Fast Distance Queries

Laurent Viennot

MPRI - Theory of practical graph algorithms
Encoding a graph metric: distance oracles
Size S vs query time T tradeoff (sparse graphs, i.e. $m = O(n)$)
Encoding a graph metric: distance labelings

\[S = n \cdot \text{DistLab}(n) \]

\[d_G(u, v) \]
Distance labeling [Gavoille, Peleg, Pérennes, Raz '04]

Problem
Given a graph G assign a label L_u to each node u s.t. for all s, t $d_G(s, t)$ can be computed from L_s and L_t.

Hub sets
Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $a \in H_u \cap H_v$ with $a \in P_{uv}$.

Distance labels: $L_u = \{(a, d(u, a)) : a \in H_u\}$
Distance query: $\text{Dist} (L_s, L_t) = \min_{a \in H_s \cap H_t} d(s, a) + d(a, t)$ in $O(|H_s| + |H_t|)$ time.

Covering property: for all $u, v \in V$, $H_u \cap H_v \cap I_{uv} \neq \emptyset$ where the interval I_{uv} is the union of all uv-shortest paths.
Distance labeling [Gavoille, Peleg, Pérennes, Raz '04]

Problem
Given a graph G assign a label L_u to each node u s.t. for all s, t $d_G(s, t)$ can be computed from L_s and L_t.

Hub sets
Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $a \in H_u \cap H_v$ with $a \in P_{uv}$.

Distance labels: $L_u = \{(a, d(u, a)) : a \in H_u\}$
Distance query: $\text{Dist} (L_s, L_t) = \min_{a \in H_s \cap H_t} d(s, a) + d(a, t)$ in $O(|H_s| + |H_t|)$ time.
Covering property: for all $u, v \in V$, $H_u \cap H_v \cap I_{uv} \neq \emptyset$ where the interval I_{uv} is the union of all uv-shortest paths.
Distance labeling [Gavoille, Peleg, Pérennes, Raz '04]

Problem
Given a graph G assign a label L_u to each node u s.t. for all $s, t \ d_G(s, t)$ can be computed from L_s and L_t.

Hub sets
Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $a \in H_u \cap H_v$ with $a \in P_{uv}$.

Distance labels : $L_u = \{(a, d(u, a)) : a \in H_u\}$

Distance query : $\text{Dist} (L_s, L_t) = \min_{a \in H_s \cap H_t} d(s, a) + d(a, t)$ in $O(|H_s| + |H_t|)$ time.

Covering property : for all $u, v \in V$, $H_u \cap H_v \cap I_{uv} \neq \emptyset$ where the interval I_{uv} is the union of all uv-shortest paths.
Problem

Given a graph G assign a label L_u to each node u s.t. for all $s, t \notin G(s, t)$ can be computed from L_s and L_t.

Hub sets

Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $a \in H_u \cap H_v$ with $a \in P_{uv}$.

Distance labels: $L_u = \{(a, d(u, a)) : a \in H_u\}$

Distance query: $\text{Dist}(L_s, L_t) = \min_{a \in H_s \cap H_t} d(s, a) + d(a, t)$
in $O(|H_s| + |H_t|)$ time.

Covering property: for all $u, v \in V$, $H_u \cap H_v \cap I_{uv} \neq \emptyset$ where the interval I_{uv} is the union of all uv-shortest paths.
Distance labeling [Gavoille, Peleg, Pérennes, Raz '04]

Problem
Given a graph G assign a label L_u to each node u s.t. for all s, t $d_G(s, t)$ can be computed from L_s and L_t.

Hub sets
Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $a \in H_u \cap H_v$ with $a \in P_{uv}$.

Distance labels: $L_u = \{(a, d(u, a)) : a \in H_u\}$
Distance query: $\text{Dist} (L_s, L_t) = \min_{a \in H_s \cap H_t} d(s, a) + d(a, t)$ in $O(|H_s| + |H_t|)$ time.

Covering property: for all $u, v \in V$, $H_u \cap H_v \cap I_{uv} \neq \emptyset$ where the interval I_{uv} is the union of all uv-shortest paths.
Distance labeling [Gavoille, Peleg, Pérennes, Raz ’04]

Problem
Given a graph G assign a label L_u to each node u s.t. for all $s, t \ d_G(s, t)$ can be computed from L_s and L_t.

Hub sets
Given a graph G, assign a hub set $H_u \subseteq V(G)$ to each node u, s.t. for all u, v there exists $a \in H_u \cap H_v$ with $a \in P_{uv}$.

Distance labels : $L_u = \{(a, d(u, a)) : a \in H_u\}$

Distance query : $\text{Dist} (L_s, L_t) = \min_{a \in H_s \cap H_t} d(s, a) + d(a, t)$ in $O(|H_s| + |H_t|)$ time.

Covering property : for all $u, v \in V$, $H_u \cap H_v \cap I_{uv} \neq \emptyset$ where the interval I_{uv} is the union of all uv-shortest paths.
Labeling with hub sets: hub labeling a.k.a. 2-hop labeling

Exercise: Hub labeling for a path?, a tree? a graph with treewidth k? a planar graph?

Open pb: Increase the best known lower bound for unweighted planar graphs ($\Omega(n^{1/3})$ [Gavoille et al. 2004]).

Exercise: Hub labeling for a grid?
Labeling with hub sets: hub labeling a.k.a. 2-hop labeling

Exercise: Hub labeling for a path?, a tree? a graph with treewidth k? a planar graph?

Open pb: Increase the best known lower bound for unweighted planar graphs ($\Omega(n^{1/3}) \; [Gavoille \ et \ al. \ 2004]$).

Exercise: Hub labeling for a grid?
Labeling with hub sets: hub labeling a.k.a. 2-hop labeling

Exercise: Hub labeling for a path?, a tree? a graph with treewidth k? a planar graph?

Open pb: Increase the best known lower bound for unweighted planar graphs ($\Omega(n^{1/3})$ [Gavoille et al. 2004]).

