b_k. \end{array}$

Theorem [Axiotis, Fotakis 16]: there exist connected temporal graphs of size $\Theta(n^2)$ without any $o(n^2)$ spanner.

Theorem [Casteigts et al 19] : a temporal clique with pairwise distinct time labels admits an $O(n \log n)$ spanner.

Open pb : is this tight?

Sparse spanner : keep a minimum number of edges preserving connectivity.

Spanner of a (connected) static graph?

Spanner of a temporal graph [Kempe et al 02]?

 $\begin{array}{l} \mbox{Exercise}:\mbox{minimum spanner of the hypercube of dim. k with}\\ \mbox{temporal edges } b_1 \cdots b_i \cdots b_k - i {\rightarrow b_1 \cdots \overline{b_i} \cdots b_k}. \end{array}$

Theorem [Axiotis, Fotakis 16]: there exist connected temporal graphs of size $\Theta(n^2)$ without any $o(n^2)$ spanner.

Theorem [Casteigts et al 19] : a temporal clique with pairwise distinct time labels admits an $O(n \log n)$ spanner.

Open pb : is this tight?

Sparse spanner : keep a minimum number of edges preserving connectivity.

Spanner of a (connected) static graph?

Spanner of a temporal graph [Kempe et al 02]?

 $\begin{array}{l} \mbox{Exercise}: \mbox{minimum spanner of the hypercube of dim. k with} \\ \mbox{temporal edges } b_1 \cdots b_i \cdots b_k - i \rightarrow b_1 \cdots \overline{b_i} \cdots b_k. \end{array}$

Theorem [Axiotis, Fotakis 16]: there exist connected temporal graphs of size $\Theta(n^2)$ without any $o(n^2)$ spanner.

Theorem [Casteigts et al 19] : a temporal clique with pairwise distinct time labels admits an $O(n \log n)$ spanner.

Open pb : is this tight?

Sparse spanner : keep a minimum number of edges preserving connectivity.

Spanner of a (connected) static graph?

Spanner of a temporal graph [Kempe et al 02]?

 $\begin{array}{l} \mbox{Exercise}: \mbox{minimum spanner of the hypercube of dim. k with} \\ \mbox{temporal edges } b_1 \cdots b_i \cdots b_k - i \rightarrow b_1 \cdots \overline{b_i} \cdots b_k. \end{array}$

Theorem [Axiotis, Fotakis 16]: there exist connected temporal graphs of size $\Theta(n^2)$ without any $o(n^2)$ spanner.

Theorem [Casteigts et al 19]: a temporal clique with pairwise distinct time labels admits an $O(n \log n)$ spanner.

Open pb : is this tight?

Sparse spanner : keep a minimum number of edges preserving connectivity.

Spanner of a (connected) static graph?

Spanner of a temporal graph [Kempe et al 02]?

 $\begin{array}{l} \mbox{Exercise}: \mbox{minimum spanner of the hypercube of dim. k with} \\ \mbox{temporal edges } b_1 \cdots b_i \cdots b_k - i \rightarrow b_1 \cdots \overline{b_i} \cdots b_k. \end{array}$

Theorem [Axiotis, Fotakis 16]: there exist connected temporal graphs of size $\Theta(n^2)$ without any $o(n^2)$ spanner.

Theorem [Casteigts et al 19]: a temporal clique with pairwise distinct time labels admits an $O(n \log n)$ spanner.

Open pb : is this tight?

Sparse spanner : keep a minimum number of edges preserving connectivity.

Spanner of a (connected) static graph?

Spanner of a temporal graph [Kempe et al 02]?

 $\begin{array}{l} \mbox{Exercise}: \mbox{minimum spanner of the hypercube of dim. k with} \\ \mbox{temporal edges } b_1 \cdots b_i \cdots b_k - i \rightarrow b_1 \cdots \overline{b_i} \cdots b_k. \end{array}$

Theorem [Axiotis, Fotakis 16]: there exist connected temporal graphs of size $\Theta(n^2)$ without any $o(n^2)$ spanner.

Theorem [Casteigts et al 19]: a temporal clique with pairwise distinct time labels admits an $O(n \log n)$ spanner.