Exercise: Hub labeling for a grid?
Problem: Find hub sets \((H_u)_{u \in V}\) of min. size \(|H| = \sum_u |H_u|\).

Greedy cover all shortest paths:
- smallest avg. hub size is equivalent to min. cost set cover,
- \(O(\log n)\)-approximation is possible:
 - select a hub \(x\) and a subset \(K\) of nodes s.t.
 \[
 \text{rel. cost} \frac{|K|}{\text{nb path cov. if } x \text{ added to all } (H_u)_{u \in K}} \text{ is min.}
 \]
 - add hub \(x\) to \(H_u\) for \(u \in K\).

Problem: set cover instance with \(n \times 2^n\) sets!

Solution: fix \(x\), what is the best \(K\)?
- \(G_x\) graph with edges \(uv\) s.t. \(P_{uv}\) still uncov. and \(a \in P_{uv}\).

Exercise: Propose a greedy algorithm for 2-approximating the best \(K\).

Corollary: Hubsets with smallest average size can be \(O(\log n)\)-approximated in polynomial time.
2-hop labeling [Cohen, Halperin, Kaplan, Zwick '03]

Problem: Find hub sets \((H_u)_{u \in V}\) of min. size \(|H| = \sum_u |H_u|\).

Greedy cover all shortest paths:
- smallest avg. hub size is equivalent to min. cost set cover,
- \(O(\log n)\)-approximation is possible:
 - select a hub \(x\) and a subset \(K\) of nodes s.t.
 \[
 \text{rel. cost} \cdot \frac{|K|}{\text{nb path cov. if } x \text{ added to all } (H_u)_{u \in K}} \text{ is min.}
 \]
 - add hub \(x\) to \(H_u\) for \(u \in K\).

Problem: set cover instance with \(n \times 2^n\) sets!

Solution: fix \(x\), what is the best \(K\)?
- \(G_x\) graph with edges \(uv\) s.t. \(P_{uv}\) still uncov. and \(a \in P_{uv}\).

Exercise: Propose a greedy algorithm for 2-approximating the best \(K\).

Corollary: Hubsets with smallest average size can be \(O(\log n)\)-approximated in polynomial time.
2-hop labeling [Cohen, Halperin, Kaplan, Zwick '03]

Problem: Find hub sets \((H_u)_{u \in V}\) of min. size \(|H| = \sum_u |H_u|\).

Greedy cover all shortest paths:
- smallest avg. hub size is equivalent to min. cost set cover,
- \(O(\log n)\)-approximation is possible:
 - select a hub \(x\) and a subset \(K\) of nodes s.t.
 \[
 \text{rel. cost} \frac{|K|}{\text{nb path cov. if } x \text{ added to all } (H_u)_{u \in K}} \text{ is min.}
 \]
 - add hub \(x\) to \(H_u\) for \(u \in K\).

Problem: set cover instance with \(n \times 2^n\) sets!

Solution: fix \(x\), what is the best \(K\)?
\(G_x\) graph with edges \(uv\) s.t. \(P_{uv}\) still uncov. and \(a \in P_{uv}\).

Exercise: Propose a greedy algorithm for 2-approximating the best \(K\).

Corollary: Hubsets with smallest average size can be \(O(\log n)\)-approximated in polynomial time.
2-hop labeling [Cohen, Halperin, Kaplan, Zwick '03]

Problem: Find hub sets $(H_u)_{u \in V}$ of min. size $|H| = \sum_u |H_u|$.

Greedy cover all shortest paths:
- smallest avg. hub size is equivalent to min. cost set cover,
- $O(\log n)$-approximation is possible:
 - select a hub x and a subset K of nodes s.t.
 - rel. cost $\frac{|K|}{\text{nb path cov. if } x \text{ added to all } (H_u)_{u \in K}}$ is min.
 - add hub x to H_u for $u \in K$.

Problem: set cover instance with $n \times 2^n$ sets!

Solution: fix x, what is the best K?
 - G_x graph with edges uv s.t. P_{uv} still uncov. and $a \in P_{uv}$.

Exercise: Propose a greedy algorithm for 2-approximating the best K.

Corollary: Hubsets with smallest average size can be $O(\log n)$-approximated in polynomial time.
Problem: Find hub sets \((H_u)_{u \in V}\) of min. size \(|H| = \sum_u |H_u|\).

Greedy cover all shortest paths:
- smallest avg. hub size is equivalent to min. cost set cover,
- \(O(\log n)\)-approximation is possible:
 - select a hub \(x\) and a subset \(K\) of nodes s.t.
 - \(\text{rel. cost } \frac{|K|}{\text{nb path cov. if } x \text{ added to all } (H_u)_{u \in K}}\) is min.
 - add hub \(x\) to \(H_u\) for \(u \in K\).

Problem: set cover instance with \(n \times 2^n\) sets!

Solution: fix \(x\), what is the best \(K\)?
- \(G_x\) graph with edges \(uv\) s.t. \(P_{uv}\) still uncov. and \(a \in P_{uv}\).

Exercise: Propose a greedy algorithm for 2-approximating the best \(K\).

Corollary: Hubsets with smallest average size can be \(O(\log n)\)-approximated in polynomial time.
Problem: Find hub sets \((H_u)_{u \in V}\) of min. size \(|H| = \sum_u |H_u|\).

Greedy cover all shortest paths:
- smallest avg. hub size is equivalent to min. cost set cover,
- \(O(\log n)\)-approximation is possible:
 - select a hub \(x\) and a subset \(K\) of nodes s.t.
 \[\text{rel. cost} \frac{|K|}{\text{nb path cov. if } x \text{ added to all } (H_u)_{u \in K}}\]
 is min.
- add hub \(x\) to \(H_u\) for \(u \in K\).

Problem: set cover instance with \(n \times 2^n\) sets!

Solution: fix \(x\), what is the best \(K\)?
\(G_x\) graph with edges \(uv\) s.t. \(P_{uv}\) still uncov. and \(a \in P_{uv}\).

Exercise: Propose a greedy algorithm for 2-approximating the best \(K\).

Corollary: Hubsets with smallest average size can be \(O(\log n)\)-approximated in polynomial time.
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck ’10-13]

Definition

Highway dimension \(h = \max_{u,r} \min_H \text{hitting set of } P_{ur} |H| \)

where \(P_{ur} = \{ P \in P_r \mid \bar{P} \cap B(u, r) \neq \emptyset \} \), \(P_r = \{ P \mid \ell(P) > \frac{r}{2} \} \),

and \(\bar{P} \) is any shortest path extending \(P \) by 0 or 1 edge at each extremity.

Theorem

Any graph \(G \) with highway dimension \(h \) and diameter \(D \) admits a node ordering \(\pi \) s.t. \(CH^{opt}_\pi \) produces at most \(O(nh \log D) \) shortcuts and \(CH_\pi + \text{RP bidir. Dij. visits} \) \(O(h \log D) \) nodes.

Exercise: use \(CH \) to compute a HHL.
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck ’10-13]

Definition

Highway dimension $h = \max_{u,r} \min_{H} |H|$ hitting set of \mathcal{P}_{ur} where $\mathcal{P}_{ur} = \{P \in \mathcal{P}_r \mid \bar{P} \cap B(u, r) \neq \emptyset\}$, $\mathcal{P}_r = \{P \mid \ell(P) > \frac{r}{2}\}$, and \bar{P} is any shortest path extending P by 0 or 1 edge at each extremity.

Theorem

Any graph G with highway dimension h and diameter D admits a node ordering π s.t. CH_{π}^{opt} produces at most $O(nh \log D)$ shortcuts and $CH_{\pi} + RP$ bidir. Dij. visits $O(h \log D)$ nodes.

Exercise: use CH to compute a HHL.
Highway dimension [Abraham, Delling, Fiat, Goldberg, Werneck '10-13]

Definition
Highway dimension \(h = \max_{u,r} \min_H |H| \) hitting set of \(P_{ur} \)
where \(P_{ur} = \{ P \in P_r \mid \bar{P} \cap B(u, r) \neq \emptyset \} \), \(P_r = \{ P \mid \ell(P) > \frac{r}{2} \} \),
and \(\bar{P} \) is any shortest path extending \(P \) by 0 or 1 edge at each extremity.

Theorem
Any graph \(G \) with highway dimension \(h \) and diameter \(D \) admits a node ordering \(\pi \) s.t. \(\text{CH}^\text{opt}_\pi \) produces at most \(O(nh \log D) \) shortcuts and \(\text{CH}_\pi + \text{RP bidir. Di} \) visits \(O(h \log D) \) nodes.

Exercise: use \(\text{CH} \) to compute a HHL.
Hierarchical Hub Labeling (HHL) [BGKSW'15]
A hub labeling is hierarchical if it respects an order \(\pi \) such that hubs are more important: \(v \in H_u \Rightarrow v \geq_{\pi} u \) (the graph with edges from nodes to their hubs is a DAG).

Canonical HHL
Given an ordering \(\pi \), for all \(u, v \) add \(\max_{\pi} I_{uv} \) to \(H_u \) and \(H_v \).

Proposition
Canonical HHL for \(\pi \) is the minimum HHL that respects \(\pi \).

Exercise: show that any minimal HHL is canonical.
Hierarchical Hub Labeling (HHL) [BGKSW’15]
A hub labeling is hierarchical if it respects an order π such that hubs are more important: $v \in H_u \Rightarrow v \geq_{\pi} u$
(the graph with edges from nodes to their hubs is a DAG).

Canonical HHL
Given an ordering π, for all u, v add $\max_{\pi} I_{uv}$ to H_u and H_v.

Proposition
Canonical HHL for π is the minimum HHL that respects π.

Exercise: show that any minimal HHL is canonical.
Hierarchical Hub Labeling (HHL) [BGKSW’15]
A hub labeling is hierarchical if it respects an order π such that hubs are more important: $v \in H_u \Rightarrow v \geq_\pi u$ (the graph with edges from nodes to their hubs is a DAG).

Canonical HHL
Given an ordering π, for all u, v add $\max_\pi I_{uv}$ to H_u and H_v.

Proposition
Canonical HHL for π is the minimum HHL that respects π.

Exercise: show that any minimal HHL is canonical.
Hierarchical Hub Labeling (HHL) [BGKSW'15]
A hub labeling is hierarchical if it respects an order π such that hubs are more important: $v \in H_u \Rightarrow v \geq_\pi u$
(the graph with edges from nodes to their hubs is a DAG).

Canonical HHL
Given an ordering π, for all u, v add $\max_\pi I_{uv}$ to H_u and H_v.

Proposition
Canonical HHL for π is the minimum HHL that respects π.

Exercise: show that any minimal HHL is canonical.
Pruned Labeling [Akiba, Iwata, Yoshida ’13]

Procedure \textbf{PrunedLab} \((G, \pi)\)
- Distance labels \(L_u := \emptyset\) for all \(u\).
- \textbf{For each} \(a \in V(G)\) \textbf{in decreasing order of} \(\pi\) \textbf{do}
 - \textbf{PrunedDijkstra} \((G, a, L)\)
 - Add \((a, d(a, u))\) to \(L_u\) for each visited node \(u\).

Procedure \textbf{PrunedDijkstra} \((G, a, L)\)
- Starting from \(u = a\), visit \(u\) if \(d(u) < \text{Dist}(L_a, L_u)\).

\textbf{Theorem}
PL computes the canonical HHL associated to \(\pi\) in \(O(nL \log n + mL^2)\) time where \(L\) is maximum label size.