Open pb : is this tight?

No natural node-version of Menger

There exists temporal graphs where the number of node-disjoint uv-temporal-paths is less than the minimum number of node deletions disconnecting u and v [Kempe et al 02].

Theorem [Kempe et al 02] : computing two node-disjoint uv-temporal-paths is NP-hard.

No natural node-version of Menger

There exists temporal graphs where the number of node-disjoint uv-temporal-paths is less than the minimum number of node deletions disconnecting u and v [Kempe et al 02].

Theorem [Kempe et al 02]: computing two node-disjoint uv-temporal-paths is NP-hard.

The number of temporal-edge-disjoint uv-temporal-paths always equals the minimum number of edge deletions disconnecting u and v.

The number of node-departure-disjoint uv-temporal-paths always equals the minimum number of node-departure deletions disconnecting u and v [Mertzios et al 13].

The number of temporal-edge-disjoint uv-temporal-paths always equals the minimum number of edge deletions disconnecting u and v.

The number of node-departure-disjoint uv-temporal-paths always equals the minimum number of node-departure deletions disconnecting u and v [Mertzios et al 13].

The number of temporal-edge-disjoint uv-temporal-paths always equals the minimum number of edge deletions disconnecting u and v.

The number of node-departure-disjoint uv-temporal-paths always equals the minimum number of node-departure deletions disconnecting u and v [Mertzios et al 13].

The number of temporal-edge-disjoint uv-temporal-paths always equals the minimum number of edge deletions disconnecting u and v.

The number of node-departure-disjoint uv-temporal-paths always equals the minimum number of node-departure deletions disconnecting u and v [Mertzios et al 13].

Public transit networks

Observation : the time expanded graph is acyclic.

Sort connections by departure time.

For a (earliest arrival time) query from s to t at time $\tau_{\rm dep}$:

- EAT(s) := τ_{dep} (earliest arrival time at a stop);
- for each connection $(\mathbf{u}, \mathbf{v}, \tau, \delta)$, if $\mathsf{EAT}(\mathbf{u}) \leq \tau$ then :
 - EAT(v) := min(EAT(v), τ_{arr} where $\tau_{arr} = \tau + \delta$),
 - for each footpath $(\mathbf{v}, \mathbf{w}, \delta')$,

 $\mathsf{EAT}(\mathbf{w}) := \min(\mathsf{EAT}(\mathbf{z}), \tau_{\mathsf{arr}} + \delta').$

Quite fast (few ms) when few footpaths.

Observation : the time expanded graph is acyclic.

Sort connections by departure time.

For a (earliest arrival time) query from s to t at time τ_{dep} :

- . EAT(s) := τ_{dep} (earliest arrival time at a stop);
- . for each connection $(\mathbf{u}, \mathbf{v}, \tau, \delta)$, if $\mathsf{EAT}(\mathbf{u}) \leq \tau$ then :
 - EAT(v) := min(EAT(v), τ_{arr} where $\tau_{arr} = \tau + \delta$),
 - for each footpath $(\mathbf{v}, \mathbf{w}, \delta')$,

 $\mathsf{EAT}(\mathbf{w}) := \min(\mathsf{EAT}(\mathbf{z}), \tau_{\mathsf{arr}} + \delta').$

Quite fast (few ms) when few footpaths.

Observation : the time expanded graph is acyclic.

Sort connections by departure time.

For a (earliest arrival time) query from s to t at time τ_{dep} :

- EAT(s) := τ_{dep} (earliest arrival time at a stop);
- . for each connection $(\mathbf{u},\mathbf{v},\tau,\delta)$, if $\mathsf{EAT}(\mathbf{u}) \leq \tau$ then :
 - EAT(v) := min(EAT(v), τ_{arr} where $\tau_{arr} = \tau + \delta$),
 - . for each footpath $(\mathbf{v},\mathbf{w},\delta')$,

 $\mathsf{EAT}(\mathbf{w}) := \min(\mathsf{EAT}(\mathbf{z}), \tau_{\mathsf{arr}} + \delta').$

Quite fast (few ms) when few footpaths.

Observation : the time expanded graph is acyclic.

Sort connections by departure time.