Open pb: charac. classes of graphs with \(|HHL| = O(|HL|)\).
Pruned Labeling [Akiba, Iwata, Yoshida ’13]

Procedure **PrunedLab** \((G, \pi)\)
- Distance labels \(L_u := \emptyset\) for all \(u\).
- For each \(a \in V(G)\) in decreasing order of \(\pi\) do
 - **PrunedDijkstra** \((G, a, L)\)
 - Add \((a, d(a, u))\) to \(L_u\) for each visited node \(u\).

Procedure **PrunedDijkstra** \((G, a, L)\)
- Starting from \(u = a\), visit \(u\) if \(d(u) < \text{Dist}(L_a, L_u)\).

Theorem

PL computes the canonical HHL associated to \(\pi\) in \(O(nL \log n + mL^2)\) time where \(L\) is maximum label size.

Open pb: charac. classes of graphs with \(|HHL| = O(|HL|)\).
HL on massive networks [Delling, Goldberg, Pajor, Werneck ’14]

HHL using **random sampling** to approximate greedy cover (for π) in combination with **pruned labeling** (for hub sets).

$O(\log n)$ approximation in theory, smallest hub labelings in practice (and fastest distance oracle).
HL on massive networks [Delling, Goldberg, Pajor, Werneck ’14]

HHL using random sampling to approximate greedy cover (for π) in combination with pruned labeling (for hub sets).

$O(\log n)$ approximation in theory, smallest hub labelings in practice (and fastest distance oracle).
Skeleton dimension [Kosowski et al. ’17]

Graph property ensuring small hub sets.

The skeleton dimension k of G is the maximum “width” of a “pruned” shortest path tree (see pres.).

Theorem

Any graph G with skeleton dimension k and diameter D has hub sets of size $O(k \log \log k \log D)$ (polyn. time constr. w.h.p.).

Open pb: what additional property ensures efficient Reach/CH?

Open pb: tight bounds on HL/HHL in grids?
Skeleton dimension [Kosowski et al. ’17]

Graph property ensuring small hub sets.

The **skeleton dimension** k of G is the maximum “width” of a “pruned” shortest path tree (see pres.).

Theorem
Any graph G with skeleton dimension k and diameter D has hub sets of size $O(k \log \log k \log D)$ (polyn. time constr. w.h.p.).

Open pb: what additional property ensures efficient Reach/CH?

Open pb: tight bounds on HL/HHL in grids?
Skeleton dimension [Kosowski et al. ’17]

Graph property ensuring small hub sets.

The **skeleton dimension** k of G is the maximum “width” of a “pruned” shortest path tree (see pres.).

Theorem
Any graph G with skeleton dimension k and diameter D has hub sets of size $O(k \log \log k \log D)$ (polyn. time constr. w.h.p.).

Open pb: what additional property ensures efficient Reach/CH?

Open pb: tight bounds on HL/HHL in grids?
Skeleton dimension [Kosowski et al. ’17]

Graph property ensuring small hub sets.

The skeleton dimension k of G is the maximum “width” of a “pruned” shortest path tree (see pres.).

Theorem

Any graph G with skeleton dimension k and diameter D has hub sets of size $O(k \log \log k \log D)$ (polyn. time constr. w.h.p.).

Open pb: what additional property ensures efficient Reach/CH?

Open pb: tight bounds on HL/HHL in grids?
Skeleton dimension [Kosowski et al. ’17]

Graph property ensuring small hub sets.

The skeleton dimension k of G is the maximum “width” of a “pruned” shortest path tree (see pres.).

Theorem

Any graph G with skeleton dimension k and diameter D has hub sets of size $O(k \log \log k \log D)$ (polyn. time constr. w.h.p.).

Open pb: what additional property ensures efficient Reach/CH?

Open pb: tight bounds on HL/HHL in grids?
Barcelona shortest path tree
Barcelona skeleton: prune last third
Barcelona skeleton : prune last third
Barcelona skeleton: prune last third
Tree skeleton

\[P_{uv} \]

\[u \rightarrow \right}
Tree skeleton

\[\begin{align*}
P_{uv} & \quad 2/3 \\
\{ w \in P_{uv} : d(u,w) \leq \frac{2}{3} d(u,v) \} \\
1/3
\end{align*} \]
Tree skeleton

\[\text{Reach}_{P_{uv}}(w) \geq \frac{d(u, v)}{2} \]
Tree skeleton

\[T_u = \bigcup_P P_{uv} \]
Tree skeleton

\[T_u^* = \bigcup_v P_{uv}^{2/3} \]

\[T_u = \bigcup_v P_{uv} \]
Tree skeleton

\[T_u^* = \bigcup_v P_{uv}^{2/3} \]

\[T_u = \bigcup_v P_{uv} \]

\[\text{Cut}_r(T_u) \]
Tree skeleton

$T_u^* = \bigcup_v P_{uv}^{2/3}$

$T_u = \bigcup_v P_{uv}$

$\text{Width}(T_u^*) = \max_{\ell} |\text{Cut}_\ell(T_u^*)|$
Tree skeleton

\[T_u^* = \bigcup_{v} P_{uv}^{2/3} \]

\[T_u = \bigcup_{v} P_{uv} \]

skel. dim. \quad k = \max_u \text{Width}(T_u^*)
Hub set selection
Hub set selection
Hub set selection

\[\omega \text{ s.t. } \rho(\omega) \min \text{ in } P_{uv}^{2/3} \cap P_{vu}^{2/3} \]
Hub set selection
Hub set selection

\[\frac{d(u, w)}{6} \quad \frac{d(u, y)}{6} \quad \omega = x_y \quad \text{s.t.} \]

\[\frac{1}{3} \]

\[\frac{2}{3} \]

\[T_u \]

\[T_v \]

\[u \]

\[v \]
Hub set selection

\[u \quad T_u^* \]

\[\frac{d(u, w)}{6} \]

\[\frac{d(u, y)}{6} \]

\[x_w \]

\[\omega \text{ s.t. } p(\omega) \min \text{ in } P_{xw} \alpha \text{ in } P_{wy} \]

\[2/3 \]

\[T_v^* \]
Hub set selection (proof for unweighted graphs)

Draw $\rho(w) \in [0, 1]$ u.a.r. for all $w \in V(G)$.

$$H_u = \{ w \mid \rho(w) \text{ min. in } P_{xw}, \} \cup \{ x_y \mid \rho(x_y) \text{ min. in } P_{xyy} \}$$

(Can be computed in $\tilde{O}(n + m)$ separately for each node with shared randomness.)

A sub-path P_{xy} has length $\frac{d(u, y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u, y)}$.

$$E[|H_u|] \leq \sum_{y \in V(T_u^*)} \frac{12}{d(u, y)} \leq \sum_r |\text{Cut}_r(T_u^*)| \frac{12}{r} = O(k \log D)$$
Hub set selection (proof for unweighted graphs)

Draw $\rho(w) \in [0, 1]$ u.a.r. for all $w \in V(G)$.

$H_u = \{ w \mid \rho(w) \text{ min. in } P_{xw} \} \cup \{ xy \mid \rho(xy) \text{ min. in } P_{xy} \}$

(Can be computed in $\tilde{O}(n + m)$ separately for each node with shared randomness.)

A sub-path P_{xy} has length $\frac{d(u,y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u,y)}$.

$$E[|H_u|] \leq \sum_{y \in V(T_u^*)} \frac{12}{d(u,y)} \leq \sum_r |\text{Cut}_r(T_u^*)| \frac{12}{r} = O(k \log D)$$
Hub set selection (proof for unweighted graphs)

Draw $\rho(w) \in [0, 1]$ u.a.r. for all $w \in V(G)$.

$$H_u = \{w \mid \rho(w) \text{ min. in } P_{xww}\} \cup \{x_y \mid \rho(x_y) \text{ min. in } P_{xyy}\}$$

(Can be computed in $\tilde{O}(n + m)$ separately for each node with shared randomness.)

A sub-path P_{xyy} has length $\frac{d(u, y)}{6}$ and generates a hub in H_u with probability at most $\frac{12}{d(u, y)}$.

$$E[|H_u|] \leq \sum_{y \in V(T_u^*)} \frac{12}{d(u, y)} \leq \sum r |\text{Cut}_r(T_u^*)| \frac{12}{r} = O(k \log D)$$
Road networks: two tree skeletons
What ...maps do?
What ... maps do?
What ...maps do?
Dimension of grids

\[
h = \Theta(\sqrt{n})
\]

\[
k = \Theta(\log n)
\]
Dimension of grids

\[h = \Theta(\sqrt{n}) \]

\[k = \Theta(\log n) \]
Dimension of grids

\[h = \Theta(\sqrt{n}) \]

\[k = \Theta(\log n) \]
Dimension of grids

\[h = \Theta(\sqrt{n}) \]

\[k = \Theta(\log n) \]
Highway vs skeleton in Brooklyn

Packing of 172 paths

Skeleton width 48
Open: random grid (here 500×500)

$k = 70$

$k = 49$ (fpp $[1,4]$)

$k = 49$ (prob $2/3$)
What about general graphs?
Pre-hub labeling [Angelidakis, Makarychev, Oparin '17]

Hub sets $(H_u)_{u \in V(G)}$ for a graph G form a pre-hub labeling if for all u, v pairs, hubs cross on P_{uv}: $\exists u' \in P_{uv} \cap H_u$ and $\exists v' \in P_{uv} \cap H_v$ with $u' \in P_{v'v}$ and $v' \in P_{uu'}$.

Theorem
If shortest paths are unique,
- PHL 2-approximate HL (and pol. time constr.),
- PHL can be converted to HL with $O(\log D)$ factor.

Theorem
If shortest paths are not unique,
- best polyn. time approx. is $\Omega(\log n)$ (even if $D = O(1)$).

Theorem
In trees, HHL 2-approximate HL (and pol. time constr.).

Exercise: prove it.
Pre-hub labeling [Angelidakis, Makarychev, Oparin '17]

Hub sets \((H_u)_{u \in V(G)}\) for a graph \(G\) form a pre-hub labeling if for all \(u, v\) pairs, hubs cross on \(P_{uv}\): \(\exists u' \in P_{uv} \cap H_u\) and \(\exists v' \in P_{uv} \cap H_v\) with \(u' \in P_{v'v}\) and \(v' \in P_{uu'}\).

Theorem
If shortest paths are unique,
- PHL 2-approximate HL (and pol. time constr.),
- PHL can be converted to HL with \(O(\log D)\) factor.

Theorem
If shortest paths are not unique,
- best polyn. time approx. is \(\Omega(\log n)\) (even if \(D = O(1)\)).

Theorem
In trees, HHL 2-approximate HL (and pol. time constr.).

Exercise: prove it.
Pre-hub labeling [Angelidakis, Makarychev, Oparin ’17]

Hub sets \((H_u)_{u \in V(G)}\) for a graph \(G\) form a pre-hub labeling if for all \(u, v\) pairs, hubs cross on \(P_{uv}\): \(\exists u' \in P_{uv} \cap H_u\) and \(\exists v' \in P_{uv} \cap H_v\) with \(u' \in P_{v'v}\) and \(v' \in P_{uu'}\).

Theorem

If shortest paths are unique,
- PHL 2-approximate HL (and pol. time constr.),
- PHL can be converted to HL with \(O(\log D)\) factor.

Theorem

If shortest paths are not unique,
- best polyn. time approx. is \(\Omega(\log n)\) (even if \(D = O(1)\)).

Theorem

In trees, HHL 2-approximate HL (and pol. time constr.).

Exercise: prove it.
Pre-hub labeling [Angelidakis, Makarychev, Oparin ’17]

Hub sets \((H_u)_{u \in V(G)}\) for a graph \(G\) form a \textit{pre-hub labeling} if for all \(u, v\) pairs, hubs cross on \(P_{uv}\): \(\exists u' \in P_{uv} \cap H_u\) and \(\exists v' \in P_{uv} \cap H_v\) with \(u' \in P_{v'v}\) and \(v' \in P_{uu'}\).