For a (earliest arrival time) query from s to t at time τ_{dep} :

- EAT(s) := τ_{dep} (earliest arrival time at a stop);
- for each connection $(\mathbf{u}, \mathbf{v}, \tau, \delta)$, if $\mathsf{EAT}(\mathbf{u}) \leq \tau$ then :
 - EAT(v) := min(EAT(v), τ_{arr} where $\tau_{arr} = \tau + \delta$),

- for each footpath $(\mathbf{v},\mathbf{w},\delta')$,

 $\mathsf{EAT}(\mathbf{w}) := \min(\mathsf{EAT}(\mathbf{z}), \tau_{\mathsf{arr}} + \delta').$

Quite fast (few ms) when few footpaths.
Connection Scan Algorithm (CSA) [Dibbelt, Pajor, Strasser, Wagner '13]

Observation : the time expanded graph is acyclic.

Sort connections by departure time.

For a (earliest arrival time) query from s to t at time τ_{dep} :

- EAT(s) := τ_{dep} (earliest arrival time at a stop);
- for each connection $(\mathbf{u}, \mathbf{v}, \tau, \delta)$, if $\mathsf{EAT}(\mathbf{u}) \leq \tau$ then :
 - EAT(v) := min(EAT(v), τ_{arr} where $\tau_{arr} = \tau + \delta$),

- for each footpath $(\mathbf{v},\mathbf{w},\delta')$,

 $\mathsf{EAT}(\mathbf{w}) := \min(\mathsf{EAT}(\mathbf{z}), \tau_{\mathsf{arr}} + \delta').$

Quite fast (few ms) when few footpaths.

Exercise : propose simple optimization for reducing the number of connections scanned.

Idea : follow the trips.

For a (earliest arrival time) query from u to v at time t :

- for each line ℓ stopping at u,
- find the first trip of ℓ stopping at u after t,
- update earliest arrival time at following stops in the trip.

Repeat :

In k rounds, compute earliest arrival time with $\mathsf{k}-1$ transfers at most.

Quite fast (few ms) when few footpaths.

Idea : follow the trips.

For a (earliest arrival time) query from u to v at time t :

- for each line ℓ stopping at u,
- find the first trip of ℓ stopping at u after t,
- update earliest arrival time at following stops in the trip.

Repeat :

In k rounds, compute earliest arrival time with $\mathsf{k}-1$ transfers at most.

Quite fast (few ms) when few footpaths.

Idea : follow the trips.

For a (earliest arrival time) query from u to v at time t :

- for each line ℓ stopping at u,
- find the first trip of ℓ stopping at u after t,
- update earliest arrival time at following stops in the trip.

Repeat :

In k rounds, compute earliest arrival time with $\mathbf{k}-1$ transfers at most.

Quite fast (few ms) when few footpaths.

Idea : follow the trips.

For a (earliest arrival time) query from u to v at time t :

- for each line ℓ stopping at u,
- find the first trip of ℓ stopping at u after t,
- update earliest arrival time at following stops in the trip.

Repeat :

In k rounds, compute earliest arrival time with $\mathbf{k}-1$ transfers at most.

Quite fast (few ms) when few footpaths.

Idea : follow the trips.

For a (earliest arrival time) query from u to v at time t :

- for each line ℓ stopping at u,
- find the first trip of ℓ stopping at u after t,
- update earliest arrival time at following stops in the trip.

Repeat :

In k rounds, compute earliest arrival time with $\mathbf{k}-1$ transfers at most.

Quite fast (few ms) when few footpaths.

Pre-compute for each station u :

· lines going through u and position on line,

• transfer pattern DAG : union of transfer paths

 $u \rightarrow x \rightarrow y \rightarrow v$ for all v (and departure time τ).

For a query from u to v :

- try direct connection (common line?),
- otherwise try all possible paths in the DAG of u.

Optimization : compute global transfer pattern DAG only for a selected set of (common) "landmarks".

Prune transfer pattern DAG of u at landmarks (local computation).

For a query, use the union of transfer pattern DAGs of u and v.