Theorem

If shortest paths are unique,
- PHL 2-approximate HL (and pol. time constr.),
- PHL can be converted to HL with \(O(\log D)\) factor.

Theorem

If shortest paths are \textit{not} unique,
- best polyn. time approx. is \(\Omega(\log n)\) (even if \(D = O(1)\)).

Theorem

In trees, HHL 2-approximate HL (and pol. time constr.).

Exercise: prove it.
Pre-hub labeling [Angelidakis, Makarychev, Oparin '17]

Hub sets \((H_u)_{u \in V(G)}\) for a graph \(G\) form a pre-hub labeling if for all \(u, v\) pairs, hubs cross on \(P_{uv}\): \(\exists u' \in P_{uv} \cap H_u\) and \(\exists v' \in P_{uv} \cap H_v\) with \(u' \in P_{v'v}\) and \(v' \in P_{uu'}\).

Theorem
If shortest paths are unique,
- PHL 2-approximate HL (and pol. time constr.),
- PHL can be converted to HL with \(O(\log D)\) factor.

Theorem
If shortest paths are **not** unique,
- best polyn. time approx. is \(\Omega(\log n)\) (even if \(D = O(1)\)).

Theorem
In trees, HHL 2-approximate HL (and pol. time constr.).

Exercise: prove it.
Hub labeling of general graphs

Any graph has $O\left(\frac{n}{\log n}\right)$ hubsets for $m = O(n)$ (combining [Kosowski et al. '17] and [Alstrup et al. '16]).

Idea (for $\Delta = O(1)$):
- for $r \geq \delta$, the width of a r-cut of a skeleton tree is $k = O(n/\delta)$ (we can get $O(n/\delta)$ hubsets for distances $\geq \delta$),
- select as hubs all nodes at distance less than $\delta = \frac{\log n}{2\log \Delta}$ (at most \sqrt{n} nodes).
Hub labeling of general graphs

Any graph has $O\left(\frac{n}{\log n}\right)$ hubsets for $m = O(n)$ (combining [Kosowski et al. ’17] and [Alstrup et al. ’16]).

Idea (for $\Delta = O(1)$):
- for $r \geq \delta$, the width of a r-cut of a skeleton tree is $k = O(n/\delta)$ (we can get $O(n/\delta)$ hubsets for distances $\geq \delta$),
- select as hubs all nodes at distance less than $\delta = \frac{\log n}{2\log \Delta}$ (at most \sqrt{n} nodes).
Lower bound on hub labeling of general graphs

Theorem [Kosowski et al. ‘19]: There exists graphs with max-degree 3 such that any hubsets have average size $\Omega\left(\frac{n}{2^{O(\sqrt{\log n})}}\right)$.

Linked to Ruzsa-Szemerédi function bounding the number of edges in a graph decomposable into n induced matchings.

There exists graphs with max-degree 3 such that any distance labels must have average size $\geq \text{SUMINDEX}(n/O(\sqrt{\log n}))$.

Open problem: does any sparse graph have a (centralized) distance oracle of size $O(n^{1.5})$ and query time $O(n^{0.5})$?
Lower bound on hub labeling of general graphs

Theorem [Kosowski et al. ‘19]: There exists graphs with max-degree 3 such that any hubsets have average size $\Omega\left(\frac{n}{2^{O(\sqrt{\log n})}}\right)$.

Linked to Ruzsa-Szemerédi function bounding the number of edges in a graph decomposable into n induced matchings.

There exists graphs with max-degree 3 such that any distance labels must have average size $\geq \text{SUMINDEX}(n/O(\sqrt{\log n}))$.

Open problem: does any sparse graph have a (centralized) distance oracle of size $O(n^{1.5})$ and query time $O(n^{0.5})$?
Lower bound on hub labeling of general graphs

Theorem [Kosowski et al. ’19]: There exists graphs with max-degree 3 such that any hubsets have average size \(\Omega\left(\frac{n}{2^{O(\sqrt{\log n})}}\right) \).

Linked to Ruzsa-Szemerédi function bounding the number of edges in a graph decomposable into \(n \) induced matchings.

There exists graphs with max-degree 3 such that any distance labels must have average size

\[\geq \text{SUMINDEX}(n/O(\sqrt{\log n})) \]

Open problem: does any sparse graph have a (centralized) distance oracle of size \(O(n^{1.5}) \) and query time \(O(n^{0.5}) \)?
Lower bound on hub labeling of general graphs

Theorem [Kosowski et al. ’19]: There exists graphs with max-degree 3 such that any hubsets have average size $\Omega\left(\frac{n}{2^{O(\sqrt{\log n})}}\right)$.

Linked to Ruzsa-Szemerédi function bounding the number of edges in a graph decomposable into n induced matchings.

There exists graphs with max-degree 3 such that any distance labels must have average size

$$\geq \text{SUMINDEX}(n/O(\sqrt{\log n})).$$

Open problem: does any sparse graph have a (centralized) distance oracle of size $O(n^{1.5})$ and query time $O(n^{0.5})$?
Each V_i is a regular $2^\ell \times \cdots \times 2^\ell$ lattice of dim. $\ell \approx \sqrt{\log n}$ (here $\ell = 2$). Edges from V_{i-1} to V_i connect nodes differing on ith coordinate.
A graph is an RS-graph if it can be decomposed into n induced matchings.
A graph is an RS-graph if it can be decomposed into n induced matchings.
A graph is an **RS-graph** if it can be decomposed into n induced matchings.
A graph is an **RS-graph** if it can be decomposed into n induced matchings.
A graph is an **RS-graph** if it can be decomposed into \(n \) induced matchings.

What are the densest RS-graphs?

Theorem ([Ruzsa, Szemerédi ’78])

Any RS-graph has at most \(\frac{n^2}{2^{O(\log^* n)}} \) edges.

Define \(RS(n) \) as the smallest integer such that there exists an RS-graph with \(n \) nodes and \(\frac{n^2}{RS(n)} \) edges.

\[
2^{\Omega(\log^* n)} \leq RS(n) \leq 2^{O(\sqrt{\log n})}
\]

[Ruzsa, Szemerédi ’78] [Elkin ’10] [Fox ’11]
A graph is an **RS-graph** if it can be decomposed into n induced matchings.

What are the **densest RS-graphs**?

Theorem ([Ruzsa, Szemerédi ‘78])
Any RS-graph has at most $\frac{n^2}{2^{O(\log^* n)}}$ edges.

Define $RS(n)$ as the smallest integer such that there exists an RS-graph with n nodes and $\frac{n^2}{RS(n)}$ edges.

$$2^{\Omega(\log^* n)} \leq RS(n) \leq 2^{O(\sqrt{\log n})}$$

[Ruzsa, Szemerédi ‘78] [Elkin ‘10] [Fox ‘11]
A graph is an RS-graph if it can be decomposed into n induced matchings.

What are the densest RS-graphs?

Theorem ([Ruzsa, Szemerédi ‘78])
Any RS-graph has at most $\frac{n^2}{2^{O(\log^* n)}}$ edges.

Define $RS(n)$ as the smallest integer such that there exists an RS-graph with n nodes and $\frac{n^2}{RS(n)}$ edges.

$$2^{\Omega(\log^* n)} \leq RS(n) \leq 2^{O(\sqrt{\log n})}$$

[Ruzsa, Szemerédi ‘78] [Elkin ‘10] [Fox ‘11]
A graph is an **RS-graph** if it can be decomposed into n induced matchings.

What are the **densest RS-graphs**?

Theorem ([Ruzsa, Szemerédi ‘78])
Any RS-graph has at most $\frac{n^2}{2^{O(\log^* n)}}$ edges.

Define $RS(n)$ as the smallest integer such that there exists an RS-graph with n nodes and $\frac{n^2}{RS(n)}$ edges.

$$2^{\Omega(\log^* n)} \leq RS(n) \leq 2^{O(\sqrt{\log n})}$$

[Ruzsa, Szemerédi ‘78] [Elkin ‘10] [Fox ‘11]
A graph is an **RS-graph** if it can be decomposed into \(n \) induced matchings.

What are the **densest RS-graphs**?

Theorem ([Ruzsa, Szemerédi ’78])
Any **RS-graph** has at most \(\frac{n^2}{2^\Omega(\log^* n)} \) edges.

Define **RS**\((n)\) as the smallest integer such that there exists an **RS-graph** with \(n \) nodes and \(\frac{n^2}{\text{RS}(n)} \) edges.

\[2^{\Omega(\log^* n)} \leq \text{RS}(n) \leq 2^{O(\sqrt{\log n})} \]

[Ruzsa, Szemerédi ’78] [Elkin ’10] [Fox ’11]
\(G^D_y = \{ x_0 z_{2\ell} \mid y = \frac{x+z}{2} \text{ and } d_G(x, z) = D \} \quad \exists D \text{ s.t. } |\bigcup_y G^D_y| \geq \frac{n^2}{2^{O(\sqrt{\log n})}} \)
Connection with SumIndex

\[\text{SUMINDEX}(n) = \min_{\text{Encoder}} \max_X |M_A| + |M_B| \]

\[\Omega(\sqrt{n}) \leq \text{SUMINDEX}(n) \leq \tilde{O}\left(\frac{n}{2^{\sqrt{\log n}}}\right) \]

[Pudlak 1994] [Babai et al, 2003] [Ambainis 1996]
Connection with SumIndex

\[
\text{SUMINDEX}(n) = \min_{\text{Encoder}} \max_{X} |M_A| + |M_B|
\]

\[
\Omega(\sqrt{n}) \leq \text{SUMINDEX}(n) \leq \tilde{O}\left(\frac{n}{2\sqrt{\log n}}\right)
\]

[Pudlak 1994] [Babai et al, 2003] [Ambainis 1996]
\[G_X = G \setminus \{ y_\ell \mid X_y = 0 \} , \text{ send } x = 2a, L_{x_0}, z = 2b, L_{z_{2\ell}} , \text{ check } d(x_0, z_{2\ell}). \]

\[\text{SUMINDEX}\left(\frac{n}{2^{O(\ell)}} \right) \leq \text{DistLab}(n) \]
$G_X = G \setminus \{y_\ell \mid X_y = 0\}$, send $x = 2a, L_{x_0}, z = 2b, L_{z_{2\ell}}$, check $d(x_0, z_{2\ell})$.

$\text{SUMINDEX}(n/2^{O(\ell)}) \leq \text{DistLab}(n)$
What about more hops?
h-hop distance

\[d^h_G(u, v) = \min_{P \text{ uv-path of } \leq h \text{ edges}} \ell(P) \]

Usual distance: \(d_G(u, v) = d^{n-1}_G(u, v) \)
h-hop distance

\[d_h^G(u, v) = \min_{P \text{ uv-path of } \leq_h \text{ edges}} \ell(P) \]

Usual distance: \(d_G(u, v) = d_G^{n-1}(u, v) \)
Exercise

We define a h-hopset of G as a set H of edges such that $d^h_{G \cup H}(u, v) = d_G(u, v)$ where each edge uv of H is considered to have length $d_G(u, v)$.

(a) What is the minimum number of edges in $G \cup H$ when H is a 1-hopset of G?

(b) What notion seen in course is tightly related to the notion of 2-hopset?

(c) Suppose that G is a path of length n, propose a 3-hopset of G with as few edges as you can (we do not care about multiplicative constants).

(d) Same question for a 4-hopset.

(e) Consider a 3-hopset H of a graph G. Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when G is a path of length n?
Exercise

We define a h-hopset of G as a set H of edges such that $d^h_{G \cup H}(u, v) = d_G(u, v)$ where each edge uv of H is considered to have length $d_G(u, v)$.