Pre-compute for each station u :

· lines going through u and position on line,

• transfer pattern DAG : union of transfer paths

 $u \rightarrow x \rightarrow y \rightarrow v$ for all v (and departure time τ).

For a query from u to v :

- try direct connection (common line?),
- otherwise try all possible paths in the DAG of u.

Optimization : compute global transfer pattern DAG only for a selected set of (common) "landmarks". Prune transfer pattern DAG of u at landmarks (local computation).

For a query, use the union of transfer pattern DAGs of u and v.

Pre-compute for each station u :

lines going through u and position on line,

transfer pattern DAG : union of transfer paths

 $u \rightarrow x \rightarrow y \rightarrow v$ for all v (and departure time τ).

For a query from u to v :

- . try direct connection (common line?),
- otherwise try all possible paths in the DAG of u.

Optimization : compute global transfer pattern DAG only for a selected set of (common) "landmarks". Prune transfer pattern DAG of u at landmarks (local computation).

For a query, use the union of transfer pattern DAGs of u and v.

Pre-compute for each station u :

lines going through u and position on line,

transfer pattern DAG : union of transfer paths

 $u \rightarrow x \rightarrow y \rightarrow v$ for all v (and departure time τ).

For a query from u to v :

- try direct connection (common line?),
- otherwise try all possible paths in the DAG of u.

Optimization : compute global transfer pattern DAG only for a selected set of (common) "landmarks". Prune transfer pattern DAG of u at landmarks (local computation).

For a query, use the union of transfer pattern DAGs of \boldsymbol{u} and $\boldsymbol{v}.$

HL on the time expanded graph :

- a node for each event at a station,
- waiting arcs between consecutive nodes of a station,
- connection arcs for each connection.

Query from u to v at τ :

- find (by dichotomy) the first event u' at u after au,
- . the first event v' at v s.t. $H_{u'}\cap H_{v'}\neq \emptyset,$
- ${\scriptstyle \bullet}$ expand the path through the best hub in $H_{u'} \cap H_{v'}.$

Experimental results (London, earliest arrival – multicriteria) : precomput. 1-49h, 1.3-28Go, hub sets 70-700/event, query time $10-30\mu s$.

Similar : direct approach [Wang, Lin, Yang, Xiao, Zhou '15] : HHL + timetable rel. opt.

HL on the time expanded graph :

- a node for each event at a station,
- waiting arcs between consecutive nodes of a station,
- connection arcs for each connection.

Query from u to v at τ :

- find (by dichotomy) the first event u' at u after au,
- the first event v' at v s.t. $H_{u'} \cap H_{v'} \neq \emptyset$,
- ${\scriptstyle \bullet}$ expand the path through the best hub in $H_{u'}\cap H_{v'}.$

Experimental results (London, earliest arrival – multicriteria) : precomput. 1-49h, 1.3-28Go, hub sets 70-700/event, query time $10-30\mu s$.

Similar : direct approach [Wang, Lin, Yang, Xiao, Zhou '15] : HHL + timetable rel. opt.

HL on the time expanded graph :

- a node for each event at a station,
- waiting arcs between consecutive nodes of a station,
- connection arcs for each connection.

Query from u to v at τ :

- find (by dichotomy) the first event u' at u after τ ,
- . the first event v' at v s.t. $H_{u'}\cap H_{v'}\neq \emptyset,$
- ${\scriptstyle \bullet}$ expand the path through the best hub in $H_{u'}\cap H_{v'}.$

Experimental results (London, earliest arrival – multicriteria) : precomput. 1-49h, 1.3-28Go, hub sets 70-700/event, query time 10-30 μ s.

Similar : direct approach [Wang, Lin, Yang, Xiao, Zhou '15] : HHL + timetable rel. opt.

HL on the time expanded graph :

- a node for each event at a station,
- waiting arcs between consecutive nodes of a station,
- connection arcs for each connection.

Query from u to v at τ :

- find (by dichotomy) the first event u' at u after τ ,
- . the first event v' at v s.t. $H_{u'}\cap H_{v'}\neq \emptyset,$
- ${\scriptstyle \bullet}$ expand the path through the best hub in $H_{u'}\cap H_{v'}.$

Experimental results (London, earliest arrival – multicriteria) : precomput. 1-49h, 1.3-28Go, hub sets 70-700/event, query time 10-30 μ s.

Similar : direct approach [Wang, Lin, Yang, Xiao, Zhou '15] : HHL + timetable rel. opt.

HL on the time expanded graph :

- a node for each event at a station,
- waiting arcs between consecutive nodes of a station,
- connection arcs for each connection.

Query from u to v at τ :

- find (by dichotomy) the first event u' at u after τ ,
- . the first event v' at v s.t. $H_{u'}\cap H_{v'}\neq \emptyset,$
- expand the path through the best hub in $H_{u'}\cap H_{v'}.$

Experimental results (London, earliest arrival – multicriteria) : precomput. 1-49h, 1.3-28Go, hub sets 70-700/event, query time 10-30 μ s.

Similar : direct approach [Wang, Lin, Yang, Xiao, Zhou '15] : HHL + timetable rel. opt.

Further reading

[Holme 2015] Modern temporal network theory : a colloquium. The European Physical Journal B 2015 https://arxiv.org/abs/1508.01303

[Michail 2016] An Introduction to Temporal Graphs : An Algorithmic Perspective. Internet Mathematics 2016 https://arxiv.org/abs/1503.00278

Further reading

[Holme 2015] Modern temporal network theory : a colloquium. The European Physical Journal B 2015 https://arxiv.org/abs/1508.01303

[Michail 2016] An Introduction to Temporal Graphs : An Algorithmic Perspective. Internet Mathematics 2016 https://arxiv.org/abs/1503.00278

Exercise 4

Show that WL and 2-OWL have the disciminative power (see detailed exercise on the course page).

Exercise 5 (optional)

Show that finding a closed-connected set of size k (for non-strict temporal paths) is W[1]-hard for parameter k.

Suggestion : use a parameterized reduction of k-multicolored-clique : given a graph G, an integer k, and a partition V_1, \ldots, V_k of V(G), decide if there exists a k-clique containing exactly one vertex from each set V_i .

Exercise 5 (optional)

Show that finding a closed-connected set of size k (for non-strict temporal paths) is W[1]-hard for parameter k.

Suggestion : use a parameterized reduction of k-multicolored-clique : given a graph G, an integer k, and a partition V_1, \ldots, V_k of V(G), decide if there exists a k-clique containing exactly one vertex from each set V_i .

Hardness in P :

- Certificate for approximated diameter?
- Other sub-quad./sub-cubic certificates?

Hub labeling :

- Best hub labeling for a grid?
- Lower bounds for hopset-based distance oracles?

Graph neural networks :

- GNNs for graphs with structural properties?
- Generative models?

Temporal graphs :

• Interesting structural properties of temporal graphs (ex : temporal planarity)?

• Conditional lower-bound for shortest duration (with interval availability)?

Hardness in P :

- Certificate for approximated diameter?
- Other sub-quad./sub-cubic certificates?

Hub labeling :

- Best hub labeling for a grid?
- Lower bounds for hopset-based distance oracles?

Graph neural networks :

- GNNs for graphs with structural properties?
- Generative models?

Temporal graphs :

• Interesting structural properties of temporal graphs (ex : temporal planarity)?

• Conditional lower-bound for shortest duration (with interval availability)?

Hardness in P :

- Certificate for approximated diameter?
- Other sub-quad./sub-cubic certificates?

Hub labeling :

- Best hub labeling for a grid?
- Lower bounds for hopset-based distance oracles?

Graph neural networks :

- GNNs for graphs with structural properties?
- Generative models?

Temporal graphs :

• Interesting structural properties of temporal graphs (ex : temporal planarity)?

• Conditional lower-bound for shortest duration (with interval availability)?

Hardness in P :

- Certificate for approximated diameter?
- Other sub-quad./sub-cubic certificates?

Hub labeling :

- Best hub labeling for a grid?
- Lower bounds for hopset-based distance oracles?

Graph neural networks :

- GNNs for graphs with structural properties?
- Generative models?

Temporal graphs :

• Interesting structural properties of temporal graphs (ex : temporal planarity)?

• Conditional lower-bound for shortest duration (with interval availability)?