(a) What is the minimum number of edges in $G \cup H$ when H is a 1-hopset of G?

(b) What notion seen in course is tightly related to the notion of 2-hopset?

(c) Suppose that G is a path of length n, propose a 3-hopset of G with as few edges as you can (we do not care about multiplicative constants).

(d) Same question for a 4-hopset.

(e) Consider a 3-hopset H of a graph G. Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when G is a path of length n?
Exercise

We define a h-hopset of G as a set H of edges such that $d^H_{G\cup H}(u, v) = d_G(u, v)$ where each edge uv of H is considered to have length $d_G(u, v)$.

(a) What is the minimum number of edges in $G \cup H$ when H is a 1-hopset of G?

(b) What notion seen in course is tightly related to the notion of 2-hopset?

(c) Suppose that G is a path of length n, propose a 3-hopset of G with as few edges as you can (we do not care about multiplicative constants).

(d) Same question for a 4-hopset.

(e) Consider a 3-hopset H of a graph G. Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when G is a path of length n?
Exercise

We define a **h-hopset of G** as a set H of edges such that $d^h_{G \cup H}(u, v) = d_G(u, v)$ where each edge uv of H is considered to have length $d_G(u, v)$.

(a) What is the minimum number of edges in $G \cup H$ when H is a 1-hopset of G?

(b) What notion seen in course is tightly related to the notion of 2-hopset?

(c) Suppose that G is a path of length n, propose a 3-hopset of G with as few edges as you can (we do not care about multiplicative constants).

(d) Same question for a 4-hopset.

(e) Consider a 3-hopset H of a graph G. Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when G is a path of length n?
Exercise

We define a h-hopset of G as a set H of edges such that $d^h_{G\cup H}(u, v) = d_G(u, v)$ where each edge uv of H is considered to have length $d_G(u, v)$.

(a) What is the minimum number of edges in $G\cup H$ when H is a 1-hopset of G?

(b) What notion seen in course is tightly related to the notion of 2-hopset?

(c) Suppose that G is a path of length n, propose a 3-hopset of G with as few edges as you can (we do not care about multiplicative constants).

(d) Same question for a 4-hopset.

(e) Consider a 3-hopset H of a graph G. Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when G is a path of length n?
Exercise

We define a h-hopset of G as a set H of edges such that $d^h_{G∪H}(u, v) = d_G(u, v)$ where each edge uv of H is considered to have length $d_G(u, v)$.

(a) What is the minimum number of edges in $G∪H$ when H is a 1-hopset of G?

(b) What notion seen in course is tightly related to the notion of 2-hopset?

(c) Suppose that G is a path of length n, propose a 3-hopset of G with as few edges as you can (we do not care about multiplicative constants).

(d) Same question for a 4-hopset.

(e) Consider a 3-hopset H of a graph G. Propose a distance oracle based on distinguishing middle edges of 3-hop shortest paths from the two others. What query time do you obtain when G is a path of length n?
3-Hopsets in Graphs with Bounded Skeleton Dimension

Theorem (Gupta et al. 2019)
For a unique shortest path graph with skeleton dimension k and polylog average link length, there exists a randomized construction of a 3-hopset distance oracle of size $|H| = O(nk \log k \log \log n)$, which for an arbitrary queried node pair performs distance queries in expected time $O(k^2 \log^2 k \log^2 \log n)$.

Open pb: Does there exists $\varepsilon, \varepsilon' > 0$ and distance oracles for constant degree graphs with size $O(n^{2-\varepsilon})$ and query time $O(n^{1-\varepsilon'})$?

Open pb: Could it be a 3-hopset distance oracle?
Theorem (Gupta et al. 2019)
For a unique shortest path graph with skeleton dimension \(k \) and polylog average link length, there exists a randomized construction of a 3-hopset distance oracle of size
\[|H| = O(n k \log k \log \log n), \]
which for an arbitrary queried node pair performs distance queries in expected time
\[O(k^2 \log^2 k \log \log n). \]

Open pb : Does there exists \(\varepsilon, \varepsilon' > 0 \) and distance oracles for constant degree graphs with size \(O(n^{2-\varepsilon}) \) and query time \(O(n^{1-\varepsilon'}) \)?

Open pb : Could it be a 3-hopset distance oracle?
Further reading

[Angelidakis, Makarychev, Oparin 2017]
Algorithmic and hardness results for the hub labeling problem.

[Hatami, Hatami 2022]
The Implicit Graph Conjecture is False.

Open: practical adjacency labeling schemes.
Further reading

Open: practical adjacency labeling schemes.
Further reading

Open: practical adjacency labeling schemes.
Exercise 3 : answer to either A or B

A/ We define a hierarchical hub labeling HHL on a tree T using a centroid c as most important node before recursing on subtrees of c (removing c disconnects T into subtrees of size $\leq n/2$).
Prove that it provides a 2 approximation of the smallest possible hub labeling HL of T.
Hint : associate a matching to the centroid and relate it to some node-hub relations of HL.

B/ Construct a family of graphs G_n with n nodes such that $|HL_n| = O(|HHL_n|/n^\varepsilon)$ for some $\varepsilon > 0$ where HL_n (resp. HHL_n) denotes the size of the smallest hub labeling (resp. smallest hierarchical hub labeling) of G_n.
Exercise 3 : answer to either A or B

A/ We define a hierarchical hub labeling HHL on a tree T using a centroid c as most important node before recursing on subtrees of c (removing c disconnects T into subtrees of size $\leq n/2$).

Prove that it provides a 2 approximation of the smallest possible hub labeling HL of T.

Hint: associate a matching to the centroid and relate it to some node-hub relations of HL.

B/ Construct a family of graphs G_n with n nodes such that $|HL_n| = O(|HHL_n|/n^\varepsilon)$ for some $\varepsilon > 0$ where HL_n (resp. HHL_n) denotes the size of the smallest hub labeling (resp. smallest hierarchical hub labeling) of G_n.